Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Broadcom Corporation
  4 */
  5
  6#include <linux/interrupt.h>
  7#include <linux/irqchip/chained_irq.h>
  8#include <linux/irqdomain.h>
  9#include <linux/msi.h>
 10#include <linux/of_irq.h>
 11#include <linux/of_pci.h>
 12#include <linux/pci.h>
 13
 14#include "pcie-iproc.h"
 15
 16#define IPROC_MSI_INTR_EN_SHIFT        11
 17#define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
 18#define IPROC_MSI_INT_N_EVENT_SHIFT    1
 19#define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
 20#define IPROC_MSI_EQ_EN_SHIFT          0
 21#define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
 22
 23#define IPROC_MSI_EQ_MASK              0x3f
 24
 25/* Max number of GIC interrupts */
 26#define NR_HW_IRQS                     6
 27
 28/* Number of entries in each event queue */
 29#define EQ_LEN                         64
 30
 31/* Size of each event queue memory region */
 32#define EQ_MEM_REGION_SIZE             SZ_4K
 33
 34/* Size of each MSI address region */
 35#define MSI_MEM_REGION_SIZE            SZ_4K
 36
 37enum iproc_msi_reg {
 38	IPROC_MSI_EQ_PAGE = 0,
 39	IPROC_MSI_EQ_PAGE_UPPER,
 40	IPROC_MSI_PAGE,
 41	IPROC_MSI_PAGE_UPPER,
 42	IPROC_MSI_CTRL,
 43	IPROC_MSI_EQ_HEAD,
 44	IPROC_MSI_EQ_TAIL,
 45	IPROC_MSI_INTS_EN,
 46	IPROC_MSI_REG_SIZE,
 47};
 48
 49struct iproc_msi;
 50
 51/**
 52 * iProc MSI group
 53 *
 54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
 55 * event queue.
 56 *
 57 * @msi: pointer to iProc MSI data
 58 * @gic_irq: GIC interrupt
 59 * @eq: Event queue number
 60 */
 61struct iproc_msi_grp {
 62	struct iproc_msi *msi;
 63	int gic_irq;
 64	unsigned int eq;
 65};
 66
 67/**
 68 * iProc event queue based MSI
 69 *
 70 * Only meant to be used on platforms without MSI support integrated into the
 71 * GIC.
 72 *
 73 * @pcie: pointer to iProc PCIe data
 74 * @reg_offsets: MSI register offsets
 75 * @grps: MSI groups
 76 * @nr_irqs: number of total interrupts connected to GIC
 77 * @nr_cpus: number of toal CPUs
 78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
 79 * set explicitly (required for some legacy platforms)
 80 * @bitmap: MSI vector bitmap
 81 * @bitmap_lock: lock to protect access to the MSI bitmap
 82 * @nr_msi_vecs: total number of MSI vectors
 83 * @inner_domain: inner IRQ domain
 84 * @msi_domain: MSI IRQ domain
 85 * @nr_eq_region: required number of 4K aligned memory region for MSI event
 86 * queues
 87 * @nr_msi_region: required number of 4K aligned address region for MSI posted
 88 * writes
 89 * @eq_cpu: pointer to allocated memory region for MSI event queues
 90 * @eq_dma: DMA address of MSI event queues
 91 * @msi_addr: MSI address
 92 */
 93struct iproc_msi {
 94	struct iproc_pcie *pcie;
 95	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
 96	struct iproc_msi_grp *grps;
 97	int nr_irqs;
 98	int nr_cpus;
 99	bool has_inten_reg;
100	unsigned long *bitmap;
101	struct mutex bitmap_lock;
102	unsigned int nr_msi_vecs;
103	struct irq_domain *inner_domain;
104	struct irq_domain *msi_domain;
105	unsigned int nr_eq_region;
106	unsigned int nr_msi_region;
107	void *eq_cpu;
108	dma_addr_t eq_dma;
109	phys_addr_t msi_addr;
110};
111
112static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
113	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
114	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
115	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
116	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
117	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
118	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
119};
120
121static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
122	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
123	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
124	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
125	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
126};
127
128static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
129				     enum iproc_msi_reg reg,
130				     unsigned int eq)
131{
132	struct iproc_pcie *pcie = msi->pcie;
133
134	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
135}
136
137static inline void iproc_msi_write_reg(struct iproc_msi *msi,
138				       enum iproc_msi_reg reg,
139				       int eq, u32 val)
140{
141	struct iproc_pcie *pcie = msi->pcie;
142
143	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
144}
145
146static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
147{
148	return (hwirq % msi->nr_irqs);
149}
150
151static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
152						 unsigned long hwirq)
153{
154	if (msi->nr_msi_region > 1)
155		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
156	else
157		return hwirq_to_group(msi, hwirq) * sizeof(u32);
158}
159
160static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
161{
162	if (msi->nr_eq_region > 1)
163		return eq * EQ_MEM_REGION_SIZE;
164	else
165		return eq * EQ_LEN * sizeof(u32);
166}
167
168static struct irq_chip iproc_msi_irq_chip = {
169	.name = "iProc-MSI",
170};
171
172static struct msi_domain_info iproc_msi_domain_info = {
173	.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
174		MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
175	.chip = &iproc_msi_irq_chip,
176};
177
178/*
179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
180 * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
181 *
182 * The number of MSI groups varies between different iProc SoCs.  The total
183 * number of CPU cores also varies.  To support MSI IRQ affinity, we
184 * distribute GIC interrupts across all available CPUs.  MSI vector is moved
185 * from one GIC interrupt to another to steer to the target CPU.
186 *
187 * Assuming:
188 * - the number of MSI groups is M
189 * - the number of CPU cores is N
190 * - M is always a multiple of N
191 *
192 * Total number of raw MSI vectors = M * 64
193 * Total number of supported MSI vectors = (M * 64) / N
194 */
195static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
196{
197	return (hwirq % msi->nr_cpus);
198}
199
200static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
201						     unsigned long hwirq)
202{
203	return (hwirq - hwirq_to_cpu(msi, hwirq));
204}
205
206static int iproc_msi_irq_set_affinity(struct irq_data *data,
207				      const struct cpumask *mask, bool force)
208{
209	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
210	int target_cpu = cpumask_first(mask);
211	int curr_cpu;
212
213	curr_cpu = hwirq_to_cpu(msi, data->hwirq);
214	if (curr_cpu == target_cpu)
215		return IRQ_SET_MASK_OK_DONE;
216
217	/* steer MSI to the target CPU */
218	data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
219
220	return IRQ_SET_MASK_OK;
221}
222
223static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
224					  struct msi_msg *msg)
225{
226	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
227	dma_addr_t addr;
228
229	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
230	msg->address_lo = lower_32_bits(addr);
231	msg->address_hi = upper_32_bits(addr);
232	msg->data = data->hwirq << 5;
233}
234
235static struct irq_chip iproc_msi_bottom_irq_chip = {
236	.name = "MSI",
237	.irq_set_affinity = iproc_msi_irq_set_affinity,
238	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
239};
240
241static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
242				      unsigned int virq, unsigned int nr_irqs,
243				      void *args)
244{
245	struct iproc_msi *msi = domain->host_data;
246	int hwirq, i;
247
248	mutex_lock(&msi->bitmap_lock);
249
250	/* Allocate 'nr_cpus' number of MSI vectors each time */
251	hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
252					   msi->nr_cpus, 0);
253	if (hwirq < msi->nr_msi_vecs) {
254		bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
255	} else {
256		mutex_unlock(&msi->bitmap_lock);
257		return -ENOSPC;
258	}
259
260	mutex_unlock(&msi->bitmap_lock);
261
262	for (i = 0; i < nr_irqs; i++) {
263		irq_domain_set_info(domain, virq + i, hwirq + i,
264				    &iproc_msi_bottom_irq_chip,
265				    domain->host_data, handle_simple_irq,
266				    NULL, NULL);
267	}
268
269	return hwirq;
270}
271
272static void iproc_msi_irq_domain_free(struct irq_domain *domain,
273				      unsigned int virq, unsigned int nr_irqs)
274{
275	struct irq_data *data = irq_domain_get_irq_data(domain, virq);
276	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
277	unsigned int hwirq;
278
279	mutex_lock(&msi->bitmap_lock);
280
281	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
282	bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
283
284	mutex_unlock(&msi->bitmap_lock);
285
286	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
287}
288
289static const struct irq_domain_ops msi_domain_ops = {
290	.alloc = iproc_msi_irq_domain_alloc,
291	.free = iproc_msi_irq_domain_free,
292};
293
294static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
295{
296	u32 __iomem *msg;
297	u32 hwirq;
298	unsigned int offs;
299
300	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
301	msg = (u32 __iomem *)(msi->eq_cpu + offs);
302	hwirq = readl(msg);
303	hwirq = (hwirq >> 5) + (hwirq & 0x1f);
304
305	/*
306	 * Since we have multiple hwirq mapped to a single MSI vector,
307	 * now we need to derive the hwirq at CPU0.  It can then be used to
308	 * mapped back to virq.
309	 */
310	return hwirq_to_canonical_hwirq(msi, hwirq);
311}
312
313static void iproc_msi_handler(struct irq_desc *desc)
314{
315	struct irq_chip *chip = irq_desc_get_chip(desc);
316	struct iproc_msi_grp *grp;
317	struct iproc_msi *msi;
318	u32 eq, head, tail, nr_events;
319	unsigned long hwirq;
320	int virq;
321
322	chained_irq_enter(chip, desc);
323
324	grp = irq_desc_get_handler_data(desc);
325	msi = grp->msi;
326	eq = grp->eq;
327
328	/*
329	 * iProc MSI event queue is tracked by head and tail pointers.  Head
330	 * pointer indicates the next entry (MSI data) to be consumed by SW in
331	 * the queue and needs to be updated by SW.  iProc MSI core uses the
332	 * tail pointer as the next data insertion point.
333	 *
334	 * Entries between head and tail pointers contain valid MSI data.  MSI
335	 * data is guaranteed to be in the event queue memory before the tail
336	 * pointer is updated by the iProc MSI core.
337	 */
338	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
339				  eq) & IPROC_MSI_EQ_MASK;
340	do {
341		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
342					  eq) & IPROC_MSI_EQ_MASK;
343
344		/*
345		 * Figure out total number of events (MSI data) to be
346		 * processed.
347		 */
348		nr_events = (tail < head) ?
349			(EQ_LEN - (head - tail)) : (tail - head);
350		if (!nr_events)
351			break;
352
353		/* process all outstanding events */
354		while (nr_events--) {
355			hwirq = decode_msi_hwirq(msi, eq, head);
356			virq = irq_find_mapping(msi->inner_domain, hwirq);
357			generic_handle_irq(virq);
358
359			head++;
360			head %= EQ_LEN;
361		}
362
363		/*
364		 * Now all outstanding events have been processed.  Update the
365		 * head pointer.
366		 */
367		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
368
369		/*
370		 * Now go read the tail pointer again to see if there are new
371		 * outstanding events that came in during the above window.
372		 */
373	} while (true);
374
375	chained_irq_exit(chip, desc);
376}
377
378static void iproc_msi_enable(struct iproc_msi *msi)
379{
380	int i, eq;
381	u32 val;
382
383	/* Program memory region for each event queue */
384	for (i = 0; i < msi->nr_eq_region; i++) {
385		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
386
387		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
388				    lower_32_bits(addr));
389		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
390				    upper_32_bits(addr));
391	}
392
393	/* Program address region for MSI posted writes */
394	for (i = 0; i < msi->nr_msi_region; i++) {
395		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
396
397		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
398				    lower_32_bits(addr));
399		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
400				    upper_32_bits(addr));
401	}
402
403	for (eq = 0; eq < msi->nr_irqs; eq++) {
404		/* Enable MSI event queue */
405		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
406			IPROC_MSI_EQ_EN;
407		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
408
409		/*
410		 * Some legacy platforms require the MSI interrupt enable
411		 * register to be set explicitly.
412		 */
413		if (msi->has_inten_reg) {
414			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
415			val |= BIT(eq);
416			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
417		}
418	}
419}
420
421static void iproc_msi_disable(struct iproc_msi *msi)
422{
423	u32 eq, val;
424
425	for (eq = 0; eq < msi->nr_irqs; eq++) {
426		if (msi->has_inten_reg) {
427			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
428			val &= ~BIT(eq);
429			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
430		}
431
432		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
433		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
434			 IPROC_MSI_EQ_EN);
435		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
436	}
437}
438
439static int iproc_msi_alloc_domains(struct device_node *node,
440				   struct iproc_msi *msi)
441{
442	msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
443						  &msi_domain_ops, msi);
444	if (!msi->inner_domain)
445		return -ENOMEM;
446
447	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
448						    &iproc_msi_domain_info,
449						    msi->inner_domain);
450	if (!msi->msi_domain) {
451		irq_domain_remove(msi->inner_domain);
452		return -ENOMEM;
453	}
454
455	return 0;
456}
457
458static void iproc_msi_free_domains(struct iproc_msi *msi)
459{
460	if (msi->msi_domain)
461		irq_domain_remove(msi->msi_domain);
462
463	if (msi->inner_domain)
464		irq_domain_remove(msi->inner_domain);
465}
466
467static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
468{
469	int i;
470
471	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
472		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
473						 NULL, NULL);
474	}
475}
476
477static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
478{
479	int i, ret;
480	cpumask_var_t mask;
481	struct iproc_pcie *pcie = msi->pcie;
482
483	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
484		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
485						 iproc_msi_handler,
486						 &msi->grps[i]);
487		/* Dedicate GIC interrupt to each CPU core */
488		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
489			cpumask_clear(mask);
490			cpumask_set_cpu(cpu, mask);
491			ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
492			if (ret)
493				dev_err(pcie->dev,
494					"failed to set affinity for IRQ%d\n",
495					msi->grps[i].gic_irq);
496			free_cpumask_var(mask);
497		} else {
498			dev_err(pcie->dev, "failed to alloc CPU mask\n");
499			ret = -EINVAL;
500		}
501
502		if (ret) {
503			/* Free all configured/unconfigured IRQs */
504			iproc_msi_irq_free(msi, cpu);
505			return ret;
506		}
507	}
508
509	return 0;
510}
511
512int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
513{
514	struct iproc_msi *msi;
515	int i, ret;
516	unsigned int cpu;
517
518	if (!of_device_is_compatible(node, "brcm,iproc-msi"))
519		return -ENODEV;
520
521	if (!of_find_property(node, "msi-controller", NULL))
522		return -ENODEV;
523
524	if (pcie->msi)
525		return -EBUSY;
526
527	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
528	if (!msi)
529		return -ENOMEM;
530
531	msi->pcie = pcie;
532	pcie->msi = msi;
533	msi->msi_addr = pcie->base_addr;
534	mutex_init(&msi->bitmap_lock);
535	msi->nr_cpus = num_possible_cpus();
536
537	msi->nr_irqs = of_irq_count(node);
538	if (!msi->nr_irqs) {
539		dev_err(pcie->dev, "found no MSI GIC interrupt\n");
540		return -ENODEV;
541	}
542
543	if (msi->nr_irqs > NR_HW_IRQS) {
544		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
545			 msi->nr_irqs);
546		msi->nr_irqs = NR_HW_IRQS;
547	}
548
549	if (msi->nr_irqs < msi->nr_cpus) {
550		dev_err(pcie->dev,
551			"not enough GIC interrupts for MSI affinity\n");
552		return -EINVAL;
553	}
554
555	if (msi->nr_irqs % msi->nr_cpus != 0) {
556		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
557		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
558			 msi->nr_irqs);
559	}
560
561	switch (pcie->type) {
562	case IPROC_PCIE_PAXB_BCMA:
563	case IPROC_PCIE_PAXB:
564		msi->reg_offsets = iproc_msi_reg_paxb;
565		msi->nr_eq_region = 1;
566		msi->nr_msi_region = 1;
567		break;
568	case IPROC_PCIE_PAXC:
569		msi->reg_offsets = iproc_msi_reg_paxc;
570		msi->nr_eq_region = msi->nr_irqs;
571		msi->nr_msi_region = msi->nr_irqs;
572		break;
573	default:
574		dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
575		return -EINVAL;
576	}
577
578	if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
579		msi->has_inten_reg = true;
580
581	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
582	msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
583				   sizeof(*msi->bitmap), GFP_KERNEL);
584	if (!msi->bitmap)
585		return -ENOMEM;
586
587	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
588				 GFP_KERNEL);
589	if (!msi->grps)
590		return -ENOMEM;
591
592	for (i = 0; i < msi->nr_irqs; i++) {
593		unsigned int irq = irq_of_parse_and_map(node, i);
594
595		if (!irq) {
596			dev_err(pcie->dev, "unable to parse/map interrupt\n");
597			ret = -ENODEV;
598			goto free_irqs;
599		}
600		msi->grps[i].gic_irq = irq;
601		msi->grps[i].msi = msi;
602		msi->grps[i].eq = i;
603	}
604
605	/* Reserve memory for event queue and make sure memories are zeroed */
606	msi->eq_cpu = dma_alloc_coherent(pcie->dev,
607					 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
608					 &msi->eq_dma, GFP_KERNEL);
609	if (!msi->eq_cpu) {
610		ret = -ENOMEM;
611		goto free_irqs;
612	}
613
614	ret = iproc_msi_alloc_domains(node, msi);
615	if (ret) {
616		dev_err(pcie->dev, "failed to create MSI domains\n");
617		goto free_eq_dma;
618	}
619
620	for_each_online_cpu(cpu) {
621		ret = iproc_msi_irq_setup(msi, cpu);
622		if (ret)
623			goto free_msi_irq;
624	}
625
626	iproc_msi_enable(msi);
627
628	return 0;
629
630free_msi_irq:
631	for_each_online_cpu(cpu)
632		iproc_msi_irq_free(msi, cpu);
633	iproc_msi_free_domains(msi);
634
635free_eq_dma:
636	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
637			  msi->eq_cpu, msi->eq_dma);
638
639free_irqs:
640	for (i = 0; i < msi->nr_irqs; i++) {
641		if (msi->grps[i].gic_irq)
642			irq_dispose_mapping(msi->grps[i].gic_irq);
643	}
644	pcie->msi = NULL;
645	return ret;
646}
647EXPORT_SYMBOL(iproc_msi_init);
648
649void iproc_msi_exit(struct iproc_pcie *pcie)
650{
651	struct iproc_msi *msi = pcie->msi;
652	unsigned int i, cpu;
653
654	if (!msi)
655		return;
656
657	iproc_msi_disable(msi);
658
659	for_each_online_cpu(cpu)
660		iproc_msi_irq_free(msi, cpu);
661
662	iproc_msi_free_domains(msi);
663
664	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
665			  msi->eq_cpu, msi->eq_dma);
666
667	for (i = 0; i < msi->nr_irqs; i++) {
668		if (msi->grps[i].gic_irq)
669			irq_dispose_mapping(msi->grps[i].gic_irq);
670	}
671}
672EXPORT_SYMBOL(iproc_msi_exit);