Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/wait.h>
  37#include <linux/pci.h>
  38#include <linux/pci_hotplug.h>
  39#include <linux/kthread.h>
  40#include "cpqphp.h"
  41
  42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
  43			u8 behind_bridge, struct resource_lists *resources);
  44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
  45			u8 behind_bridge, struct resource_lists *resources);
  46static void interrupt_event_handler(struct controller *ctrl);
  47
  48
  49static struct task_struct *cpqhp_event_thread;
  50static unsigned long pushbutton_pending;	/* = 0 */
  51
  52/* delay is in jiffies to wait for */
  53static void long_delay(int delay)
  54{
  55	/*
  56	 * XXX(hch): if someone is bored please convert all callers
  57	 * to call msleep_interruptible directly.  They really want
  58	 * to specify timeouts in natural units and spend a lot of
  59	 * effort converting them to jiffies..
  60	 */
  61	msleep_interruptible(jiffies_to_msecs(delay));
  62}
  63
  64
  65/* FIXME: The following line needs to be somewhere else... */
  66#define WRONG_BUS_FREQUENCY 0x07
  67static u8 handle_switch_change(u8 change, struct controller * ctrl)
  68{
  69	int hp_slot;
  70	u8 rc = 0;
  71	u16 temp_word;
  72	struct pci_func *func;
  73	struct event_info *taskInfo;
  74
  75	if (!change)
  76		return 0;
  77
  78	/* Switch Change */
  79	dbg("cpqsbd:  Switch interrupt received.\n");
  80
  81	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  82		if (change & (0x1L << hp_slot)) {
  83			/*
  84			 * this one changed.
  85			 */
  86			func = cpqhp_slot_find(ctrl->bus,
  87				(hp_slot + ctrl->slot_device_offset), 0);
  88
  89			/* this is the structure that tells the worker thread
  90			 * what to do
  91			 */
  92			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  93			ctrl->next_event = (ctrl->next_event + 1) % 10;
  94			taskInfo->hp_slot = hp_slot;
  95
  96			rc++;
  97
  98			temp_word = ctrl->ctrl_int_comp >> 16;
  99			func->presence_save = (temp_word >> hp_slot) & 0x01;
 100			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 101
 102			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 103				/*
 104				 * Switch opened
 105				 */
 106
 107				func->switch_save = 0;
 108
 109				taskInfo->event_type = INT_SWITCH_OPEN;
 110			} else {
 111				/*
 112				 * Switch closed
 113				 */
 114
 115				func->switch_save = 0x10;
 116
 117				taskInfo->event_type = INT_SWITCH_CLOSE;
 118			}
 119		}
 120	}
 121
 122	return rc;
 123}
 124
 125/**
 126 * cpqhp_find_slot - find the struct slot of given device
 127 * @ctrl: scan lots of this controller
 128 * @device: the device id to find
 129 */
 130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 131{
 132	struct slot *slot = ctrl->slot;
 133
 134	while (slot && (slot->device != device))
 135		slot = slot->next;
 136
 137	return slot;
 138}
 139
 140
 141static u8 handle_presence_change(u16 change, struct controller * ctrl)
 142{
 143	int hp_slot;
 144	u8 rc = 0;
 145	u8 temp_byte;
 146	u16 temp_word;
 147	struct pci_func *func;
 148	struct event_info *taskInfo;
 149	struct slot *p_slot;
 150
 151	if (!change)
 152		return 0;
 153
 154	/*
 155	 * Presence Change
 156	 */
 157	dbg("cpqsbd:  Presence/Notify input change.\n");
 158	dbg("         Changed bits are 0x%4.4x\n", change );
 159
 160	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 161		if (change & (0x0101 << hp_slot)) {
 162			/*
 163			 * this one changed.
 164			 */
 165			func = cpqhp_slot_find(ctrl->bus,
 166				(hp_slot + ctrl->slot_device_offset), 0);
 167
 168			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 169			ctrl->next_event = (ctrl->next_event + 1) % 10;
 170			taskInfo->hp_slot = hp_slot;
 171
 172			rc++;
 173
 174			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 175			if (!p_slot)
 176				return 0;
 177
 178			/* If the switch closed, must be a button
 179			 * If not in button mode, nevermind
 180			 */
 181			if (func->switch_save && (ctrl->push_button == 1)) {
 182				temp_word = ctrl->ctrl_int_comp >> 16;
 183				temp_byte = (temp_word >> hp_slot) & 0x01;
 184				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 185
 186				if (temp_byte != func->presence_save) {
 187					/*
 188					 * button Pressed (doesn't do anything)
 189					 */
 190					dbg("hp_slot %d button pressed\n", hp_slot);
 191					taskInfo->event_type = INT_BUTTON_PRESS;
 192				} else {
 193					/*
 194					 * button Released - TAKE ACTION!!!!
 195					 */
 196					dbg("hp_slot %d button released\n", hp_slot);
 197					taskInfo->event_type = INT_BUTTON_RELEASE;
 198
 199					/* Cancel if we are still blinking */
 200					if ((p_slot->state == BLINKINGON_STATE)
 201					    || (p_slot->state == BLINKINGOFF_STATE)) {
 202						taskInfo->event_type = INT_BUTTON_CANCEL;
 203						dbg("hp_slot %d button cancel\n", hp_slot);
 204					} else if ((p_slot->state == POWERON_STATE)
 205						   || (p_slot->state == POWEROFF_STATE)) {
 206						/* info(msg_button_ignore, p_slot->number); */
 207						taskInfo->event_type = INT_BUTTON_IGNORE;
 208						dbg("hp_slot %d button ignore\n", hp_slot);
 209					}
 210				}
 211			} else {
 212				/* Switch is open, assume a presence change
 213				 * Save the presence state
 214				 */
 215				temp_word = ctrl->ctrl_int_comp >> 16;
 216				func->presence_save = (temp_word >> hp_slot) & 0x01;
 217				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 218
 219				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 220				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 221					/* Present */
 222					taskInfo->event_type = INT_PRESENCE_ON;
 223				} else {
 224					/* Not Present */
 225					taskInfo->event_type = INT_PRESENCE_OFF;
 226				}
 227			}
 228		}
 229	}
 230
 231	return rc;
 232}
 233
 234
 235static u8 handle_power_fault(u8 change, struct controller * ctrl)
 236{
 237	int hp_slot;
 238	u8 rc = 0;
 239	struct pci_func *func;
 240	struct event_info *taskInfo;
 241
 242	if (!change)
 243		return 0;
 244
 245	/*
 246	 * power fault
 247	 */
 248
 249	info("power fault interrupt\n");
 250
 251	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 252		if (change & (0x01 << hp_slot)) {
 253			/*
 254			 * this one changed.
 255			 */
 256			func = cpqhp_slot_find(ctrl->bus,
 257				(hp_slot + ctrl->slot_device_offset), 0);
 258
 259			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 260			ctrl->next_event = (ctrl->next_event + 1) % 10;
 261			taskInfo->hp_slot = hp_slot;
 262
 263			rc++;
 264
 265			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 266				/*
 267				 * power fault Cleared
 268				 */
 269				func->status = 0x00;
 270
 271				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 272			} else {
 273				/*
 274				 * power fault
 275				 */
 276				taskInfo->event_type = INT_POWER_FAULT;
 277
 278				if (ctrl->rev < 4) {
 279					amber_LED_on (ctrl, hp_slot);
 280					green_LED_off (ctrl, hp_slot);
 281					set_SOGO (ctrl);
 282
 283					/* this is a fatal condition, we want
 284					 * to crash the machine to protect from
 285					 * data corruption. simulated_NMI
 286					 * shouldn't ever return */
 287					/* FIXME
 288					simulated_NMI(hp_slot, ctrl); */
 289
 290					/* The following code causes a software
 291					 * crash just in case simulated_NMI did
 292					 * return */
 293					/*FIXME
 294					panic(msg_power_fault); */
 295				} else {
 296					/* set power fault status for this board */
 297					func->status = 0xFF;
 298					info("power fault bit %x set\n", hp_slot);
 299				}
 300			}
 301		}
 302	}
 303
 304	return rc;
 305}
 306
 307
 308/**
 309 * sort_by_size - sort nodes on the list by their length, smallest first.
 310 * @head: list to sort
 311 */
 312static int sort_by_size(struct pci_resource **head)
 313{
 314	struct pci_resource *current_res;
 315	struct pci_resource *next_res;
 316	int out_of_order = 1;
 317
 318	if (!(*head))
 319		return 1;
 320
 321	if (!((*head)->next))
 322		return 0;
 323
 324	while (out_of_order) {
 325		out_of_order = 0;
 326
 327		/* Special case for swapping list head */
 328		if (((*head)->next) &&
 329		    ((*head)->length > (*head)->next->length)) {
 330			out_of_order++;
 331			current_res = *head;
 332			*head = (*head)->next;
 333			current_res->next = (*head)->next;
 334			(*head)->next = current_res;
 335		}
 336
 337		current_res = *head;
 338
 339		while (current_res->next && current_res->next->next) {
 340			if (current_res->next->length > current_res->next->next->length) {
 341				out_of_order++;
 342				next_res = current_res->next;
 343				current_res->next = current_res->next->next;
 344				current_res = current_res->next;
 345				next_res->next = current_res->next;
 346				current_res->next = next_res;
 347			} else
 348				current_res = current_res->next;
 349		}
 350	}  /* End of out_of_order loop */
 351
 352	return 0;
 353}
 354
 355
 356/**
 357 * sort_by_max_size - sort nodes on the list by their length, largest first.
 358 * @head: list to sort
 359 */
 360static int sort_by_max_size(struct pci_resource **head)
 361{
 362	struct pci_resource *current_res;
 363	struct pci_resource *next_res;
 364	int out_of_order = 1;
 365
 366	if (!(*head))
 367		return 1;
 368
 369	if (!((*head)->next))
 370		return 0;
 371
 372	while (out_of_order) {
 373		out_of_order = 0;
 374
 375		/* Special case for swapping list head */
 376		if (((*head)->next) &&
 377		    ((*head)->length < (*head)->next->length)) {
 378			out_of_order++;
 379			current_res = *head;
 380			*head = (*head)->next;
 381			current_res->next = (*head)->next;
 382			(*head)->next = current_res;
 383		}
 384
 385		current_res = *head;
 386
 387		while (current_res->next && current_res->next->next) {
 388			if (current_res->next->length < current_res->next->next->length) {
 389				out_of_order++;
 390				next_res = current_res->next;
 391				current_res->next = current_res->next->next;
 392				current_res = current_res->next;
 393				next_res->next = current_res->next;
 394				current_res->next = next_res;
 395			} else
 396				current_res = current_res->next;
 397		}
 398	}  /* End of out_of_order loop */
 399
 400	return 0;
 401}
 402
 403
 404/**
 405 * do_pre_bridge_resource_split - find node of resources that are unused
 406 * @head: new list head
 407 * @orig_head: original list head
 408 * @alignment: max node size (?)
 409 */
 410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 411				struct pci_resource **orig_head, u32 alignment)
 412{
 413	struct pci_resource *prevnode = NULL;
 414	struct pci_resource *node;
 415	struct pci_resource *split_node;
 416	u32 rc;
 417	u32 temp_dword;
 418	dbg("do_pre_bridge_resource_split\n");
 419
 420	if (!(*head) || !(*orig_head))
 421		return NULL;
 422
 423	rc = cpqhp_resource_sort_and_combine(head);
 424
 425	if (rc)
 426		return NULL;
 427
 428	if ((*head)->base != (*orig_head)->base)
 429		return NULL;
 430
 431	if ((*head)->length == (*orig_head)->length)
 432		return NULL;
 433
 434
 435	/* If we got here, there the bridge requires some of the resource, but
 436	 * we may be able to split some off of the front
 437	 */
 438
 439	node = *head;
 440
 441	if (node->length & (alignment -1)) {
 442		/* this one isn't an aligned length, so we'll make a new entry
 443		 * and split it up.
 444		 */
 445		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 446
 447		if (!split_node)
 448			return NULL;
 449
 450		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 451
 452		split_node->base = node->base;
 453		split_node->length = temp_dword;
 454
 455		node->length -= temp_dword;
 456		node->base += split_node->length;
 457
 458		/* Put it in the list */
 459		*head = split_node;
 460		split_node->next = node;
 461	}
 462
 463	if (node->length < alignment)
 464		return NULL;
 465
 466	/* Now unlink it */
 467	if (*head == node) {
 468		*head = node->next;
 469	} else {
 470		prevnode = *head;
 471		while (prevnode->next != node)
 472			prevnode = prevnode->next;
 473
 474		prevnode->next = node->next;
 475	}
 476	node->next = NULL;
 477
 478	return node;
 479}
 480
 481
 482/**
 483 * do_bridge_resource_split - find one node of resources that aren't in use
 484 * @head: list head
 485 * @alignment: max node size (?)
 486 */
 487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 488{
 489	struct pci_resource *prevnode = NULL;
 490	struct pci_resource *node;
 491	u32 rc;
 492	u32 temp_dword;
 493
 494	rc = cpqhp_resource_sort_and_combine(head);
 495
 496	if (rc)
 497		return NULL;
 498
 499	node = *head;
 500
 501	while (node->next) {
 502		prevnode = node;
 503		node = node->next;
 504		kfree(prevnode);
 505	}
 506
 507	if (node->length < alignment)
 508		goto error;
 509
 510	if (node->base & (alignment - 1)) {
 511		/* Short circuit if adjusted size is too small */
 512		temp_dword = (node->base | (alignment-1)) + 1;
 513		if ((node->length - (temp_dword - node->base)) < alignment)
 514			goto error;
 515
 516		node->length -= (temp_dword - node->base);
 517		node->base = temp_dword;
 518	}
 519
 520	if (node->length & (alignment - 1))
 521		/* There's stuff in use after this node */
 522		goto error;
 523
 524	return node;
 525error:
 526	kfree(node);
 527	return NULL;
 528}
 529
 530
 531/**
 532 * get_io_resource - find first node of given size not in ISA aliasing window.
 533 * @head: list to search
 534 * @size: size of node to find, must be a power of two.
 535 *
 536 * Description: This function sorts the resource list by size and then returns
 537 * returns the first node of "size" length that is not in the ISA aliasing
 538 * window.  If it finds a node larger than "size" it will split it up.
 539 */
 540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 541{
 542	struct pci_resource *prevnode;
 543	struct pci_resource *node;
 544	struct pci_resource *split_node;
 545	u32 temp_dword;
 546
 547	if (!(*head))
 548		return NULL;
 549
 550	if (cpqhp_resource_sort_and_combine(head))
 551		return NULL;
 552
 553	if (sort_by_size(head))
 554		return NULL;
 555
 556	for (node = *head; node; node = node->next) {
 557		if (node->length < size)
 558			continue;
 559
 560		if (node->base & (size - 1)) {
 561			/* this one isn't base aligned properly
 562			 * so we'll make a new entry and split it up
 563			 */
 564			temp_dword = (node->base | (size-1)) + 1;
 565
 566			/* Short circuit if adjusted size is too small */
 567			if ((node->length - (temp_dword - node->base)) < size)
 568				continue;
 569
 570			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 571
 572			if (!split_node)
 573				return NULL;
 574
 575			split_node->base = node->base;
 576			split_node->length = temp_dword - node->base;
 577			node->base = temp_dword;
 578			node->length -= split_node->length;
 579
 580			/* Put it in the list */
 581			split_node->next = node->next;
 582			node->next = split_node;
 583		} /* End of non-aligned base */
 584
 585		/* Don't need to check if too small since we already did */
 586		if (node->length > size) {
 587			/* this one is longer than we need
 588			 * so we'll make a new entry and split it up
 589			 */
 590			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 591
 592			if (!split_node)
 593				return NULL;
 594
 595			split_node->base = node->base + size;
 596			split_node->length = node->length - size;
 597			node->length = size;
 598
 599			/* Put it in the list */
 600			split_node->next = node->next;
 601			node->next = split_node;
 602		}  /* End of too big on top end */
 603
 604		/* For IO make sure it's not in the ISA aliasing space */
 605		if (node->base & 0x300L)
 606			continue;
 607
 608		/* If we got here, then it is the right size
 609		 * Now take it out of the list and break
 610		 */
 611		if (*head == node) {
 612			*head = node->next;
 613		} else {
 614			prevnode = *head;
 615			while (prevnode->next != node)
 616				prevnode = prevnode->next;
 617
 618			prevnode->next = node->next;
 619		}
 620		node->next = NULL;
 621		break;
 622	}
 623
 624	return node;
 625}
 626
 627
 628/**
 629 * get_max_resource - get largest node which has at least the given size.
 630 * @head: the list to search the node in
 631 * @size: the minimum size of the node to find
 632 *
 633 * Description: Gets the largest node that is at least "size" big from the
 634 * list pointed to by head.  It aligns the node on top and bottom
 635 * to "size" alignment before returning it.
 636 */
 637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 638{
 639	struct pci_resource *max;
 640	struct pci_resource *temp;
 641	struct pci_resource *split_node;
 642	u32 temp_dword;
 643
 644	if (cpqhp_resource_sort_and_combine(head))
 645		return NULL;
 646
 647	if (sort_by_max_size(head))
 648		return NULL;
 649
 650	for (max = *head; max; max = max->next) {
 651		/* If not big enough we could probably just bail,
 652		 * instead we'll continue to the next.
 653		 */
 654		if (max->length < size)
 655			continue;
 656
 657		if (max->base & (size - 1)) {
 658			/* this one isn't base aligned properly
 659			 * so we'll make a new entry and split it up
 660			 */
 661			temp_dword = (max->base | (size-1)) + 1;
 662
 663			/* Short circuit if adjusted size is too small */
 664			if ((max->length - (temp_dword - max->base)) < size)
 665				continue;
 666
 667			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 668
 669			if (!split_node)
 670				return NULL;
 671
 672			split_node->base = max->base;
 673			split_node->length = temp_dword - max->base;
 674			max->base = temp_dword;
 675			max->length -= split_node->length;
 676
 677			split_node->next = max->next;
 678			max->next = split_node;
 679		}
 680
 681		if ((max->base + max->length) & (size - 1)) {
 682			/* this one isn't end aligned properly at the top
 683			 * so we'll make a new entry and split it up
 684			 */
 685			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 686
 687			if (!split_node)
 688				return NULL;
 689			temp_dword = ((max->base + max->length) & ~(size - 1));
 690			split_node->base = temp_dword;
 691			split_node->length = max->length + max->base
 692					     - split_node->base;
 693			max->length -= split_node->length;
 694
 695			split_node->next = max->next;
 696			max->next = split_node;
 697		}
 698
 699		/* Make sure it didn't shrink too much when we aligned it */
 700		if (max->length < size)
 701			continue;
 702
 703		/* Now take it out of the list */
 704		temp = *head;
 705		if (temp == max) {
 706			*head = max->next;
 707		} else {
 708			while (temp && temp->next != max) {
 709				temp = temp->next;
 710			}
 711
 712			temp->next = max->next;
 
 713		}
 714
 715		max->next = NULL;
 716		break;
 717	}
 718
 719	return max;
 720}
 721
 722
 723/**
 724 * get_resource - find resource of given size and split up larger ones.
 725 * @head: the list to search for resources
 726 * @size: the size limit to use
 727 *
 728 * Description: This function sorts the resource list by size and then
 729 * returns the first node of "size" length.  If it finds a node
 730 * larger than "size" it will split it up.
 731 *
 732 * size must be a power of two.
 733 */
 734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 735{
 736	struct pci_resource *prevnode;
 737	struct pci_resource *node;
 738	struct pci_resource *split_node;
 739	u32 temp_dword;
 740
 741	if (cpqhp_resource_sort_and_combine(head))
 742		return NULL;
 743
 744	if (sort_by_size(head))
 745		return NULL;
 746
 747	for (node = *head; node; node = node->next) {
 748		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 749		    __func__, size, node, node->base, node->length);
 750		if (node->length < size)
 751			continue;
 752
 753		if (node->base & (size - 1)) {
 754			dbg("%s: not aligned\n", __func__);
 755			/* this one isn't base aligned properly
 756			 * so we'll make a new entry and split it up
 757			 */
 758			temp_dword = (node->base | (size-1)) + 1;
 759
 760			/* Short circuit if adjusted size is too small */
 761			if ((node->length - (temp_dword - node->base)) < size)
 762				continue;
 763
 764			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 765
 766			if (!split_node)
 767				return NULL;
 768
 769			split_node->base = node->base;
 770			split_node->length = temp_dword - node->base;
 771			node->base = temp_dword;
 772			node->length -= split_node->length;
 773
 774			split_node->next = node->next;
 775			node->next = split_node;
 776		} /* End of non-aligned base */
 777
 778		/* Don't need to check if too small since we already did */
 779		if (node->length > size) {
 780			dbg("%s: too big\n", __func__);
 781			/* this one is longer than we need
 782			 * so we'll make a new entry and split it up
 783			 */
 784			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 785
 786			if (!split_node)
 787				return NULL;
 788
 789			split_node->base = node->base + size;
 790			split_node->length = node->length - size;
 791			node->length = size;
 792
 793			/* Put it in the list */
 794			split_node->next = node->next;
 795			node->next = split_node;
 796		}  /* End of too big on top end */
 797
 798		dbg("%s: got one!!!\n", __func__);
 799		/* If we got here, then it is the right size
 800		 * Now take it out of the list */
 801		if (*head == node) {
 802			*head = node->next;
 803		} else {
 804			prevnode = *head;
 805			while (prevnode->next != node)
 806				prevnode = prevnode->next;
 807
 808			prevnode->next = node->next;
 809		}
 810		node->next = NULL;
 811		break;
 812	}
 813	return node;
 814}
 815
 816
 817/**
 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 819 * @head: the list to sort and clean up
 820 *
 821 * Description: Sorts all of the nodes in the list in ascending order by
 822 * their base addresses.  Also does garbage collection by
 823 * combining adjacent nodes.
 824 *
 825 * Returns %0 if success.
 826 */
 827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 828{
 829	struct pci_resource *node1;
 830	struct pci_resource *node2;
 831	int out_of_order = 1;
 832
 833	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 834
 835	if (!(*head))
 836		return 1;
 837
 838	dbg("*head->next = %p\n",(*head)->next);
 839
 840	if (!(*head)->next)
 841		return 0;	/* only one item on the list, already sorted! */
 842
 843	dbg("*head->base = 0x%x\n",(*head)->base);
 844	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
 845	while (out_of_order) {
 846		out_of_order = 0;
 847
 848		/* Special case for swapping list head */
 849		if (((*head)->next) &&
 850		    ((*head)->base > (*head)->next->base)) {
 851			node1 = *head;
 852			(*head) = (*head)->next;
 853			node1->next = (*head)->next;
 854			(*head)->next = node1;
 855			out_of_order++;
 856		}
 857
 858		node1 = (*head);
 859
 860		while (node1->next && node1->next->next) {
 861			if (node1->next->base > node1->next->next->base) {
 862				out_of_order++;
 863				node2 = node1->next;
 864				node1->next = node1->next->next;
 865				node1 = node1->next;
 866				node2->next = node1->next;
 867				node1->next = node2;
 868			} else
 869				node1 = node1->next;
 870		}
 871	}  /* End of out_of_order loop */
 872
 873	node1 = *head;
 874
 875	while (node1 && node1->next) {
 876		if ((node1->base + node1->length) == node1->next->base) {
 877			/* Combine */
 878			dbg("8..\n");
 879			node1->length += node1->next->length;
 880			node2 = node1->next;
 881			node1->next = node1->next->next;
 882			kfree(node2);
 883		} else
 884			node1 = node1->next;
 885	}
 886
 887	return 0;
 888}
 889
 890
 891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 892{
 893	struct controller *ctrl = data;
 894	u8 schedule_flag = 0;
 895	u8 reset;
 896	u16 misc;
 897	u32 Diff;
 898	u32 temp_dword;
 899
 900
 901	misc = readw(ctrl->hpc_reg + MISC);
 902	/*
 903	 * Check to see if it was our interrupt
 904	 */
 905	if (!(misc & 0x000C)) {
 906		return IRQ_NONE;
 907	}
 908
 909	if (misc & 0x0004) {
 910		/*
 911		 * Serial Output interrupt Pending
 912		 */
 913
 914		/* Clear the interrupt */
 915		misc |= 0x0004;
 916		writew(misc, ctrl->hpc_reg + MISC);
 917
 918		/* Read to clear posted writes */
 919		misc = readw(ctrl->hpc_reg + MISC);
 920
 921		dbg ("%s - waking up\n", __func__);
 922		wake_up_interruptible(&ctrl->queue);
 923	}
 924
 925	if (misc & 0x0008) {
 926		/* General-interrupt-input interrupt Pending */
 927		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 928
 929		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 930
 931		/* Clear the interrupt */
 932		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 933
 934		/* Read it back to clear any posted writes */
 935		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 936
 937		if (!Diff)
 938			/* Clear all interrupts */
 939			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 940
 941		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 942		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 943		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 944	}
 945
 946	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 947	if (reset & 0x40) {
 948		/* Bus reset has completed */
 949		reset &= 0xCF;
 950		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 951		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 952		wake_up_interruptible(&ctrl->queue);
 953	}
 954
 955	if (schedule_flag) {
 956		wake_up_process(cpqhp_event_thread);
 957		dbg("Waking even thread");
 958	}
 959	return IRQ_HANDLED;
 960}
 961
 962
 963/**
 964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 965 * @busnumber: bus where new node is to be located
 966 *
 967 * Returns pointer to the new node or %NULL if unsuccessful.
 968 */
 969struct pci_func *cpqhp_slot_create(u8 busnumber)
 970{
 971	struct pci_func *new_slot;
 972	struct pci_func *next;
 973
 974	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 975	if (new_slot == NULL)
 976		return new_slot;
 977
 978	new_slot->next = NULL;
 979	new_slot->configured = 1;
 980
 981	if (cpqhp_slot_list[busnumber] == NULL) {
 982		cpqhp_slot_list[busnumber] = new_slot;
 983	} else {
 984		next = cpqhp_slot_list[busnumber];
 985		while (next->next != NULL)
 986			next = next->next;
 987		next->next = new_slot;
 988	}
 989	return new_slot;
 990}
 991
 992
 993/**
 994 * slot_remove - Removes a node from the linked list of slots.
 995 * @old_slot: slot to remove
 996 *
 997 * Returns %0 if successful, !0 otherwise.
 998 */
 999static int slot_remove(struct pci_func * old_slot)
1000{
1001	struct pci_func *next;
1002
1003	if (old_slot == NULL)
1004		return 1;
1005
1006	next = cpqhp_slot_list[old_slot->bus];
1007	if (next == NULL)
1008		return 1;
1009
1010	if (next == old_slot) {
1011		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012		cpqhp_destroy_board_resources(old_slot);
1013		kfree(old_slot);
1014		return 0;
1015	}
1016
1017	while ((next->next != old_slot) && (next->next != NULL))
1018		next = next->next;
1019
1020	if (next->next == old_slot) {
1021		next->next = old_slot->next;
1022		cpqhp_destroy_board_resources(old_slot);
1023		kfree(old_slot);
1024		return 0;
1025	} else
1026		return 2;
1027}
1028
1029
1030/**
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1033 *
1034 * Returns %0 if successful, !0 otherwise.
1035 */
1036static int bridge_slot_remove(struct pci_func *bridge)
1037{
1038	u8 subordinateBus, secondaryBus;
1039	u8 tempBus;
1040	struct pci_func *next;
1041
1042	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046		next = cpqhp_slot_list[tempBus];
1047
1048		while (!slot_remove(next))
1049			next = cpqhp_slot_list[tempBus];
1050	}
1051
1052	next = cpqhp_slot_list[bridge->bus];
1053
1054	if (next == NULL)
1055		return 1;
1056
1057	if (next == bridge) {
1058		cpqhp_slot_list[bridge->bus] = bridge->next;
1059		goto out;
1060	}
1061
1062	while ((next->next != bridge) && (next->next != NULL))
1063		next = next->next;
1064
1065	if (next->next != bridge)
1066		return 2;
1067	next->next = bridge->next;
1068out:
1069	kfree(bridge);
1070	return 0;
1071}
1072
1073
1074/**
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1079 *
1080 * Returns pointer to the node if successful, %NULL otherwise.
1081 */
1082struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083{
1084	int found = -1;
1085	struct pci_func *func;
1086
1087	func = cpqhp_slot_list[bus];
1088
1089	if ((func == NULL) || ((func->device == device) && (index == 0)))
1090		return func;
1091
1092	if (func->device == device)
1093		found++;
1094
1095	while (func->next != NULL) {
1096		func = func->next;
1097
1098		if (func->device == device)
1099			found++;
1100
1101		if (found == index)
1102			return func;
1103	}
1104
1105	return NULL;
1106}
1107
1108
1109/* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111static int is_bridge(struct pci_func * func)
1112{
1113	/* Check the header type */
1114	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115		return 1;
1116	else
1117		return 0;
1118}
1119
1120
1121/**
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1126 *
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1129 */
1130static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131{
1132	struct slot *slot;
1133	struct pci_bus *bus = ctrl->pci_bus;
1134	u8 reg;
1135	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136	u16 reg16;
1137	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139	if (bus->cur_bus_speed == adapter_speed)
1140		return 0;
1141
1142	/* We don't allow freq/mode changes if we find another adapter running
1143	 * in another slot on this controller
1144	 */
1145	for(slot = ctrl->slot; slot; slot = slot->next) {
1146		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147			continue;
1148		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149			continue;
1150		if (slot->hotplug_slot->info->adapter_status == 0)
1151			continue;
1152		/* If another adapter is running on the same segment but at a
1153		 * lower speed/mode, we allow the new adapter to function at
1154		 * this rate if supported
1155		 */
1156		if (bus->cur_bus_speed < adapter_speed)
1157			return 0;
1158
1159		return 1;
1160	}
1161
1162	/* If the controller doesn't support freq/mode changes and the
1163	 * controller is running at a higher mode, we bail
1164	 */
1165	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166		return 1;
1167
1168	/* But we allow the adapter to run at a lower rate if possible */
1169	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170		return 0;
1171
1172	/* We try to set the max speed supported by both the adapter and
1173	 * controller
1174	 */
1175	if (bus->max_bus_speed < adapter_speed) {
1176		if (bus->cur_bus_speed == bus->max_bus_speed)
1177			return 0;
1178		adapter_speed = bus->max_bus_speed;
1179	}
1180
1181	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184	set_SOGO(ctrl);
1185	wait_for_ctrl_irq(ctrl);
1186
1187	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188		reg = 0xF5;
1189	else
1190		reg = 0xF4;
1191	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194	reg16 &= ~0x000F;
1195	switch(adapter_speed) {
1196		case(PCI_SPEED_133MHz_PCIX):
1197			reg = 0x75;
1198			reg16 |= 0xB;
1199			break;
1200		case(PCI_SPEED_100MHz_PCIX):
1201			reg = 0x74;
1202			reg16 |= 0xA;
1203			break;
1204		case(PCI_SPEED_66MHz_PCIX):
1205			reg = 0x73;
1206			reg16 |= 0x9;
1207			break;
1208		case(PCI_SPEED_66MHz):
1209			reg = 0x73;
1210			reg16 |= 0x1;
1211			break;
1212		default: /* 33MHz PCI 2.2 */
1213			reg = 0x71;
1214			break;
1215
1216	}
1217	reg16 |= 0xB << 12;
1218	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220	mdelay(5);
1221
1222	/* Reenable interrupts */
1223	writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227	/* Restart state machine */
1228	reg = ~0xF;
1229	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232	/* Only if mode change...*/
1233	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1235			set_SOGO(ctrl);
1236
1237	wait_for_ctrl_irq(ctrl);
1238	mdelay(1100);
1239
1240	/* Restore LED/Slot state */
1241	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244	set_SOGO(ctrl);
1245	wait_for_ctrl_irq(ctrl);
1246
1247	bus->cur_bus_speed = adapter_speed;
1248	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250	info("Successfully changed frequency/mode for adapter in slot %d\n",
1251			slot->number);
1252	return 0;
1253}
1254
1255/* the following routines constitute the bulk of the
1256 * hotplug controller logic
1257 */
1258
1259
1260/**
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1264 *
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1270 */
1271static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272{
1273	struct pci_bus *bus = ctrl->pci_bus;
1274	u8 hp_slot;
1275	u8 temp_byte;
1276	u8 adapter_speed;
1277	u32 rc = 0;
1278
1279	hp_slot = func->device - ctrl->slot_device_offset;
1280
1281	/*
1282	 * The switch is open.
1283	 */
1284	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285		rc = INTERLOCK_OPEN;
1286	/*
1287	 * The board is already on
1288	 */
1289	else if (is_slot_enabled (ctrl, hp_slot))
1290		rc = CARD_FUNCTIONING;
1291	else {
1292		mutex_lock(&ctrl->crit_sect);
1293
1294		/* turn on board without attaching to the bus */
1295		enable_slot_power (ctrl, hp_slot);
1296
1297		set_SOGO(ctrl);
1298
1299		/* Wait for SOBS to be unset */
1300		wait_for_ctrl_irq (ctrl);
1301
1302		/* Change bits in slot power register to force another shift out
1303		 * NOTE: this is to work around the timer bug */
1304		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307
1308		set_SOGO(ctrl);
1309
1310		/* Wait for SOBS to be unset */
1311		wait_for_ctrl_irq (ctrl);
1312
1313		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314		if (bus->cur_bus_speed != adapter_speed)
1315			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316				rc = WRONG_BUS_FREQUENCY;
1317
1318		/* turn off board without attaching to the bus */
1319		disable_slot_power (ctrl, hp_slot);
1320
1321		set_SOGO(ctrl);
1322
1323		/* Wait for SOBS to be unset */
1324		wait_for_ctrl_irq (ctrl);
1325
1326		mutex_unlock(&ctrl->crit_sect);
1327
1328		if (rc)
1329			return rc;
1330
1331		mutex_lock(&ctrl->crit_sect);
1332
1333		slot_enable (ctrl, hp_slot);
1334		green_LED_blink (ctrl, hp_slot);
1335
1336		amber_LED_off (ctrl, hp_slot);
1337
1338		set_SOGO(ctrl);
1339
1340		/* Wait for SOBS to be unset */
1341		wait_for_ctrl_irq (ctrl);
1342
1343		mutex_unlock(&ctrl->crit_sect);
1344
1345		/* Wait for ~1 second because of hot plug spec */
1346		long_delay(1*HZ);
1347
1348		/* Check for a power fault */
1349		if (func->status == 0xFF) {
1350			/* power fault occurred, but it was benign */
1351			rc = POWER_FAILURE;
1352			func->status = 0;
1353		} else
1354			rc = cpqhp_valid_replace(ctrl, func);
1355
1356		if (!rc) {
1357			/* It must be the same board */
1358
1359			rc = cpqhp_configure_board(ctrl, func);
1360
1361			/* If configuration fails, turn it off
1362			 * Get slot won't work for devices behind
1363			 * bridges, but in this case it will always be
1364			 * called for the "base" bus/dev/func of an
1365			 * adapter.
1366			 */
1367
1368			mutex_lock(&ctrl->crit_sect);
1369
1370			amber_LED_on (ctrl, hp_slot);
1371			green_LED_off (ctrl, hp_slot);
1372			slot_disable (ctrl, hp_slot);
1373
1374			set_SOGO(ctrl);
1375
1376			/* Wait for SOBS to be unset */
1377			wait_for_ctrl_irq (ctrl);
1378
1379			mutex_unlock(&ctrl->crit_sect);
1380
1381			if (rc)
1382				return rc;
1383			else
1384				return 1;
1385
1386		} else {
1387			/* Something is wrong
1388
1389			 * Get slot won't work for devices behind bridges, but
1390			 * in this case it will always be called for the "base"
1391			 * bus/dev/func of an adapter.
1392			 */
1393
1394			mutex_lock(&ctrl->crit_sect);
1395
1396			amber_LED_on (ctrl, hp_slot);
1397			green_LED_off (ctrl, hp_slot);
1398			slot_disable (ctrl, hp_slot);
1399
1400			set_SOGO(ctrl);
1401
1402			/* Wait for SOBS to be unset */
1403			wait_for_ctrl_irq (ctrl);
1404
1405			mutex_unlock(&ctrl->crit_sect);
1406		}
1407
1408	}
1409	return rc;
1410
1411}
1412
1413
1414/**
1415 * board_added - Called after a board has been added to the system.
1416 * @func: PCI device/function info
1417 * @ctrl: hotplug controller
1418 *
1419 * Turns power on for the board.
1420 * Configures board.
1421 */
1422static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423{
1424	u8 hp_slot;
1425	u8 temp_byte;
1426	u8 adapter_speed;
1427	int index;
1428	u32 temp_register = 0xFFFFFFFF;
1429	u32 rc = 0;
1430	struct pci_func *new_slot = NULL;
1431	struct pci_bus *bus = ctrl->pci_bus;
1432	struct slot *p_slot;
1433	struct resource_lists res_lists;
1434
1435	hp_slot = func->device - ctrl->slot_device_offset;
1436	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438
1439	mutex_lock(&ctrl->crit_sect);
1440
1441	/* turn on board without attaching to the bus */
1442	enable_slot_power(ctrl, hp_slot);
1443
1444	set_SOGO(ctrl);
1445
1446	/* Wait for SOBS to be unset */
1447	wait_for_ctrl_irq (ctrl);
1448
1449	/* Change bits in slot power register to force another shift out
1450	 * NOTE: this is to work around the timer bug
1451	 */
1452	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456	set_SOGO(ctrl);
1457
1458	/* Wait for SOBS to be unset */
1459	wait_for_ctrl_irq (ctrl);
1460
1461	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462	if (bus->cur_bus_speed != adapter_speed)
1463		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464			rc = WRONG_BUS_FREQUENCY;
1465
1466	/* turn off board without attaching to the bus */
1467	disable_slot_power (ctrl, hp_slot);
1468
1469	set_SOGO(ctrl);
1470
1471	/* Wait for SOBS to be unset */
1472	wait_for_ctrl_irq(ctrl);
1473
1474	mutex_unlock(&ctrl->crit_sect);
1475
1476	if (rc)
1477		return rc;
1478
1479	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481	/* turn on board and blink green LED */
1482
1483	dbg("%s: before down\n", __func__);
1484	mutex_lock(&ctrl->crit_sect);
1485	dbg("%s: after down\n", __func__);
1486
1487	dbg("%s: before slot_enable\n", __func__);
1488	slot_enable (ctrl, hp_slot);
1489
1490	dbg("%s: before green_LED_blink\n", __func__);
1491	green_LED_blink (ctrl, hp_slot);
1492
1493	dbg("%s: before amber_LED_blink\n", __func__);
1494	amber_LED_off (ctrl, hp_slot);
1495
1496	dbg("%s: before set_SOGO\n", __func__);
1497	set_SOGO(ctrl);
1498
1499	/* Wait for SOBS to be unset */
1500	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501	wait_for_ctrl_irq (ctrl);
1502	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503
1504	dbg("%s: before up\n", __func__);
1505	mutex_unlock(&ctrl->crit_sect);
1506	dbg("%s: after up\n", __func__);
1507
1508	/* Wait for ~1 second because of hot plug spec */
1509	dbg("%s: before long_delay\n", __func__);
1510	long_delay(1*HZ);
1511	dbg("%s: after long_delay\n", __func__);
1512
1513	dbg("%s: func status = %x\n", __func__, func->status);
1514	/* Check for a power fault */
1515	if (func->status == 0xFF) {
1516		/* power fault occurred, but it was benign */
1517		temp_register = 0xFFFFFFFF;
1518		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519		rc = POWER_FAILURE;
1520		func->status = 0;
1521	} else {
1522		/* Get vendor/device ID u32 */
1523		ctrl->pci_bus->number = func->bus;
1524		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526		dbg("%s: temp_register is %x\n", __func__, temp_register);
1527
1528		if (rc != 0) {
1529			/* Something's wrong here */
1530			temp_register = 0xFFFFFFFF;
1531			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532		}
1533		/* Preset return code.  It will be changed later if things go okay. */
1534		rc = NO_ADAPTER_PRESENT;
1535	}
1536
1537	/* All F's is an empty slot or an invalid board */
1538	if (temp_register != 0xFFFFFFFF) {
1539		res_lists.io_head = ctrl->io_head;
1540		res_lists.mem_head = ctrl->mem_head;
1541		res_lists.p_mem_head = ctrl->p_mem_head;
1542		res_lists.bus_head = ctrl->bus_head;
1543		res_lists.irqs = NULL;
1544
1545		rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547		dbg("%s: back from configure_new_device\n", __func__);
1548		ctrl->io_head = res_lists.io_head;
1549		ctrl->mem_head = res_lists.mem_head;
1550		ctrl->p_mem_head = res_lists.p_mem_head;
1551		ctrl->bus_head = res_lists.bus_head;
1552
1553		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558		if (rc) {
1559			mutex_lock(&ctrl->crit_sect);
1560
1561			amber_LED_on (ctrl, hp_slot);
1562			green_LED_off (ctrl, hp_slot);
1563			slot_disable (ctrl, hp_slot);
1564
1565			set_SOGO(ctrl);
1566
1567			/* Wait for SOBS to be unset */
1568			wait_for_ctrl_irq (ctrl);
1569
1570			mutex_unlock(&ctrl->crit_sect);
1571			return rc;
1572		} else {
1573			cpqhp_save_slot_config(ctrl, func);
1574		}
1575
1576
1577		func->status = 0;
1578		func->switch_save = 0x10;
1579		func->is_a_board = 0x01;
1580
1581		/* next, we will instantiate the linux pci_dev structures (with
1582		 * appropriate driver notification, if already present) */
1583		dbg("%s: configure linux pci_dev structure\n", __func__);
1584		index = 0;
1585		do {
1586			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587			if (new_slot && !new_slot->pci_dev)
1588				cpqhp_configure_device(ctrl, new_slot);
1589		} while (new_slot);
1590
1591		mutex_lock(&ctrl->crit_sect);
1592
1593		green_LED_on (ctrl, hp_slot);
1594
1595		set_SOGO(ctrl);
1596
1597		/* Wait for SOBS to be unset */
1598		wait_for_ctrl_irq (ctrl);
1599
1600		mutex_unlock(&ctrl->crit_sect);
1601	} else {
1602		mutex_lock(&ctrl->crit_sect);
1603
1604		amber_LED_on (ctrl, hp_slot);
1605		green_LED_off (ctrl, hp_slot);
1606		slot_disable (ctrl, hp_slot);
1607
1608		set_SOGO(ctrl);
1609
1610		/* Wait for SOBS to be unset */
1611		wait_for_ctrl_irq (ctrl);
1612
1613		mutex_unlock(&ctrl->crit_sect);
1614
1615		return rc;
1616	}
1617	return 0;
1618}
1619
1620
1621/**
1622 * remove_board - Turns off slot and LEDs
1623 * @func: PCI device/function info
1624 * @replace_flag: whether replacing or adding a new device
1625 * @ctrl: target controller
1626 */
1627static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1628{
1629	int index;
1630	u8 skip = 0;
1631	u8 device;
1632	u8 hp_slot;
1633	u8 temp_byte;
1634	u32 rc;
1635	struct resource_lists res_lists;
1636	struct pci_func *temp_func;
1637
1638	if (cpqhp_unconfigure_device(func))
1639		return 1;
1640
1641	device = func->device;
1642
1643	hp_slot = func->device - ctrl->slot_device_offset;
1644	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645
1646	/* When we get here, it is safe to change base address registers.
1647	 * We will attempt to save the base address register lengths */
1648	if (replace_flag || !ctrl->add_support)
1649		rc = cpqhp_save_base_addr_length(ctrl, func);
1650	else if (!func->bus_head && !func->mem_head &&
1651		 !func->p_mem_head && !func->io_head) {
1652		/* Here we check to see if we've saved any of the board's
1653		 * resources already.  If so, we'll skip the attempt to
1654		 * determine what's being used. */
1655		index = 0;
1656		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657		while (temp_func) {
1658			if (temp_func->bus_head || temp_func->mem_head
1659			    || temp_func->p_mem_head || temp_func->io_head) {
1660				skip = 1;
1661				break;
1662			}
1663			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1664		}
1665
1666		if (!skip)
1667			rc = cpqhp_save_used_resources(ctrl, func);
1668	}
1669	/* Change status to shutdown */
1670	if (func->is_a_board)
1671		func->status = 0x01;
1672	func->configured = 0;
1673
1674	mutex_lock(&ctrl->crit_sect);
1675
1676	green_LED_off (ctrl, hp_slot);
1677	slot_disable (ctrl, hp_slot);
1678
1679	set_SOGO(ctrl);
1680
1681	/* turn off SERR for slot */
1682	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683	temp_byte &= ~(0x01 << hp_slot);
1684	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685
1686	/* Wait for SOBS to be unset */
1687	wait_for_ctrl_irq (ctrl);
1688
1689	mutex_unlock(&ctrl->crit_sect);
1690
1691	if (!replace_flag && ctrl->add_support) {
1692		while (func) {
1693			res_lists.io_head = ctrl->io_head;
1694			res_lists.mem_head = ctrl->mem_head;
1695			res_lists.p_mem_head = ctrl->p_mem_head;
1696			res_lists.bus_head = ctrl->bus_head;
1697
1698			cpqhp_return_board_resources(func, &res_lists);
1699
1700			ctrl->io_head = res_lists.io_head;
1701			ctrl->mem_head = res_lists.mem_head;
1702			ctrl->p_mem_head = res_lists.p_mem_head;
1703			ctrl->bus_head = res_lists.bus_head;
1704
1705			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709
1710			if (is_bridge(func)) {
1711				bridge_slot_remove(func);
1712			} else
1713				slot_remove(func);
1714
1715			func = cpqhp_slot_find(ctrl->bus, device, 0);
1716		}
1717
1718		/* Setup slot structure with entry for empty slot */
1719		func = cpqhp_slot_create(ctrl->bus);
1720
1721		if (func == NULL)
1722			return 1;
1723
1724		func->bus = ctrl->bus;
1725		func->device = device;
1726		func->function = 0;
1727		func->configured = 0;
1728		func->switch_save = 0x10;
1729		func->is_a_board = 0;
1730		func->p_task_event = NULL;
1731	}
1732
1733	return 0;
1734}
1735
1736static void pushbutton_helper_thread(unsigned long data)
1737{
1738	pushbutton_pending = data;
 
1739	wake_up_process(cpqhp_event_thread);
1740}
1741
1742
1743/* this is the main worker thread */
1744static int event_thread(void* data)
1745{
1746	struct controller *ctrl;
1747
1748	while (1) {
1749		dbg("!!!!event_thread sleeping\n");
1750		set_current_state(TASK_INTERRUPTIBLE);
1751		schedule();
1752
1753		if (kthread_should_stop())
1754			break;
1755		/* Do stuff here */
1756		if (pushbutton_pending)
1757			cpqhp_pushbutton_thread(pushbutton_pending);
1758		else
1759			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760				interrupt_event_handler(ctrl);
1761	}
1762	dbg("event_thread signals exit\n");
1763	return 0;
1764}
1765
1766int cpqhp_event_start_thread(void)
1767{
1768	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769	if (IS_ERR(cpqhp_event_thread)) {
1770		err ("Can't start up our event thread\n");
1771		return PTR_ERR(cpqhp_event_thread);
1772	}
1773
1774	return 0;
1775}
1776
1777
1778void cpqhp_event_stop_thread(void)
1779{
1780	kthread_stop(cpqhp_event_thread);
1781}
1782
1783
1784static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785{
1786	struct hotplug_slot_info *info;
1787	int result;
1788
1789	info = kmalloc(sizeof(*info), GFP_KERNEL);
1790	if (!info)
1791		return -ENOMEM;
1792
1793	info->power_status = get_slot_enabled(ctrl, slot);
1794	info->attention_status = cpq_get_attention_status(ctrl, slot);
1795	info->latch_status = cpq_get_latch_status(ctrl, slot);
1796	info->adapter_status = get_presence_status(ctrl, slot);
1797	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798	kfree (info);
1799	return result;
1800}
1801
1802static void interrupt_event_handler(struct controller *ctrl)
1803{
1804	int loop = 0;
1805	int change = 1;
1806	struct pci_func *func;
1807	u8 hp_slot;
1808	struct slot *p_slot;
1809
1810	while (change) {
1811		change = 0;
1812
1813		for (loop = 0; loop < 10; loop++) {
1814			/* dbg("loop %d\n", loop); */
1815			if (ctrl->event_queue[loop].event_type != 0) {
1816				hp_slot = ctrl->event_queue[loop].hp_slot;
1817
1818				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819				if (!func)
1820					return;
1821
1822				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823				if (!p_slot)
1824					return;
1825
1826				dbg("hp_slot %d, func %p, p_slot %p\n",
1827				    hp_slot, func, p_slot);
1828
1829				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830					dbg("button pressed\n");
1831				} else if (ctrl->event_queue[loop].event_type == 
1832					   INT_BUTTON_CANCEL) {
1833					dbg("button cancel\n");
1834					del_timer(&p_slot->task_event);
1835
1836					mutex_lock(&ctrl->crit_sect);
1837
1838					if (p_slot->state == BLINKINGOFF_STATE) {
1839						/* slot is on */
1840						dbg("turn on green LED\n");
1841						green_LED_on (ctrl, hp_slot);
1842					} else if (p_slot->state == BLINKINGON_STATE) {
1843						/* slot is off */
1844						dbg("turn off green LED\n");
1845						green_LED_off (ctrl, hp_slot);
1846					}
1847
1848					info(msg_button_cancel, p_slot->number);
1849
1850					p_slot->state = STATIC_STATE;
1851
1852					amber_LED_off (ctrl, hp_slot);
1853
1854					set_SOGO(ctrl);
1855
1856					/* Wait for SOBS to be unset */
1857					wait_for_ctrl_irq (ctrl);
1858
1859					mutex_unlock(&ctrl->crit_sect);
1860				}
1861				/*** button Released (No action on press...) */
1862				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863					dbg("button release\n");
1864
1865					if (is_slot_enabled (ctrl, hp_slot)) {
1866						dbg("slot is on\n");
1867						p_slot->state = BLINKINGOFF_STATE;
1868						info(msg_button_off, p_slot->number);
1869					} else {
1870						dbg("slot is off\n");
1871						p_slot->state = BLINKINGON_STATE;
1872						info(msg_button_on, p_slot->number);
1873					}
1874					mutex_lock(&ctrl->crit_sect);
1875
1876					dbg("blink green LED and turn off amber\n");
1877
1878					amber_LED_off (ctrl, hp_slot);
1879					green_LED_blink (ctrl, hp_slot);
1880
1881					set_SOGO(ctrl);
1882
1883					/* Wait for SOBS to be unset */
1884					wait_for_ctrl_irq (ctrl);
1885
1886					mutex_unlock(&ctrl->crit_sect);
1887					init_timer(&p_slot->task_event);
 
 
1888					p_slot->hp_slot = hp_slot;
1889					p_slot->ctrl = ctrl;
1890/*					p_slot->physical_slot = physical_slot; */
1891					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1892					p_slot->task_event.function = pushbutton_helper_thread;
1893					p_slot->task_event.data = (u32) p_slot;
1894
1895					dbg("add_timer p_slot = %p\n", p_slot);
1896					add_timer(&p_slot->task_event);
1897				}
1898				/***********POWER FAULT */
1899				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900					dbg("power fault\n");
1901				} else {
1902					/* refresh notification */
1903					if (p_slot)
1904						update_slot_info(ctrl, p_slot);
1905				}
1906
1907				ctrl->event_queue[loop].event_type = 0;
1908
1909				change = 1;
1910			}
1911		}		/* End of FOR loop */
1912	}
1913
1914	return;
1915}
1916
1917
1918/**
1919 * cpqhp_pushbutton_thread - handle pushbutton events
1920 * @slot: target slot (struct)
1921 *
1922 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1923 * Handles all pending events and exits.
1924 */
1925void cpqhp_pushbutton_thread(unsigned long slot)
1926{
1927	u8 hp_slot;
1928	u8 device;
1929	struct pci_func *func;
1930	struct slot *p_slot = (struct slot *) slot;
1931	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1932
1933	pushbutton_pending = 0;
1934	hp_slot = p_slot->hp_slot;
1935
1936	device = p_slot->device;
1937
1938	if (is_slot_enabled(ctrl, hp_slot)) {
1939		p_slot->state = POWEROFF_STATE;
1940		/* power Down board */
1941		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1942		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1943		if (!func) {
1944			dbg("Error! func NULL in %s\n", __func__);
1945			return ;
1946		}
1947
1948		if (cpqhp_process_SS(ctrl, func) != 0) {
1949			amber_LED_on(ctrl, hp_slot);
1950			green_LED_on(ctrl, hp_slot);
1951
1952			set_SOGO(ctrl);
1953
1954			/* Wait for SOBS to be unset */
1955			wait_for_ctrl_irq(ctrl);
1956		}
1957
1958		p_slot->state = STATIC_STATE;
1959	} else {
1960		p_slot->state = POWERON_STATE;
1961		/* slot is off */
1962
1963		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1964		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1965		if (!func) {
1966			dbg("Error! func NULL in %s\n", __func__);
1967			return ;
1968		}
1969
1970		if (ctrl != NULL) {
1971			if (cpqhp_process_SI(ctrl, func) != 0) {
1972				amber_LED_on(ctrl, hp_slot);
1973				green_LED_off(ctrl, hp_slot);
1974
1975				set_SOGO(ctrl);
1976
1977				/* Wait for SOBS to be unset */
1978				wait_for_ctrl_irq (ctrl);
1979			}
1980		}
1981
1982		p_slot->state = STATIC_STATE;
1983	}
1984
1985	return;
1986}
1987
1988
1989int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1990{
1991	u8 device, hp_slot;
1992	u16 temp_word;
1993	u32 tempdword;
1994	int rc;
1995	struct slot* p_slot;
1996	int physical_slot = 0;
1997
1998	tempdword = 0;
1999
2000	device = func->device;
2001	hp_slot = device - ctrl->slot_device_offset;
2002	p_slot = cpqhp_find_slot(ctrl, device);
2003	if (p_slot)
2004		physical_slot = p_slot->number;
2005
2006	/* Check to see if the interlock is closed */
2007	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2008
2009	if (tempdword & (0x01 << hp_slot)) {
2010		return 1;
2011	}
2012
2013	if (func->is_a_board) {
2014		rc = board_replaced(func, ctrl);
2015	} else {
2016		/* add board */
2017		slot_remove(func);
2018
2019		func = cpqhp_slot_create(ctrl->bus);
2020		if (func == NULL)
2021			return 1;
2022
2023		func->bus = ctrl->bus;
2024		func->device = device;
2025		func->function = 0;
2026		func->configured = 0;
2027		func->is_a_board = 1;
2028
2029		/* We have to save the presence info for these slots */
2030		temp_word = ctrl->ctrl_int_comp >> 16;
2031		func->presence_save = (temp_word >> hp_slot) & 0x01;
2032		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2033
2034		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2035			func->switch_save = 0;
2036		} else {
2037			func->switch_save = 0x10;
2038		}
2039
2040		rc = board_added(func, ctrl);
2041		if (rc) {
2042			if (is_bridge(func)) {
2043				bridge_slot_remove(func);
2044			} else
2045				slot_remove(func);
2046
2047			/* Setup slot structure with entry for empty slot */
2048			func = cpqhp_slot_create(ctrl->bus);
2049
2050			if (func == NULL)
2051				return 1;
2052
2053			func->bus = ctrl->bus;
2054			func->device = device;
2055			func->function = 0;
2056			func->configured = 0;
2057			func->is_a_board = 0;
2058
2059			/* We have to save the presence info for these slots */
2060			temp_word = ctrl->ctrl_int_comp >> 16;
2061			func->presence_save = (temp_word >> hp_slot) & 0x01;
2062			func->presence_save |=
2063			(temp_word >> (hp_slot + 7)) & 0x02;
2064
2065			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2066				func->switch_save = 0;
2067			} else {
2068				func->switch_save = 0x10;
2069			}
2070		}
2071	}
2072
2073	if (rc) {
2074		dbg("%s: rc = %d\n", __func__, rc);
2075	}
2076
2077	if (p_slot)
2078		update_slot_info(ctrl, p_slot);
2079
2080	return rc;
2081}
2082
2083
2084int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2085{
2086	u8 device, class_code, header_type, BCR;
2087	u8 index = 0;
2088	u8 replace_flag;
2089	u32 rc = 0;
2090	unsigned int devfn;
2091	struct slot* p_slot;
2092	struct pci_bus *pci_bus = ctrl->pci_bus;
2093	int physical_slot=0;
2094
2095	device = func->device;
2096	func = cpqhp_slot_find(ctrl->bus, device, index++);
2097	p_slot = cpqhp_find_slot(ctrl, device);
2098	if (p_slot) {
2099		physical_slot = p_slot->number;
2100	}
2101
2102	/* Make sure there are no video controllers here */
2103	while (func && !rc) {
2104		pci_bus->number = func->bus;
2105		devfn = PCI_DEVFN(func->device, func->function);
2106
2107		/* Check the Class Code */
2108		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2109		if (rc)
2110			return rc;
2111
2112		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2113			/* Display/Video adapter (not supported) */
2114			rc = REMOVE_NOT_SUPPORTED;
2115		} else {
2116			/* See if it's a bridge */
2117			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2118			if (rc)
2119				return rc;
2120
2121			/* If it's a bridge, check the VGA Enable bit */
2122			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2123				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2124				if (rc)
2125					return rc;
2126
2127				/* If the VGA Enable bit is set, remove isn't
2128				 * supported */
2129				if (BCR & PCI_BRIDGE_CTL_VGA)
2130					rc = REMOVE_NOT_SUPPORTED;
2131			}
2132		}
2133
2134		func = cpqhp_slot_find(ctrl->bus, device, index++);
2135	}
2136
2137	func = cpqhp_slot_find(ctrl->bus, device, 0);
2138	if ((func != NULL) && !rc) {
2139		/* FIXME: Replace flag should be passed into process_SS */
2140		replace_flag = !(ctrl->add_support);
2141		rc = remove_board(func, replace_flag, ctrl);
2142	} else if (!rc) {
2143		rc = 1;
2144	}
2145
2146	if (p_slot)
2147		update_slot_info(ctrl, p_slot);
2148
2149	return rc;
2150}
2151
2152/**
2153 * switch_leds - switch the leds, go from one site to the other.
2154 * @ctrl: controller to use
2155 * @num_of_slots: number of slots to use
2156 * @work_LED: LED control value
2157 * @direction: 1 to start from the left side, 0 to start right.
2158 */
2159static void switch_leds(struct controller *ctrl, const int num_of_slots,
2160			u32 *work_LED, const int direction)
2161{
2162	int loop;
2163
2164	for (loop = 0; loop < num_of_slots; loop++) {
2165		if (direction)
2166			*work_LED = *work_LED >> 1;
2167		else
2168			*work_LED = *work_LED << 1;
2169		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2170
2171		set_SOGO(ctrl);
2172
2173		/* Wait for SOGO interrupt */
2174		wait_for_ctrl_irq(ctrl);
2175
2176		/* Get ready for next iteration */
2177		long_delay((2*HZ)/10);
2178	}
2179}
2180
2181/**
2182 * cpqhp_hardware_test - runs hardware tests
2183 * @ctrl: target controller
2184 * @test_num: the number written to the "test" file in sysfs.
2185 *
2186 * For hot plug ctrl folks to play with.
2187 */
2188int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2189{
2190	u32 save_LED;
2191	u32 work_LED;
2192	int loop;
2193	int num_of_slots;
2194
2195	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2196
2197	switch (test_num) {
2198	case 1:
2199		/* Do stuff here! */
2200
2201		/* Do that funky LED thing */
2202		/* so we can restore them later */
2203		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2204		work_LED = 0x01010101;
2205		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209
2210		work_LED = 0x01010000;
2211		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2212		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2213		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214		work_LED = 0x00000101;
2215		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2218
2219		work_LED = 0x01010000;
2220		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221		for (loop = 0; loop < num_of_slots; loop++) {
2222			set_SOGO(ctrl);
2223
2224			/* Wait for SOGO interrupt */
2225			wait_for_ctrl_irq (ctrl);
2226
2227			/* Get ready for next iteration */
2228			long_delay((3*HZ)/10);
2229			work_LED = work_LED >> 16;
2230			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231
2232			set_SOGO(ctrl);
2233
2234			/* Wait for SOGO interrupt */
2235			wait_for_ctrl_irq (ctrl);
2236
2237			/* Get ready for next iteration */
2238			long_delay((3*HZ)/10);
2239			work_LED = work_LED << 16;
2240			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241			work_LED = work_LED << 1;
2242			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2243		}
2244
2245		/* put it back the way it was */
2246		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2247
2248		set_SOGO(ctrl);
2249
2250		/* Wait for SOBS to be unset */
2251		wait_for_ctrl_irq (ctrl);
2252		break;
2253	case 2:
2254		/* Do other stuff here! */
2255		break;
2256	case 3:
2257		/* and more... */
2258		break;
2259	}
2260	return 0;
2261}
2262
2263
2264/**
2265 * configure_new_device - Configures the PCI header information of one board.
2266 * @ctrl: pointer to controller structure
2267 * @func: pointer to function structure
2268 * @behind_bridge: 1 if this is a recursive call, 0 if not
2269 * @resources: pointer to set of resource lists
2270 *
2271 * Returns 0 if success.
2272 */
2273static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2274				 u8 behind_bridge, struct resource_lists * resources)
2275{
2276	u8 temp_byte, function, max_functions, stop_it;
2277	int rc;
2278	u32 ID;
2279	struct pci_func *new_slot;
2280	int index;
2281
2282	new_slot = func;
2283
2284	dbg("%s\n", __func__);
2285	/* Check for Multi-function device */
2286	ctrl->pci_bus->number = func->bus;
2287	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2288	if (rc) {
2289		dbg("%s: rc = %d\n", __func__, rc);
2290		return rc;
2291	}
2292
2293	if (temp_byte & 0x80)	/* Multi-function device */
2294		max_functions = 8;
2295	else
2296		max_functions = 1;
2297
2298	function = 0;
2299
2300	do {
2301		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2302
2303		if (rc) {
2304			dbg("configure_new_function failed %d\n",rc);
2305			index = 0;
2306
2307			while (new_slot) {
2308				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2309
2310				if (new_slot)
2311					cpqhp_return_board_resources(new_slot, resources);
2312			}
2313
2314			return rc;
2315		}
2316
2317		function++;
2318
2319		stop_it = 0;
2320
2321		/* The following loop skips to the next present function
2322		 * and creates a board structure */
2323
2324		while ((function < max_functions) && (!stop_it)) {
2325			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2326
2327			if (ID == 0xFFFFFFFF) {
2328				function++;
2329			} else {
2330				/* Setup slot structure. */
2331				new_slot = cpqhp_slot_create(func->bus);
2332
2333				if (new_slot == NULL)
2334					return 1;
2335
2336				new_slot->bus = func->bus;
2337				new_slot->device = func->device;
2338				new_slot->function = function;
2339				new_slot->is_a_board = 1;
2340				new_slot->status = 0;
2341
2342				stop_it++;
2343			}
2344		}
2345
2346	} while (function < max_functions);
2347	dbg("returning from configure_new_device\n");
2348
2349	return 0;
2350}
2351
2352
2353/*
2354 * Configuration logic that involves the hotplug data structures and
2355 * their bookkeeping
2356 */
2357
2358
2359/**
2360 * configure_new_function - Configures the PCI header information of one device
2361 * @ctrl: pointer to controller structure
2362 * @func: pointer to function structure
2363 * @behind_bridge: 1 if this is a recursive call, 0 if not
2364 * @resources: pointer to set of resource lists
2365 *
2366 * Calls itself recursively for bridged devices.
2367 * Returns 0 if success.
2368 */
2369static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2370				   u8 behind_bridge,
2371				   struct resource_lists *resources)
2372{
2373	int cloop;
2374	u8 IRQ = 0;
2375	u8 temp_byte;
2376	u8 device;
2377	u8 class_code;
2378	u16 command;
2379	u16 temp_word;
2380	u32 temp_dword;
2381	u32 rc;
2382	u32 temp_register;
2383	u32 base;
2384	u32 ID;
2385	unsigned int devfn;
2386	struct pci_resource *mem_node;
2387	struct pci_resource *p_mem_node;
2388	struct pci_resource *io_node;
2389	struct pci_resource *bus_node;
2390	struct pci_resource *hold_mem_node;
2391	struct pci_resource *hold_p_mem_node;
2392	struct pci_resource *hold_IO_node;
2393	struct pci_resource *hold_bus_node;
2394	struct irq_mapping irqs;
2395	struct pci_func *new_slot;
2396	struct pci_bus *pci_bus;
2397	struct resource_lists temp_resources;
2398
2399	pci_bus = ctrl->pci_bus;
2400	pci_bus->number = func->bus;
2401	devfn = PCI_DEVFN(func->device, func->function);
2402
2403	/* Check for Bridge */
2404	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2405	if (rc)
2406		return rc;
2407
2408	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2409		/* set Primary bus */
2410		dbg("set Primary bus = %d\n", func->bus);
2411		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2412		if (rc)
2413			return rc;
2414
2415		/* find range of busses to use */
2416		dbg("find ranges of buses to use\n");
2417		bus_node = get_max_resource(&(resources->bus_head), 1);
2418
2419		/* If we don't have any busses to allocate, we can't continue */
2420		if (!bus_node)
2421			return -ENOMEM;
2422
2423		/* set Secondary bus */
2424		temp_byte = bus_node->base;
2425		dbg("set Secondary bus = %d\n", bus_node->base);
2426		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2427		if (rc)
2428			return rc;
2429
2430		/* set subordinate bus */
2431		temp_byte = bus_node->base + bus_node->length - 1;
2432		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2433		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2434		if (rc)
2435			return rc;
2436
2437		/* set subordinate Latency Timer and base Latency Timer */
2438		temp_byte = 0x40;
2439		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2440		if (rc)
2441			return rc;
2442		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2443		if (rc)
2444			return rc;
2445
2446		/* set Cache Line size */
2447		temp_byte = 0x08;
2448		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2449		if (rc)
2450			return rc;
2451
2452		/* Setup the IO, memory, and prefetchable windows */
2453		io_node = get_max_resource(&(resources->io_head), 0x1000);
2454		if (!io_node)
2455			return -ENOMEM;
2456		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2457		if (!mem_node)
2458			return -ENOMEM;
2459		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2460		if (!p_mem_node)
2461			return -ENOMEM;
2462		dbg("Setup the IO, memory, and prefetchable windows\n");
2463		dbg("io_node\n");
2464		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2465					io_node->length, io_node->next);
2466		dbg("mem_node\n");
2467		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2468					mem_node->length, mem_node->next);
2469		dbg("p_mem_node\n");
2470		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2471					p_mem_node->length, p_mem_node->next);
2472
2473		/* set up the IRQ info */
2474		if (!resources->irqs) {
2475			irqs.barber_pole = 0;
2476			irqs.interrupt[0] = 0;
2477			irqs.interrupt[1] = 0;
2478			irqs.interrupt[2] = 0;
2479			irqs.interrupt[3] = 0;
2480			irqs.valid_INT = 0;
2481		} else {
2482			irqs.barber_pole = resources->irqs->barber_pole;
2483			irqs.interrupt[0] = resources->irqs->interrupt[0];
2484			irqs.interrupt[1] = resources->irqs->interrupt[1];
2485			irqs.interrupt[2] = resources->irqs->interrupt[2];
2486			irqs.interrupt[3] = resources->irqs->interrupt[3];
2487			irqs.valid_INT = resources->irqs->valid_INT;
2488		}
2489
2490		/* set up resource lists that are now aligned on top and bottom
2491		 * for anything behind the bridge. */
2492		temp_resources.bus_head = bus_node;
2493		temp_resources.io_head = io_node;
2494		temp_resources.mem_head = mem_node;
2495		temp_resources.p_mem_head = p_mem_node;
2496		temp_resources.irqs = &irqs;
2497
2498		/* Make copies of the nodes we are going to pass down so that
2499		 * if there is a problem,we can just use these to free resources
2500		 */
2501		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2502		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2503		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2504		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2505
2506		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2507			kfree(hold_bus_node);
2508			kfree(hold_IO_node);
2509			kfree(hold_mem_node);
2510			kfree(hold_p_mem_node);
2511
2512			return 1;
2513		}
2514
2515		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2516
2517		bus_node->base += 1;
2518		bus_node->length -= 1;
2519		bus_node->next = NULL;
2520
2521		/* If we have IO resources copy them and fill in the bridge's
2522		 * IO range registers */
2523		if (io_node) {
2524			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2525			io_node->next = NULL;
2526
2527			/* set IO base and Limit registers */
2528			temp_byte = io_node->base >> 8;
2529			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2530
2531			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2532			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2533		} else {
2534			kfree(hold_IO_node);
2535			hold_IO_node = NULL;
2536		}
2537
2538		/* If we have memory resources copy them and fill in the
2539		 * bridge's memory range registers.  Otherwise, fill in the
2540		 * range registers with values that disable them. */
2541		if (mem_node) {
2542			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2543			mem_node->next = NULL;
2544
2545			/* set Mem base and Limit registers */
2546			temp_word = mem_node->base >> 16;
2547			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2548
2549			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2550			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2551		} else {
2552			temp_word = 0xFFFF;
2553			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2554
2555			temp_word = 0x0000;
2556			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 
2557
2558			kfree(hold_mem_node);
2559			hold_mem_node = NULL;
2560		}
2561
2562		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2563		p_mem_node->next = NULL;
2564
2565		/* set Pre Mem base and Limit registers */
2566		temp_word = p_mem_node->base >> 16;
2567		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2568
2569		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2570		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2571
2572		/* Adjust this to compensate for extra adjustment in first loop
2573		 */
2574		irqs.barber_pole--;
2575
2576		rc = 0;
2577
2578		/* Here we actually find the devices and configure them */
2579		for (device = 0; (device <= 0x1F) && !rc; device++) {
2580			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2581
2582			ID = 0xFFFFFFFF;
2583			pci_bus->number = hold_bus_node->base;
2584			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2585			pci_bus->number = func->bus;
2586
2587			if (ID != 0xFFFFFFFF) {	  /*  device present */
2588				/* Setup slot structure. */
2589				new_slot = cpqhp_slot_create(hold_bus_node->base);
2590
2591				if (new_slot == NULL) {
2592					rc = -ENOMEM;
2593					continue;
2594				}
2595
2596				new_slot->bus = hold_bus_node->base;
2597				new_slot->device = device;
2598				new_slot->function = 0;
2599				new_slot->is_a_board = 1;
2600				new_slot->status = 0;
2601
2602				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2603				dbg("configure_new_device rc=0x%x\n",rc);
2604			}	/* End of IF (device in slot?) */
2605		}		/* End of FOR loop */
2606
2607		if (rc)
2608			goto free_and_out;
2609		/* save the interrupt routing information */
2610		if (resources->irqs) {
2611			resources->irqs->interrupt[0] = irqs.interrupt[0];
2612			resources->irqs->interrupt[1] = irqs.interrupt[1];
2613			resources->irqs->interrupt[2] = irqs.interrupt[2];
2614			resources->irqs->interrupt[3] = irqs.interrupt[3];
2615			resources->irqs->valid_INT = irqs.valid_INT;
2616		} else if (!behind_bridge) {
2617			/* We need to hook up the interrupts here */
2618			for (cloop = 0; cloop < 4; cloop++) {
2619				if (irqs.valid_INT & (0x01 << cloop)) {
2620					rc = cpqhp_set_irq(func->bus, func->device,
2621							   cloop + 1, irqs.interrupt[cloop]);
2622					if (rc)
2623						goto free_and_out;
2624				}
2625			}	/* end of for loop */
2626		}
2627		/* Return unused bus resources
2628		 * First use the temporary node to store information for
2629		 * the board */
2630		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2631			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2632
2633			hold_bus_node->next = func->bus_head;
2634			func->bus_head = hold_bus_node;
2635
2636			temp_byte = temp_resources.bus_head->base - 1;
2637
2638			/* set subordinate bus */
2639			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2640
2641			if (temp_resources.bus_head->length == 0) {
2642				kfree(temp_resources.bus_head);
2643				temp_resources.bus_head = NULL;
2644			} else {
2645				return_resource(&(resources->bus_head), temp_resources.bus_head);
2646			}
2647		}
2648
2649		/* If we have IO space available and there is some left,
2650		 * return the unused portion */
2651		if (hold_IO_node && temp_resources.io_head) {
2652			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2653							       &hold_IO_node, 0x1000);
2654
2655			/* Check if we were able to split something off */
2656			if (io_node) {
2657				hold_IO_node->base = io_node->base + io_node->length;
2658
2659				temp_byte = (hold_IO_node->base) >> 8;
2660				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2661
2662				return_resource(&(resources->io_head), io_node);
2663			}
2664
2665			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2666
2667			/* Check if we were able to split something off */
2668			if (io_node) {
2669				/* First use the temporary node to store
2670				 * information for the board */
2671				hold_IO_node->length = io_node->base - hold_IO_node->base;
2672
2673				/* If we used any, add it to the board's list */
2674				if (hold_IO_node->length) {
2675					hold_IO_node->next = func->io_head;
2676					func->io_head = hold_IO_node;
2677
2678					temp_byte = (io_node->base - 1) >> 8;
2679					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2680
2681					return_resource(&(resources->io_head), io_node);
2682				} else {
2683					/* it doesn't need any IO */
2684					temp_word = 0x0000;
2685					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2686
2687					return_resource(&(resources->io_head), io_node);
2688					kfree(hold_IO_node);
2689				}
2690			} else {
2691				/* it used most of the range */
2692				hold_IO_node->next = func->io_head;
2693				func->io_head = hold_IO_node;
2694			}
2695		} else if (hold_IO_node) {
2696			/* it used the whole range */
2697			hold_IO_node->next = func->io_head;
2698			func->io_head = hold_IO_node;
2699		}
2700		/* If we have memory space available and there is some left,
2701		 * return the unused portion */
2702		if (hold_mem_node && temp_resources.mem_head) {
2703			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2704								&hold_mem_node, 0x100000);
2705
2706			/* Check if we were able to split something off */
2707			if (mem_node) {
2708				hold_mem_node->base = mem_node->base + mem_node->length;
2709
2710				temp_word = (hold_mem_node->base) >> 16;
2711				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2712
2713				return_resource(&(resources->mem_head), mem_node);
2714			}
2715
2716			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2717
2718			/* Check if we were able to split something off */
2719			if (mem_node) {
2720				/* First use the temporary node to store
2721				 * information for the board */
2722				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2723
2724				if (hold_mem_node->length) {
2725					hold_mem_node->next = func->mem_head;
2726					func->mem_head = hold_mem_node;
2727
2728					/* configure end address */
2729					temp_word = (mem_node->base - 1) >> 16;
2730					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2731
2732					/* Return unused resources to the pool */
2733					return_resource(&(resources->mem_head), mem_node);
2734				} else {
2735					/* it doesn't need any Mem */
2736					temp_word = 0x0000;
2737					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2738
2739					return_resource(&(resources->mem_head), mem_node);
2740					kfree(hold_mem_node);
2741				}
2742			} else {
2743				/* it used most of the range */
2744				hold_mem_node->next = func->mem_head;
2745				func->mem_head = hold_mem_node;
2746			}
2747		} else if (hold_mem_node) {
2748			/* it used the whole range */
2749			hold_mem_node->next = func->mem_head;
2750			func->mem_head = hold_mem_node;
2751		}
2752		/* If we have prefetchable memory space available and there
2753		 * is some left at the end, return the unused portion */
2754		if (hold_p_mem_node && temp_resources.p_mem_head) {
2755			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2756								  &hold_p_mem_node, 0x100000);
2757
2758			/* Check if we were able to split something off */
2759			if (p_mem_node) {
2760				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2761
2762				temp_word = (hold_p_mem_node->base) >> 16;
2763				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2764
2765				return_resource(&(resources->p_mem_head), p_mem_node);
2766			}
2767
2768			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2769
2770			/* Check if we were able to split something off */
2771			if (p_mem_node) {
2772				/* First use the temporary node to store
2773				 * information for the board */
2774				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2775
2776				/* If we used any, add it to the board's list */
2777				if (hold_p_mem_node->length) {
2778					hold_p_mem_node->next = func->p_mem_head;
2779					func->p_mem_head = hold_p_mem_node;
2780
2781					temp_word = (p_mem_node->base - 1) >> 16;
2782					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2783
2784					return_resource(&(resources->p_mem_head), p_mem_node);
2785				} else {
2786					/* it doesn't need any PMem */
2787					temp_word = 0x0000;
2788					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2789
2790					return_resource(&(resources->p_mem_head), p_mem_node);
2791					kfree(hold_p_mem_node);
2792				}
2793			} else {
2794				/* it used the most of the range */
2795				hold_p_mem_node->next = func->p_mem_head;
2796				func->p_mem_head = hold_p_mem_node;
2797			}
2798		} else if (hold_p_mem_node) {
2799			/* it used the whole range */
2800			hold_p_mem_node->next = func->p_mem_head;
2801			func->p_mem_head = hold_p_mem_node;
2802		}
2803		/* We should be configuring an IRQ and the bridge's base address
2804		 * registers if it needs them.  Although we have never seen such
2805		 * a device */
2806
2807		/* enable card */
2808		command = 0x0157;	/* = PCI_COMMAND_IO |
2809					 *   PCI_COMMAND_MEMORY |
2810					 *   PCI_COMMAND_MASTER |
2811					 *   PCI_COMMAND_INVALIDATE |
2812					 *   PCI_COMMAND_PARITY |
2813					 *   PCI_COMMAND_SERR */
2814		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2815
2816		/* set Bridge Control Register */
2817		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2818					 *   PCI_BRIDGE_CTL_SERR |
2819					 *   PCI_BRIDGE_CTL_NO_ISA */
2820		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2821	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2822		/* Standard device */
2823		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2824
2825		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2826			/* Display (video) adapter (not supported) */
2827			return DEVICE_TYPE_NOT_SUPPORTED;
2828		}
2829		/* Figure out IO and memory needs */
2830		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2831			temp_register = 0xFFFFFFFF;
2832
2833			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2834			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2835
2836			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2837			dbg("CND: base = 0x%x\n", temp_register);
2838
2839			if (temp_register) {	  /* If this register is implemented */
2840				if ((temp_register & 0x03L) == 0x01) {
2841					/* Map IO */
2842
2843					/* set base = amount of IO space */
2844					base = temp_register & 0xFFFFFFFC;
2845					base = ~base + 1;
2846
2847					dbg("CND:      length = 0x%x\n", base);
2848					io_node = get_io_resource(&(resources->io_head), base);
 
 
2849					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2850					    io_node->base, io_node->length, io_node->next);
2851					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2852
2853					/* allocate the resource to the board */
2854					if (io_node) {
2855						base = io_node->base;
2856
2857						io_node->next = func->io_head;
2858						func->io_head = io_node;
2859					} else
2860						return -ENOMEM;
2861				} else if ((temp_register & 0x0BL) == 0x08) {
2862					/* Map prefetchable memory */
2863					base = temp_register & 0xFFFFFFF0;
2864					base = ~base + 1;
2865
2866					dbg("CND:      length = 0x%x\n", base);
2867					p_mem_node = get_resource(&(resources->p_mem_head), base);
2868
2869					/* allocate the resource to the board */
2870					if (p_mem_node) {
2871						base = p_mem_node->base;
2872
2873						p_mem_node->next = func->p_mem_head;
2874						func->p_mem_head = p_mem_node;
2875					} else
2876						return -ENOMEM;
2877				} else if ((temp_register & 0x0BL) == 0x00) {
2878					/* Map memory */
2879					base = temp_register & 0xFFFFFFF0;
2880					base = ~base + 1;
2881
2882					dbg("CND:      length = 0x%x\n", base);
2883					mem_node = get_resource(&(resources->mem_head), base);
2884
2885					/* allocate the resource to the board */
2886					if (mem_node) {
2887						base = mem_node->base;
2888
2889						mem_node->next = func->mem_head;
2890						func->mem_head = mem_node;
2891					} else
2892						return -ENOMEM;
2893				} else if ((temp_register & 0x0BL) == 0x04) {
2894					/* Map memory */
2895					base = temp_register & 0xFFFFFFF0;
2896					base = ~base + 1;
2897
2898					dbg("CND:      length = 0x%x\n", base);
2899					mem_node = get_resource(&(resources->mem_head), base);
2900
2901					/* allocate the resource to the board */
2902					if (mem_node) {
2903						base = mem_node->base;
2904
2905						mem_node->next = func->mem_head;
2906						func->mem_head = mem_node;
2907					} else
2908						return -ENOMEM;
2909				} else if ((temp_register & 0x0BL) == 0x06) {
2910					/* Those bits are reserved, we can't handle this */
2911					return 1;
2912				} else {
2913					/* Requesting space below 1M */
2914					return NOT_ENOUGH_RESOURCES;
2915				}
2916
2917				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2918
2919				/* Check for 64-bit base */
2920				if ((temp_register & 0x07L) == 0x04) {
2921					cloop += 4;
2922
2923					/* Upper 32 bits of address always zero
2924					 * on today's systems */
2925					/* FIXME this is probably not true on
2926					 * Alpha and ia64??? */
2927					base = 0;
2928					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2929				}
2930			}
2931		}		/* End of base register loop */
2932		if (cpqhp_legacy_mode) {
2933			/* Figure out which interrupt pin this function uses */
2934			rc = pci_bus_read_config_byte (pci_bus, devfn,
2935				PCI_INTERRUPT_PIN, &temp_byte);
2936
2937			/* If this function needs an interrupt and we are behind
2938			 * a bridge and the pin is tied to something that's
2939			 * alread mapped, set this one the same */
2940			if (temp_byte && resources->irqs &&
2941			    (resources->irqs->valid_INT &
2942			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2943				/* We have to share with something already set up */
2944				IRQ = resources->irqs->interrupt[(temp_byte +
2945					resources->irqs->barber_pole - 1) & 0x03];
2946			} else {
2947				/* Program IRQ based on card type */
2948				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2949
2950				if (class_code == PCI_BASE_CLASS_STORAGE)
2951					IRQ = cpqhp_disk_irq;
2952				else
2953					IRQ = cpqhp_nic_irq;
2954			}
2955
2956			/* IRQ Line */
2957			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2958		}
2959
2960		if (!behind_bridge) {
2961			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2962			if (rc)
2963				return 1;
2964		} else {
2965			/* TBD - this code may also belong in the other clause
2966			 * of this If statement */
2967			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2968			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2969		}
2970
2971		/* Latency Timer */
2972		temp_byte = 0x40;
2973		rc = pci_bus_write_config_byte(pci_bus, devfn,
2974					PCI_LATENCY_TIMER, temp_byte);
2975
2976		/* Cache Line size */
2977		temp_byte = 0x08;
2978		rc = pci_bus_write_config_byte(pci_bus, devfn,
2979					PCI_CACHE_LINE_SIZE, temp_byte);
2980
2981		/* disable ROM base Address */
2982		temp_dword = 0x00L;
2983		rc = pci_bus_write_config_word(pci_bus, devfn,
2984					PCI_ROM_ADDRESS, temp_dword);
2985
2986		/* enable card */
2987		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2988					 *   PCI_COMMAND_MEMORY |
2989					 *   PCI_COMMAND_MASTER |
2990					 *   PCI_COMMAND_INVALIDATE |
2991					 *   PCI_COMMAND_PARITY |
2992					 *   PCI_COMMAND_SERR */
2993		rc = pci_bus_write_config_word (pci_bus, devfn,
2994					PCI_COMMAND, temp_word);
2995	} else {		/* End of Not-A-Bridge else */
2996		/* It's some strange type of PCI adapter (Cardbus?) */
2997		return DEVICE_TYPE_NOT_SUPPORTED;
2998	}
2999
3000	func->configured = 1;
3001
3002	return 0;
3003free_and_out:
3004	cpqhp_destroy_resource_list (&temp_resources);
3005
3006	return_resource(&(resources-> bus_head), hold_bus_node);
3007	return_resource(&(resources-> io_head), hold_IO_node);
3008	return_resource(&(resources-> mem_head), hold_mem_node);
3009	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3010	return rc;
3011}
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20#include <linux/interrupt.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pci.h>
  24#include <linux/pci_hotplug.h>
  25#include <linux/kthread.h>
  26#include "cpqphp.h"
  27
  28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
  29			u8 behind_bridge, struct resource_lists *resources);
  30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
  31			u8 behind_bridge, struct resource_lists *resources);
  32static void interrupt_event_handler(struct controller *ctrl);
  33
  34
  35static struct task_struct *cpqhp_event_thread;
  36static struct timer_list *pushbutton_pending;	/* = NULL */
  37
  38/* delay is in jiffies to wait for */
  39static void long_delay(int delay)
  40{
  41	/*
  42	 * XXX(hch): if someone is bored please convert all callers
  43	 * to call msleep_interruptible directly.  They really want
  44	 * to specify timeouts in natural units and spend a lot of
  45	 * effort converting them to jiffies..
  46	 */
  47	msleep_interruptible(jiffies_to_msecs(delay));
  48}
  49
  50
  51/* FIXME: The following line needs to be somewhere else... */
  52#define WRONG_BUS_FREQUENCY 0x07
  53static u8 handle_switch_change(u8 change, struct controller *ctrl)
  54{
  55	int hp_slot;
  56	u8 rc = 0;
  57	u16 temp_word;
  58	struct pci_func *func;
  59	struct event_info *taskInfo;
  60
  61	if (!change)
  62		return 0;
  63
  64	/* Switch Change */
  65	dbg("cpqsbd:  Switch interrupt received.\n");
  66
  67	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  68		if (change & (0x1L << hp_slot)) {
  69			/*
  70			 * this one changed.
  71			 */
  72			func = cpqhp_slot_find(ctrl->bus,
  73				(hp_slot + ctrl->slot_device_offset), 0);
  74
  75			/* this is the structure that tells the worker thread
  76			 * what to do
  77			 */
  78			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  79			ctrl->next_event = (ctrl->next_event + 1) % 10;
  80			taskInfo->hp_slot = hp_slot;
  81
  82			rc++;
  83
  84			temp_word = ctrl->ctrl_int_comp >> 16;
  85			func->presence_save = (temp_word >> hp_slot) & 0x01;
  86			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
  87
  88			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
  89				/*
  90				 * Switch opened
  91				 */
  92
  93				func->switch_save = 0;
  94
  95				taskInfo->event_type = INT_SWITCH_OPEN;
  96			} else {
  97				/*
  98				 * Switch closed
  99				 */
 100
 101				func->switch_save = 0x10;
 102
 103				taskInfo->event_type = INT_SWITCH_CLOSE;
 104			}
 105		}
 106	}
 107
 108	return rc;
 109}
 110
 111/**
 112 * cpqhp_find_slot - find the struct slot of given device
 113 * @ctrl: scan lots of this controller
 114 * @device: the device id to find
 115 */
 116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 117{
 118	struct slot *slot = ctrl->slot;
 119
 120	while (slot && (slot->device != device))
 121		slot = slot->next;
 122
 123	return slot;
 124}
 125
 126
 127static u8 handle_presence_change(u16 change, struct controller *ctrl)
 128{
 129	int hp_slot;
 130	u8 rc = 0;
 131	u8 temp_byte;
 132	u16 temp_word;
 133	struct pci_func *func;
 134	struct event_info *taskInfo;
 135	struct slot *p_slot;
 136
 137	if (!change)
 138		return 0;
 139
 140	/*
 141	 * Presence Change
 142	 */
 143	dbg("cpqsbd:  Presence/Notify input change.\n");
 144	dbg("         Changed bits are 0x%4.4x\n", change);
 145
 146	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 147		if (change & (0x0101 << hp_slot)) {
 148			/*
 149			 * this one changed.
 150			 */
 151			func = cpqhp_slot_find(ctrl->bus,
 152				(hp_slot + ctrl->slot_device_offset), 0);
 153
 154			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 155			ctrl->next_event = (ctrl->next_event + 1) % 10;
 156			taskInfo->hp_slot = hp_slot;
 157
 158			rc++;
 159
 160			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 161			if (!p_slot)
 162				return 0;
 163
 164			/* If the switch closed, must be a button
 165			 * If not in button mode, nevermind
 166			 */
 167			if (func->switch_save && (ctrl->push_button == 1)) {
 168				temp_word = ctrl->ctrl_int_comp >> 16;
 169				temp_byte = (temp_word >> hp_slot) & 0x01;
 170				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 171
 172				if (temp_byte != func->presence_save) {
 173					/*
 174					 * button Pressed (doesn't do anything)
 175					 */
 176					dbg("hp_slot %d button pressed\n", hp_slot);
 177					taskInfo->event_type = INT_BUTTON_PRESS;
 178				} else {
 179					/*
 180					 * button Released - TAKE ACTION!!!!
 181					 */
 182					dbg("hp_slot %d button released\n", hp_slot);
 183					taskInfo->event_type = INT_BUTTON_RELEASE;
 184
 185					/* Cancel if we are still blinking */
 186					if ((p_slot->state == BLINKINGON_STATE)
 187					    || (p_slot->state == BLINKINGOFF_STATE)) {
 188						taskInfo->event_type = INT_BUTTON_CANCEL;
 189						dbg("hp_slot %d button cancel\n", hp_slot);
 190					} else if ((p_slot->state == POWERON_STATE)
 191						   || (p_slot->state == POWEROFF_STATE)) {
 192						/* info(msg_button_ignore, p_slot->number); */
 193						taskInfo->event_type = INT_BUTTON_IGNORE;
 194						dbg("hp_slot %d button ignore\n", hp_slot);
 195					}
 196				}
 197			} else {
 198				/* Switch is open, assume a presence change
 199				 * Save the presence state
 200				 */
 201				temp_word = ctrl->ctrl_int_comp >> 16;
 202				func->presence_save = (temp_word >> hp_slot) & 0x01;
 203				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 204
 205				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 206				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 207					/* Present */
 208					taskInfo->event_type = INT_PRESENCE_ON;
 209				} else {
 210					/* Not Present */
 211					taskInfo->event_type = INT_PRESENCE_OFF;
 212				}
 213			}
 214		}
 215	}
 216
 217	return rc;
 218}
 219
 220
 221static u8 handle_power_fault(u8 change, struct controller *ctrl)
 222{
 223	int hp_slot;
 224	u8 rc = 0;
 225	struct pci_func *func;
 226	struct event_info *taskInfo;
 227
 228	if (!change)
 229		return 0;
 230
 231	/*
 232	 * power fault
 233	 */
 234
 235	info("power fault interrupt\n");
 236
 237	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 238		if (change & (0x01 << hp_slot)) {
 239			/*
 240			 * this one changed.
 241			 */
 242			func = cpqhp_slot_find(ctrl->bus,
 243				(hp_slot + ctrl->slot_device_offset), 0);
 244
 245			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 246			ctrl->next_event = (ctrl->next_event + 1) % 10;
 247			taskInfo->hp_slot = hp_slot;
 248
 249			rc++;
 250
 251			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 252				/*
 253				 * power fault Cleared
 254				 */
 255				func->status = 0x00;
 256
 257				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 258			} else {
 259				/*
 260				 * power fault
 261				 */
 262				taskInfo->event_type = INT_POWER_FAULT;
 263
 264				if (ctrl->rev < 4) {
 265					amber_LED_on(ctrl, hp_slot);
 266					green_LED_off(ctrl, hp_slot);
 267					set_SOGO(ctrl);
 268
 269					/* this is a fatal condition, we want
 270					 * to crash the machine to protect from
 271					 * data corruption. simulated_NMI
 272					 * shouldn't ever return */
 273					/* FIXME
 274					simulated_NMI(hp_slot, ctrl); */
 275
 276					/* The following code causes a software
 277					 * crash just in case simulated_NMI did
 278					 * return */
 279					/*FIXME
 280					panic(msg_power_fault); */
 281				} else {
 282					/* set power fault status for this board */
 283					func->status = 0xFF;
 284					info("power fault bit %x set\n", hp_slot);
 285				}
 286			}
 287		}
 288	}
 289
 290	return rc;
 291}
 292
 293
 294/**
 295 * sort_by_size - sort nodes on the list by their length, smallest first.
 296 * @head: list to sort
 297 */
 298static int sort_by_size(struct pci_resource **head)
 299{
 300	struct pci_resource *current_res;
 301	struct pci_resource *next_res;
 302	int out_of_order = 1;
 303
 304	if (!(*head))
 305		return 1;
 306
 307	if (!((*head)->next))
 308		return 0;
 309
 310	while (out_of_order) {
 311		out_of_order = 0;
 312
 313		/* Special case for swapping list head */
 314		if (((*head)->next) &&
 315		    ((*head)->length > (*head)->next->length)) {
 316			out_of_order++;
 317			current_res = *head;
 318			*head = (*head)->next;
 319			current_res->next = (*head)->next;
 320			(*head)->next = current_res;
 321		}
 322
 323		current_res = *head;
 324
 325		while (current_res->next && current_res->next->next) {
 326			if (current_res->next->length > current_res->next->next->length) {
 327				out_of_order++;
 328				next_res = current_res->next;
 329				current_res->next = current_res->next->next;
 330				current_res = current_res->next;
 331				next_res->next = current_res->next;
 332				current_res->next = next_res;
 333			} else
 334				current_res = current_res->next;
 335		}
 336	}  /* End of out_of_order loop */
 337
 338	return 0;
 339}
 340
 341
 342/**
 343 * sort_by_max_size - sort nodes on the list by their length, largest first.
 344 * @head: list to sort
 345 */
 346static int sort_by_max_size(struct pci_resource **head)
 347{
 348	struct pci_resource *current_res;
 349	struct pci_resource *next_res;
 350	int out_of_order = 1;
 351
 352	if (!(*head))
 353		return 1;
 354
 355	if (!((*head)->next))
 356		return 0;
 357
 358	while (out_of_order) {
 359		out_of_order = 0;
 360
 361		/* Special case for swapping list head */
 362		if (((*head)->next) &&
 363		    ((*head)->length < (*head)->next->length)) {
 364			out_of_order++;
 365			current_res = *head;
 366			*head = (*head)->next;
 367			current_res->next = (*head)->next;
 368			(*head)->next = current_res;
 369		}
 370
 371		current_res = *head;
 372
 373		while (current_res->next && current_res->next->next) {
 374			if (current_res->next->length < current_res->next->next->length) {
 375				out_of_order++;
 376				next_res = current_res->next;
 377				current_res->next = current_res->next->next;
 378				current_res = current_res->next;
 379				next_res->next = current_res->next;
 380				current_res->next = next_res;
 381			} else
 382				current_res = current_res->next;
 383		}
 384	}  /* End of out_of_order loop */
 385
 386	return 0;
 387}
 388
 389
 390/**
 391 * do_pre_bridge_resource_split - find node of resources that are unused
 392 * @head: new list head
 393 * @orig_head: original list head
 394 * @alignment: max node size (?)
 395 */
 396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 397				struct pci_resource **orig_head, u32 alignment)
 398{
 399	struct pci_resource *prevnode = NULL;
 400	struct pci_resource *node;
 401	struct pci_resource *split_node;
 402	u32 rc;
 403	u32 temp_dword;
 404	dbg("do_pre_bridge_resource_split\n");
 405
 406	if (!(*head) || !(*orig_head))
 407		return NULL;
 408
 409	rc = cpqhp_resource_sort_and_combine(head);
 410
 411	if (rc)
 412		return NULL;
 413
 414	if ((*head)->base != (*orig_head)->base)
 415		return NULL;
 416
 417	if ((*head)->length == (*orig_head)->length)
 418		return NULL;
 419
 420
 421	/* If we got here, there the bridge requires some of the resource, but
 422	 * we may be able to split some off of the front
 423	 */
 424
 425	node = *head;
 426
 427	if (node->length & (alignment - 1)) {
 428		/* this one isn't an aligned length, so we'll make a new entry
 429		 * and split it up.
 430		 */
 431		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 432
 433		if (!split_node)
 434			return NULL;
 435
 436		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 437
 438		split_node->base = node->base;
 439		split_node->length = temp_dword;
 440
 441		node->length -= temp_dword;
 442		node->base += split_node->length;
 443
 444		/* Put it in the list */
 445		*head = split_node;
 446		split_node->next = node;
 447	}
 448
 449	if (node->length < alignment)
 450		return NULL;
 451
 452	/* Now unlink it */
 453	if (*head == node) {
 454		*head = node->next;
 455	} else {
 456		prevnode = *head;
 457		while (prevnode->next != node)
 458			prevnode = prevnode->next;
 459
 460		prevnode->next = node->next;
 461	}
 462	node->next = NULL;
 463
 464	return node;
 465}
 466
 467
 468/**
 469 * do_bridge_resource_split - find one node of resources that aren't in use
 470 * @head: list head
 471 * @alignment: max node size (?)
 472 */
 473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 474{
 475	struct pci_resource *prevnode = NULL;
 476	struct pci_resource *node;
 477	u32 rc;
 478	u32 temp_dword;
 479
 480	rc = cpqhp_resource_sort_and_combine(head);
 481
 482	if (rc)
 483		return NULL;
 484
 485	node = *head;
 486
 487	while (node->next) {
 488		prevnode = node;
 489		node = node->next;
 490		kfree(prevnode);
 491	}
 492
 493	if (node->length < alignment)
 494		goto error;
 495
 496	if (node->base & (alignment - 1)) {
 497		/* Short circuit if adjusted size is too small */
 498		temp_dword = (node->base | (alignment-1)) + 1;
 499		if ((node->length - (temp_dword - node->base)) < alignment)
 500			goto error;
 501
 502		node->length -= (temp_dword - node->base);
 503		node->base = temp_dword;
 504	}
 505
 506	if (node->length & (alignment - 1))
 507		/* There's stuff in use after this node */
 508		goto error;
 509
 510	return node;
 511error:
 512	kfree(node);
 513	return NULL;
 514}
 515
 516
 517/**
 518 * get_io_resource - find first node of given size not in ISA aliasing window.
 519 * @head: list to search
 520 * @size: size of node to find, must be a power of two.
 521 *
 522 * Description: This function sorts the resource list by size and then returns
 523 * returns the first node of "size" length that is not in the ISA aliasing
 524 * window.  If it finds a node larger than "size" it will split it up.
 525 */
 526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 527{
 528	struct pci_resource *prevnode;
 529	struct pci_resource *node;
 530	struct pci_resource *split_node;
 531	u32 temp_dword;
 532
 533	if (!(*head))
 534		return NULL;
 535
 536	if (cpqhp_resource_sort_and_combine(head))
 537		return NULL;
 538
 539	if (sort_by_size(head))
 540		return NULL;
 541
 542	for (node = *head; node; node = node->next) {
 543		if (node->length < size)
 544			continue;
 545
 546		if (node->base & (size - 1)) {
 547			/* this one isn't base aligned properly
 548			 * so we'll make a new entry and split it up
 549			 */
 550			temp_dword = (node->base | (size-1)) + 1;
 551
 552			/* Short circuit if adjusted size is too small */
 553			if ((node->length - (temp_dword - node->base)) < size)
 554				continue;
 555
 556			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 557
 558			if (!split_node)
 559				return NULL;
 560
 561			split_node->base = node->base;
 562			split_node->length = temp_dword - node->base;
 563			node->base = temp_dword;
 564			node->length -= split_node->length;
 565
 566			/* Put it in the list */
 567			split_node->next = node->next;
 568			node->next = split_node;
 569		} /* End of non-aligned base */
 570
 571		/* Don't need to check if too small since we already did */
 572		if (node->length > size) {
 573			/* this one is longer than we need
 574			 * so we'll make a new entry and split it up
 575			 */
 576			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 577
 578			if (!split_node)
 579				return NULL;
 580
 581			split_node->base = node->base + size;
 582			split_node->length = node->length - size;
 583			node->length = size;
 584
 585			/* Put it in the list */
 586			split_node->next = node->next;
 587			node->next = split_node;
 588		}  /* End of too big on top end */
 589
 590		/* For IO make sure it's not in the ISA aliasing space */
 591		if (node->base & 0x300L)
 592			continue;
 593
 594		/* If we got here, then it is the right size
 595		 * Now take it out of the list and break
 596		 */
 597		if (*head == node) {
 598			*head = node->next;
 599		} else {
 600			prevnode = *head;
 601			while (prevnode->next != node)
 602				prevnode = prevnode->next;
 603
 604			prevnode->next = node->next;
 605		}
 606		node->next = NULL;
 607		break;
 608	}
 609
 610	return node;
 611}
 612
 613
 614/**
 615 * get_max_resource - get largest node which has at least the given size.
 616 * @head: the list to search the node in
 617 * @size: the minimum size of the node to find
 618 *
 619 * Description: Gets the largest node that is at least "size" big from the
 620 * list pointed to by head.  It aligns the node on top and bottom
 621 * to "size" alignment before returning it.
 622 */
 623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 624{
 625	struct pci_resource *max;
 626	struct pci_resource *temp;
 627	struct pci_resource *split_node;
 628	u32 temp_dword;
 629
 630	if (cpqhp_resource_sort_and_combine(head))
 631		return NULL;
 632
 633	if (sort_by_max_size(head))
 634		return NULL;
 635
 636	for (max = *head; max; max = max->next) {
 637		/* If not big enough we could probably just bail,
 638		 * instead we'll continue to the next.
 639		 */
 640		if (max->length < size)
 641			continue;
 642
 643		if (max->base & (size - 1)) {
 644			/* this one isn't base aligned properly
 645			 * so we'll make a new entry and split it up
 646			 */
 647			temp_dword = (max->base | (size-1)) + 1;
 648
 649			/* Short circuit if adjusted size is too small */
 650			if ((max->length - (temp_dword - max->base)) < size)
 651				continue;
 652
 653			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 654
 655			if (!split_node)
 656				return NULL;
 657
 658			split_node->base = max->base;
 659			split_node->length = temp_dword - max->base;
 660			max->base = temp_dword;
 661			max->length -= split_node->length;
 662
 663			split_node->next = max->next;
 664			max->next = split_node;
 665		}
 666
 667		if ((max->base + max->length) & (size - 1)) {
 668			/* this one isn't end aligned properly at the top
 669			 * so we'll make a new entry and split it up
 670			 */
 671			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 672
 673			if (!split_node)
 674				return NULL;
 675			temp_dword = ((max->base + max->length) & ~(size - 1));
 676			split_node->base = temp_dword;
 677			split_node->length = max->length + max->base
 678					     - split_node->base;
 679			max->length -= split_node->length;
 680
 681			split_node->next = max->next;
 682			max->next = split_node;
 683		}
 684
 685		/* Make sure it didn't shrink too much when we aligned it */
 686		if (max->length < size)
 687			continue;
 688
 689		/* Now take it out of the list */
 690		temp = *head;
 691		if (temp == max) {
 692			*head = max->next;
 693		} else {
 694			while (temp && temp->next != max)
 695				temp = temp->next;
 
 696
 697			if (temp)
 698				temp->next = max->next;
 699		}
 700
 701		max->next = NULL;
 702		break;
 703	}
 704
 705	return max;
 706}
 707
 708
 709/**
 710 * get_resource - find resource of given size and split up larger ones.
 711 * @head: the list to search for resources
 712 * @size: the size limit to use
 713 *
 714 * Description: This function sorts the resource list by size and then
 715 * returns the first node of "size" length.  If it finds a node
 716 * larger than "size" it will split it up.
 717 *
 718 * size must be a power of two.
 719 */
 720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 721{
 722	struct pci_resource *prevnode;
 723	struct pci_resource *node;
 724	struct pci_resource *split_node;
 725	u32 temp_dword;
 726
 727	if (cpqhp_resource_sort_and_combine(head))
 728		return NULL;
 729
 730	if (sort_by_size(head))
 731		return NULL;
 732
 733	for (node = *head; node; node = node->next) {
 734		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 735		    __func__, size, node, node->base, node->length);
 736		if (node->length < size)
 737			continue;
 738
 739		if (node->base & (size - 1)) {
 740			dbg("%s: not aligned\n", __func__);
 741			/* this one isn't base aligned properly
 742			 * so we'll make a new entry and split it up
 743			 */
 744			temp_dword = (node->base | (size-1)) + 1;
 745
 746			/* Short circuit if adjusted size is too small */
 747			if ((node->length - (temp_dword - node->base)) < size)
 748				continue;
 749
 750			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 751
 752			if (!split_node)
 753				return NULL;
 754
 755			split_node->base = node->base;
 756			split_node->length = temp_dword - node->base;
 757			node->base = temp_dword;
 758			node->length -= split_node->length;
 759
 760			split_node->next = node->next;
 761			node->next = split_node;
 762		} /* End of non-aligned base */
 763
 764		/* Don't need to check if too small since we already did */
 765		if (node->length > size) {
 766			dbg("%s: too big\n", __func__);
 767			/* this one is longer than we need
 768			 * so we'll make a new entry and split it up
 769			 */
 770			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 771
 772			if (!split_node)
 773				return NULL;
 774
 775			split_node->base = node->base + size;
 776			split_node->length = node->length - size;
 777			node->length = size;
 778
 779			/* Put it in the list */
 780			split_node->next = node->next;
 781			node->next = split_node;
 782		}  /* End of too big on top end */
 783
 784		dbg("%s: got one!!!\n", __func__);
 785		/* If we got here, then it is the right size
 786		 * Now take it out of the list */
 787		if (*head == node) {
 788			*head = node->next;
 789		} else {
 790			prevnode = *head;
 791			while (prevnode->next != node)
 792				prevnode = prevnode->next;
 793
 794			prevnode->next = node->next;
 795		}
 796		node->next = NULL;
 797		break;
 798	}
 799	return node;
 800}
 801
 802
 803/**
 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 805 * @head: the list to sort and clean up
 806 *
 807 * Description: Sorts all of the nodes in the list in ascending order by
 808 * their base addresses.  Also does garbage collection by
 809 * combining adjacent nodes.
 810 *
 811 * Returns %0 if success.
 812 */
 813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 814{
 815	struct pci_resource *node1;
 816	struct pci_resource *node2;
 817	int out_of_order = 1;
 818
 819	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 820
 821	if (!(*head))
 822		return 1;
 823
 824	dbg("*head->next = %p\n", (*head)->next);
 825
 826	if (!(*head)->next)
 827		return 0;	/* only one item on the list, already sorted! */
 828
 829	dbg("*head->base = 0x%x\n", (*head)->base);
 830	dbg("*head->next->base = 0x%x\n", (*head)->next->base);
 831	while (out_of_order) {
 832		out_of_order = 0;
 833
 834		/* Special case for swapping list head */
 835		if (((*head)->next) &&
 836		    ((*head)->base > (*head)->next->base)) {
 837			node1 = *head;
 838			(*head) = (*head)->next;
 839			node1->next = (*head)->next;
 840			(*head)->next = node1;
 841			out_of_order++;
 842		}
 843
 844		node1 = (*head);
 845
 846		while (node1->next && node1->next->next) {
 847			if (node1->next->base > node1->next->next->base) {
 848				out_of_order++;
 849				node2 = node1->next;
 850				node1->next = node1->next->next;
 851				node1 = node1->next;
 852				node2->next = node1->next;
 853				node1->next = node2;
 854			} else
 855				node1 = node1->next;
 856		}
 857	}  /* End of out_of_order loop */
 858
 859	node1 = *head;
 860
 861	while (node1 && node1->next) {
 862		if ((node1->base + node1->length) == node1->next->base) {
 863			/* Combine */
 864			dbg("8..\n");
 865			node1->length += node1->next->length;
 866			node2 = node1->next;
 867			node1->next = node1->next->next;
 868			kfree(node2);
 869		} else
 870			node1 = node1->next;
 871	}
 872
 873	return 0;
 874}
 875
 876
 877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 878{
 879	struct controller *ctrl = data;
 880	u8 schedule_flag = 0;
 881	u8 reset;
 882	u16 misc;
 883	u32 Diff;
 884	u32 temp_dword;
 885
 886
 887	misc = readw(ctrl->hpc_reg + MISC);
 888	/*
 889	 * Check to see if it was our interrupt
 890	 */
 891	if (!(misc & 0x000C))
 892		return IRQ_NONE;
 
 893
 894	if (misc & 0x0004) {
 895		/*
 896		 * Serial Output interrupt Pending
 897		 */
 898
 899		/* Clear the interrupt */
 900		misc |= 0x0004;
 901		writew(misc, ctrl->hpc_reg + MISC);
 902
 903		/* Read to clear posted writes */
 904		misc = readw(ctrl->hpc_reg + MISC);
 905
 906		dbg("%s - waking up\n", __func__);
 907		wake_up_interruptible(&ctrl->queue);
 908	}
 909
 910	if (misc & 0x0008) {
 911		/* General-interrupt-input interrupt Pending */
 912		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 913
 914		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 915
 916		/* Clear the interrupt */
 917		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 918
 919		/* Read it back to clear any posted writes */
 920		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 921
 922		if (!Diff)
 923			/* Clear all interrupts */
 924			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 925
 926		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 927		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 928		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 929	}
 930
 931	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 932	if (reset & 0x40) {
 933		/* Bus reset has completed */
 934		reset &= 0xCF;
 935		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 936		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 937		wake_up_interruptible(&ctrl->queue);
 938	}
 939
 940	if (schedule_flag) {
 941		wake_up_process(cpqhp_event_thread);
 942		dbg("Waking even thread");
 943	}
 944	return IRQ_HANDLED;
 945}
 946
 947
 948/**
 949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 950 * @busnumber: bus where new node is to be located
 951 *
 952 * Returns pointer to the new node or %NULL if unsuccessful.
 953 */
 954struct pci_func *cpqhp_slot_create(u8 busnumber)
 955{
 956	struct pci_func *new_slot;
 957	struct pci_func *next;
 958
 959	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 960	if (new_slot == NULL)
 961		return new_slot;
 962
 963	new_slot->next = NULL;
 964	new_slot->configured = 1;
 965
 966	if (cpqhp_slot_list[busnumber] == NULL) {
 967		cpqhp_slot_list[busnumber] = new_slot;
 968	} else {
 969		next = cpqhp_slot_list[busnumber];
 970		while (next->next != NULL)
 971			next = next->next;
 972		next->next = new_slot;
 973	}
 974	return new_slot;
 975}
 976
 977
 978/**
 979 * slot_remove - Removes a node from the linked list of slots.
 980 * @old_slot: slot to remove
 981 *
 982 * Returns %0 if successful, !0 otherwise.
 983 */
 984static int slot_remove(struct pci_func *old_slot)
 985{
 986	struct pci_func *next;
 987
 988	if (old_slot == NULL)
 989		return 1;
 990
 991	next = cpqhp_slot_list[old_slot->bus];
 992	if (next == NULL)
 993		return 1;
 994
 995	if (next == old_slot) {
 996		cpqhp_slot_list[old_slot->bus] = old_slot->next;
 997		cpqhp_destroy_board_resources(old_slot);
 998		kfree(old_slot);
 999		return 0;
1000	}
1001
1002	while ((next->next != old_slot) && (next->next != NULL))
1003		next = next->next;
1004
1005	if (next->next == old_slot) {
1006		next->next = old_slot->next;
1007		cpqhp_destroy_board_resources(old_slot);
1008		kfree(old_slot);
1009		return 0;
1010	} else
1011		return 2;
1012}
1013
1014
1015/**
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1018 *
1019 * Returns %0 if successful, !0 otherwise.
1020 */
1021static int bridge_slot_remove(struct pci_func *bridge)
1022{
1023	u8 subordinateBus, secondaryBus;
1024	u8 tempBus;
1025	struct pci_func *next;
1026
1027	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031		next = cpqhp_slot_list[tempBus];
1032
1033		while (!slot_remove(next))
1034			next = cpqhp_slot_list[tempBus];
1035	}
1036
1037	next = cpqhp_slot_list[bridge->bus];
1038
1039	if (next == NULL)
1040		return 1;
1041
1042	if (next == bridge) {
1043		cpqhp_slot_list[bridge->bus] = bridge->next;
1044		goto out;
1045	}
1046
1047	while ((next->next != bridge) && (next->next != NULL))
1048		next = next->next;
1049
1050	if (next->next != bridge)
1051		return 2;
1052	next->next = bridge->next;
1053out:
1054	kfree(bridge);
1055	return 0;
1056}
1057
1058
1059/**
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1064 *
1065 * Returns pointer to the node if successful, %NULL otherwise.
1066 */
1067struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068{
1069	int found = -1;
1070	struct pci_func *func;
1071
1072	func = cpqhp_slot_list[bus];
1073
1074	if ((func == NULL) || ((func->device == device) && (index == 0)))
1075		return func;
1076
1077	if (func->device == device)
1078		found++;
1079
1080	while (func->next != NULL) {
1081		func = func->next;
1082
1083		if (func->device == device)
1084			found++;
1085
1086		if (found == index)
1087			return func;
1088	}
1089
1090	return NULL;
1091}
1092
1093
1094/* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096static int is_bridge(struct pci_func *func)
1097{
1098	/* Check the header type */
1099	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100		return 1;
1101	else
1102		return 0;
1103}
1104
1105
1106/**
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1111 *
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1114 */
1115static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116{
1117	struct slot *slot;
1118	struct pci_bus *bus = ctrl->pci_bus;
1119	u8 reg;
1120	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121	u16 reg16;
1122	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124	if (bus->cur_bus_speed == adapter_speed)
1125		return 0;
1126
1127	/* We don't allow freq/mode changes if we find another adapter running
1128	 * in another slot on this controller
1129	 */
1130	for (slot = ctrl->slot; slot; slot = slot->next) {
1131		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132			continue;
1133		if (get_presence_status(ctrl, slot) == 0)
 
 
1134			continue;
1135		/* If another adapter is running on the same segment but at a
1136		 * lower speed/mode, we allow the new adapter to function at
1137		 * this rate if supported
1138		 */
1139		if (bus->cur_bus_speed < adapter_speed)
1140			return 0;
1141
1142		return 1;
1143	}
1144
1145	/* If the controller doesn't support freq/mode changes and the
1146	 * controller is running at a higher mode, we bail
1147	 */
1148	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149		return 1;
1150
1151	/* But we allow the adapter to run at a lower rate if possible */
1152	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153		return 0;
1154
1155	/* We try to set the max speed supported by both the adapter and
1156	 * controller
1157	 */
1158	if (bus->max_bus_speed < adapter_speed) {
1159		if (bus->cur_bus_speed == bus->max_bus_speed)
1160			return 0;
1161		adapter_speed = bus->max_bus_speed;
1162	}
1163
1164	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166
1167	set_SOGO(ctrl);
1168	wait_for_ctrl_irq(ctrl);
1169
1170	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171		reg = 0xF5;
1172	else
1173		reg = 0xF4;
1174	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175
1176	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177	reg16 &= ~0x000F;
1178	switch (adapter_speed) {
1179		case(PCI_SPEED_133MHz_PCIX):
1180			reg = 0x75;
1181			reg16 |= 0xB;
1182			break;
1183		case(PCI_SPEED_100MHz_PCIX):
1184			reg = 0x74;
1185			reg16 |= 0xA;
1186			break;
1187		case(PCI_SPEED_66MHz_PCIX):
1188			reg = 0x73;
1189			reg16 |= 0x9;
1190			break;
1191		case(PCI_SPEED_66MHz):
1192			reg = 0x73;
1193			reg16 |= 0x1;
1194			break;
1195		default: /* 33MHz PCI 2.2 */
1196			reg = 0x71;
1197			break;
1198
1199	}
1200	reg16 |= 0xB << 12;
1201	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202
1203	mdelay(5);
1204
1205	/* Reenable interrupts */
1206	writel(0, ctrl->hpc_reg + INT_MASK);
1207
1208	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209
1210	/* Restart state machine */
1211	reg = ~0xF;
1212	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214
1215	/* Only if mode change...*/
1216	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218			set_SOGO(ctrl);
1219
1220	wait_for_ctrl_irq(ctrl);
1221	mdelay(1100);
1222
1223	/* Restore LED/Slot state */
1224	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226
1227	set_SOGO(ctrl);
1228	wait_for_ctrl_irq(ctrl);
1229
1230	bus->cur_bus_speed = adapter_speed;
1231	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232
1233	info("Successfully changed frequency/mode for adapter in slot %d\n",
1234			slot->number);
1235	return 0;
1236}
1237
1238/* the following routines constitute the bulk of the
1239 * hotplug controller logic
1240 */
1241
1242
1243/**
1244 * board_replaced - Called after a board has been replaced in the system.
1245 * @func: PCI device/function information
1246 * @ctrl: hotplug controller
1247 *
1248 * This is only used if we don't have resources for hot add.
1249 * Turns power on for the board.
1250 * Checks to see if board is the same.
1251 * If board is same, reconfigures it.
1252 * If board isn't same, turns it back off.
1253 */
1254static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255{
1256	struct pci_bus *bus = ctrl->pci_bus;
1257	u8 hp_slot;
1258	u8 temp_byte;
1259	u8 adapter_speed;
1260	u32 rc = 0;
1261
1262	hp_slot = func->device - ctrl->slot_device_offset;
1263
1264	/*
1265	 * The switch is open.
1266	 */
1267	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268		rc = INTERLOCK_OPEN;
1269	/*
1270	 * The board is already on
1271	 */
1272	else if (is_slot_enabled(ctrl, hp_slot))
1273		rc = CARD_FUNCTIONING;
1274	else {
1275		mutex_lock(&ctrl->crit_sect);
1276
1277		/* turn on board without attaching to the bus */
1278		enable_slot_power(ctrl, hp_slot);
1279
1280		set_SOGO(ctrl);
1281
1282		/* Wait for SOBS to be unset */
1283		wait_for_ctrl_irq(ctrl);
1284
1285		/* Change bits in slot power register to force another shift out
1286		 * NOTE: this is to work around the timer bug */
1287		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290
1291		set_SOGO(ctrl);
1292
1293		/* Wait for SOBS to be unset */
1294		wait_for_ctrl_irq(ctrl);
1295
1296		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297		if (bus->cur_bus_speed != adapter_speed)
1298			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299				rc = WRONG_BUS_FREQUENCY;
1300
1301		/* turn off board without attaching to the bus */
1302		disable_slot_power(ctrl, hp_slot);
1303
1304		set_SOGO(ctrl);
1305
1306		/* Wait for SOBS to be unset */
1307		wait_for_ctrl_irq(ctrl);
1308
1309		mutex_unlock(&ctrl->crit_sect);
1310
1311		if (rc)
1312			return rc;
1313
1314		mutex_lock(&ctrl->crit_sect);
1315
1316		slot_enable(ctrl, hp_slot);
1317		green_LED_blink(ctrl, hp_slot);
1318
1319		amber_LED_off(ctrl, hp_slot);
1320
1321		set_SOGO(ctrl);
1322
1323		/* Wait for SOBS to be unset */
1324		wait_for_ctrl_irq(ctrl);
1325
1326		mutex_unlock(&ctrl->crit_sect);
1327
1328		/* Wait for ~1 second because of hot plug spec */
1329		long_delay(1*HZ);
1330
1331		/* Check for a power fault */
1332		if (func->status == 0xFF) {
1333			/* power fault occurred, but it was benign */
1334			rc = POWER_FAILURE;
1335			func->status = 0;
1336		} else
1337			rc = cpqhp_valid_replace(ctrl, func);
1338
1339		if (!rc) {
1340			/* It must be the same board */
1341
1342			rc = cpqhp_configure_board(ctrl, func);
1343
1344			/* If configuration fails, turn it off
1345			 * Get slot won't work for devices behind
1346			 * bridges, but in this case it will always be
1347			 * called for the "base" bus/dev/func of an
1348			 * adapter.
1349			 */
1350
1351			mutex_lock(&ctrl->crit_sect);
1352
1353			amber_LED_on(ctrl, hp_slot);
1354			green_LED_off(ctrl, hp_slot);
1355			slot_disable(ctrl, hp_slot);
1356
1357			set_SOGO(ctrl);
1358
1359			/* Wait for SOBS to be unset */
1360			wait_for_ctrl_irq(ctrl);
1361
1362			mutex_unlock(&ctrl->crit_sect);
1363
1364			if (rc)
1365				return rc;
1366			else
1367				return 1;
1368
1369		} else {
1370			/* Something is wrong
1371
1372			 * Get slot won't work for devices behind bridges, but
1373			 * in this case it will always be called for the "base"
1374			 * bus/dev/func of an adapter.
1375			 */
1376
1377			mutex_lock(&ctrl->crit_sect);
1378
1379			amber_LED_on(ctrl, hp_slot);
1380			green_LED_off(ctrl, hp_slot);
1381			slot_disable(ctrl, hp_slot);
1382
1383			set_SOGO(ctrl);
1384
1385			/* Wait for SOBS to be unset */
1386			wait_for_ctrl_irq(ctrl);
1387
1388			mutex_unlock(&ctrl->crit_sect);
1389		}
1390
1391	}
1392	return rc;
1393
1394}
1395
1396
1397/**
1398 * board_added - Called after a board has been added to the system.
1399 * @func: PCI device/function info
1400 * @ctrl: hotplug controller
1401 *
1402 * Turns power on for the board.
1403 * Configures board.
1404 */
1405static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406{
1407	u8 hp_slot;
1408	u8 temp_byte;
1409	u8 adapter_speed;
1410	int index;
1411	u32 temp_register = 0xFFFFFFFF;
1412	u32 rc = 0;
1413	struct pci_func *new_slot = NULL;
1414	struct pci_bus *bus = ctrl->pci_bus;
1415	struct slot *p_slot;
1416	struct resource_lists res_lists;
1417
1418	hp_slot = func->device - ctrl->slot_device_offset;
1419	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421
1422	mutex_lock(&ctrl->crit_sect);
1423
1424	/* turn on board without attaching to the bus */
1425	enable_slot_power(ctrl, hp_slot);
1426
1427	set_SOGO(ctrl);
1428
1429	/* Wait for SOBS to be unset */
1430	wait_for_ctrl_irq(ctrl);
1431
1432	/* Change bits in slot power register to force another shift out
1433	 * NOTE: this is to work around the timer bug
1434	 */
1435	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438
1439	set_SOGO(ctrl);
1440
1441	/* Wait for SOBS to be unset */
1442	wait_for_ctrl_irq(ctrl);
1443
1444	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445	if (bus->cur_bus_speed != adapter_speed)
1446		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447			rc = WRONG_BUS_FREQUENCY;
1448
1449	/* turn off board without attaching to the bus */
1450	disable_slot_power(ctrl, hp_slot);
1451
1452	set_SOGO(ctrl);
1453
1454	/* Wait for SOBS to be unset */
1455	wait_for_ctrl_irq(ctrl);
1456
1457	mutex_unlock(&ctrl->crit_sect);
1458
1459	if (rc)
1460		return rc;
1461
1462	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463
1464	/* turn on board and blink green LED */
1465
1466	dbg("%s: before down\n", __func__);
1467	mutex_lock(&ctrl->crit_sect);
1468	dbg("%s: after down\n", __func__);
1469
1470	dbg("%s: before slot_enable\n", __func__);
1471	slot_enable(ctrl, hp_slot);
1472
1473	dbg("%s: before green_LED_blink\n", __func__);
1474	green_LED_blink(ctrl, hp_slot);
1475
1476	dbg("%s: before amber_LED_blink\n", __func__);
1477	amber_LED_off(ctrl, hp_slot);
1478
1479	dbg("%s: before set_SOGO\n", __func__);
1480	set_SOGO(ctrl);
1481
1482	/* Wait for SOBS to be unset */
1483	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484	wait_for_ctrl_irq(ctrl);
1485	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486
1487	dbg("%s: before up\n", __func__);
1488	mutex_unlock(&ctrl->crit_sect);
1489	dbg("%s: after up\n", __func__);
1490
1491	/* Wait for ~1 second because of hot plug spec */
1492	dbg("%s: before long_delay\n", __func__);
1493	long_delay(1*HZ);
1494	dbg("%s: after long_delay\n", __func__);
1495
1496	dbg("%s: func status = %x\n", __func__, func->status);
1497	/* Check for a power fault */
1498	if (func->status == 0xFF) {
1499		/* power fault occurred, but it was benign */
1500		temp_register = 0xFFFFFFFF;
1501		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502		rc = POWER_FAILURE;
1503		func->status = 0;
1504	} else {
1505		/* Get vendor/device ID u32 */
1506		ctrl->pci_bus->number = func->bus;
1507		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509		dbg("%s: temp_register is %x\n", __func__, temp_register);
1510
1511		if (rc != 0) {
1512			/* Something's wrong here */
1513			temp_register = 0xFFFFFFFF;
1514			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515		}
1516		/* Preset return code.  It will be changed later if things go okay. */
1517		rc = NO_ADAPTER_PRESENT;
1518	}
1519
1520	/* All F's is an empty slot or an invalid board */
1521	if (temp_register != 0xFFFFFFFF) {
1522		res_lists.io_head = ctrl->io_head;
1523		res_lists.mem_head = ctrl->mem_head;
1524		res_lists.p_mem_head = ctrl->p_mem_head;
1525		res_lists.bus_head = ctrl->bus_head;
1526		res_lists.irqs = NULL;
1527
1528		rc = configure_new_device(ctrl, func, 0, &res_lists);
1529
1530		dbg("%s: back from configure_new_device\n", __func__);
1531		ctrl->io_head = res_lists.io_head;
1532		ctrl->mem_head = res_lists.mem_head;
1533		ctrl->p_mem_head = res_lists.p_mem_head;
1534		ctrl->bus_head = res_lists.bus_head;
1535
1536		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540
1541		if (rc) {
1542			mutex_lock(&ctrl->crit_sect);
1543
1544			amber_LED_on(ctrl, hp_slot);
1545			green_LED_off(ctrl, hp_slot);
1546			slot_disable(ctrl, hp_slot);
1547
1548			set_SOGO(ctrl);
1549
1550			/* Wait for SOBS to be unset */
1551			wait_for_ctrl_irq(ctrl);
1552
1553			mutex_unlock(&ctrl->crit_sect);
1554			return rc;
1555		} else {
1556			cpqhp_save_slot_config(ctrl, func);
1557		}
1558
1559
1560		func->status = 0;
1561		func->switch_save = 0x10;
1562		func->is_a_board = 0x01;
1563
1564		/* next, we will instantiate the linux pci_dev structures (with
1565		 * appropriate driver notification, if already present) */
1566		dbg("%s: configure linux pci_dev structure\n", __func__);
1567		index = 0;
1568		do {
1569			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570			if (new_slot && !new_slot->pci_dev)
1571				cpqhp_configure_device(ctrl, new_slot);
1572		} while (new_slot);
1573
1574		mutex_lock(&ctrl->crit_sect);
1575
1576		green_LED_on(ctrl, hp_slot);
1577
1578		set_SOGO(ctrl);
1579
1580		/* Wait for SOBS to be unset */
1581		wait_for_ctrl_irq(ctrl);
1582
1583		mutex_unlock(&ctrl->crit_sect);
1584	} else {
1585		mutex_lock(&ctrl->crit_sect);
1586
1587		amber_LED_on(ctrl, hp_slot);
1588		green_LED_off(ctrl, hp_slot);
1589		slot_disable(ctrl, hp_slot);
1590
1591		set_SOGO(ctrl);
1592
1593		/* Wait for SOBS to be unset */
1594		wait_for_ctrl_irq(ctrl);
1595
1596		mutex_unlock(&ctrl->crit_sect);
1597
1598		return rc;
1599	}
1600	return 0;
1601}
1602
1603
1604/**
1605 * remove_board - Turns off slot and LEDs
1606 * @func: PCI device/function info
1607 * @replace_flag: whether replacing or adding a new device
1608 * @ctrl: target controller
1609 */
1610static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611{
1612	int index;
1613	u8 skip = 0;
1614	u8 device;
1615	u8 hp_slot;
1616	u8 temp_byte;
1617	u32 rc;
1618	struct resource_lists res_lists;
1619	struct pci_func *temp_func;
1620
1621	if (cpqhp_unconfigure_device(func))
1622		return 1;
1623
1624	device = func->device;
1625
1626	hp_slot = func->device - ctrl->slot_device_offset;
1627	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628
1629	/* When we get here, it is safe to change base address registers.
1630	 * We will attempt to save the base address register lengths */
1631	if (replace_flag || !ctrl->add_support)
1632		rc = cpqhp_save_base_addr_length(ctrl, func);
1633	else if (!func->bus_head && !func->mem_head &&
1634		 !func->p_mem_head && !func->io_head) {
1635		/* Here we check to see if we've saved any of the board's
1636		 * resources already.  If so, we'll skip the attempt to
1637		 * determine what's being used. */
1638		index = 0;
1639		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640		while (temp_func) {
1641			if (temp_func->bus_head || temp_func->mem_head
1642			    || temp_func->p_mem_head || temp_func->io_head) {
1643				skip = 1;
1644				break;
1645			}
1646			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647		}
1648
1649		if (!skip)
1650			rc = cpqhp_save_used_resources(ctrl, func);
1651	}
1652	/* Change status to shutdown */
1653	if (func->is_a_board)
1654		func->status = 0x01;
1655	func->configured = 0;
1656
1657	mutex_lock(&ctrl->crit_sect);
1658
1659	green_LED_off(ctrl, hp_slot);
1660	slot_disable(ctrl, hp_slot);
1661
1662	set_SOGO(ctrl);
1663
1664	/* turn off SERR for slot */
1665	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666	temp_byte &= ~(0x01 << hp_slot);
1667	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668
1669	/* Wait for SOBS to be unset */
1670	wait_for_ctrl_irq(ctrl);
1671
1672	mutex_unlock(&ctrl->crit_sect);
1673
1674	if (!replace_flag && ctrl->add_support) {
1675		while (func) {
1676			res_lists.io_head = ctrl->io_head;
1677			res_lists.mem_head = ctrl->mem_head;
1678			res_lists.p_mem_head = ctrl->p_mem_head;
1679			res_lists.bus_head = ctrl->bus_head;
1680
1681			cpqhp_return_board_resources(func, &res_lists);
1682
1683			ctrl->io_head = res_lists.io_head;
1684			ctrl->mem_head = res_lists.mem_head;
1685			ctrl->p_mem_head = res_lists.p_mem_head;
1686			ctrl->bus_head = res_lists.bus_head;
1687
1688			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692
1693			if (is_bridge(func)) {
1694				bridge_slot_remove(func);
1695			} else
1696				slot_remove(func);
1697
1698			func = cpqhp_slot_find(ctrl->bus, device, 0);
1699		}
1700
1701		/* Setup slot structure with entry for empty slot */
1702		func = cpqhp_slot_create(ctrl->bus);
1703
1704		if (func == NULL)
1705			return 1;
1706
1707		func->bus = ctrl->bus;
1708		func->device = device;
1709		func->function = 0;
1710		func->configured = 0;
1711		func->switch_save = 0x10;
1712		func->is_a_board = 0;
1713		func->p_task_event = NULL;
1714	}
1715
1716	return 0;
1717}
1718
1719static void pushbutton_helper_thread(struct timer_list *t)
1720{
1721	pushbutton_pending = t;
1722
1723	wake_up_process(cpqhp_event_thread);
1724}
1725
1726
1727/* this is the main worker thread */
1728static int event_thread(void *data)
1729{
1730	struct controller *ctrl;
1731
1732	while (1) {
1733		dbg("!!!!event_thread sleeping\n");
1734		set_current_state(TASK_INTERRUPTIBLE);
1735		schedule();
1736
1737		if (kthread_should_stop())
1738			break;
1739		/* Do stuff here */
1740		if (pushbutton_pending)
1741			cpqhp_pushbutton_thread(pushbutton_pending);
1742		else
1743			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744				interrupt_event_handler(ctrl);
1745	}
1746	dbg("event_thread signals exit\n");
1747	return 0;
1748}
1749
1750int cpqhp_event_start_thread(void)
1751{
1752	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753	if (IS_ERR(cpqhp_event_thread)) {
1754		err("Can't start up our event thread\n");
1755		return PTR_ERR(cpqhp_event_thread);
1756	}
1757
1758	return 0;
1759}
1760
1761
1762void cpqhp_event_stop_thread(void)
1763{
1764	kthread_stop(cpqhp_event_thread);
1765}
1766
1767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768static void interrupt_event_handler(struct controller *ctrl)
1769{
1770	int loop = 0;
1771	int change = 1;
1772	struct pci_func *func;
1773	u8 hp_slot;
1774	struct slot *p_slot;
1775
1776	while (change) {
1777		change = 0;
1778
1779		for (loop = 0; loop < 10; loop++) {
1780			/* dbg("loop %d\n", loop); */
1781			if (ctrl->event_queue[loop].event_type != 0) {
1782				hp_slot = ctrl->event_queue[loop].hp_slot;
1783
1784				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785				if (!func)
1786					return;
1787
1788				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789				if (!p_slot)
1790					return;
1791
1792				dbg("hp_slot %d, func %p, p_slot %p\n",
1793				    hp_slot, func, p_slot);
1794
1795				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796					dbg("button pressed\n");
1797				} else if (ctrl->event_queue[loop].event_type ==
1798					   INT_BUTTON_CANCEL) {
1799					dbg("button cancel\n");
1800					del_timer(&p_slot->task_event);
1801
1802					mutex_lock(&ctrl->crit_sect);
1803
1804					if (p_slot->state == BLINKINGOFF_STATE) {
1805						/* slot is on */
1806						dbg("turn on green LED\n");
1807						green_LED_on(ctrl, hp_slot);
1808					} else if (p_slot->state == BLINKINGON_STATE) {
1809						/* slot is off */
1810						dbg("turn off green LED\n");
1811						green_LED_off(ctrl, hp_slot);
1812					}
1813
1814					info(msg_button_cancel, p_slot->number);
1815
1816					p_slot->state = STATIC_STATE;
1817
1818					amber_LED_off(ctrl, hp_slot);
1819
1820					set_SOGO(ctrl);
1821
1822					/* Wait for SOBS to be unset */
1823					wait_for_ctrl_irq(ctrl);
1824
1825					mutex_unlock(&ctrl->crit_sect);
1826				}
1827				/*** button Released (No action on press...) */
1828				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829					dbg("button release\n");
1830
1831					if (is_slot_enabled(ctrl, hp_slot)) {
1832						dbg("slot is on\n");
1833						p_slot->state = BLINKINGOFF_STATE;
1834						info(msg_button_off, p_slot->number);
1835					} else {
1836						dbg("slot is off\n");
1837						p_slot->state = BLINKINGON_STATE;
1838						info(msg_button_on, p_slot->number);
1839					}
1840					mutex_lock(&ctrl->crit_sect);
1841
1842					dbg("blink green LED and turn off amber\n");
1843
1844					amber_LED_off(ctrl, hp_slot);
1845					green_LED_blink(ctrl, hp_slot);
1846
1847					set_SOGO(ctrl);
1848
1849					/* Wait for SOBS to be unset */
1850					wait_for_ctrl_irq(ctrl);
1851
1852					mutex_unlock(&ctrl->crit_sect);
1853					timer_setup(&p_slot->task_event,
1854						    pushbutton_helper_thread,
1855						    0);
1856					p_slot->hp_slot = hp_slot;
1857					p_slot->ctrl = ctrl;
1858/*					p_slot->physical_slot = physical_slot; */
1859					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
 
 
1860
1861					dbg("add_timer p_slot = %p\n", p_slot);
1862					add_timer(&p_slot->task_event);
1863				}
1864				/***********POWER FAULT */
1865				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866					dbg("power fault\n");
 
 
 
 
1867				}
1868
1869				ctrl->event_queue[loop].event_type = 0;
1870
1871				change = 1;
1872			}
1873		}		/* End of FOR loop */
1874	}
 
 
1875}
1876
1877
1878/**
1879 * cpqhp_pushbutton_thread - handle pushbutton events
1880 * @slot: target slot (struct)
1881 *
1882 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883 * Handles all pending events and exits.
1884 */
1885void cpqhp_pushbutton_thread(struct timer_list *t)
1886{
1887	u8 hp_slot;
1888	u8 device;
1889	struct pci_func *func;
1890	struct slot *p_slot = from_timer(p_slot, t, task_event);
1891	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1892
1893	pushbutton_pending = NULL;
1894	hp_slot = p_slot->hp_slot;
1895
1896	device = p_slot->device;
1897
1898	if (is_slot_enabled(ctrl, hp_slot)) {
1899		p_slot->state = POWEROFF_STATE;
1900		/* power Down board */
1901		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903		if (!func) {
1904			dbg("Error! func NULL in %s\n", __func__);
1905			return;
1906		}
1907
1908		if (cpqhp_process_SS(ctrl, func) != 0) {
1909			amber_LED_on(ctrl, hp_slot);
1910			green_LED_on(ctrl, hp_slot);
1911
1912			set_SOGO(ctrl);
1913
1914			/* Wait for SOBS to be unset */
1915			wait_for_ctrl_irq(ctrl);
1916		}
1917
1918		p_slot->state = STATIC_STATE;
1919	} else {
1920		p_slot->state = POWERON_STATE;
1921		/* slot is off */
1922
1923		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925		if (!func) {
1926			dbg("Error! func NULL in %s\n", __func__);
1927			return;
1928		}
1929
1930		if (ctrl != NULL) {
1931			if (cpqhp_process_SI(ctrl, func) != 0) {
1932				amber_LED_on(ctrl, hp_slot);
1933				green_LED_off(ctrl, hp_slot);
1934
1935				set_SOGO(ctrl);
1936
1937				/* Wait for SOBS to be unset */
1938				wait_for_ctrl_irq(ctrl);
1939			}
1940		}
1941
1942		p_slot->state = STATIC_STATE;
1943	}
 
 
1944}
1945
1946
1947int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1948{
1949	u8 device, hp_slot;
1950	u16 temp_word;
1951	u32 tempdword;
1952	int rc;
1953	struct slot *p_slot;
1954	int physical_slot = 0;
1955
1956	tempdword = 0;
1957
1958	device = func->device;
1959	hp_slot = device - ctrl->slot_device_offset;
1960	p_slot = cpqhp_find_slot(ctrl, device);
1961	if (p_slot)
1962		physical_slot = p_slot->number;
1963
1964	/* Check to see if the interlock is closed */
1965	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1966
1967	if (tempdword & (0x01 << hp_slot))
1968		return 1;
 
1969
1970	if (func->is_a_board) {
1971		rc = board_replaced(func, ctrl);
1972	} else {
1973		/* add board */
1974		slot_remove(func);
1975
1976		func = cpqhp_slot_create(ctrl->bus);
1977		if (func == NULL)
1978			return 1;
1979
1980		func->bus = ctrl->bus;
1981		func->device = device;
1982		func->function = 0;
1983		func->configured = 0;
1984		func->is_a_board = 1;
1985
1986		/* We have to save the presence info for these slots */
1987		temp_word = ctrl->ctrl_int_comp >> 16;
1988		func->presence_save = (temp_word >> hp_slot) & 0x01;
1989		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1990
1991		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992			func->switch_save = 0;
1993		} else {
1994			func->switch_save = 0x10;
1995		}
1996
1997		rc = board_added(func, ctrl);
1998		if (rc) {
1999			if (is_bridge(func)) {
2000				bridge_slot_remove(func);
2001			} else
2002				slot_remove(func);
2003
2004			/* Setup slot structure with entry for empty slot */
2005			func = cpqhp_slot_create(ctrl->bus);
2006
2007			if (func == NULL)
2008				return 1;
2009
2010			func->bus = ctrl->bus;
2011			func->device = device;
2012			func->function = 0;
2013			func->configured = 0;
2014			func->is_a_board = 0;
2015
2016			/* We have to save the presence info for these slots */
2017			temp_word = ctrl->ctrl_int_comp >> 16;
2018			func->presence_save = (temp_word >> hp_slot) & 0x01;
2019			func->presence_save |=
2020			(temp_word >> (hp_slot + 7)) & 0x02;
2021
2022			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023				func->switch_save = 0;
2024			} else {
2025				func->switch_save = 0x10;
2026			}
2027		}
2028	}
2029
2030	if (rc)
2031		dbg("%s: rc = %d\n", __func__, rc);
 
 
 
 
2032
2033	return rc;
2034}
2035
2036
2037int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2038{
2039	u8 device, class_code, header_type, BCR;
2040	u8 index = 0;
2041	u8 replace_flag;
2042	u32 rc = 0;
2043	unsigned int devfn;
2044	struct slot *p_slot;
2045	struct pci_bus *pci_bus = ctrl->pci_bus;
2046	int physical_slot = 0;
2047
2048	device = func->device;
2049	func = cpqhp_slot_find(ctrl->bus, device, index++);
2050	p_slot = cpqhp_find_slot(ctrl, device);
2051	if (p_slot)
2052		physical_slot = p_slot->number;
 
2053
2054	/* Make sure there are no video controllers here */
2055	while (func && !rc) {
2056		pci_bus->number = func->bus;
2057		devfn = PCI_DEVFN(func->device, func->function);
2058
2059		/* Check the Class Code */
2060		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061		if (rc)
2062			return rc;
2063
2064		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065			/* Display/Video adapter (not supported) */
2066			rc = REMOVE_NOT_SUPPORTED;
2067		} else {
2068			/* See if it's a bridge */
2069			rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070			if (rc)
2071				return rc;
2072
2073			/* If it's a bridge, check the VGA Enable bit */
2074			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075				rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076				if (rc)
2077					return rc;
2078
2079				/* If the VGA Enable bit is set, remove isn't
2080				 * supported */
2081				if (BCR & PCI_BRIDGE_CTL_VGA)
2082					rc = REMOVE_NOT_SUPPORTED;
2083			}
2084		}
2085
2086		func = cpqhp_slot_find(ctrl->bus, device, index++);
2087	}
2088
2089	func = cpqhp_slot_find(ctrl->bus, device, 0);
2090	if ((func != NULL) && !rc) {
2091		/* FIXME: Replace flag should be passed into process_SS */
2092		replace_flag = !(ctrl->add_support);
2093		rc = remove_board(func, replace_flag, ctrl);
2094	} else if (!rc) {
2095		rc = 1;
2096	}
2097
 
 
 
2098	return rc;
2099}
2100
2101/**
2102 * switch_leds - switch the leds, go from one site to the other.
2103 * @ctrl: controller to use
2104 * @num_of_slots: number of slots to use
2105 * @work_LED: LED control value
2106 * @direction: 1 to start from the left side, 0 to start right.
2107 */
2108static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109			u32 *work_LED, const int direction)
2110{
2111	int loop;
2112
2113	for (loop = 0; loop < num_of_slots; loop++) {
2114		if (direction)
2115			*work_LED = *work_LED >> 1;
2116		else
2117			*work_LED = *work_LED << 1;
2118		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2119
2120		set_SOGO(ctrl);
2121
2122		/* Wait for SOGO interrupt */
2123		wait_for_ctrl_irq(ctrl);
2124
2125		/* Get ready for next iteration */
2126		long_delay((2*HZ)/10);
2127	}
2128}
2129
2130/**
2131 * cpqhp_hardware_test - runs hardware tests
2132 * @ctrl: target controller
2133 * @test_num: the number written to the "test" file in sysfs.
2134 *
2135 * For hot plug ctrl folks to play with.
2136 */
2137int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2138{
2139	u32 save_LED;
2140	u32 work_LED;
2141	int loop;
2142	int num_of_slots;
2143
2144	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2145
2146	switch (test_num) {
2147	case 1:
2148		/* Do stuff here! */
2149
2150		/* Do that funky LED thing */
2151		/* so we can restore them later */
2152		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153		work_LED = 0x01010101;
2154		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2158
2159		work_LED = 0x01010000;
2160		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163		work_LED = 0x00000101;
2164		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167
2168		work_LED = 0x01010000;
2169		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170		for (loop = 0; loop < num_of_slots; loop++) {
2171			set_SOGO(ctrl);
2172
2173			/* Wait for SOGO interrupt */
2174			wait_for_ctrl_irq(ctrl);
2175
2176			/* Get ready for next iteration */
2177			long_delay((3*HZ)/10);
2178			work_LED = work_LED >> 16;
2179			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180
2181			set_SOGO(ctrl);
2182
2183			/* Wait for SOGO interrupt */
2184			wait_for_ctrl_irq(ctrl);
2185
2186			/* Get ready for next iteration */
2187			long_delay((3*HZ)/10);
2188			work_LED = work_LED << 16;
2189			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190			work_LED = work_LED << 1;
2191			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2192		}
2193
2194		/* put it back the way it was */
2195		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2196
2197		set_SOGO(ctrl);
2198
2199		/* Wait for SOBS to be unset */
2200		wait_for_ctrl_irq(ctrl);
2201		break;
2202	case 2:
2203		/* Do other stuff here! */
2204		break;
2205	case 3:
2206		/* and more... */
2207		break;
2208	}
2209	return 0;
2210}
2211
2212
2213/**
2214 * configure_new_device - Configures the PCI header information of one board.
2215 * @ctrl: pointer to controller structure
2216 * @func: pointer to function structure
2217 * @behind_bridge: 1 if this is a recursive call, 0 if not
2218 * @resources: pointer to set of resource lists
2219 *
2220 * Returns 0 if success.
2221 */
2222static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2223				 u8 behind_bridge, struct resource_lists  *resources)
2224{
2225	u8 temp_byte, function, max_functions, stop_it;
2226	int rc;
2227	u32 ID;
2228	struct pci_func *new_slot;
2229	int index;
2230
2231	new_slot = func;
2232
2233	dbg("%s\n", __func__);
2234	/* Check for Multi-function device */
2235	ctrl->pci_bus->number = func->bus;
2236	rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237	if (rc) {
2238		dbg("%s: rc = %d\n", __func__, rc);
2239		return rc;
2240	}
2241
2242	if (temp_byte & 0x80)	/* Multi-function device */
2243		max_functions = 8;
2244	else
2245		max_functions = 1;
2246
2247	function = 0;
2248
2249	do {
2250		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2251
2252		if (rc) {
2253			dbg("configure_new_function failed %d\n", rc);
2254			index = 0;
2255
2256			while (new_slot) {
2257				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2258
2259				if (new_slot)
2260					cpqhp_return_board_resources(new_slot, resources);
2261			}
2262
2263			return rc;
2264		}
2265
2266		function++;
2267
2268		stop_it = 0;
2269
2270		/* The following loop skips to the next present function
2271		 * and creates a board structure */
2272
2273		while ((function < max_functions) && (!stop_it)) {
2274			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2275
2276			if (ID == 0xFFFFFFFF) {
2277				function++;
2278			} else {
2279				/* Setup slot structure. */
2280				new_slot = cpqhp_slot_create(func->bus);
2281
2282				if (new_slot == NULL)
2283					return 1;
2284
2285				new_slot->bus = func->bus;
2286				new_slot->device = func->device;
2287				new_slot->function = function;
2288				new_slot->is_a_board = 1;
2289				new_slot->status = 0;
2290
2291				stop_it++;
2292			}
2293		}
2294
2295	} while (function < max_functions);
2296	dbg("returning from configure_new_device\n");
2297
2298	return 0;
2299}
2300
2301
2302/*
2303 * Configuration logic that involves the hotplug data structures and
2304 * their bookkeeping
2305 */
2306
2307
2308/**
2309 * configure_new_function - Configures the PCI header information of one device
2310 * @ctrl: pointer to controller structure
2311 * @func: pointer to function structure
2312 * @behind_bridge: 1 if this is a recursive call, 0 if not
2313 * @resources: pointer to set of resource lists
2314 *
2315 * Calls itself recursively for bridged devices.
2316 * Returns 0 if success.
2317 */
2318static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319				   u8 behind_bridge,
2320				   struct resource_lists *resources)
2321{
2322	int cloop;
2323	u8 IRQ = 0;
2324	u8 temp_byte;
2325	u8 device;
2326	u8 class_code;
2327	u16 command;
2328	u16 temp_word;
2329	u32 temp_dword;
2330	u32 rc;
2331	u32 temp_register;
2332	u32 base;
2333	u32 ID;
2334	unsigned int devfn;
2335	struct pci_resource *mem_node;
2336	struct pci_resource *p_mem_node;
2337	struct pci_resource *io_node;
2338	struct pci_resource *bus_node;
2339	struct pci_resource *hold_mem_node;
2340	struct pci_resource *hold_p_mem_node;
2341	struct pci_resource *hold_IO_node;
2342	struct pci_resource *hold_bus_node;
2343	struct irq_mapping irqs;
2344	struct pci_func *new_slot;
2345	struct pci_bus *pci_bus;
2346	struct resource_lists temp_resources;
2347
2348	pci_bus = ctrl->pci_bus;
2349	pci_bus->number = func->bus;
2350	devfn = PCI_DEVFN(func->device, func->function);
2351
2352	/* Check for Bridge */
2353	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354	if (rc)
2355		return rc;
2356
2357	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358		/* set Primary bus */
2359		dbg("set Primary bus = %d\n", func->bus);
2360		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361		if (rc)
2362			return rc;
2363
2364		/* find range of buses to use */
2365		dbg("find ranges of buses to use\n");
2366		bus_node = get_max_resource(&(resources->bus_head), 1);
2367
2368		/* If we don't have any buses to allocate, we can't continue */
2369		if (!bus_node)
2370			return -ENOMEM;
2371
2372		/* set Secondary bus */
2373		temp_byte = bus_node->base;
2374		dbg("set Secondary bus = %d\n", bus_node->base);
2375		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376		if (rc)
2377			return rc;
2378
2379		/* set subordinate bus */
2380		temp_byte = bus_node->base + bus_node->length - 1;
2381		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383		if (rc)
2384			return rc;
2385
2386		/* set subordinate Latency Timer and base Latency Timer */
2387		temp_byte = 0x40;
2388		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389		if (rc)
2390			return rc;
2391		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392		if (rc)
2393			return rc;
2394
2395		/* set Cache Line size */
2396		temp_byte = 0x08;
2397		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398		if (rc)
2399			return rc;
2400
2401		/* Setup the IO, memory, and prefetchable windows */
2402		io_node = get_max_resource(&(resources->io_head), 0x1000);
2403		if (!io_node)
2404			return -ENOMEM;
2405		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406		if (!mem_node)
2407			return -ENOMEM;
2408		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409		if (!p_mem_node)
2410			return -ENOMEM;
2411		dbg("Setup the IO, memory, and prefetchable windows\n");
2412		dbg("io_node\n");
2413		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414					io_node->length, io_node->next);
2415		dbg("mem_node\n");
2416		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417					mem_node->length, mem_node->next);
2418		dbg("p_mem_node\n");
2419		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420					p_mem_node->length, p_mem_node->next);
2421
2422		/* set up the IRQ info */
2423		if (!resources->irqs) {
2424			irqs.barber_pole = 0;
2425			irqs.interrupt[0] = 0;
2426			irqs.interrupt[1] = 0;
2427			irqs.interrupt[2] = 0;
2428			irqs.interrupt[3] = 0;
2429			irqs.valid_INT = 0;
2430		} else {
2431			irqs.barber_pole = resources->irqs->barber_pole;
2432			irqs.interrupt[0] = resources->irqs->interrupt[0];
2433			irqs.interrupt[1] = resources->irqs->interrupt[1];
2434			irqs.interrupt[2] = resources->irqs->interrupt[2];
2435			irqs.interrupt[3] = resources->irqs->interrupt[3];
2436			irqs.valid_INT = resources->irqs->valid_INT;
2437		}
2438
2439		/* set up resource lists that are now aligned on top and bottom
2440		 * for anything behind the bridge. */
2441		temp_resources.bus_head = bus_node;
2442		temp_resources.io_head = io_node;
2443		temp_resources.mem_head = mem_node;
2444		temp_resources.p_mem_head = p_mem_node;
2445		temp_resources.irqs = &irqs;
2446
2447		/* Make copies of the nodes we are going to pass down so that
2448		 * if there is a problem,we can just use these to free resources
2449		 */
2450		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2454
2455		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456			kfree(hold_bus_node);
2457			kfree(hold_IO_node);
2458			kfree(hold_mem_node);
2459			kfree(hold_p_mem_node);
2460
2461			return 1;
2462		}
2463
2464		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2465
2466		bus_node->base += 1;
2467		bus_node->length -= 1;
2468		bus_node->next = NULL;
2469
2470		/* If we have IO resources copy them and fill in the bridge's
2471		 * IO range registers */
2472		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473		io_node->next = NULL;
 
 
 
 
 
2474
2475		/* set IO base and Limit registers */
2476		temp_byte = io_node->base >> 8;
2477		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
 
 
 
2478
2479		temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
 
 
 
 
 
 
 
 
2481
2482		/* Copy the memory resources and fill in the bridge's memory
2483		 * range registers.
2484		 */
2485		memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486		mem_node->next = NULL;
2487
2488		/* set Mem base and Limit registers */
2489		temp_word = mem_node->base >> 16;
2490		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2491
2492		temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 
2494
2495		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496		p_mem_node->next = NULL;
2497
2498		/* set Pre Mem base and Limit registers */
2499		temp_word = p_mem_node->base >> 16;
2500		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2501
2502		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2504
2505		/* Adjust this to compensate for extra adjustment in first loop
2506		 */
2507		irqs.barber_pole--;
2508
2509		rc = 0;
2510
2511		/* Here we actually find the devices and configure them */
2512		for (device = 0; (device <= 0x1F) && !rc; device++) {
2513			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2514
2515			ID = 0xFFFFFFFF;
2516			pci_bus->number = hold_bus_node->base;
2517			pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518			pci_bus->number = func->bus;
2519
2520			if (ID != 0xFFFFFFFF) {	  /*  device present */
2521				/* Setup slot structure. */
2522				new_slot = cpqhp_slot_create(hold_bus_node->base);
2523
2524				if (new_slot == NULL) {
2525					rc = -ENOMEM;
2526					continue;
2527				}
2528
2529				new_slot->bus = hold_bus_node->base;
2530				new_slot->device = device;
2531				new_slot->function = 0;
2532				new_slot->is_a_board = 1;
2533				new_slot->status = 0;
2534
2535				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536				dbg("configure_new_device rc=0x%x\n", rc);
2537			}	/* End of IF (device in slot?) */
2538		}		/* End of FOR loop */
2539
2540		if (rc)
2541			goto free_and_out;
2542		/* save the interrupt routing information */
2543		if (resources->irqs) {
2544			resources->irqs->interrupt[0] = irqs.interrupt[0];
2545			resources->irqs->interrupt[1] = irqs.interrupt[1];
2546			resources->irqs->interrupt[2] = irqs.interrupt[2];
2547			resources->irqs->interrupt[3] = irqs.interrupt[3];
2548			resources->irqs->valid_INT = irqs.valid_INT;
2549		} else if (!behind_bridge) {
2550			/* We need to hook up the interrupts here */
2551			for (cloop = 0; cloop < 4; cloop++) {
2552				if (irqs.valid_INT & (0x01 << cloop)) {
2553					rc = cpqhp_set_irq(func->bus, func->device,
2554							   cloop + 1, irqs.interrupt[cloop]);
2555					if (rc)
2556						goto free_and_out;
2557				}
2558			}	/* end of for loop */
2559		}
2560		/* Return unused bus resources
2561		 * First use the temporary node to store information for
2562		 * the board */
2563		if (bus_node && temp_resources.bus_head) {
2564			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2565
2566			hold_bus_node->next = func->bus_head;
2567			func->bus_head = hold_bus_node;
2568
2569			temp_byte = temp_resources.bus_head->base - 1;
2570
2571			/* set subordinate bus */
2572			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2573
2574			if (temp_resources.bus_head->length == 0) {
2575				kfree(temp_resources.bus_head);
2576				temp_resources.bus_head = NULL;
2577			} else {
2578				return_resource(&(resources->bus_head), temp_resources.bus_head);
2579			}
2580		}
2581
2582		/* If we have IO space available and there is some left,
2583		 * return the unused portion */
2584		if (hold_IO_node && temp_resources.io_head) {
2585			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586							       &hold_IO_node, 0x1000);
2587
2588			/* Check if we were able to split something off */
2589			if (io_node) {
2590				hold_IO_node->base = io_node->base + io_node->length;
2591
2592				temp_byte = (hold_IO_node->base) >> 8;
2593				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2594
2595				return_resource(&(resources->io_head), io_node);
2596			}
2597
2598			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2599
2600			/* Check if we were able to split something off */
2601			if (io_node) {
2602				/* First use the temporary node to store
2603				 * information for the board */
2604				hold_IO_node->length = io_node->base - hold_IO_node->base;
2605
2606				/* If we used any, add it to the board's list */
2607				if (hold_IO_node->length) {
2608					hold_IO_node->next = func->io_head;
2609					func->io_head = hold_IO_node;
2610
2611					temp_byte = (io_node->base - 1) >> 8;
2612					rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2613
2614					return_resource(&(resources->io_head), io_node);
2615				} else {
2616					/* it doesn't need any IO */
2617					temp_word = 0x0000;
2618					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2619
2620					return_resource(&(resources->io_head), io_node);
2621					kfree(hold_IO_node);
2622				}
2623			} else {
2624				/* it used most of the range */
2625				hold_IO_node->next = func->io_head;
2626				func->io_head = hold_IO_node;
2627			}
2628		} else if (hold_IO_node) {
2629			/* it used the whole range */
2630			hold_IO_node->next = func->io_head;
2631			func->io_head = hold_IO_node;
2632		}
2633		/* If we have memory space available and there is some left,
2634		 * return the unused portion */
2635		if (hold_mem_node && temp_resources.mem_head) {
2636			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2637								&hold_mem_node, 0x100000);
2638
2639			/* Check if we were able to split something off */
2640			if (mem_node) {
2641				hold_mem_node->base = mem_node->base + mem_node->length;
2642
2643				temp_word = (hold_mem_node->base) >> 16;
2644				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2645
2646				return_resource(&(resources->mem_head), mem_node);
2647			}
2648
2649			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2650
2651			/* Check if we were able to split something off */
2652			if (mem_node) {
2653				/* First use the temporary node to store
2654				 * information for the board */
2655				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2656
2657				if (hold_mem_node->length) {
2658					hold_mem_node->next = func->mem_head;
2659					func->mem_head = hold_mem_node;
2660
2661					/* configure end address */
2662					temp_word = (mem_node->base - 1) >> 16;
2663					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2664
2665					/* Return unused resources to the pool */
2666					return_resource(&(resources->mem_head), mem_node);
2667				} else {
2668					/* it doesn't need any Mem */
2669					temp_word = 0x0000;
2670					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2671
2672					return_resource(&(resources->mem_head), mem_node);
2673					kfree(hold_mem_node);
2674				}
2675			} else {
2676				/* it used most of the range */
2677				hold_mem_node->next = func->mem_head;
2678				func->mem_head = hold_mem_node;
2679			}
2680		} else if (hold_mem_node) {
2681			/* it used the whole range */
2682			hold_mem_node->next = func->mem_head;
2683			func->mem_head = hold_mem_node;
2684		}
2685		/* If we have prefetchable memory space available and there
2686		 * is some left at the end, return the unused portion */
2687		if (temp_resources.p_mem_head) {
2688			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689								  &hold_p_mem_node, 0x100000);
2690
2691			/* Check if we were able to split something off */
2692			if (p_mem_node) {
2693				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2694
2695				temp_word = (hold_p_mem_node->base) >> 16;
2696				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2697
2698				return_resource(&(resources->p_mem_head), p_mem_node);
2699			}
2700
2701			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2702
2703			/* Check if we were able to split something off */
2704			if (p_mem_node) {
2705				/* First use the temporary node to store
2706				 * information for the board */
2707				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2708
2709				/* If we used any, add it to the board's list */
2710				if (hold_p_mem_node->length) {
2711					hold_p_mem_node->next = func->p_mem_head;
2712					func->p_mem_head = hold_p_mem_node;
2713
2714					temp_word = (p_mem_node->base - 1) >> 16;
2715					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2716
2717					return_resource(&(resources->p_mem_head), p_mem_node);
2718				} else {
2719					/* it doesn't need any PMem */
2720					temp_word = 0x0000;
2721					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722
2723					return_resource(&(resources->p_mem_head), p_mem_node);
2724					kfree(hold_p_mem_node);
2725				}
2726			} else {
2727				/* it used the most of the range */
2728				hold_p_mem_node->next = func->p_mem_head;
2729				func->p_mem_head = hold_p_mem_node;
2730			}
2731		} else if (hold_p_mem_node) {
2732			/* it used the whole range */
2733			hold_p_mem_node->next = func->p_mem_head;
2734			func->p_mem_head = hold_p_mem_node;
2735		}
2736		/* We should be configuring an IRQ and the bridge's base address
2737		 * registers if it needs them.  Although we have never seen such
2738		 * a device */
2739
2740		/* enable card */
2741		command = 0x0157;	/* = PCI_COMMAND_IO |
2742					 *   PCI_COMMAND_MEMORY |
2743					 *   PCI_COMMAND_MASTER |
2744					 *   PCI_COMMAND_INVALIDATE |
2745					 *   PCI_COMMAND_PARITY |
2746					 *   PCI_COMMAND_SERR */
2747		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2748
2749		/* set Bridge Control Register */
2750		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2751					 *   PCI_BRIDGE_CTL_SERR |
2752					 *   PCI_BRIDGE_CTL_NO_ISA */
2753		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755		/* Standard device */
2756		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2757
2758		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759			/* Display (video) adapter (not supported) */
2760			return DEVICE_TYPE_NOT_SUPPORTED;
2761		}
2762		/* Figure out IO and memory needs */
2763		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764			temp_register = 0xFFFFFFFF;
2765
2766			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767			rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2768
2769			rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770			dbg("CND: base = 0x%x\n", temp_register);
2771
2772			if (temp_register) {	  /* If this register is implemented */
2773				if ((temp_register & 0x03L) == 0x01) {
2774					/* Map IO */
2775
2776					/* set base = amount of IO space */
2777					base = temp_register & 0xFFFFFFFC;
2778					base = ~base + 1;
2779
2780					dbg("CND:      length = 0x%x\n", base);
2781					io_node = get_io_resource(&(resources->io_head), base);
2782					if (!io_node)
2783						return -ENOMEM;
2784					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785					    io_node->base, io_node->length, io_node->next);
2786					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2787
2788					/* allocate the resource to the board */
2789					base = io_node->base;
2790					io_node->next = func->io_head;
2791					func->io_head = io_node;
 
 
 
 
2792				} else if ((temp_register & 0x0BL) == 0x08) {
2793					/* Map prefetchable memory */
2794					base = temp_register & 0xFFFFFFF0;
2795					base = ~base + 1;
2796
2797					dbg("CND:      length = 0x%x\n", base);
2798					p_mem_node = get_resource(&(resources->p_mem_head), base);
2799
2800					/* allocate the resource to the board */
2801					if (p_mem_node) {
2802						base = p_mem_node->base;
2803
2804						p_mem_node->next = func->p_mem_head;
2805						func->p_mem_head = p_mem_node;
2806					} else
2807						return -ENOMEM;
2808				} else if ((temp_register & 0x0BL) == 0x00) {
2809					/* Map memory */
2810					base = temp_register & 0xFFFFFFF0;
2811					base = ~base + 1;
2812
2813					dbg("CND:      length = 0x%x\n", base);
2814					mem_node = get_resource(&(resources->mem_head), base);
2815
2816					/* allocate the resource to the board */
2817					if (mem_node) {
2818						base = mem_node->base;
2819
2820						mem_node->next = func->mem_head;
2821						func->mem_head = mem_node;
2822					} else
2823						return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824				} else {
2825					/* Reserved bits or requesting space below 1M */
2826					return NOT_ENOUGH_RESOURCES;
2827				}
2828
2829				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2830
2831				/* Check for 64-bit base */
2832				if ((temp_register & 0x07L) == 0x04) {
2833					cloop += 4;
2834
2835					/* Upper 32 bits of address always zero
2836					 * on today's systems */
2837					/* FIXME this is probably not true on
2838					 * Alpha and ia64??? */
2839					base = 0;
2840					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2841				}
2842			}
2843		}		/* End of base register loop */
2844		if (cpqhp_legacy_mode) {
2845			/* Figure out which interrupt pin this function uses */
2846			rc = pci_bus_read_config_byte(pci_bus, devfn,
2847				PCI_INTERRUPT_PIN, &temp_byte);
2848
2849			/* If this function needs an interrupt and we are behind
2850			 * a bridge and the pin is tied to something that's
2851			 * already mapped, set this one the same */
2852			if (temp_byte && resources->irqs &&
2853			    (resources->irqs->valid_INT &
2854			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855				/* We have to share with something already set up */
2856				IRQ = resources->irqs->interrupt[(temp_byte +
2857					resources->irqs->barber_pole - 1) & 0x03];
2858			} else {
2859				/* Program IRQ based on card type */
2860				rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2861
2862				if (class_code == PCI_BASE_CLASS_STORAGE)
2863					IRQ = cpqhp_disk_irq;
2864				else
2865					IRQ = cpqhp_nic_irq;
2866			}
2867
2868			/* IRQ Line */
2869			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2870		}
2871
2872		if (!behind_bridge) {
2873			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874			if (rc)
2875				return 1;
2876		} else {
2877			/* TBD - this code may also belong in the other clause
2878			 * of this If statement */
2879			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2881		}
2882
2883		/* Latency Timer */
2884		temp_byte = 0x40;
2885		rc = pci_bus_write_config_byte(pci_bus, devfn,
2886					PCI_LATENCY_TIMER, temp_byte);
2887
2888		/* Cache Line size */
2889		temp_byte = 0x08;
2890		rc = pci_bus_write_config_byte(pci_bus, devfn,
2891					PCI_CACHE_LINE_SIZE, temp_byte);
2892
2893		/* disable ROM base Address */
2894		temp_dword = 0x00L;
2895		rc = pci_bus_write_config_word(pci_bus, devfn,
2896					PCI_ROM_ADDRESS, temp_dword);
2897
2898		/* enable card */
2899		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2900					 *   PCI_COMMAND_MEMORY |
2901					 *   PCI_COMMAND_MASTER |
2902					 *   PCI_COMMAND_INVALIDATE |
2903					 *   PCI_COMMAND_PARITY |
2904					 *   PCI_COMMAND_SERR */
2905		rc = pci_bus_write_config_word(pci_bus, devfn,
2906					PCI_COMMAND, temp_word);
2907	} else {		/* End of Not-A-Bridge else */
2908		/* It's some strange type of PCI adapter (Cardbus?) */
2909		return DEVICE_TYPE_NOT_SUPPORTED;
2910	}
2911
2912	func->configured = 1;
2913
2914	return 0;
2915free_and_out:
2916	cpqhp_destroy_resource_list(&temp_resources);
2917
2918	return_resource(&(resources->bus_head), hold_bus_node);
2919	return_resource(&(resources->io_head), hold_IO_node);
2920	return_resource(&(resources->mem_head), hold_mem_node);
2921	return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922	return rc;
2923}