Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18#include "hw-ops.h"
 
 19
 20static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
 21					struct ath9k_tx_queue_info *qi)
 22{
 23	ath_dbg(ath9k_hw_common(ah), ATH_DBG_INTERRUPT,
 24		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
 25		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
 26		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
 27		ah->txurn_interrupt_mask);
 28
 29	ENABLE_REGWRITE_BUFFER(ah);
 30
 31	REG_WRITE(ah, AR_IMR_S0,
 32		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
 33		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
 34	REG_WRITE(ah, AR_IMR_S1,
 35		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
 36		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
 37
 38	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
 39	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
 40	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 41
 42	REGWRITE_BUFFER_FLUSH(ah);
 43}
 44
 45u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
 46{
 47	return REG_READ(ah, AR_QTXDP(q));
 48}
 49EXPORT_SYMBOL(ath9k_hw_gettxbuf);
 50
 51void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
 52{
 53	REG_WRITE(ah, AR_QTXDP(q), txdp);
 54}
 55EXPORT_SYMBOL(ath9k_hw_puttxbuf);
 56
 57void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
 58{
 59	ath_dbg(ath9k_hw_common(ah), ATH_DBG_QUEUE,
 60		"Enable TXE on queue: %u\n", q);
 61	REG_WRITE(ah, AR_Q_TXE, 1 << q);
 62}
 63EXPORT_SYMBOL(ath9k_hw_txstart);
 64
 65void ath9k_hw_cleartxdesc(struct ath_hw *ah, void *ds)
 66{
 67	struct ar5416_desc *ads = AR5416DESC(ds);
 68
 69	ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
 70	ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
 71	ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
 72	ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
 73	ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
 74}
 75EXPORT_SYMBOL(ath9k_hw_cleartxdesc);
 76
 77u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
 78{
 79	u32 npend;
 80
 81	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
 82	if (npend == 0) {
 83
 84		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
 85			npend = 1;
 86	}
 87
 88	return npend;
 89}
 90EXPORT_SYMBOL(ath9k_hw_numtxpending);
 91
 92/**
 93 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
 94 *
 95 * @ah: atheros hardware struct
 96 * @bIncTrigLevel: whether or not the frame trigger level should be updated
 97 *
 98 * The frame trigger level specifies the minimum number of bytes,
 99 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
100 * before the PCU will initiate sending the frame on the air. This can
101 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
102 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
103 * first)
104 *
105 * Caution must be taken to ensure to set the frame trigger level based
106 * on the DMA request size. For example if the DMA request size is set to
107 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
108 * there need to be enough space in the tx FIFO for the requested transfer
109 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
110 * the threshold to a value beyond 6, then the transmit will hang.
111 *
112 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
113 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
114 * there is a hardware issue which forces us to use 2 KB instead so the
115 * frame trigger level must not exceed 2 KB for these chipsets.
116 */
117bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
118{
119	u32 txcfg, curLevel, newLevel;
120
121	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
122		return false;
123
124	ath9k_hw_disable_interrupts(ah);
125
126	txcfg = REG_READ(ah, AR_TXCFG);
127	curLevel = MS(txcfg, AR_FTRIG);
128	newLevel = curLevel;
129	if (bIncTrigLevel) {
130		if (curLevel < ah->config.max_txtrig_level)
131			newLevel++;
132	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
133		newLevel--;
134	if (newLevel != curLevel)
135		REG_WRITE(ah, AR_TXCFG,
136			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
137
138	ath9k_hw_enable_interrupts(ah);
139
140	ah->tx_trig_level = newLevel;
141
142	return newLevel != curLevel;
143}
144EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
145
146void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
147{
 
148	int i, q;
149
 
 
 
 
 
 
 
150	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
151
152	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
153	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
154	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
155
156	for (q = 0; q < AR_NUM_QCU; q++) {
157		for (i = 0; i < 1000; i++) {
158			if (i)
159				udelay(5);
160
161			if (!ath9k_hw_numtxpending(ah, q))
162				break;
163		}
164	}
165
166	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
167	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
168	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
169
170	REG_WRITE(ah, AR_Q_TXD, 0);
171}
172EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
173
174bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
175{
176#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
177#define ATH9K_TIME_QUANTUM		100     /* usec */
178	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
179	int wait;
180
181	REG_WRITE(ah, AR_Q_TXD, 1 << q);
182
183	for (wait = wait_time; wait != 0; wait--) {
184		if (wait != wait_time)
185			udelay(ATH9K_TIME_QUANTUM);
186
187		if (ath9k_hw_numtxpending(ah, q) == 0)
188			break;
189	}
190
191	REG_WRITE(ah, AR_Q_TXD, 0);
192
193	return wait != 0;
194
195#undef ATH9K_TX_STOP_DMA_TIMEOUT
196#undef ATH9K_TIME_QUANTUM
197}
198EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
199
200void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
201{
202	*txqs &= ah->intr_txqs;
203	ah->intr_txqs &= ~(*txqs);
204}
205EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
206
207bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
208			    const struct ath9k_tx_queue_info *qinfo)
209{
210	u32 cw;
211	struct ath_common *common = ath9k_hw_common(ah);
212	struct ath9k_tx_queue_info *qi;
213
214	qi = &ah->txq[q];
215	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
216		ath_dbg(common, ATH_DBG_QUEUE,
217			"Set TXQ properties, inactive queue: %u\n", q);
218		return false;
219	}
220
221	ath_dbg(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q);
222
223	qi->tqi_ver = qinfo->tqi_ver;
224	qi->tqi_subtype = qinfo->tqi_subtype;
225	qi->tqi_qflags = qinfo->tqi_qflags;
226	qi->tqi_priority = qinfo->tqi_priority;
227	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
228		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
229	else
230		qi->tqi_aifs = INIT_AIFS;
231	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
232		cw = min(qinfo->tqi_cwmin, 1024U);
233		qi->tqi_cwmin = 1;
234		while (qi->tqi_cwmin < cw)
235			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
236	} else
237		qi->tqi_cwmin = qinfo->tqi_cwmin;
238	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
239		cw = min(qinfo->tqi_cwmax, 1024U);
240		qi->tqi_cwmax = 1;
241		while (qi->tqi_cwmax < cw)
242			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
243	} else
244		qi->tqi_cwmax = INIT_CWMAX;
245
246	if (qinfo->tqi_shretry != 0)
247		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
248	else
249		qi->tqi_shretry = INIT_SH_RETRY;
250	if (qinfo->tqi_lgretry != 0)
251		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
252	else
253		qi->tqi_lgretry = INIT_LG_RETRY;
254	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
255	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
256	qi->tqi_burstTime = qinfo->tqi_burstTime;
257	qi->tqi_readyTime = qinfo->tqi_readyTime;
258
259	switch (qinfo->tqi_subtype) {
260	case ATH9K_WME_UPSD:
261		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
262			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
263		break;
264	default:
265		break;
266	}
267
268	return true;
269}
270EXPORT_SYMBOL(ath9k_hw_set_txq_props);
271
272bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
273			    struct ath9k_tx_queue_info *qinfo)
274{
275	struct ath_common *common = ath9k_hw_common(ah);
276	struct ath9k_tx_queue_info *qi;
277
278	qi = &ah->txq[q];
279	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
280		ath_dbg(common, ATH_DBG_QUEUE,
281			"Get TXQ properties, inactive queue: %u\n", q);
282		return false;
283	}
284
285	qinfo->tqi_qflags = qi->tqi_qflags;
286	qinfo->tqi_ver = qi->tqi_ver;
287	qinfo->tqi_subtype = qi->tqi_subtype;
288	qinfo->tqi_qflags = qi->tqi_qflags;
289	qinfo->tqi_priority = qi->tqi_priority;
290	qinfo->tqi_aifs = qi->tqi_aifs;
291	qinfo->tqi_cwmin = qi->tqi_cwmin;
292	qinfo->tqi_cwmax = qi->tqi_cwmax;
293	qinfo->tqi_shretry = qi->tqi_shretry;
294	qinfo->tqi_lgretry = qi->tqi_lgretry;
295	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
296	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
297	qinfo->tqi_burstTime = qi->tqi_burstTime;
298	qinfo->tqi_readyTime = qi->tqi_readyTime;
299
300	return true;
301}
302EXPORT_SYMBOL(ath9k_hw_get_txq_props);
303
304int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
305			  const struct ath9k_tx_queue_info *qinfo)
306{
307	struct ath_common *common = ath9k_hw_common(ah);
308	struct ath9k_tx_queue_info *qi;
309	int q;
310
311	switch (type) {
312	case ATH9K_TX_QUEUE_BEACON:
313		q = ATH9K_NUM_TX_QUEUES - 1;
314		break;
315	case ATH9K_TX_QUEUE_CAB:
316		q = ATH9K_NUM_TX_QUEUES - 2;
317		break;
318	case ATH9K_TX_QUEUE_PSPOLL:
319		q = 1;
320		break;
321	case ATH9K_TX_QUEUE_UAPSD:
322		q = ATH9K_NUM_TX_QUEUES - 3;
323		break;
324	case ATH9K_TX_QUEUE_DATA:
325		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
326			if (ah->txq[q].tqi_type ==
327			    ATH9K_TX_QUEUE_INACTIVE)
328				break;
329		if (q == ATH9K_NUM_TX_QUEUES) {
330			ath_err(common, "No available TX queue\n");
331			return -1;
332		}
333		break;
334	default:
335		ath_err(common, "Invalid TX queue type: %u\n", type);
336		return -1;
337	}
338
339	ath_dbg(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q);
340
341	qi = &ah->txq[q];
342	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
343		ath_err(common, "TX queue: %u already active\n", q);
344		return -1;
345	}
346	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
347	qi->tqi_type = type;
348	if (qinfo == NULL) {
349		qi->tqi_qflags =
350			TXQ_FLAG_TXOKINT_ENABLE
351			| TXQ_FLAG_TXERRINT_ENABLE
352			| TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
353		qi->tqi_aifs = INIT_AIFS;
354		qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
355		qi->tqi_cwmax = INIT_CWMAX;
356		qi->tqi_shretry = INIT_SH_RETRY;
357		qi->tqi_lgretry = INIT_LG_RETRY;
358		qi->tqi_physCompBuf = 0;
359	} else {
360		qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
361		(void) ath9k_hw_set_txq_props(ah, q, qinfo);
362	}
363
364	return q;
365}
366EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
367
 
 
 
 
 
 
 
 
 
368bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
369{
370	struct ath_common *common = ath9k_hw_common(ah);
371	struct ath9k_tx_queue_info *qi;
372
373	qi = &ah->txq[q];
374	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375		ath_dbg(common, ATH_DBG_QUEUE,
376			"Release TXQ, inactive queue: %u\n", q);
377		return false;
378	}
379
380	ath_dbg(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q);
381
382	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
383	ah->txok_interrupt_mask &= ~(1 << q);
384	ah->txerr_interrupt_mask &= ~(1 << q);
385	ah->txdesc_interrupt_mask &= ~(1 << q);
386	ah->txeol_interrupt_mask &= ~(1 << q);
387	ah->txurn_interrupt_mask &= ~(1 << q);
388	ath9k_hw_set_txq_interrupts(ah, qi);
389
390	return true;
391}
392EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
393
394bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
395{
396	struct ath_common *common = ath9k_hw_common(ah);
397	struct ath9k_channel *chan = ah->curchan;
398	struct ath9k_tx_queue_info *qi;
399	u32 cwMin, chanCwMin, value;
400
401	qi = &ah->txq[q];
402	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
403		ath_dbg(common, ATH_DBG_QUEUE,
404			"Reset TXQ, inactive queue: %u\n", q);
405		return true;
406	}
407
408	ath_dbg(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q);
409
410	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
411		if (chan && IS_CHAN_B(chan))
412			chanCwMin = INIT_CWMIN_11B;
413		else
414			chanCwMin = INIT_CWMIN;
415
416		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
417	} else
418		cwMin = qi->tqi_cwmin;
419
420	ENABLE_REGWRITE_BUFFER(ah);
421
422	REG_WRITE(ah, AR_DLCL_IFS(q),
423		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
424		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
425		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
426
427	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
428		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
429		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
430		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
431
432	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
433
434	if (AR_SREV_9340(ah))
435		REG_WRITE(ah, AR_DMISC(q),
436			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
437	else
438		REG_WRITE(ah, AR_DMISC(q),
439			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
440
441	if (qi->tqi_cbrPeriod) {
442		REG_WRITE(ah, AR_QCBRCFG(q),
443			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
444			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
445		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
446			    (qi->tqi_cbrOverflowLimit ?
447			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
448	}
449	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
450		REG_WRITE(ah, AR_QRDYTIMECFG(q),
451			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
452			  AR_Q_RDYTIMECFG_EN);
453	}
454
455	REG_WRITE(ah, AR_DCHNTIME(q),
456		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
457		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
458
459	if (qi->tqi_burstTime
460	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
461		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
462
463	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
464		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
465
466	REGWRITE_BUFFER_FLUSH(ah);
467
468	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
469		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
470
471	switch (qi->tqi_type) {
472	case ATH9K_TX_QUEUE_BEACON:
473		ENABLE_REGWRITE_BUFFER(ah);
474
475		REG_SET_BIT(ah, AR_QMISC(q),
476			    AR_Q_MISC_FSP_DBA_GATED
477			    | AR_Q_MISC_BEACON_USE
478			    | AR_Q_MISC_CBR_INCR_DIS1);
479
480		REG_SET_BIT(ah, AR_DMISC(q),
481			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
483			    | AR_D_MISC_BEACON_USE
484			    | AR_D_MISC_POST_FR_BKOFF_DIS);
485
486		REGWRITE_BUFFER_FLUSH(ah);
487
488		/*
489		 * cwmin and cwmax should be 0 for beacon queue
490		 * but not for IBSS as we would create an imbalance
491		 * on beaconing fairness for participating nodes.
492		 */
493		if (AR_SREV_9300_20_OR_LATER(ah) &&
494		    ah->opmode != NL80211_IFTYPE_ADHOC) {
495			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
496				  | SM(0, AR_D_LCL_IFS_CWMAX)
497				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
498		}
499		break;
500	case ATH9K_TX_QUEUE_CAB:
501		ENABLE_REGWRITE_BUFFER(ah);
502
503		REG_SET_BIT(ah, AR_QMISC(q),
504			    AR_Q_MISC_FSP_DBA_GATED
505			    | AR_Q_MISC_CBR_INCR_DIS1
506			    | AR_Q_MISC_CBR_INCR_DIS0);
507		value = (qi->tqi_readyTime -
508			 (ah->config.sw_beacon_response_time -
509			  ah->config.dma_beacon_response_time) -
510			 ah->config.additional_swba_backoff) * 1024;
511		REG_WRITE(ah, AR_QRDYTIMECFG(q),
512			  value | AR_Q_RDYTIMECFG_EN);
513		REG_SET_BIT(ah, AR_DMISC(q),
514			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
515			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
516
517		REGWRITE_BUFFER_FLUSH(ah);
518
519		break;
520	case ATH9K_TX_QUEUE_PSPOLL:
521		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
522		break;
523	case ATH9K_TX_QUEUE_UAPSD:
524		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
525		break;
526	default:
527		break;
528	}
529
530	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
531		REG_SET_BIT(ah, AR_DMISC(q),
532			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
533			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
534			    AR_D_MISC_POST_FR_BKOFF_DIS);
535	}
536
537	if (AR_SREV_9300_20_OR_LATER(ah))
538		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
539
540	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
 
541		ah->txok_interrupt_mask |= 1 << q;
542	else
543		ah->txok_interrupt_mask &= ~(1 << q);
544	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
545		ah->txerr_interrupt_mask |= 1 << q;
546	else
547		ah->txerr_interrupt_mask &= ~(1 << q);
548	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
549		ah->txdesc_interrupt_mask |= 1 << q;
550	else
551		ah->txdesc_interrupt_mask &= ~(1 << q);
552	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
553		ah->txeol_interrupt_mask |= 1 << q;
554	else
555		ah->txeol_interrupt_mask &= ~(1 << q);
556	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
557		ah->txurn_interrupt_mask |= 1 << q;
558	else
559		ah->txurn_interrupt_mask &= ~(1 << q);
560	ath9k_hw_set_txq_interrupts(ah, qi);
561
562	return true;
563}
564EXPORT_SYMBOL(ath9k_hw_resettxqueue);
565
566int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
567			struct ath_rx_status *rs, u64 tsf)
568{
569	struct ar5416_desc ads;
570	struct ar5416_desc *adsp = AR5416DESC(ds);
571	u32 phyerr;
572
573	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
574		return -EINPROGRESS;
575
576	ads.u.rx = adsp->u.rx;
577
578	rs->rs_status = 0;
579	rs->rs_flags = 0;
 
 
580
581	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
582	rs->rs_tstamp = ads.AR_RcvTimestamp;
583
584	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
585		rs->rs_rssi = ATH9K_RSSI_BAD;
586		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
587		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
588		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
589		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
590		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
591		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
592	} else {
593		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
594		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
595						AR_RxRSSIAnt00);
596		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
597						AR_RxRSSIAnt01);
598		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
599						AR_RxRSSIAnt02);
600		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
601						AR_RxRSSIAnt10);
602		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
603						AR_RxRSSIAnt11);
604		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
605						AR_RxRSSIAnt12);
606	}
607	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
608		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
609	else
610		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
611
612	rs->rs_rate = RXSTATUS_RATE(ah, (&ads));
613	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
614
 
615	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
616	rs->rs_moreaggr =
617		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
618	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
619	rs->rs_flags =
620		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
621	rs->rs_flags |=
622		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
 
 
 
 
 
 
 
623
624	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
625		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
626	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
627		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
628	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
629		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
630
631	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
632		/*
633		 * Treat these errors as mutually exclusive to avoid spurious
634		 * extra error reports from the hardware. If a CRC error is
635		 * reported, then decryption and MIC errors are irrelevant,
636		 * the frame is going to be dropped either way
637		 */
638		if (ads.ds_rxstatus8 & AR_CRCErr)
639			rs->rs_status |= ATH9K_RXERR_CRC;
640		else if (ads.ds_rxstatus8 & AR_PHYErr) {
641			rs->rs_status |= ATH9K_RXERR_PHY;
642			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
643			rs->rs_phyerr = phyerr;
644		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
 
 
645			rs->rs_status |= ATH9K_RXERR_DECRYPT;
646		else if (ads.ds_rxstatus8 & AR_MichaelErr)
647			rs->rs_status |= ATH9K_RXERR_MIC;
648		else if (ads.ds_rxstatus8 & AR_KeyMiss)
649			rs->rs_status |= ATH9K_RXERR_DECRYPT;
 
 
 
 
 
 
650	}
651
 
 
 
652	return 0;
653}
654EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
655
656/*
657 * This can stop or re-enables RX.
658 *
659 * If bool is set this will kill any frame which is currently being
660 * transferred between the MAC and baseband and also prevent any new
661 * frames from getting started.
662 */
663bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
664{
665	u32 reg;
666
667	if (set) {
668		REG_SET_BIT(ah, AR_DIAG_SW,
669			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
670
671		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
672				   0, AH_WAIT_TIMEOUT)) {
673			REG_CLR_BIT(ah, AR_DIAG_SW,
674				    (AR_DIAG_RX_DIS |
675				     AR_DIAG_RX_ABORT));
676
677			reg = REG_READ(ah, AR_OBS_BUS_1);
678			ath_err(ath9k_hw_common(ah),
679				"RX failed to go idle in 10 ms RXSM=0x%x\n",
680				reg);
681
682			return false;
683		}
684	} else {
685		REG_CLR_BIT(ah, AR_DIAG_SW,
686			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
687	}
688
689	return true;
690}
691EXPORT_SYMBOL(ath9k_hw_setrxabort);
692
693void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
694{
695	REG_WRITE(ah, AR_RXDP, rxdp);
696}
697EXPORT_SYMBOL(ath9k_hw_putrxbuf);
698
699void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
700{
701	ath9k_enable_mib_counters(ah);
702
703	ath9k_ani_reset(ah, is_scanning);
704
705	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
706}
707EXPORT_SYMBOL(ath9k_hw_startpcureceive);
708
709void ath9k_hw_abortpcurecv(struct ath_hw *ah)
710{
711	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
712
713	ath9k_hw_disable_mib_counters(ah);
714}
715EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
716
717bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
718{
719#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
720	struct ath_common *common = ath9k_hw_common(ah);
721	u32 mac_status, last_mac_status = 0;
722	int i;
723
724	/* Enable access to the DMA observation bus */
725	REG_WRITE(ah, AR_MACMISC,
726		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
727		   (AR_MACMISC_MISC_OBS_BUS_1 <<
728		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
729
730	REG_WRITE(ah, AR_CR, AR_CR_RXD);
731
732	/* Wait for rx enable bit to go low */
733	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
734		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
735			break;
736
737		if (!AR_SREV_9300_20_OR_LATER(ah)) {
738			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
739			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
740				*reset = true;
741				break;
742			}
743
744			last_mac_status = mac_status;
745		}
746
747		udelay(AH_TIME_QUANTUM);
748	}
749
750	if (i == 0) {
751		ath_err(common,
752			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
753			AH_RX_STOP_DMA_TIMEOUT / 1000,
754			REG_READ(ah, AR_CR),
755			REG_READ(ah, AR_DIAG_SW),
756			REG_READ(ah, AR_DMADBG_7));
757		return false;
758	} else {
759		return true;
760	}
761
762#undef AH_RX_STOP_DMA_TIMEOUT
763}
764EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
765
766int ath9k_hw_beaconq_setup(struct ath_hw *ah)
767{
768	struct ath9k_tx_queue_info qi;
769
770	memset(&qi, 0, sizeof(qi));
771	qi.tqi_aifs = 1;
772	qi.tqi_cwmin = 0;
773	qi.tqi_cwmax = 0;
774	/* NB: don't enable any interrupts */
 
 
 
775	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
776}
777EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
778
779bool ath9k_hw_intrpend(struct ath_hw *ah)
780{
781	u32 host_isr;
782
783	if (AR_SREV_9100(ah))
784		return true;
785
786	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
787	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
 
 
 
788		return true;
789
790	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
791	if ((host_isr & AR_INTR_SYNC_DEFAULT)
792	    && (host_isr != AR_INTR_SPURIOUS))
793		return true;
794
795	return false;
796}
797EXPORT_SYMBOL(ath9k_hw_intrpend);
798
799void ath9k_hw_disable_interrupts(struct ath_hw *ah)
800{
801	struct ath_common *common = ath9k_hw_common(ah);
802
803	ath_dbg(common, ATH_DBG_INTERRUPT, "disable IER\n");
804	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
805	(void) REG_READ(ah, AR_IER);
806	if (!AR_SREV_9100(ah)) {
807		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
808		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
809
810		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
811		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
812	}
813}
 
 
 
 
 
 
 
 
 
 
 
814EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
815
816void ath9k_hw_enable_interrupts(struct ath_hw *ah)
817{
818	struct ath_common *common = ath9k_hw_common(ah);
819	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 
820
821	if (!(ah->imask & ATH9K_INT_GLOBAL))
822		return;
823
824	if (AR_SREV_9340(ah))
825		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
826
827	ath_dbg(common, ATH_DBG_INTERRUPT, "enable IER\n");
 
 
 
 
 
828	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
829	if (!AR_SREV_9100(ah)) {
830		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
831			  AR_INTR_MAC_IRQ);
832		REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
833
834
835		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
836		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
837	}
838	ath_dbg(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
839		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840}
841EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
842
843void ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
844{
845	enum ath9k_int omask = ah->imask;
846	u32 mask, mask2;
847	struct ath9k_hw_capabilities *pCap = &ah->caps;
848	struct ath_common *common = ath9k_hw_common(ah);
849
850	if (!(ints & ATH9K_INT_GLOBAL))
851		ath9k_hw_disable_interrupts(ah);
852
853	ath_dbg(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
 
 
 
 
 
 
 
854
855	/* TODO: global int Ref count */
856	mask = ints & ATH9K_INT_COMMON;
857	mask2 = 0;
858
 
859	if (ints & ATH9K_INT_TX) {
 
860		if (ah->config.tx_intr_mitigation)
861			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
862		else {
863			if (ah->txok_interrupt_mask)
864				mask |= AR_IMR_TXOK;
865			if (ah->txdesc_interrupt_mask)
866				mask |= AR_IMR_TXDESC;
867		}
868		if (ah->txerr_interrupt_mask)
869			mask |= AR_IMR_TXERR;
870		if (ah->txeol_interrupt_mask)
871			mask |= AR_IMR_TXEOL;
872	}
873	if (ints & ATH9K_INT_RX) {
 
874		if (AR_SREV_9300_20_OR_LATER(ah)) {
875			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
876			if (ah->config.rx_intr_mitigation) {
877				mask &= ~AR_IMR_RXOK_LP;
878				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
879			} else {
880				mask |= AR_IMR_RXOK_LP;
881			}
882		} else {
883			if (ah->config.rx_intr_mitigation)
884				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
885			else
886				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
887		}
888		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
889			mask |= AR_IMR_GENTMR;
890	}
891
892	if (ints & ATH9K_INT_GENTIMER)
893		mask |= AR_IMR_GENTMR;
894
895	if (ints & (ATH9K_INT_BMISC)) {
896		mask |= AR_IMR_BCNMISC;
897		if (ints & ATH9K_INT_TIM)
898			mask2 |= AR_IMR_S2_TIM;
899		if (ints & ATH9K_INT_DTIM)
900			mask2 |= AR_IMR_S2_DTIM;
901		if (ints & ATH9K_INT_DTIMSYNC)
902			mask2 |= AR_IMR_S2_DTIMSYNC;
903		if (ints & ATH9K_INT_CABEND)
904			mask2 |= AR_IMR_S2_CABEND;
905		if (ints & ATH9K_INT_TSFOOR)
906			mask2 |= AR_IMR_S2_TSFOOR;
907	}
908
909	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
910		mask |= AR_IMR_BCNMISC;
911		if (ints & ATH9K_INT_GTT)
912			mask2 |= AR_IMR_S2_GTT;
913		if (ints & ATH9K_INT_CST)
914			mask2 |= AR_IMR_S2_CST;
915	}
916
917	ath_dbg(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
 
 
 
 
 
 
 
918	REG_WRITE(ah, AR_IMR, mask);
919	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
920			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
921			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
 
 
 
 
 
 
 
 
 
 
 
922	ah->imrs2_reg |= mask2;
923	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
924
925	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
926		if (ints & ATH9K_INT_TIM_TIMER)
927			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
928		else
929			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
930	}
931
932	if (ints & ATH9K_INT_GLOBAL)
933		ath9k_hw_enable_interrupts(ah);
934
935	return;
936}
937EXPORT_SYMBOL(ath9k_hw_set_interrupts);
v5.9
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include "hw-ops.h"
  19#include <linux/export.h>
  20
  21static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
  22					struct ath9k_tx_queue_info *qi)
  23{
  24	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
  25		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
  26		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
  27		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
  28		ah->txurn_interrupt_mask);
  29
  30	ENABLE_REGWRITE_BUFFER(ah);
  31
  32	REG_WRITE(ah, AR_IMR_S0,
  33		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
  34		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
  35	REG_WRITE(ah, AR_IMR_S1,
  36		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
  37		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
  38
  39	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
  40	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
  41	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  42
  43	REGWRITE_BUFFER_FLUSH(ah);
  44}
  45
  46u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
  47{
  48	return REG_READ(ah, AR_QTXDP(q));
  49}
  50EXPORT_SYMBOL(ath9k_hw_gettxbuf);
  51
  52void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
  53{
  54	REG_WRITE(ah, AR_QTXDP(q), txdp);
  55}
  56EXPORT_SYMBOL(ath9k_hw_puttxbuf);
  57
  58void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
  59{
  60	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
 
  61	REG_WRITE(ah, AR_Q_TXE, 1 << q);
  62}
  63EXPORT_SYMBOL(ath9k_hw_txstart);
  64
 
 
 
 
 
 
 
 
 
 
 
 
  65u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
  66{
  67	u32 npend;
  68
  69	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
  70	if (npend == 0) {
  71
  72		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
  73			npend = 1;
  74	}
  75
  76	return npend;
  77}
  78EXPORT_SYMBOL(ath9k_hw_numtxpending);
  79
  80/**
  81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
  82 *
  83 * @ah: atheros hardware struct
  84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
  85 *
  86 * The frame trigger level specifies the minimum number of bytes,
  87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
  88 * before the PCU will initiate sending the frame on the air. This can
  89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
  90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
  91 * first)
  92 *
  93 * Caution must be taken to ensure to set the frame trigger level based
  94 * on the DMA request size. For example if the DMA request size is set to
  95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
  96 * there need to be enough space in the tx FIFO for the requested transfer
  97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
  98 * the threshold to a value beyond 6, then the transmit will hang.
  99 *
 100 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
 101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
 102 * there is a hardware issue which forces us to use 2 KB instead so the
 103 * frame trigger level must not exceed 2 KB for these chipsets.
 104 */
 105bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
 106{
 107	u32 txcfg, curLevel, newLevel;
 108
 109	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
 110		return false;
 111
 112	ath9k_hw_disable_interrupts(ah);
 113
 114	txcfg = REG_READ(ah, AR_TXCFG);
 115	curLevel = MS(txcfg, AR_FTRIG);
 116	newLevel = curLevel;
 117	if (bIncTrigLevel) {
 118		if (curLevel < ah->config.max_txtrig_level)
 119			newLevel++;
 120	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
 121		newLevel--;
 122	if (newLevel != curLevel)
 123		REG_WRITE(ah, AR_TXCFG,
 124			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
 125
 126	ath9k_hw_enable_interrupts(ah);
 127
 128	ah->tx_trig_level = newLevel;
 129
 130	return newLevel != curLevel;
 131}
 132EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
 133
 134void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
 135{
 136	int maxdelay = 1000;
 137	int i, q;
 138
 139	if (ah->curchan) {
 140		if (IS_CHAN_HALF_RATE(ah->curchan))
 141			maxdelay *= 2;
 142		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
 143			maxdelay *= 4;
 144	}
 145
 146	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
 147
 148	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
 149	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
 150	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
 151
 152	for (q = 0; q < AR_NUM_QCU; q++) {
 153		for (i = 0; i < maxdelay; i++) {
 154			if (i)
 155				udelay(5);
 156
 157			if (!ath9k_hw_numtxpending(ah, q))
 158				break;
 159		}
 160	}
 161
 162	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
 163	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
 164	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
 165
 166	REG_WRITE(ah, AR_Q_TXD, 0);
 167}
 168EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
 169
 170bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
 171{
 172#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
 173#define ATH9K_TIME_QUANTUM		100     /* usec */
 174	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
 175	int wait;
 176
 177	REG_WRITE(ah, AR_Q_TXD, 1 << q);
 178
 179	for (wait = wait_time; wait != 0; wait--) {
 180		if (wait != wait_time)
 181			udelay(ATH9K_TIME_QUANTUM);
 182
 183		if (ath9k_hw_numtxpending(ah, q) == 0)
 184			break;
 185	}
 186
 187	REG_WRITE(ah, AR_Q_TXD, 0);
 188
 189	return wait != 0;
 190
 191#undef ATH9K_TX_STOP_DMA_TIMEOUT
 192#undef ATH9K_TIME_QUANTUM
 193}
 194EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
 195
 
 
 
 
 
 
 
 196bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
 197			    const struct ath9k_tx_queue_info *qinfo)
 198{
 199	u32 cw;
 200	struct ath_common *common = ath9k_hw_common(ah);
 201	struct ath9k_tx_queue_info *qi;
 202
 203	qi = &ah->txq[q];
 204	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
 205		ath_dbg(common, QUEUE,
 206			"Set TXQ properties, inactive queue: %u\n", q);
 207		return false;
 208	}
 209
 210	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
 211
 212	qi->tqi_ver = qinfo->tqi_ver;
 213	qi->tqi_subtype = qinfo->tqi_subtype;
 214	qi->tqi_qflags = qinfo->tqi_qflags;
 215	qi->tqi_priority = qinfo->tqi_priority;
 216	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
 217		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
 218	else
 219		qi->tqi_aifs = INIT_AIFS;
 220	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
 221		cw = min(qinfo->tqi_cwmin, 1024U);
 222		qi->tqi_cwmin = 1;
 223		while (qi->tqi_cwmin < cw)
 224			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
 225	} else
 226		qi->tqi_cwmin = qinfo->tqi_cwmin;
 227	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
 228		cw = min(qinfo->tqi_cwmax, 1024U);
 229		qi->tqi_cwmax = 1;
 230		while (qi->tqi_cwmax < cw)
 231			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
 232	} else
 233		qi->tqi_cwmax = INIT_CWMAX;
 234
 235	if (qinfo->tqi_shretry != 0)
 236		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
 237	else
 238		qi->tqi_shretry = INIT_SH_RETRY;
 239	if (qinfo->tqi_lgretry != 0)
 240		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
 241	else
 242		qi->tqi_lgretry = INIT_LG_RETRY;
 243	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
 244	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
 245	qi->tqi_burstTime = qinfo->tqi_burstTime;
 246	qi->tqi_readyTime = qinfo->tqi_readyTime;
 247
 248	switch (qinfo->tqi_subtype) {
 249	case ATH9K_WME_UPSD:
 250		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
 251			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
 252		break;
 253	default:
 254		break;
 255	}
 256
 257	return true;
 258}
 259EXPORT_SYMBOL(ath9k_hw_set_txq_props);
 260
 261bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
 262			    struct ath9k_tx_queue_info *qinfo)
 263{
 264	struct ath_common *common = ath9k_hw_common(ah);
 265	struct ath9k_tx_queue_info *qi;
 266
 267	qi = &ah->txq[q];
 268	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
 269		ath_dbg(common, QUEUE,
 270			"Get TXQ properties, inactive queue: %u\n", q);
 271		return false;
 272	}
 273
 274	qinfo->tqi_qflags = qi->tqi_qflags;
 275	qinfo->tqi_ver = qi->tqi_ver;
 276	qinfo->tqi_subtype = qi->tqi_subtype;
 277	qinfo->tqi_qflags = qi->tqi_qflags;
 278	qinfo->tqi_priority = qi->tqi_priority;
 279	qinfo->tqi_aifs = qi->tqi_aifs;
 280	qinfo->tqi_cwmin = qi->tqi_cwmin;
 281	qinfo->tqi_cwmax = qi->tqi_cwmax;
 282	qinfo->tqi_shretry = qi->tqi_shretry;
 283	qinfo->tqi_lgretry = qi->tqi_lgretry;
 284	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
 285	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
 286	qinfo->tqi_burstTime = qi->tqi_burstTime;
 287	qinfo->tqi_readyTime = qi->tqi_readyTime;
 288
 289	return true;
 290}
 291EXPORT_SYMBOL(ath9k_hw_get_txq_props);
 292
 293int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
 294			  const struct ath9k_tx_queue_info *qinfo)
 295{
 296	struct ath_common *common = ath9k_hw_common(ah);
 297	struct ath9k_tx_queue_info *qi;
 298	int q;
 299
 300	switch (type) {
 301	case ATH9K_TX_QUEUE_BEACON:
 302		q = ATH9K_NUM_TX_QUEUES - 1;
 303		break;
 304	case ATH9K_TX_QUEUE_CAB:
 305		q = ATH9K_NUM_TX_QUEUES - 2;
 306		break;
 307	case ATH9K_TX_QUEUE_PSPOLL:
 308		q = 1;
 309		break;
 310	case ATH9K_TX_QUEUE_UAPSD:
 311		q = ATH9K_NUM_TX_QUEUES - 3;
 312		break;
 313	case ATH9K_TX_QUEUE_DATA:
 314		q = qinfo->tqi_subtype;
 
 
 
 
 
 
 
 315		break;
 316	default:
 317		ath_err(common, "Invalid TX queue type: %u\n", type);
 318		return -1;
 319	}
 320
 321	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
 322
 323	qi = &ah->txq[q];
 324	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
 325		ath_err(common, "TX queue: %u already active\n", q);
 326		return -1;
 327	}
 328	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
 329	qi->tqi_type = type;
 330	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
 331	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 332
 333	return q;
 334}
 335EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
 336
 337static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
 338{
 339	ah->txok_interrupt_mask &= ~(1 << q);
 340	ah->txerr_interrupt_mask &= ~(1 << q);
 341	ah->txdesc_interrupt_mask &= ~(1 << q);
 342	ah->txeol_interrupt_mask &= ~(1 << q);
 343	ah->txurn_interrupt_mask &= ~(1 << q);
 344}
 345
 346bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
 347{
 348	struct ath_common *common = ath9k_hw_common(ah);
 349	struct ath9k_tx_queue_info *qi;
 350
 351	qi = &ah->txq[q];
 352	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
 353		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
 
 354		return false;
 355	}
 356
 357	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
 358
 359	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
 360	ath9k_hw_clear_queue_interrupts(ah, q);
 
 
 
 
 361	ath9k_hw_set_txq_interrupts(ah, qi);
 362
 363	return true;
 364}
 365EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
 366
 367bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
 368{
 369	struct ath_common *common = ath9k_hw_common(ah);
 
 370	struct ath9k_tx_queue_info *qi;
 371	u32 cwMin, chanCwMin, value;
 372
 373	qi = &ah->txq[q];
 374	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
 375		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
 
 376		return true;
 377	}
 378
 379	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
 380
 381	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
 382		chanCwMin = INIT_CWMIN;
 
 
 
 383
 384		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
 385	} else
 386		cwMin = qi->tqi_cwmin;
 387
 388	ENABLE_REGWRITE_BUFFER(ah);
 389
 390	REG_WRITE(ah, AR_DLCL_IFS(q),
 391		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
 392		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
 393		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
 394
 395	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
 396		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
 397		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
 398		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
 399
 400	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
 401
 402	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
 403		REG_WRITE(ah, AR_DMISC(q),
 404			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
 405	else
 406		REG_WRITE(ah, AR_DMISC(q),
 407			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
 408
 409	if (qi->tqi_cbrPeriod) {
 410		REG_WRITE(ah, AR_QCBRCFG(q),
 411			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
 412			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
 413		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
 414			    (qi->tqi_cbrOverflowLimit ?
 415			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
 416	}
 417	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
 418		REG_WRITE(ah, AR_QRDYTIMECFG(q),
 419			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
 420			  AR_Q_RDYTIMECFG_EN);
 421	}
 422
 423	REG_WRITE(ah, AR_DCHNTIME(q),
 424		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
 425		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
 426
 427	if (qi->tqi_burstTime
 428	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
 429		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
 430
 431	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
 432		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
 433
 434	REGWRITE_BUFFER_FLUSH(ah);
 435
 436	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
 437		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
 438
 439	switch (qi->tqi_type) {
 440	case ATH9K_TX_QUEUE_BEACON:
 441		ENABLE_REGWRITE_BUFFER(ah);
 442
 443		REG_SET_BIT(ah, AR_QMISC(q),
 444			    AR_Q_MISC_FSP_DBA_GATED
 445			    | AR_Q_MISC_BEACON_USE
 446			    | AR_Q_MISC_CBR_INCR_DIS1);
 447
 448		REG_SET_BIT(ah, AR_DMISC(q),
 449			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
 450			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
 451			    | AR_D_MISC_BEACON_USE
 452			    | AR_D_MISC_POST_FR_BKOFF_DIS);
 453
 454		REGWRITE_BUFFER_FLUSH(ah);
 455
 456		/*
 457		 * cwmin and cwmax should be 0 for beacon queue
 458		 * but not for IBSS as we would create an imbalance
 459		 * on beaconing fairness for participating nodes.
 460		 */
 461		if (AR_SREV_9300_20_OR_LATER(ah) &&
 462		    ah->opmode != NL80211_IFTYPE_ADHOC) {
 463			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
 464				  | SM(0, AR_D_LCL_IFS_CWMAX)
 465				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
 466		}
 467		break;
 468	case ATH9K_TX_QUEUE_CAB:
 469		ENABLE_REGWRITE_BUFFER(ah);
 470
 471		REG_SET_BIT(ah, AR_QMISC(q),
 472			    AR_Q_MISC_FSP_DBA_GATED
 473			    | AR_Q_MISC_CBR_INCR_DIS1
 474			    | AR_Q_MISC_CBR_INCR_DIS0);
 475		value = (qi->tqi_readyTime -
 476			 (ah->config.sw_beacon_response_time -
 477			  ah->config.dma_beacon_response_time)) * 1024;
 
 478		REG_WRITE(ah, AR_QRDYTIMECFG(q),
 479			  value | AR_Q_RDYTIMECFG_EN);
 480		REG_SET_BIT(ah, AR_DMISC(q),
 481			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
 482			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
 483
 484		REGWRITE_BUFFER_FLUSH(ah);
 485
 486		break;
 487	case ATH9K_TX_QUEUE_PSPOLL:
 488		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
 489		break;
 490	case ATH9K_TX_QUEUE_UAPSD:
 491		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
 492		break;
 493	default:
 494		break;
 495	}
 496
 497	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
 498		REG_SET_BIT(ah, AR_DMISC(q),
 499			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
 500			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
 501			    AR_D_MISC_POST_FR_BKOFF_DIS);
 502	}
 503
 504	if (AR_SREV_9300_20_OR_LATER(ah))
 505		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
 506
 507	ath9k_hw_clear_queue_interrupts(ah, q);
 508	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
 509		ah->txok_interrupt_mask |= 1 << q;
 
 
 
 510		ah->txerr_interrupt_mask |= 1 << q;
 511	}
 
 512	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
 513		ah->txdesc_interrupt_mask |= 1 << q;
 
 
 514	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
 515		ah->txeol_interrupt_mask |= 1 << q;
 
 
 516	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
 517		ah->txurn_interrupt_mask |= 1 << q;
 
 
 518	ath9k_hw_set_txq_interrupts(ah, qi);
 519
 520	return true;
 521}
 522EXPORT_SYMBOL(ath9k_hw_resettxqueue);
 523
 524int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
 525			struct ath_rx_status *rs)
 526{
 527	struct ar5416_desc ads;
 528	struct ar5416_desc *adsp = AR5416DESC(ds);
 529	u32 phyerr;
 530
 531	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
 532		return -EINPROGRESS;
 533
 534	ads.u.rx = adsp->u.rx;
 535
 536	rs->rs_status = 0;
 537	rs->rs_flags = 0;
 538	rs->enc_flags = 0;
 539	rs->bw = RATE_INFO_BW_20;
 540
 541	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
 542	rs->rs_tstamp = ads.AR_RcvTimestamp;
 543
 544	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
 545		rs->rs_rssi = ATH9K_RSSI_BAD;
 546		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
 547		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
 548		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
 549		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
 550		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
 551		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
 552	} else {
 553		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
 554		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
 555						AR_RxRSSIAnt00);
 556		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
 557						AR_RxRSSIAnt01);
 558		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
 559						AR_RxRSSIAnt02);
 560		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
 561						AR_RxRSSIAnt10);
 562		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
 563						AR_RxRSSIAnt11);
 564		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
 565						AR_RxRSSIAnt12);
 566	}
 567	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
 568		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
 569	else
 570		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
 571
 572	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
 573	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
 574
 575	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
 576	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
 577	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
 
 578	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
 579
 580	/* directly mapped flags for ieee80211_rx_status */
 581	rs->enc_flags |=
 582		(ads.ds_rxstatus3 & AR_GI) ? RX_ENC_FLAG_SHORT_GI : 0;
 583	rs->bw = (ads.ds_rxstatus3 & AR_2040) ? RATE_INFO_BW_40 :
 584						RATE_INFO_BW_20;
 585	if (AR_SREV_9280_20_OR_LATER(ah))
 586		rs->enc_flags |=
 587			(ads.ds_rxstatus3 & AR_STBC) ?
 588				/* we can only Nss=1 STBC */
 589				(1 << RX_ENC_FLAG_STBC_SHIFT) : 0;
 590
 591	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
 592		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
 593	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
 594		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
 595	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
 596		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
 597
 598	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
 599		/*
 600		 * Treat these errors as mutually exclusive to avoid spurious
 601		 * extra error reports from the hardware. If a CRC error is
 602		 * reported, then decryption and MIC errors are irrelevant,
 603		 * the frame is going to be dropped either way
 604		 */
 605		if (ads.ds_rxstatus8 & AR_PHYErr) {
 
 
 606			rs->rs_status |= ATH9K_RXERR_PHY;
 607			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
 608			rs->rs_phyerr = phyerr;
 609		} else if (ads.ds_rxstatus8 & AR_CRCErr)
 610			rs->rs_status |= ATH9K_RXERR_CRC;
 611		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
 612			rs->rs_status |= ATH9K_RXERR_DECRYPT;
 613		else if (ads.ds_rxstatus8 & AR_MichaelErr)
 614			rs->rs_status |= ATH9K_RXERR_MIC;
 615	} else {
 616		if (ads.ds_rxstatus8 &
 617		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
 618			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
 619
 620		/* Only up to MCS16 supported, everything above is invalid */
 621		if (rs->rs_rate >= 0x90)
 622			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
 623	}
 624
 625	if (ads.ds_rxstatus8 & AR_KeyMiss)
 626		rs->rs_status |= ATH9K_RXERR_KEYMISS;
 627
 628	return 0;
 629}
 630EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
 631
 632/*
 633 * This can stop or re-enables RX.
 634 *
 635 * If bool is set this will kill any frame which is currently being
 636 * transferred between the MAC and baseband and also prevent any new
 637 * frames from getting started.
 638 */
 639bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
 640{
 641	u32 reg;
 642
 643	if (set) {
 644		REG_SET_BIT(ah, AR_DIAG_SW,
 645			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 646
 647		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
 648				   0, AH_WAIT_TIMEOUT)) {
 649			REG_CLR_BIT(ah, AR_DIAG_SW,
 650				    (AR_DIAG_RX_DIS |
 651				     AR_DIAG_RX_ABORT));
 652
 653			reg = REG_READ(ah, AR_OBS_BUS_1);
 654			ath_err(ath9k_hw_common(ah),
 655				"RX failed to go idle in 10 ms RXSM=0x%x\n",
 656				reg);
 657
 658			return false;
 659		}
 660	} else {
 661		REG_CLR_BIT(ah, AR_DIAG_SW,
 662			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 663	}
 664
 665	return true;
 666}
 667EXPORT_SYMBOL(ath9k_hw_setrxabort);
 668
 669void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
 670{
 671	REG_WRITE(ah, AR_RXDP, rxdp);
 672}
 673EXPORT_SYMBOL(ath9k_hw_putrxbuf);
 674
 675void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
 676{
 677	ath9k_enable_mib_counters(ah);
 678
 679	ath9k_ani_reset(ah, is_scanning);
 680
 681	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 682}
 683EXPORT_SYMBOL(ath9k_hw_startpcureceive);
 684
 685void ath9k_hw_abortpcurecv(struct ath_hw *ah)
 686{
 687	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
 688
 689	ath9k_hw_disable_mib_counters(ah);
 690}
 691EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
 692
 693bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
 694{
 695#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
 696	struct ath_common *common = ath9k_hw_common(ah);
 697	u32 mac_status, last_mac_status = 0;
 698	int i;
 699
 700	/* Enable access to the DMA observation bus */
 701	REG_WRITE(ah, AR_MACMISC,
 702		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
 703		   (AR_MACMISC_MISC_OBS_BUS_1 <<
 704		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
 705
 706	REG_WRITE(ah, AR_CR, AR_CR_RXD);
 707
 708	/* Wait for rx enable bit to go low */
 709	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
 710		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
 711			break;
 712
 713		if (!AR_SREV_9300_20_OR_LATER(ah)) {
 714			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
 715			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
 716				*reset = true;
 717				break;
 718			}
 719
 720			last_mac_status = mac_status;
 721		}
 722
 723		udelay(AH_TIME_QUANTUM);
 724	}
 725
 726	if (i == 0) {
 727		ath_err(common,
 728			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
 729			AH_RX_STOP_DMA_TIMEOUT / 1000,
 730			REG_READ(ah, AR_CR),
 731			REG_READ(ah, AR_DIAG_SW),
 732			REG_READ(ah, AR_DMADBG_7));
 733		return false;
 734	} else {
 735		return true;
 736	}
 737
 738#undef AH_RX_STOP_DMA_TIMEOUT
 739}
 740EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
 741
 742int ath9k_hw_beaconq_setup(struct ath_hw *ah)
 743{
 744	struct ath9k_tx_queue_info qi;
 745
 746	memset(&qi, 0, sizeof(qi));
 747	qi.tqi_aifs = 1;
 748	qi.tqi_cwmin = 0;
 749	qi.tqi_cwmax = 0;
 750
 751	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 752		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
 753
 754	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
 755}
 756EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
 757
 758bool ath9k_hw_intrpend(struct ath_hw *ah)
 759{
 760	u32 host_isr;
 761
 762	if (AR_SREV_9100(ah))
 763		return true;
 764
 765	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
 766
 767	if (((host_isr & AR_INTR_MAC_IRQ) ||
 768	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
 769	    (host_isr != AR_INTR_SPURIOUS))
 770		return true;
 771
 772	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
 773	if ((host_isr & AR_INTR_SYNC_DEFAULT)
 774	    && (host_isr != AR_INTR_SPURIOUS))
 775		return true;
 776
 777	return false;
 778}
 779EXPORT_SYMBOL(ath9k_hw_intrpend);
 780
 781void ath9k_hw_kill_interrupts(struct ath_hw *ah)
 782{
 783	struct ath_common *common = ath9k_hw_common(ah);
 784
 785	ath_dbg(common, INTERRUPT, "disable IER\n");
 786	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
 787	(void) REG_READ(ah, AR_IER);
 788	if (!AR_SREV_9100(ah)) {
 789		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
 790		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
 791
 792		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
 793		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
 794	}
 795}
 796EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
 797
 798void ath9k_hw_disable_interrupts(struct ath_hw *ah)
 799{
 800	if (!(ah->imask & ATH9K_INT_GLOBAL))
 801		atomic_set(&ah->intr_ref_cnt, -1);
 802	else
 803		atomic_dec(&ah->intr_ref_cnt);
 804
 805	ath9k_hw_kill_interrupts(ah);
 806}
 807EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
 808
 809static void __ath9k_hw_enable_interrupts(struct ath_hw *ah)
 810{
 811	struct ath_common *common = ath9k_hw_common(ah);
 812	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 813	u32 async_mask;
 814
 815	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 816	    AR_SREV_9561(ah))
 
 
 817		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 818
 819	async_mask = AR_INTR_MAC_IRQ;
 820
 821	if (ah->imask & ATH9K_INT_MCI)
 822		async_mask |= AR_INTR_ASYNC_MASK_MCI;
 823
 824	ath_dbg(common, INTERRUPT, "enable IER\n");
 825	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
 826	if (!AR_SREV_9100(ah)) {
 827		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
 828		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
 
 
 829
 830		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 831		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
 832	}
 833	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
 834		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
 835
 836	if (ah->msi_enabled) {
 837		u32 _msi_reg = 0;
 838		u32 i = 0;
 839		u32 msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 840
 841		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
 842			"Enabling MSI, msi_mask=0x%X\n", ah->msi_mask);
 843
 844		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, ah->msi_mask);
 845		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, ah->msi_mask);
 846		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
 847			"AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n",
 848			REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE),
 849			REG_READ(ah, AR_INTR_PRIO_ASYNC_MASK));
 850
 851		if (ah->msi_reg == 0)
 852			ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 853
 854		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
 855			"AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n",
 856			AR_PCIE_MSI, ah->msi_reg);
 857
 858		i = 0;
 859		do {
 860			REG_WRITE(ah, AR_PCIE_MSI,
 861				  (ah->msi_reg | AR_PCIE_MSI_ENABLE)
 862				  & msi_pend_addr_mask);
 863			_msi_reg = REG_READ(ah, AR_PCIE_MSI);
 864			i++;
 865		} while ((_msi_reg & AR_PCIE_MSI_ENABLE) == 0 && i < 200);
 866
 867		if (i >= 200)
 868			ath_err(ath9k_hw_common(ah),
 869				"%s: _msi_reg = 0x%X\n",
 870				__func__, _msi_reg);
 871	}
 872}
 873
 874void ath9k_hw_resume_interrupts(struct ath_hw *ah)
 875{
 876	struct ath_common *common = ath9k_hw_common(ah);
 877
 878	if (!(ah->imask & ATH9K_INT_GLOBAL))
 879		return;
 880
 881	if (atomic_read(&ah->intr_ref_cnt) != 0) {
 882		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
 883			atomic_read(&ah->intr_ref_cnt));
 884		return;
 885	}
 886
 887	__ath9k_hw_enable_interrupts(ah);
 888}
 889EXPORT_SYMBOL(ath9k_hw_resume_interrupts);
 890
 891void ath9k_hw_enable_interrupts(struct ath_hw *ah)
 892{
 893	struct ath_common *common = ath9k_hw_common(ah);
 894
 895	if (!(ah->imask & ATH9K_INT_GLOBAL))
 896		return;
 897
 898	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
 899		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
 900			atomic_read(&ah->intr_ref_cnt));
 901		return;
 902	}
 903
 904	__ath9k_hw_enable_interrupts(ah);
 905}
 906EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
 907
 908void ath9k_hw_set_interrupts(struct ath_hw *ah)
 909{
 910	enum ath9k_int ints = ah->imask;
 911	u32 mask, mask2;
 912	struct ath9k_hw_capabilities *pCap = &ah->caps;
 913	struct ath_common *common = ath9k_hw_common(ah);
 914
 915	if (!(ints & ATH9K_INT_GLOBAL))
 916		ath9k_hw_disable_interrupts(ah);
 917
 918	if (ah->msi_enabled) {
 919		ath_dbg(common, INTERRUPT, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n");
 920
 921		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 922		REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE);
 923	}
 924
 925	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
 926
 
 927	mask = ints & ATH9K_INT_COMMON;
 928	mask2 = 0;
 929
 930	ah->msi_mask = 0;
 931	if (ints & ATH9K_INT_TX) {
 932		ah->msi_mask |= AR_INTR_PRIO_TX;
 933		if (ah->config.tx_intr_mitigation)
 934			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
 935		else {
 936			if (ah->txok_interrupt_mask)
 937				mask |= AR_IMR_TXOK;
 938			if (ah->txdesc_interrupt_mask)
 939				mask |= AR_IMR_TXDESC;
 940		}
 941		if (ah->txerr_interrupt_mask)
 942			mask |= AR_IMR_TXERR;
 943		if (ah->txeol_interrupt_mask)
 944			mask |= AR_IMR_TXEOL;
 945	}
 946	if (ints & ATH9K_INT_RX) {
 947		ah->msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP;
 948		if (AR_SREV_9300_20_OR_LATER(ah)) {
 949			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
 950			if (ah->config.rx_intr_mitigation) {
 951				mask &= ~AR_IMR_RXOK_LP;
 952				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
 953			} else {
 954				mask |= AR_IMR_RXOK_LP;
 955			}
 956		} else {
 957			if (ah->config.rx_intr_mitigation)
 958				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
 959			else
 960				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
 961		}
 962		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
 963			mask |= AR_IMR_GENTMR;
 964	}
 965
 966	if (ints & ATH9K_INT_GENTIMER)
 967		mask |= AR_IMR_GENTMR;
 968
 969	if (ints & (ATH9K_INT_BMISC)) {
 970		mask |= AR_IMR_BCNMISC;
 971		if (ints & ATH9K_INT_TIM)
 972			mask2 |= AR_IMR_S2_TIM;
 973		if (ints & ATH9K_INT_DTIM)
 974			mask2 |= AR_IMR_S2_DTIM;
 975		if (ints & ATH9K_INT_DTIMSYNC)
 976			mask2 |= AR_IMR_S2_DTIMSYNC;
 977		if (ints & ATH9K_INT_CABEND)
 978			mask2 |= AR_IMR_S2_CABEND;
 979		if (ints & ATH9K_INT_TSFOOR)
 980			mask2 |= AR_IMR_S2_TSFOOR;
 981	}
 982
 983	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
 984		mask |= AR_IMR_BCNMISC;
 985		if (ints & ATH9K_INT_GTT)
 986			mask2 |= AR_IMR_S2_GTT;
 987		if (ints & ATH9K_INT_CST)
 988			mask2 |= AR_IMR_S2_CST;
 989	}
 990
 991	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
 992		if (ints & ATH9K_INT_BB_WATCHDOG) {
 993			mask |= AR_IMR_BCNMISC;
 994			mask2 |= AR_IMR_S2_BB_WATCHDOG;
 995		}
 996	}
 997
 998	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
 999	REG_WRITE(ah, AR_IMR, mask);
1000	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
1001			   AR_IMR_S2_DTIM |
1002			   AR_IMR_S2_DTIMSYNC |
1003			   AR_IMR_S2_CABEND |
1004			   AR_IMR_S2_CABTO |
1005			   AR_IMR_S2_TSFOOR |
1006			   AR_IMR_S2_GTT |
1007			   AR_IMR_S2_CST);
1008
1009	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
1010		if (ints & ATH9K_INT_BB_WATCHDOG)
1011			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
1012	}
1013
1014	ah->imrs2_reg |= mask2;
1015	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1016
1017	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1018		if (ints & ATH9K_INT_TIM_TIMER)
1019			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1020		else
1021			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1022	}
1023
 
 
 
1024	return;
1025}
1026EXPORT_SYMBOL(ath9k_hw_set_interrupts);
1027
1028#define ATH9K_HW_MAX_DCU       10
1029#define ATH9K_HW_SLICE_PER_DCU 16
1030#define ATH9K_HW_BIT_IN_SLICE  16
1031void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
1032{
1033	int dcu_idx;
1034	u32 filter;
1035
1036	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
1037		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
1038		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
1039		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
1040			     AR_D_TXBLK_WRITE_SLICE);
1041		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
1042		ath_dbg(ath9k_hw_common(ah), PS,
1043			"DCU%d staid %d set %d txfilter %08x\n",
1044			dcu_idx, destidx, set, filter);
1045		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
1046	}
1047}
1048EXPORT_SYMBOL(ath9k_hw_set_tx_filter);