Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   2 * sungem.c: Sun GEM ethernet driver.
   3 *
   4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   5 *
   6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
   9 *
  10 * NAPI and NETPOLL support
  11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12 *
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/sched.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
  43
  44#include <asm/system.h>
  45#include <asm/io.h>
  46#include <asm/byteorder.h>
  47#include <asm/uaccess.h>
  48#include <asm/irq.h>
  49
  50#ifdef CONFIG_SPARC
  51#include <asm/idprom.h>
  52#include <asm/prom.h>
  53#endif
  54
  55#ifdef CONFIG_PPC_PMAC
  56#include <asm/pci-bridge.h>
  57#include <asm/prom.h>
  58#include <asm/machdep.h>
  59#include <asm/pmac_feature.h>
  60#endif
  61
  62#include "sungem_phy.h"
  63#include "sungem.h"
  64
  65/* Stripping FCS is causing problems, disabled for now */
  66#undef STRIP_FCS
  67
  68#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
  69			 NETIF_MSG_PROBE	| \
  70			 NETIF_MSG_LINK)
  71
  72#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  73			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  74			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  75			 SUPPORTED_Pause | SUPPORTED_Autoneg)
  76
  77#define DRV_NAME	"sungem"
  78#define DRV_VERSION	"1.0"
  79#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
  80
  81static char version[] __devinitdata =
  82        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  83
  84MODULE_AUTHOR(DRV_AUTHOR);
  85MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  86MODULE_LICENSE("GPL");
  87
  88#define GEM_MODULE_NAME	"gem"
  89
  90static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  91	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  92	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  93
  94	/* These models only differ from the original GEM in
  95	 * that their tx/rx fifos are of a different size and
  96	 * they only support 10/100 speeds. -DaveM
  97	 *
  98	 * Apple's GMAC does support gigabit on machines with
  99	 * the BCM54xx PHYs. -BenH
 100	 */
 101	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
 102	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 103	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 104	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 105	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 106	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 107	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 108	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 109	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 110	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 111	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 112	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 113	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 114	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 115	{0, }
 116};
 117
 118MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 119
 120static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
 121{
 122	u32 cmd;
 123	int limit = 10000;
 124
 125	cmd  = (1 << 30);
 126	cmd |= (2 << 28);
 127	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 128	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 129	cmd |= (MIF_FRAME_TAMSB);
 130	writel(cmd, gp->regs + MIF_FRAME);
 131
 132	while (--limit) {
 133		cmd = readl(gp->regs + MIF_FRAME);
 134		if (cmd & MIF_FRAME_TALSB)
 135			break;
 136
 137		udelay(10);
 138	}
 139
 140	if (!limit)
 141		cmd = 0xffff;
 142
 143	return cmd & MIF_FRAME_DATA;
 144}
 145
 146static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
 147{
 148	struct gem *gp = netdev_priv(dev);
 149	return __phy_read(gp, mii_id, reg);
 150}
 151
 152static inline u16 phy_read(struct gem *gp, int reg)
 153{
 154	return __phy_read(gp, gp->mii_phy_addr, reg);
 155}
 156
 157static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 158{
 159	u32 cmd;
 160	int limit = 10000;
 161
 162	cmd  = (1 << 30);
 163	cmd |= (1 << 28);
 164	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 165	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 166	cmd |= (MIF_FRAME_TAMSB);
 167	cmd |= (val & MIF_FRAME_DATA);
 168	writel(cmd, gp->regs + MIF_FRAME);
 169
 170	while (limit--) {
 171		cmd = readl(gp->regs + MIF_FRAME);
 172		if (cmd & MIF_FRAME_TALSB)
 173			break;
 174
 175		udelay(10);
 176	}
 177}
 178
 179static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
 180{
 181	struct gem *gp = netdev_priv(dev);
 182	__phy_write(gp, mii_id, reg, val & 0xffff);
 183}
 184
 185static inline void phy_write(struct gem *gp, int reg, u16 val)
 186{
 187	__phy_write(gp, gp->mii_phy_addr, reg, val);
 188}
 189
 190static inline void gem_enable_ints(struct gem *gp)
 191{
 192	/* Enable all interrupts but TXDONE */
 193	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 194}
 195
 196static inline void gem_disable_ints(struct gem *gp)
 197{
 198	/* Disable all interrupts, including TXDONE */
 199	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 200	(void)readl(gp->regs + GREG_IMASK); /* write posting */
 201}
 202
 203static void gem_get_cell(struct gem *gp)
 204{
 205	BUG_ON(gp->cell_enabled < 0);
 206	gp->cell_enabled++;
 207#ifdef CONFIG_PPC_PMAC
 208	if (gp->cell_enabled == 1) {
 209		mb();
 210		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 211		udelay(10);
 212	}
 213#endif /* CONFIG_PPC_PMAC */
 214}
 215
 216/* Turn off the chip's clock */
 217static void gem_put_cell(struct gem *gp)
 218{
 219	BUG_ON(gp->cell_enabled <= 0);
 220	gp->cell_enabled--;
 221#ifdef CONFIG_PPC_PMAC
 222	if (gp->cell_enabled == 0) {
 223		mb();
 224		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 225		udelay(10);
 226	}
 227#endif /* CONFIG_PPC_PMAC */
 228}
 229
 230static inline void gem_netif_stop(struct gem *gp)
 231{
 232	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
 233	napi_disable(&gp->napi);
 234	netif_tx_disable(gp->dev);
 235}
 236
 237static inline void gem_netif_start(struct gem *gp)
 238{
 239	/* NOTE: unconditional netif_wake_queue is only
 240	 * appropriate so long as all callers are assured to
 241	 * have free tx slots.
 242	 */
 243	netif_wake_queue(gp->dev);
 244	napi_enable(&gp->napi);
 245}
 246
 247static void gem_schedule_reset(struct gem *gp)
 248{
 249	gp->reset_task_pending = 1;
 250	schedule_work(&gp->reset_task);
 251}
 252
 253static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 254{
 255	if (netif_msg_intr(gp))
 256		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 257}
 258
 259static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 260{
 261	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 262	u32 pcs_miistat;
 263
 264	if (netif_msg_intr(gp))
 265		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 266			gp->dev->name, pcs_istat);
 267
 268	if (!(pcs_istat & PCS_ISTAT_LSC)) {
 269		netdev_err(dev, "PCS irq but no link status change???\n");
 270		return 0;
 271	}
 272
 273	/* The link status bit latches on zero, so you must
 274	 * read it twice in such a case to see a transition
 275	 * to the link being up.
 276	 */
 277	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 278	if (!(pcs_miistat & PCS_MIISTAT_LS))
 279		pcs_miistat |=
 280			(readl(gp->regs + PCS_MIISTAT) &
 281			 PCS_MIISTAT_LS);
 282
 283	if (pcs_miistat & PCS_MIISTAT_ANC) {
 284		/* The remote-fault indication is only valid
 285		 * when autoneg has completed.
 286		 */
 287		if (pcs_miistat & PCS_MIISTAT_RF)
 288			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 289		else
 290			netdev_info(dev, "PCS AutoNEG complete\n");
 291	}
 292
 293	if (pcs_miistat & PCS_MIISTAT_LS) {
 294		netdev_info(dev, "PCS link is now up\n");
 295		netif_carrier_on(gp->dev);
 296	} else {
 297		netdev_info(dev, "PCS link is now down\n");
 298		netif_carrier_off(gp->dev);
 299		/* If this happens and the link timer is not running,
 300		 * reset so we re-negotiate.
 301		 */
 302		if (!timer_pending(&gp->link_timer))
 303			return 1;
 304	}
 305
 306	return 0;
 307}
 308
 309static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 310{
 311	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 312
 313	if (netif_msg_intr(gp))
 314		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 315			gp->dev->name, txmac_stat);
 316
 317	/* Defer timer expiration is quite normal,
 318	 * don't even log the event.
 319	 */
 320	if ((txmac_stat & MAC_TXSTAT_DTE) &&
 321	    !(txmac_stat & ~MAC_TXSTAT_DTE))
 322		return 0;
 323
 324	if (txmac_stat & MAC_TXSTAT_URUN) {
 325		netdev_err(dev, "TX MAC xmit underrun\n");
 326		dev->stats.tx_fifo_errors++;
 327	}
 328
 329	if (txmac_stat & MAC_TXSTAT_MPE) {
 330		netdev_err(dev, "TX MAC max packet size error\n");
 331		dev->stats.tx_errors++;
 332	}
 333
 334	/* The rest are all cases of one of the 16-bit TX
 335	 * counters expiring.
 336	 */
 337	if (txmac_stat & MAC_TXSTAT_NCE)
 338		dev->stats.collisions += 0x10000;
 339
 340	if (txmac_stat & MAC_TXSTAT_ECE) {
 341		dev->stats.tx_aborted_errors += 0x10000;
 342		dev->stats.collisions += 0x10000;
 343	}
 344
 345	if (txmac_stat & MAC_TXSTAT_LCE) {
 346		dev->stats.tx_aborted_errors += 0x10000;
 347		dev->stats.collisions += 0x10000;
 348	}
 349
 350	/* We do not keep track of MAC_TXSTAT_FCE and
 351	 * MAC_TXSTAT_PCE events.
 352	 */
 353	return 0;
 354}
 355
 356/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 357 * so we do the following.
 358 *
 359 * If any part of the reset goes wrong, we return 1 and that causes the
 360 * whole chip to be reset.
 361 */
 362static int gem_rxmac_reset(struct gem *gp)
 363{
 364	struct net_device *dev = gp->dev;
 365	int limit, i;
 366	u64 desc_dma;
 367	u32 val;
 368
 369	/* First, reset & disable MAC RX. */
 370	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 371	for (limit = 0; limit < 5000; limit++) {
 372		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 373			break;
 374		udelay(10);
 375	}
 376	if (limit == 5000) {
 377		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 378		return 1;
 379	}
 380
 381	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 382	       gp->regs + MAC_RXCFG);
 383	for (limit = 0; limit < 5000; limit++) {
 384		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 385			break;
 386		udelay(10);
 387	}
 388	if (limit == 5000) {
 389		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 390		return 1;
 391	}
 392
 393	/* Second, disable RX DMA. */
 394	writel(0, gp->regs + RXDMA_CFG);
 395	for (limit = 0; limit < 5000; limit++) {
 396		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 397			break;
 398		udelay(10);
 399	}
 400	if (limit == 5000) {
 401		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 402		return 1;
 403	}
 404
 405	udelay(5000);
 406
 407	/* Execute RX reset command. */
 408	writel(gp->swrst_base | GREG_SWRST_RXRST,
 409	       gp->regs + GREG_SWRST);
 410	for (limit = 0; limit < 5000; limit++) {
 411		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 412			break;
 413		udelay(10);
 414	}
 415	if (limit == 5000) {
 416		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 417		return 1;
 418	}
 419
 420	/* Refresh the RX ring. */
 421	for (i = 0; i < RX_RING_SIZE; i++) {
 422		struct gem_rxd *rxd = &gp->init_block->rxd[i];
 423
 424		if (gp->rx_skbs[i] == NULL) {
 425			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 426			return 1;
 427		}
 428
 429		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 430	}
 431	gp->rx_new = gp->rx_old = 0;
 432
 433	/* Now we must reprogram the rest of RX unit. */
 434	desc_dma = (u64) gp->gblock_dvma;
 435	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 436	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 437	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 438	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 439	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 440	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
 441	writel(val, gp->regs + RXDMA_CFG);
 442	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 443		writel(((5 & RXDMA_BLANK_IPKTS) |
 444			((8 << 12) & RXDMA_BLANK_ITIME)),
 445		       gp->regs + RXDMA_BLANK);
 446	else
 447		writel(((5 & RXDMA_BLANK_IPKTS) |
 448			((4 << 12) & RXDMA_BLANK_ITIME)),
 449		       gp->regs + RXDMA_BLANK);
 450	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 451	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 452	writel(val, gp->regs + RXDMA_PTHRESH);
 453	val = readl(gp->regs + RXDMA_CFG);
 454	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 455	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 456	val = readl(gp->regs + MAC_RXCFG);
 457	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 458
 459	return 0;
 460}
 461
 462static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 463{
 464	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 465	int ret = 0;
 466
 467	if (netif_msg_intr(gp))
 468		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 469			gp->dev->name, rxmac_stat);
 470
 471	if (rxmac_stat & MAC_RXSTAT_OFLW) {
 472		u32 smac = readl(gp->regs + MAC_SMACHINE);
 473
 474		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 475		dev->stats.rx_over_errors++;
 476		dev->stats.rx_fifo_errors++;
 477
 478		ret = gem_rxmac_reset(gp);
 479	}
 480
 481	if (rxmac_stat & MAC_RXSTAT_ACE)
 482		dev->stats.rx_frame_errors += 0x10000;
 483
 484	if (rxmac_stat & MAC_RXSTAT_CCE)
 485		dev->stats.rx_crc_errors += 0x10000;
 486
 487	if (rxmac_stat & MAC_RXSTAT_LCE)
 488		dev->stats.rx_length_errors += 0x10000;
 489
 490	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 491	 * events.
 492	 */
 493	return ret;
 494}
 495
 496static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 497{
 498	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 499
 500	if (netif_msg_intr(gp))
 501		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 502			gp->dev->name, mac_cstat);
 503
 504	/* This interrupt is just for pause frame and pause
 505	 * tracking.  It is useful for diagnostics and debug
 506	 * but probably by default we will mask these events.
 507	 */
 508	if (mac_cstat & MAC_CSTAT_PS)
 509		gp->pause_entered++;
 510
 511	if (mac_cstat & MAC_CSTAT_PRCV)
 512		gp->pause_last_time_recvd = (mac_cstat >> 16);
 513
 514	return 0;
 515}
 516
 517static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 518{
 519	u32 mif_status = readl(gp->regs + MIF_STATUS);
 520	u32 reg_val, changed_bits;
 521
 522	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 523	changed_bits = (mif_status & MIF_STATUS_STAT);
 524
 525	gem_handle_mif_event(gp, reg_val, changed_bits);
 526
 527	return 0;
 528}
 529
 530static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 531{
 532	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 533
 534	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 535	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 536		netdev_err(dev, "PCI error [%04x]", pci_estat);
 537
 538		if (pci_estat & GREG_PCIESTAT_BADACK)
 539			pr_cont(" <No ACK64# during ABS64 cycle>");
 540		if (pci_estat & GREG_PCIESTAT_DTRTO)
 541			pr_cont(" <Delayed transaction timeout>");
 542		if (pci_estat & GREG_PCIESTAT_OTHER)
 543			pr_cont(" <other>");
 544		pr_cont("\n");
 545	} else {
 546		pci_estat |= GREG_PCIESTAT_OTHER;
 547		netdev_err(dev, "PCI error\n");
 548	}
 549
 550	if (pci_estat & GREG_PCIESTAT_OTHER) {
 551		u16 pci_cfg_stat;
 552
 553		/* Interrogate PCI config space for the
 554		 * true cause.
 555		 */
 556		pci_read_config_word(gp->pdev, PCI_STATUS,
 557				     &pci_cfg_stat);
 558		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
 559			   pci_cfg_stat);
 560		if (pci_cfg_stat & PCI_STATUS_PARITY)
 561			netdev_err(dev, "PCI parity error detected\n");
 562		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
 563			netdev_err(dev, "PCI target abort\n");
 564		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
 565			netdev_err(dev, "PCI master acks target abort\n");
 566		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
 567			netdev_err(dev, "PCI master abort\n");
 568		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
 569			netdev_err(dev, "PCI system error SERR#\n");
 570		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
 571			netdev_err(dev, "PCI parity error\n");
 572
 573		/* Write the error bits back to clear them. */
 574		pci_cfg_stat &= (PCI_STATUS_PARITY |
 575				 PCI_STATUS_SIG_TARGET_ABORT |
 576				 PCI_STATUS_REC_TARGET_ABORT |
 577				 PCI_STATUS_REC_MASTER_ABORT |
 578				 PCI_STATUS_SIG_SYSTEM_ERROR |
 579				 PCI_STATUS_DETECTED_PARITY);
 580		pci_write_config_word(gp->pdev,
 581				      PCI_STATUS, pci_cfg_stat);
 582	}
 583
 584	/* For all PCI errors, we should reset the chip. */
 585	return 1;
 586}
 587
 588/* All non-normal interrupt conditions get serviced here.
 589 * Returns non-zero if we should just exit the interrupt
 590 * handler right now (ie. if we reset the card which invalidates
 591 * all of the other original irq status bits).
 592 */
 593static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 594{
 595	if (gem_status & GREG_STAT_RXNOBUF) {
 596		/* Frame arrived, no free RX buffers available. */
 597		if (netif_msg_rx_err(gp))
 598			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 599				gp->dev->name);
 600		dev->stats.rx_dropped++;
 601	}
 602
 603	if (gem_status & GREG_STAT_RXTAGERR) {
 604		/* corrupt RX tag framing */
 605		if (netif_msg_rx_err(gp))
 606			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 607				gp->dev->name);
 608		dev->stats.rx_errors++;
 609
 610		return 1;
 611	}
 612
 613	if (gem_status & GREG_STAT_PCS) {
 614		if (gem_pcs_interrupt(dev, gp, gem_status))
 615			return 1;
 616	}
 617
 618	if (gem_status & GREG_STAT_TXMAC) {
 619		if (gem_txmac_interrupt(dev, gp, gem_status))
 620			return 1;
 621	}
 622
 623	if (gem_status & GREG_STAT_RXMAC) {
 624		if (gem_rxmac_interrupt(dev, gp, gem_status))
 625			return 1;
 626	}
 627
 628	if (gem_status & GREG_STAT_MAC) {
 629		if (gem_mac_interrupt(dev, gp, gem_status))
 630			return 1;
 631	}
 632
 633	if (gem_status & GREG_STAT_MIF) {
 634		if (gem_mif_interrupt(dev, gp, gem_status))
 635			return 1;
 636	}
 637
 638	if (gem_status & GREG_STAT_PCIERR) {
 639		if (gem_pci_interrupt(dev, gp, gem_status))
 640			return 1;
 641	}
 642
 643	return 0;
 644}
 645
 646static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 647{
 648	int entry, limit;
 649
 650	entry = gp->tx_old;
 651	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 652	while (entry != limit) {
 653		struct sk_buff *skb;
 654		struct gem_txd *txd;
 655		dma_addr_t dma_addr;
 656		u32 dma_len;
 657		int frag;
 658
 659		if (netif_msg_tx_done(gp))
 660			printk(KERN_DEBUG "%s: tx done, slot %d\n",
 661				gp->dev->name, entry);
 662		skb = gp->tx_skbs[entry];
 663		if (skb_shinfo(skb)->nr_frags) {
 664			int last = entry + skb_shinfo(skb)->nr_frags;
 665			int walk = entry;
 666			int incomplete = 0;
 667
 668			last &= (TX_RING_SIZE - 1);
 669			for (;;) {
 670				walk = NEXT_TX(walk);
 671				if (walk == limit)
 672					incomplete = 1;
 673				if (walk == last)
 674					break;
 675			}
 676			if (incomplete)
 677				break;
 678		}
 679		gp->tx_skbs[entry] = NULL;
 680		dev->stats.tx_bytes += skb->len;
 681
 682		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 683			txd = &gp->init_block->txd[entry];
 684
 685			dma_addr = le64_to_cpu(txd->buffer);
 686			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 687
 688			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
 689			entry = NEXT_TX(entry);
 690		}
 691
 692		dev->stats.tx_packets++;
 693		dev_kfree_skb(skb);
 694	}
 695	gp->tx_old = entry;
 696
 697	/* Need to make the tx_old update visible to gem_start_xmit()
 698	 * before checking for netif_queue_stopped().  Without the
 699	 * memory barrier, there is a small possibility that gem_start_xmit()
 700	 * will miss it and cause the queue to be stopped forever.
 701	 */
 702	smp_mb();
 703
 704	if (unlikely(netif_queue_stopped(dev) &&
 705		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 706		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 707
 708		__netif_tx_lock(txq, smp_processor_id());
 709		if (netif_queue_stopped(dev) &&
 710		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 711			netif_wake_queue(dev);
 712		__netif_tx_unlock(txq);
 713	}
 714}
 715
 716static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 717{
 718	int cluster_start, curr, count, kick;
 719
 720	cluster_start = curr = (gp->rx_new & ~(4 - 1));
 721	count = 0;
 722	kick = -1;
 723	wmb();
 724	while (curr != limit) {
 725		curr = NEXT_RX(curr);
 726		if (++count == 4) {
 727			struct gem_rxd *rxd =
 728				&gp->init_block->rxd[cluster_start];
 729			for (;;) {
 730				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 731				rxd++;
 732				cluster_start = NEXT_RX(cluster_start);
 733				if (cluster_start == curr)
 734					break;
 735			}
 736			kick = curr;
 737			count = 0;
 738		}
 739	}
 740	if (kick >= 0) {
 741		mb();
 742		writel(kick, gp->regs + RXDMA_KICK);
 743	}
 744}
 745
 746#define ALIGNED_RX_SKB_ADDR(addr) \
 747        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 748static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 749						gfp_t gfp_flags)
 750{
 751	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 752
 753	if (likely(skb)) {
 754		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 755		skb_reserve(skb, offset);
 756		skb->dev = dev;
 757	}
 758	return skb;
 759}
 760
 761static int gem_rx(struct gem *gp, int work_to_do)
 762{
 763	struct net_device *dev = gp->dev;
 764	int entry, drops, work_done = 0;
 765	u32 done;
 766	__sum16 csum;
 767
 768	if (netif_msg_rx_status(gp))
 769		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 770			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 771
 772	entry = gp->rx_new;
 773	drops = 0;
 774	done = readl(gp->regs + RXDMA_DONE);
 775	for (;;) {
 776		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 777		struct sk_buff *skb;
 778		u64 status = le64_to_cpu(rxd->status_word);
 779		dma_addr_t dma_addr;
 780		int len;
 781
 782		if ((status & RXDCTRL_OWN) != 0)
 783			break;
 784
 785		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 786			break;
 787
 788		/* When writing back RX descriptor, GEM writes status
 789		 * then buffer address, possibly in separate transactions.
 790		 * If we don't wait for the chip to write both, we could
 791		 * post a new buffer to this descriptor then have GEM spam
 792		 * on the buffer address.  We sync on the RX completion
 793		 * register to prevent this from happening.
 794		 */
 795		if (entry == done) {
 796			done = readl(gp->regs + RXDMA_DONE);
 797			if (entry == done)
 798				break;
 799		}
 800
 801		/* We can now account for the work we're about to do */
 802		work_done++;
 803
 804		skb = gp->rx_skbs[entry];
 805
 806		len = (status & RXDCTRL_BUFSZ) >> 16;
 807		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 808			dev->stats.rx_errors++;
 809			if (len < ETH_ZLEN)
 810				dev->stats.rx_length_errors++;
 811			if (len & RXDCTRL_BAD)
 812				dev->stats.rx_crc_errors++;
 813
 814			/* We'll just return it to GEM. */
 815		drop_it:
 816			dev->stats.rx_dropped++;
 817			goto next;
 818		}
 819
 820		dma_addr = le64_to_cpu(rxd->buffer);
 821		if (len > RX_COPY_THRESHOLD) {
 822			struct sk_buff *new_skb;
 823
 824			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 825			if (new_skb == NULL) {
 826				drops++;
 827				goto drop_it;
 828			}
 829			pci_unmap_page(gp->pdev, dma_addr,
 830				       RX_BUF_ALLOC_SIZE(gp),
 831				       PCI_DMA_FROMDEVICE);
 832			gp->rx_skbs[entry] = new_skb;
 833			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 834			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
 835							       virt_to_page(new_skb->data),
 836							       offset_in_page(new_skb->data),
 837							       RX_BUF_ALLOC_SIZE(gp),
 838							       PCI_DMA_FROMDEVICE));
 839			skb_reserve(new_skb, RX_OFFSET);
 840
 841			/* Trim the original skb for the netif. */
 842			skb_trim(skb, len);
 843		} else {
 844			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 845
 846			if (copy_skb == NULL) {
 847				drops++;
 848				goto drop_it;
 849			}
 850
 851			skb_reserve(copy_skb, 2);
 852			skb_put(copy_skb, len);
 853			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 854			skb_copy_from_linear_data(skb, copy_skb->data, len);
 855			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 856
 857			/* We'll reuse the original ring buffer. */
 858			skb = copy_skb;
 859		}
 860
 861		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 862		skb->csum = csum_unfold(csum);
 863		skb->ip_summed = CHECKSUM_COMPLETE;
 864		skb->protocol = eth_type_trans(skb, gp->dev);
 865
 866		napi_gro_receive(&gp->napi, skb);
 867
 868		dev->stats.rx_packets++;
 869		dev->stats.rx_bytes += len;
 870
 871	next:
 872		entry = NEXT_RX(entry);
 873	}
 874
 875	gem_post_rxds(gp, entry);
 876
 877	gp->rx_new = entry;
 878
 879	if (drops)
 880		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 881
 882	return work_done;
 883}
 884
 885static int gem_poll(struct napi_struct *napi, int budget)
 886{
 887	struct gem *gp = container_of(napi, struct gem, napi);
 888	struct net_device *dev = gp->dev;
 889	int work_done;
 890
 891	work_done = 0;
 892	do {
 893		/* Handle anomalies */
 894		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 895			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 896			int reset;
 897
 898			/* We run the abnormal interrupt handling code with
 899			 * the Tx lock. It only resets the Rx portion of the
 900			 * chip, but we need to guard it against DMA being
 901			 * restarted by the link poll timer
 902			 */
 903			__netif_tx_lock(txq, smp_processor_id());
 904			reset = gem_abnormal_irq(dev, gp, gp->status);
 905			__netif_tx_unlock(txq);
 906			if (reset) {
 907				gem_schedule_reset(gp);
 908				napi_complete(napi);
 909				return work_done;
 910			}
 911		}
 912
 913		/* Run TX completion thread */
 914		gem_tx(dev, gp, gp->status);
 915
 916		/* Run RX thread. We don't use any locking here,
 917		 * code willing to do bad things - like cleaning the
 918		 * rx ring - must call napi_disable(), which
 919		 * schedule_timeout()'s if polling is already disabled.
 920		 */
 921		work_done += gem_rx(gp, budget - work_done);
 922
 923		if (work_done >= budget)
 924			return work_done;
 925
 926		gp->status = readl(gp->regs + GREG_STAT);
 927	} while (gp->status & GREG_STAT_NAPI);
 928
 929	napi_complete(napi);
 930	gem_enable_ints(gp);
 931
 932	return work_done;
 933}
 934
 935static irqreturn_t gem_interrupt(int irq, void *dev_id)
 936{
 937	struct net_device *dev = dev_id;
 938	struct gem *gp = netdev_priv(dev);
 939
 940	if (napi_schedule_prep(&gp->napi)) {
 941		u32 gem_status = readl(gp->regs + GREG_STAT);
 942
 943		if (unlikely(gem_status == 0)) {
 944			napi_enable(&gp->napi);
 945			return IRQ_NONE;
 946		}
 947		if (netif_msg_intr(gp))
 948			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 949			       gp->dev->name, gem_status);
 950
 951		gp->status = gem_status;
 952		gem_disable_ints(gp);
 953		__napi_schedule(&gp->napi);
 954	}
 955
 956	/* If polling was disabled at the time we received that
 957	 * interrupt, we may return IRQ_HANDLED here while we
 958	 * should return IRQ_NONE. No big deal...
 959	 */
 960	return IRQ_HANDLED;
 961}
 962
 963#ifdef CONFIG_NET_POLL_CONTROLLER
 964static void gem_poll_controller(struct net_device *dev)
 965{
 966	struct gem *gp = netdev_priv(dev);
 967
 968	disable_irq(gp->pdev->irq);
 969	gem_interrupt(gp->pdev->irq, dev);
 970	enable_irq(gp->pdev->irq);
 971}
 972#endif
 973
 974static void gem_tx_timeout(struct net_device *dev)
 975{
 976	struct gem *gp = netdev_priv(dev);
 977
 978	netdev_err(dev, "transmit timed out, resetting\n");
 979
 980	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 981		   readl(gp->regs + TXDMA_CFG),
 982		   readl(gp->regs + MAC_TXSTAT),
 983		   readl(gp->regs + MAC_TXCFG));
 984	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 985		   readl(gp->regs + RXDMA_CFG),
 986		   readl(gp->regs + MAC_RXSTAT),
 987		   readl(gp->regs + MAC_RXCFG));
 988
 989	gem_schedule_reset(gp);
 990}
 991
 992static __inline__ int gem_intme(int entry)
 993{
 994	/* Algorithm: IRQ every 1/2 of descriptors. */
 995	if (!(entry & ((TX_RING_SIZE>>1)-1)))
 996		return 1;
 997
 998	return 0;
 999}
1000
1001static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1002				  struct net_device *dev)
1003{
1004	struct gem *gp = netdev_priv(dev);
1005	int entry;
1006	u64 ctrl;
1007
1008	ctrl = 0;
1009	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1010		const u64 csum_start_off = skb_checksum_start_offset(skb);
1011		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1012
1013		ctrl = (TXDCTRL_CENAB |
1014			(csum_start_off << 15) |
1015			(csum_stuff_off << 21));
1016	}
1017
1018	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1019		/* This is a hard error, log it. */
1020		if (!netif_queue_stopped(dev)) {
1021			netif_stop_queue(dev);
1022			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1023		}
1024		return NETDEV_TX_BUSY;
1025	}
1026
1027	entry = gp->tx_new;
1028	gp->tx_skbs[entry] = skb;
1029
1030	if (skb_shinfo(skb)->nr_frags == 0) {
1031		struct gem_txd *txd = &gp->init_block->txd[entry];
1032		dma_addr_t mapping;
1033		u32 len;
1034
1035		len = skb->len;
1036		mapping = pci_map_page(gp->pdev,
1037				       virt_to_page(skb->data),
1038				       offset_in_page(skb->data),
1039				       len, PCI_DMA_TODEVICE);
1040		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1041		if (gem_intme(entry))
1042			ctrl |= TXDCTRL_INTME;
1043		txd->buffer = cpu_to_le64(mapping);
1044		wmb();
1045		txd->control_word = cpu_to_le64(ctrl);
1046		entry = NEXT_TX(entry);
1047	} else {
1048		struct gem_txd *txd;
1049		u32 first_len;
1050		u64 intme;
1051		dma_addr_t first_mapping;
1052		int frag, first_entry = entry;
1053
1054		intme = 0;
1055		if (gem_intme(entry))
1056			intme |= TXDCTRL_INTME;
1057
1058		/* We must give this initial chunk to the device last.
1059		 * Otherwise we could race with the device.
1060		 */
1061		first_len = skb_headlen(skb);
1062		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1063					     offset_in_page(skb->data),
1064					     first_len, PCI_DMA_TODEVICE);
1065		entry = NEXT_TX(entry);
1066
1067		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1068			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1069			u32 len;
1070			dma_addr_t mapping;
1071			u64 this_ctrl;
1072
1073			len = this_frag->size;
1074			mapping = pci_map_page(gp->pdev,
1075					       this_frag->page,
1076					       this_frag->page_offset,
1077					       len, PCI_DMA_TODEVICE);
1078			this_ctrl = ctrl;
1079			if (frag == skb_shinfo(skb)->nr_frags - 1)
1080				this_ctrl |= TXDCTRL_EOF;
1081
1082			txd = &gp->init_block->txd[entry];
1083			txd->buffer = cpu_to_le64(mapping);
1084			wmb();
1085			txd->control_word = cpu_to_le64(this_ctrl | len);
1086
1087			if (gem_intme(entry))
1088				intme |= TXDCTRL_INTME;
1089
1090			entry = NEXT_TX(entry);
1091		}
1092		txd = &gp->init_block->txd[first_entry];
1093		txd->buffer = cpu_to_le64(first_mapping);
1094		wmb();
1095		txd->control_word =
1096			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1097	}
1098
1099	gp->tx_new = entry;
1100	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1101		netif_stop_queue(dev);
1102
1103		/* netif_stop_queue() must be done before checking
1104		 * checking tx index in TX_BUFFS_AVAIL() below, because
1105		 * in gem_tx(), we update tx_old before checking for
1106		 * netif_queue_stopped().
1107		 */
1108		smp_mb();
1109		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1110			netif_wake_queue(dev);
1111	}
1112	if (netif_msg_tx_queued(gp))
1113		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1114		       dev->name, entry, skb->len);
1115	mb();
1116	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1117
1118	return NETDEV_TX_OK;
1119}
1120
1121static void gem_pcs_reset(struct gem *gp)
1122{
1123	int limit;
1124	u32 val;
1125
1126	/* Reset PCS unit. */
1127	val = readl(gp->regs + PCS_MIICTRL);
1128	val |= PCS_MIICTRL_RST;
1129	writel(val, gp->regs + PCS_MIICTRL);
1130
1131	limit = 32;
1132	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1133		udelay(100);
1134		if (limit-- <= 0)
1135			break;
1136	}
1137	if (limit < 0)
1138		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1139}
1140
1141static void gem_pcs_reinit_adv(struct gem *gp)
1142{
1143	u32 val;
1144
1145	/* Make sure PCS is disabled while changing advertisement
1146	 * configuration.
1147	 */
1148	val = readl(gp->regs + PCS_CFG);
1149	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1150	writel(val, gp->regs + PCS_CFG);
1151
1152	/* Advertise all capabilities except asymmetric
1153	 * pause.
1154	 */
1155	val = readl(gp->regs + PCS_MIIADV);
1156	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1157		PCS_MIIADV_SP | PCS_MIIADV_AP);
1158	writel(val, gp->regs + PCS_MIIADV);
1159
1160	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1161	 * and re-enable PCS.
1162	 */
1163	val = readl(gp->regs + PCS_MIICTRL);
1164	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1165	val &= ~PCS_MIICTRL_WB;
1166	writel(val, gp->regs + PCS_MIICTRL);
1167
1168	val = readl(gp->regs + PCS_CFG);
1169	val |= PCS_CFG_ENABLE;
1170	writel(val, gp->regs + PCS_CFG);
1171
1172	/* Make sure serialink loopback is off.  The meaning
1173	 * of this bit is logically inverted based upon whether
1174	 * you are in Serialink or SERDES mode.
1175	 */
1176	val = readl(gp->regs + PCS_SCTRL);
1177	if (gp->phy_type == phy_serialink)
1178		val &= ~PCS_SCTRL_LOOP;
1179	else
1180		val |= PCS_SCTRL_LOOP;
1181	writel(val, gp->regs + PCS_SCTRL);
1182}
1183
1184#define STOP_TRIES 32
1185
1186static void gem_reset(struct gem *gp)
1187{
1188	int limit;
1189	u32 val;
1190
1191	/* Make sure we won't get any more interrupts */
1192	writel(0xffffffff, gp->regs + GREG_IMASK);
1193
1194	/* Reset the chip */
1195	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1196	       gp->regs + GREG_SWRST);
1197
1198	limit = STOP_TRIES;
1199
1200	do {
1201		udelay(20);
1202		val = readl(gp->regs + GREG_SWRST);
1203		if (limit-- <= 0)
1204			break;
1205	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1206
1207	if (limit < 0)
1208		netdev_err(gp->dev, "SW reset is ghetto\n");
1209
1210	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1211		gem_pcs_reinit_adv(gp);
1212}
1213
1214static void gem_start_dma(struct gem *gp)
1215{
1216	u32 val;
1217
1218	/* We are ready to rock, turn everything on. */
1219	val = readl(gp->regs + TXDMA_CFG);
1220	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1221	val = readl(gp->regs + RXDMA_CFG);
1222	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1223	val = readl(gp->regs + MAC_TXCFG);
1224	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1225	val = readl(gp->regs + MAC_RXCFG);
1226	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1227
1228	(void) readl(gp->regs + MAC_RXCFG);
1229	udelay(100);
1230
1231	gem_enable_ints(gp);
1232
1233	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1234}
1235
1236/* DMA won't be actually stopped before about 4ms tho ...
1237 */
1238static void gem_stop_dma(struct gem *gp)
1239{
1240	u32 val;
1241
1242	/* We are done rocking, turn everything off. */
1243	val = readl(gp->regs + TXDMA_CFG);
1244	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1245	val = readl(gp->regs + RXDMA_CFG);
1246	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1247	val = readl(gp->regs + MAC_TXCFG);
1248	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1249	val = readl(gp->regs + MAC_RXCFG);
1250	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1251
1252	(void) readl(gp->regs + MAC_RXCFG);
1253
1254	/* Need to wait a bit ... done by the caller */
1255}
1256
1257
1258// XXX dbl check what that function should do when called on PCS PHY
1259static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1260{
1261	u32 advertise, features;
1262	int autoneg;
1263	int speed;
1264	int duplex;
1265
1266	if (gp->phy_type != phy_mii_mdio0 &&
1267     	    gp->phy_type != phy_mii_mdio1)
1268     	    	goto non_mii;
1269
1270	/* Setup advertise */
1271	if (found_mii_phy(gp))
1272		features = gp->phy_mii.def->features;
1273	else
1274		features = 0;
1275
1276	advertise = features & ADVERTISE_MASK;
1277	if (gp->phy_mii.advertising != 0)
1278		advertise &= gp->phy_mii.advertising;
1279
1280	autoneg = gp->want_autoneg;
1281	speed = gp->phy_mii.speed;
1282	duplex = gp->phy_mii.duplex;
1283
1284	/* Setup link parameters */
1285	if (!ep)
1286		goto start_aneg;
1287	if (ep->autoneg == AUTONEG_ENABLE) {
1288		advertise = ep->advertising;
1289		autoneg = 1;
1290	} else {
1291		autoneg = 0;
1292		speed = ethtool_cmd_speed(ep);
1293		duplex = ep->duplex;
1294	}
1295
1296start_aneg:
1297	/* Sanitize settings based on PHY capabilities */
1298	if ((features & SUPPORTED_Autoneg) == 0)
1299		autoneg = 0;
1300	if (speed == SPEED_1000 &&
1301	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1302		speed = SPEED_100;
1303	if (speed == SPEED_100 &&
1304	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1305		speed = SPEED_10;
1306	if (duplex == DUPLEX_FULL &&
1307	    !(features & (SUPPORTED_1000baseT_Full |
1308	    		  SUPPORTED_100baseT_Full |
1309	    		  SUPPORTED_10baseT_Full)))
1310	    	duplex = DUPLEX_HALF;
1311	if (speed == 0)
1312		speed = SPEED_10;
1313
1314	/* If we are asleep, we don't try to actually setup the PHY, we
1315	 * just store the settings
1316	 */
1317	if (!netif_device_present(gp->dev)) {
1318		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1319		gp->phy_mii.speed = speed;
1320		gp->phy_mii.duplex = duplex;
1321		return;
1322	}
1323
1324	/* Configure PHY & start aneg */
1325	gp->want_autoneg = autoneg;
1326	if (autoneg) {
1327		if (found_mii_phy(gp))
1328			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1329		gp->lstate = link_aneg;
1330	} else {
1331		if (found_mii_phy(gp))
1332			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1333		gp->lstate = link_force_ok;
1334	}
1335
1336non_mii:
1337	gp->timer_ticks = 0;
1338	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1339}
1340
1341/* A link-up condition has occurred, initialize and enable the
1342 * rest of the chip.
1343 */
1344static int gem_set_link_modes(struct gem *gp)
1345{
1346	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1347	int full_duplex, speed, pause;
1348	u32 val;
1349
1350	full_duplex = 0;
1351	speed = SPEED_10;
1352	pause = 0;
1353
1354	if (found_mii_phy(gp)) {
1355	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1356	    		return 1;
1357		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1358		speed = gp->phy_mii.speed;
1359		pause = gp->phy_mii.pause;
1360	} else if (gp->phy_type == phy_serialink ||
1361	    	   gp->phy_type == phy_serdes) {
1362		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1363
1364		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1365			full_duplex = 1;
1366		speed = SPEED_1000;
1367	}
1368
1369	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1370		   speed, (full_duplex ? "full" : "half"));
1371
1372
1373	/* We take the tx queue lock to avoid collisions between
1374	 * this code, the tx path and the NAPI-driven error path
1375	 */
1376	__netif_tx_lock(txq, smp_processor_id());
1377
1378	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1379	if (full_duplex) {
1380		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1381	} else {
1382		/* MAC_TXCFG_NBO must be zero. */
1383	}
1384	writel(val, gp->regs + MAC_TXCFG);
1385
1386	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1387	if (!full_duplex &&
1388	    (gp->phy_type == phy_mii_mdio0 ||
1389	     gp->phy_type == phy_mii_mdio1)) {
1390		val |= MAC_XIFCFG_DISE;
1391	} else if (full_duplex) {
1392		val |= MAC_XIFCFG_FLED;
1393	}
1394
1395	if (speed == SPEED_1000)
1396		val |= (MAC_XIFCFG_GMII);
1397
1398	writel(val, gp->regs + MAC_XIFCFG);
1399
1400	/* If gigabit and half-duplex, enable carrier extension
1401	 * mode.  Else, disable it.
1402	 */
1403	if (speed == SPEED_1000 && !full_duplex) {
1404		val = readl(gp->regs + MAC_TXCFG);
1405		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406
1407		val = readl(gp->regs + MAC_RXCFG);
1408		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409	} else {
1410		val = readl(gp->regs + MAC_TXCFG);
1411		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1412
1413		val = readl(gp->regs + MAC_RXCFG);
1414		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1415	}
1416
1417	if (gp->phy_type == phy_serialink ||
1418	    gp->phy_type == phy_serdes) {
1419 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1420
1421		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1422			pause = 1;
1423	}
1424
1425	if (!full_duplex)
1426		writel(512, gp->regs + MAC_STIME);
1427	else
1428		writel(64, gp->regs + MAC_STIME);
1429	val = readl(gp->regs + MAC_MCCFG);
1430	if (pause)
1431		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1432	else
1433		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1434	writel(val, gp->regs + MAC_MCCFG);
1435
1436	gem_start_dma(gp);
1437
1438	__netif_tx_unlock(txq);
1439
1440	if (netif_msg_link(gp)) {
1441		if (pause) {
1442			netdev_info(gp->dev,
1443				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1444				    gp->rx_fifo_sz,
1445				    gp->rx_pause_off,
1446				    gp->rx_pause_on);
1447		} else {
1448			netdev_info(gp->dev, "Pause is disabled\n");
1449		}
1450	}
1451
1452	return 0;
1453}
1454
1455static int gem_mdio_link_not_up(struct gem *gp)
1456{
1457	switch (gp->lstate) {
1458	case link_force_ret:
1459		netif_info(gp, link, gp->dev,
1460			   "Autoneg failed again, keeping forced mode\n");
1461		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1462			gp->last_forced_speed, DUPLEX_HALF);
1463		gp->timer_ticks = 5;
1464		gp->lstate = link_force_ok;
1465		return 0;
1466	case link_aneg:
1467		/* We try forced modes after a failed aneg only on PHYs that don't
1468		 * have "magic_aneg" bit set, which means they internally do the
1469		 * while forced-mode thingy. On these, we just restart aneg
1470		 */
1471		if (gp->phy_mii.def->magic_aneg)
1472			return 1;
1473		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1474		/* Try forced modes. */
1475		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1476			DUPLEX_HALF);
1477		gp->timer_ticks = 5;
1478		gp->lstate = link_force_try;
1479		return 0;
1480	case link_force_try:
1481		/* Downgrade from 100 to 10 Mbps if necessary.
1482		 * If already at 10Mbps, warn user about the
1483		 * situation every 10 ticks.
1484		 */
1485		if (gp->phy_mii.speed == SPEED_100) {
1486			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1487				DUPLEX_HALF);
1488			gp->timer_ticks = 5;
1489			netif_info(gp, link, gp->dev,
1490				   "switching to forced 10bt\n");
1491			return 0;
1492		} else
1493			return 1;
1494	default:
1495		return 0;
1496	}
1497}
1498
1499static void gem_link_timer(unsigned long data)
1500{
1501	struct gem *gp = (struct gem *) data;
1502	struct net_device *dev = gp->dev;
1503	int restart_aneg = 0;
1504
1505	/* There's no point doing anything if we're going to be reset */
1506	if (gp->reset_task_pending)
1507		return;
1508
1509	if (gp->phy_type == phy_serialink ||
1510	    gp->phy_type == phy_serdes) {
1511		u32 val = readl(gp->regs + PCS_MIISTAT);
1512
1513		if (!(val & PCS_MIISTAT_LS))
1514			val = readl(gp->regs + PCS_MIISTAT);
1515
1516		if ((val & PCS_MIISTAT_LS) != 0) {
1517			if (gp->lstate == link_up)
1518				goto restart;
1519
1520			gp->lstate = link_up;
1521			netif_carrier_on(dev);
1522			(void)gem_set_link_modes(gp);
1523		}
1524		goto restart;
1525	}
1526	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1527		/* Ok, here we got a link. If we had it due to a forced
1528		 * fallback, and we were configured for autoneg, we do
1529		 * retry a short autoneg pass. If you know your hub is
1530		 * broken, use ethtool ;)
1531		 */
1532		if (gp->lstate == link_force_try && gp->want_autoneg) {
1533			gp->lstate = link_force_ret;
1534			gp->last_forced_speed = gp->phy_mii.speed;
1535			gp->timer_ticks = 5;
1536			if (netif_msg_link(gp))
1537				netdev_info(dev,
1538					    "Got link after fallback, retrying autoneg once...\n");
1539			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1540		} else if (gp->lstate != link_up) {
1541			gp->lstate = link_up;
1542			netif_carrier_on(dev);
1543			if (gem_set_link_modes(gp))
1544				restart_aneg = 1;
1545		}
1546	} else {
1547		/* If the link was previously up, we restart the
1548		 * whole process
1549		 */
1550		if (gp->lstate == link_up) {
1551			gp->lstate = link_down;
1552			netif_info(gp, link, dev, "Link down\n");
1553			netif_carrier_off(dev);
1554			gem_schedule_reset(gp);
1555			/* The reset task will restart the timer */
1556			return;
1557		} else if (++gp->timer_ticks > 10) {
1558			if (found_mii_phy(gp))
1559				restart_aneg = gem_mdio_link_not_up(gp);
1560			else
1561				restart_aneg = 1;
1562		}
1563	}
1564	if (restart_aneg) {
1565		gem_begin_auto_negotiation(gp, NULL);
1566		return;
1567	}
1568restart:
1569	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1570}
1571
1572static void gem_clean_rings(struct gem *gp)
1573{
1574	struct gem_init_block *gb = gp->init_block;
1575	struct sk_buff *skb;
1576	int i;
1577	dma_addr_t dma_addr;
1578
1579	for (i = 0; i < RX_RING_SIZE; i++) {
1580		struct gem_rxd *rxd;
1581
1582		rxd = &gb->rxd[i];
1583		if (gp->rx_skbs[i] != NULL) {
1584			skb = gp->rx_skbs[i];
1585			dma_addr = le64_to_cpu(rxd->buffer);
1586			pci_unmap_page(gp->pdev, dma_addr,
1587				       RX_BUF_ALLOC_SIZE(gp),
1588				       PCI_DMA_FROMDEVICE);
1589			dev_kfree_skb_any(skb);
1590			gp->rx_skbs[i] = NULL;
1591		}
1592		rxd->status_word = 0;
1593		wmb();
1594		rxd->buffer = 0;
1595	}
1596
1597	for (i = 0; i < TX_RING_SIZE; i++) {
1598		if (gp->tx_skbs[i] != NULL) {
1599			struct gem_txd *txd;
1600			int frag;
1601
1602			skb = gp->tx_skbs[i];
1603			gp->tx_skbs[i] = NULL;
1604
1605			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1606				int ent = i & (TX_RING_SIZE - 1);
1607
1608				txd = &gb->txd[ent];
1609				dma_addr = le64_to_cpu(txd->buffer);
1610				pci_unmap_page(gp->pdev, dma_addr,
1611					       le64_to_cpu(txd->control_word) &
1612					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1613
1614				if (frag != skb_shinfo(skb)->nr_frags)
1615					i++;
1616			}
1617			dev_kfree_skb_any(skb);
1618		}
1619	}
1620}
1621
1622static void gem_init_rings(struct gem *gp)
1623{
1624	struct gem_init_block *gb = gp->init_block;
1625	struct net_device *dev = gp->dev;
1626	int i;
1627	dma_addr_t dma_addr;
1628
1629	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1630
1631	gem_clean_rings(gp);
1632
1633	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1634			    (unsigned)VLAN_ETH_FRAME_LEN);
1635
1636	for (i = 0; i < RX_RING_SIZE; i++) {
1637		struct sk_buff *skb;
1638		struct gem_rxd *rxd = &gb->rxd[i];
1639
1640		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1641		if (!skb) {
1642			rxd->buffer = 0;
1643			rxd->status_word = 0;
1644			continue;
1645		}
1646
1647		gp->rx_skbs[i] = skb;
1648		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1649		dma_addr = pci_map_page(gp->pdev,
1650					virt_to_page(skb->data),
1651					offset_in_page(skb->data),
1652					RX_BUF_ALLOC_SIZE(gp),
1653					PCI_DMA_FROMDEVICE);
1654		rxd->buffer = cpu_to_le64(dma_addr);
1655		wmb();
1656		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1657		skb_reserve(skb, RX_OFFSET);
1658	}
1659
1660	for (i = 0; i < TX_RING_SIZE; i++) {
1661		struct gem_txd *txd = &gb->txd[i];
1662
1663		txd->control_word = 0;
1664		wmb();
1665		txd->buffer = 0;
1666	}
1667	wmb();
1668}
1669
1670/* Init PHY interface and start link poll state machine */
1671static void gem_init_phy(struct gem *gp)
1672{
1673	u32 mifcfg;
1674
1675	/* Revert MIF CFG setting done on stop_phy */
1676	mifcfg = readl(gp->regs + MIF_CFG);
1677	mifcfg &= ~MIF_CFG_BBMODE;
1678	writel(mifcfg, gp->regs + MIF_CFG);
1679
1680	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1681		int i;
1682
1683		/* Those delay sucks, the HW seem to love them though, I'll
1684		 * serisouly consider breaking some locks here to be able
1685		 * to schedule instead
1686		 */
1687		for (i = 0; i < 3; i++) {
1688#ifdef CONFIG_PPC_PMAC
1689			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1690			msleep(20);
1691#endif
1692			/* Some PHYs used by apple have problem getting back to us,
1693			 * we do an additional reset here
1694			 */
1695			phy_write(gp, MII_BMCR, BMCR_RESET);
1696			msleep(20);
1697			if (phy_read(gp, MII_BMCR) != 0xffff)
1698				break;
1699			if (i == 2)
1700				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1701		}
1702	}
1703
1704	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1705	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1706		u32 val;
1707
1708		/* Init datapath mode register. */
1709		if (gp->phy_type == phy_mii_mdio0 ||
1710		    gp->phy_type == phy_mii_mdio1) {
1711			val = PCS_DMODE_MGM;
1712		} else if (gp->phy_type == phy_serialink) {
1713			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1714		} else {
1715			val = PCS_DMODE_ESM;
1716		}
1717
1718		writel(val, gp->regs + PCS_DMODE);
1719	}
1720
1721	if (gp->phy_type == phy_mii_mdio0 ||
1722	    gp->phy_type == phy_mii_mdio1) {
1723		/* Reset and detect MII PHY */
1724		mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1725
1726		/* Init PHY */
1727		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1728			gp->phy_mii.def->ops->init(&gp->phy_mii);
1729	} else {
1730		gem_pcs_reset(gp);
1731		gem_pcs_reinit_adv(gp);
1732	}
1733
1734	/* Default aneg parameters */
1735	gp->timer_ticks = 0;
1736	gp->lstate = link_down;
1737	netif_carrier_off(gp->dev);
1738
1739	/* Print things out */
1740	if (gp->phy_type == phy_mii_mdio0 ||
1741	    gp->phy_type == phy_mii_mdio1)
1742		netdev_info(gp->dev, "Found %s PHY\n",
1743			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1744
1745	gem_begin_auto_negotiation(gp, NULL);
1746}
1747
1748static void gem_init_dma(struct gem *gp)
1749{
1750	u64 desc_dma = (u64) gp->gblock_dvma;
1751	u32 val;
1752
1753	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1754	writel(val, gp->regs + TXDMA_CFG);
1755
1756	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1757	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1758	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1759
1760	writel(0, gp->regs + TXDMA_KICK);
1761
1762	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1763	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1764	writel(val, gp->regs + RXDMA_CFG);
1765
1766	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1767	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1768
1769	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1770
1771	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1772	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1773	writel(val, gp->regs + RXDMA_PTHRESH);
1774
1775	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1776		writel(((5 & RXDMA_BLANK_IPKTS) |
1777			((8 << 12) & RXDMA_BLANK_ITIME)),
1778		       gp->regs + RXDMA_BLANK);
1779	else
1780		writel(((5 & RXDMA_BLANK_IPKTS) |
1781			((4 << 12) & RXDMA_BLANK_ITIME)),
1782		       gp->regs + RXDMA_BLANK);
1783}
1784
1785static u32 gem_setup_multicast(struct gem *gp)
1786{
1787	u32 rxcfg = 0;
1788	int i;
1789
1790	if ((gp->dev->flags & IFF_ALLMULTI) ||
1791	    (netdev_mc_count(gp->dev) > 256)) {
1792	    	for (i=0; i<16; i++)
1793			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1794		rxcfg |= MAC_RXCFG_HFE;
1795	} else if (gp->dev->flags & IFF_PROMISC) {
1796		rxcfg |= MAC_RXCFG_PROM;
1797	} else {
1798		u16 hash_table[16];
1799		u32 crc;
1800		struct netdev_hw_addr *ha;
1801		int i;
1802
1803		memset(hash_table, 0, sizeof(hash_table));
1804		netdev_for_each_mc_addr(ha, gp->dev) {
1805			crc = ether_crc_le(6, ha->addr);
1806			crc >>= 24;
1807			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1808		}
1809	    	for (i=0; i<16; i++)
1810			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1811		rxcfg |= MAC_RXCFG_HFE;
1812	}
1813
1814	return rxcfg;
1815}
1816
1817static void gem_init_mac(struct gem *gp)
1818{
1819	unsigned char *e = &gp->dev->dev_addr[0];
1820
1821	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1822
1823	writel(0x00, gp->regs + MAC_IPG0);
1824	writel(0x08, gp->regs + MAC_IPG1);
1825	writel(0x04, gp->regs + MAC_IPG2);
1826	writel(0x40, gp->regs + MAC_STIME);
1827	writel(0x40, gp->regs + MAC_MINFSZ);
1828
1829	/* Ethernet payload + header + FCS + optional VLAN tag. */
1830	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1831
1832	writel(0x07, gp->regs + MAC_PASIZE);
1833	writel(0x04, gp->regs + MAC_JAMSIZE);
1834	writel(0x10, gp->regs + MAC_ATTLIM);
1835	writel(0x8808, gp->regs + MAC_MCTYPE);
1836
1837	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1838
1839	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1840	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1841	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1842
1843	writel(0, gp->regs + MAC_ADDR3);
1844	writel(0, gp->regs + MAC_ADDR4);
1845	writel(0, gp->regs + MAC_ADDR5);
1846
1847	writel(0x0001, gp->regs + MAC_ADDR6);
1848	writel(0xc200, gp->regs + MAC_ADDR7);
1849	writel(0x0180, gp->regs + MAC_ADDR8);
1850
1851	writel(0, gp->regs + MAC_AFILT0);
1852	writel(0, gp->regs + MAC_AFILT1);
1853	writel(0, gp->regs + MAC_AFILT2);
1854	writel(0, gp->regs + MAC_AF21MSK);
1855	writel(0, gp->regs + MAC_AF0MSK);
1856
1857	gp->mac_rx_cfg = gem_setup_multicast(gp);
1858#ifdef STRIP_FCS
1859	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1860#endif
1861	writel(0, gp->regs + MAC_NCOLL);
1862	writel(0, gp->regs + MAC_FASUCC);
1863	writel(0, gp->regs + MAC_ECOLL);
1864	writel(0, gp->regs + MAC_LCOLL);
1865	writel(0, gp->regs + MAC_DTIMER);
1866	writel(0, gp->regs + MAC_PATMPS);
1867	writel(0, gp->regs + MAC_RFCTR);
1868	writel(0, gp->regs + MAC_LERR);
1869	writel(0, gp->regs + MAC_AERR);
1870	writel(0, gp->regs + MAC_FCSERR);
1871	writel(0, gp->regs + MAC_RXCVERR);
1872
1873	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1874	 * them once a link is established.
1875	 */
1876	writel(0, gp->regs + MAC_TXCFG);
1877	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1878	writel(0, gp->regs + MAC_MCCFG);
1879	writel(0, gp->regs + MAC_XIFCFG);
1880
1881	/* Setup MAC interrupts.  We want to get all of the interesting
1882	 * counter expiration events, but we do not want to hear about
1883	 * normal rx/tx as the DMA engine tells us that.
1884	 */
1885	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1886	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1887
1888	/* Don't enable even the PAUSE interrupts for now, we
1889	 * make no use of those events other than to record them.
1890	 */
1891	writel(0xffffffff, gp->regs + MAC_MCMASK);
1892
1893	/* Don't enable GEM's WOL in normal operations
1894	 */
1895	if (gp->has_wol)
1896		writel(0, gp->regs + WOL_WAKECSR);
1897}
1898
1899static void gem_init_pause_thresholds(struct gem *gp)
1900{
1901       	u32 cfg;
1902
1903	/* Calculate pause thresholds.  Setting the OFF threshold to the
1904	 * full RX fifo size effectively disables PAUSE generation which
1905	 * is what we do for 10/100 only GEMs which have FIFOs too small
1906	 * to make real gains from PAUSE.
1907	 */
1908	if (gp->rx_fifo_sz <= (2 * 1024)) {
1909		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1910	} else {
1911		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1912		int off = (gp->rx_fifo_sz - (max_frame * 2));
1913		int on = off - max_frame;
1914
1915		gp->rx_pause_off = off;
1916		gp->rx_pause_on = on;
1917	}
1918
1919
1920	/* Configure the chip "burst" DMA mode & enable some
1921	 * HW bug fixes on Apple version
1922	 */
1923       	cfg  = 0;
1924       	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1925		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1926#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1927       	cfg |= GREG_CFG_IBURST;
1928#endif
1929       	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1930       	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1931       	writel(cfg, gp->regs + GREG_CFG);
1932
1933	/* If Infinite Burst didn't stick, then use different
1934	 * thresholds (and Apple bug fixes don't exist)
1935	 */
1936	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1937		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1938		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1939		writel(cfg, gp->regs + GREG_CFG);
1940	}
1941}
1942
1943static int gem_check_invariants(struct gem *gp)
1944{
1945	struct pci_dev *pdev = gp->pdev;
1946	u32 mif_cfg;
1947
1948	/* On Apple's sungem, we can't rely on registers as the chip
1949	 * was been powered down by the firmware. The PHY is looked
1950	 * up later on.
1951	 */
1952	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1953		gp->phy_type = phy_mii_mdio0;
1954		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1955		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1956		gp->swrst_base = 0;
1957
1958		mif_cfg = readl(gp->regs + MIF_CFG);
1959		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1960		mif_cfg |= MIF_CFG_MDI0;
1961		writel(mif_cfg, gp->regs + MIF_CFG);
1962		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1963		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1964
1965		/* We hard-code the PHY address so we can properly bring it out of
1966		 * reset later on, we can't really probe it at this point, though
1967		 * that isn't an issue.
1968		 */
1969		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1970			gp->mii_phy_addr = 1;
1971		else
1972			gp->mii_phy_addr = 0;
1973
1974		return 0;
1975	}
1976
1977	mif_cfg = readl(gp->regs + MIF_CFG);
1978
1979	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1980	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1981		/* One of the MII PHYs _must_ be present
1982		 * as this chip has no gigabit PHY.
1983		 */
1984		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1985			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1986			       mif_cfg);
1987			return -1;
1988		}
1989	}
1990
1991	/* Determine initial PHY interface type guess.  MDIO1 is the
1992	 * external PHY and thus takes precedence over MDIO0.
1993	 */
1994
1995	if (mif_cfg & MIF_CFG_MDI1) {
1996		gp->phy_type = phy_mii_mdio1;
1997		mif_cfg |= MIF_CFG_PSELECT;
1998		writel(mif_cfg, gp->regs + MIF_CFG);
1999	} else if (mif_cfg & MIF_CFG_MDI0) {
2000		gp->phy_type = phy_mii_mdio0;
2001		mif_cfg &= ~MIF_CFG_PSELECT;
2002		writel(mif_cfg, gp->regs + MIF_CFG);
2003	} else {
2004#ifdef CONFIG_SPARC
2005		const char *p;
2006
2007		p = of_get_property(gp->of_node, "shared-pins", NULL);
2008		if (p && !strcmp(p, "serdes"))
2009			gp->phy_type = phy_serdes;
2010		else
2011#endif
2012			gp->phy_type = phy_serialink;
2013	}
2014	if (gp->phy_type == phy_mii_mdio1 ||
2015	    gp->phy_type == phy_mii_mdio0) {
2016		int i;
2017
2018		for (i = 0; i < 32; i++) {
2019			gp->mii_phy_addr = i;
2020			if (phy_read(gp, MII_BMCR) != 0xffff)
2021				break;
2022		}
2023		if (i == 32) {
2024			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2025				pr_err("RIO MII phy will not respond\n");
2026				return -1;
2027			}
2028			gp->phy_type = phy_serdes;
2029		}
2030	}
2031
2032	/* Fetch the FIFO configurations now too. */
2033	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2034	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2035
2036	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2037		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2038			if (gp->tx_fifo_sz != (9 * 1024) ||
2039			    gp->rx_fifo_sz != (20 * 1024)) {
2040				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2041				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2042				return -1;
2043			}
2044			gp->swrst_base = 0;
2045		} else {
2046			if (gp->tx_fifo_sz != (2 * 1024) ||
2047			    gp->rx_fifo_sz != (2 * 1024)) {
2048				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2049				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2050				return -1;
2051			}
2052			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2053		}
2054	}
2055
2056	return 0;
2057}
2058
2059static void gem_reinit_chip(struct gem *gp)
2060{
2061	/* Reset the chip */
2062	gem_reset(gp);
2063
2064	/* Make sure ints are disabled */
2065	gem_disable_ints(gp);
2066
2067	/* Allocate & setup ring buffers */
2068	gem_init_rings(gp);
2069
2070	/* Configure pause thresholds */
2071	gem_init_pause_thresholds(gp);
2072
2073	/* Init DMA & MAC engines */
2074	gem_init_dma(gp);
2075	gem_init_mac(gp);
2076}
2077
2078
2079static void gem_stop_phy(struct gem *gp, int wol)
2080{
2081	u32 mifcfg;
2082
2083	/* Let the chip settle down a bit, it seems that helps
2084	 * for sleep mode on some models
2085	 */
2086	msleep(10);
2087
2088	/* Make sure we aren't polling PHY status change. We
2089	 * don't currently use that feature though
2090	 */
2091	mifcfg = readl(gp->regs + MIF_CFG);
2092	mifcfg &= ~MIF_CFG_POLL;
2093	writel(mifcfg, gp->regs + MIF_CFG);
2094
2095	if (wol && gp->has_wol) {
2096		unsigned char *e = &gp->dev->dev_addr[0];
2097		u32 csr;
2098
2099		/* Setup wake-on-lan for MAGIC packet */
2100		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2101		       gp->regs + MAC_RXCFG);
2102		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2103		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2104		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2105
2106		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2107		csr = WOL_WAKECSR_ENABLE;
2108		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2109			csr |= WOL_WAKECSR_MII;
2110		writel(csr, gp->regs + WOL_WAKECSR);
2111	} else {
2112		writel(0, gp->regs + MAC_RXCFG);
2113		(void)readl(gp->regs + MAC_RXCFG);
2114		/* Machine sleep will die in strange ways if we
2115		 * dont wait a bit here, looks like the chip takes
2116		 * some time to really shut down
2117		 */
2118		msleep(10);
2119	}
2120
2121	writel(0, gp->regs + MAC_TXCFG);
2122	writel(0, gp->regs + MAC_XIFCFG);
2123	writel(0, gp->regs + TXDMA_CFG);
2124	writel(0, gp->regs + RXDMA_CFG);
2125
2126	if (!wol) {
2127		gem_reset(gp);
2128		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2129		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2130
2131		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2132			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2133
2134		/* According to Apple, we must set the MDIO pins to this begnign
2135		 * state or we may 1) eat more current, 2) damage some PHYs
2136		 */
2137		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2138		writel(0, gp->regs + MIF_BBCLK);
2139		writel(0, gp->regs + MIF_BBDATA);
2140		writel(0, gp->regs + MIF_BBOENAB);
2141		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2142		(void) readl(gp->regs + MAC_XIFCFG);
2143	}
2144}
2145
2146static int gem_do_start(struct net_device *dev)
2147{
2148	struct gem *gp = netdev_priv(dev);
2149	int rc;
2150
2151	/* Enable the cell */
2152	gem_get_cell(gp);
2153
2154	/* Make sure PCI access and bus master are enabled */
2155	rc = pci_enable_device(gp->pdev);
2156	if (rc) {
2157		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2158
2159		/* Put cell and forget it for now, it will be considered as
2160		 * still asleep, a new sleep cycle may bring it back
2161		 */
2162		gem_put_cell(gp);
2163		return -ENXIO;
2164	}
2165	pci_set_master(gp->pdev);
2166
2167	/* Init & setup chip hardware */
2168	gem_reinit_chip(gp);
2169
2170	/* An interrupt might come in handy */
2171	rc = request_irq(gp->pdev->irq, gem_interrupt,
2172			 IRQF_SHARED, dev->name, (void *)dev);
2173	if (rc) {
2174		netdev_err(dev, "failed to request irq !\n");
2175
2176		gem_reset(gp);
2177		gem_clean_rings(gp);
2178		gem_put_cell(gp);
2179		return rc;
2180	}
2181
2182	/* Mark us as attached again if we come from resume(), this has
2183	 * no effect if we weren't detatched and needs to be done now.
2184	 */
2185	netif_device_attach(dev);
2186
2187	/* Restart NAPI & queues */
2188	gem_netif_start(gp);
2189
2190	/* Detect & init PHY, start autoneg etc... this will
2191	 * eventually result in starting DMA operations when
2192	 * the link is up
2193	 */
2194	gem_init_phy(gp);
2195
2196	return 0;
2197}
2198
2199static void gem_do_stop(struct net_device *dev, int wol)
2200{
2201	struct gem *gp = netdev_priv(dev);
2202
2203	/* Stop NAPI and stop tx queue */
2204	gem_netif_stop(gp);
2205
2206	/* Make sure ints are disabled. We don't care about
2207	 * synchronizing as NAPI is disabled, thus a stray
2208	 * interrupt will do nothing bad (our irq handler
2209	 * just schedules NAPI)
2210	 */
2211	gem_disable_ints(gp);
2212
2213	/* Stop the link timer */
2214	del_timer_sync(&gp->link_timer);
2215
2216	/* We cannot cancel the reset task while holding the
2217	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2218	 * if we did. This is not an issue however as the reset
2219	 * task is synchronized vs. us (rtnl_lock) and will do
2220	 * nothing if the device is down or suspended. We do
2221	 * still clear reset_task_pending to avoid a spurrious
2222	 * reset later on in case we do resume before it gets
2223	 * scheduled.
2224	 */
2225	gp->reset_task_pending = 0;
2226
2227	/* If we are going to sleep with WOL */
2228	gem_stop_dma(gp);
2229	msleep(10);
2230	if (!wol)
2231		gem_reset(gp);
2232	msleep(10);
2233
2234	/* Get rid of rings */
2235	gem_clean_rings(gp);
2236
2237	/* No irq needed anymore */
2238	free_irq(gp->pdev->irq, (void *) dev);
2239
2240	/* Shut the PHY down eventually and setup WOL */
2241	gem_stop_phy(gp, wol);
2242
2243	/* Make sure bus master is disabled */
2244	pci_disable_device(gp->pdev);
2245
2246	/* Cell not needed neither if no WOL */
2247	if (!wol)
2248		gem_put_cell(gp);
2249}
2250
2251static void gem_reset_task(struct work_struct *work)
2252{
2253	struct gem *gp = container_of(work, struct gem, reset_task);
2254
2255	/* Lock out the network stack (essentially shield ourselves
2256	 * against a racing open, close, control call, or suspend
2257	 */
2258	rtnl_lock();
2259
2260	/* Skip the reset task if suspended or closed, or if it's
2261	 * been cancelled by gem_do_stop (see comment there)
2262	 */
2263	if (!netif_device_present(gp->dev) ||
2264	    !netif_running(gp->dev) ||
2265	    !gp->reset_task_pending) {
2266		rtnl_unlock();
2267		return;
2268	}
2269
2270	/* Stop the link timer */
2271	del_timer_sync(&gp->link_timer);
2272
2273	/* Stop NAPI and tx */
2274	gem_netif_stop(gp);
2275
2276	/* Reset the chip & rings */
2277	gem_reinit_chip(gp);
2278	if (gp->lstate == link_up)
2279		gem_set_link_modes(gp);
2280
2281	/* Restart NAPI and Tx */
2282	gem_netif_start(gp);
2283
2284	/* We are back ! */
2285	gp->reset_task_pending = 0;
2286
2287	/* If the link is not up, restart autoneg, else restart the
2288	 * polling timer
2289	 */
2290	if (gp->lstate != link_up)
2291		gem_begin_auto_negotiation(gp, NULL);
2292	else
2293		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2294
2295	rtnl_unlock();
2296}
2297
2298static int gem_open(struct net_device *dev)
2299{
2300	/* We allow open while suspended, we just do nothing,
2301	 * the chip will be initialized in resume()
2302	 */
2303	if (netif_device_present(dev))
2304		return gem_do_start(dev);
2305	return 0;
2306}
2307
2308static int gem_close(struct net_device *dev)
2309{
2310	if (netif_device_present(dev))
2311		gem_do_stop(dev, 0);
2312
2313	return 0;
2314}
2315
2316#ifdef CONFIG_PM
2317static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2318{
2319	struct net_device *dev = pci_get_drvdata(pdev);
2320	struct gem *gp = netdev_priv(dev);
2321
2322	/* Lock the network stack first to avoid racing with open/close,
2323	 * reset task and setting calls
2324	 */
2325	rtnl_lock();
2326
2327	/* Not running, mark ourselves non-present, no need for
2328	 * a lock here
2329	 */
2330	if (!netif_running(dev)) {
2331		netif_device_detach(dev);
2332		rtnl_unlock();
2333		return 0;
2334	}
2335	netdev_info(dev, "suspending, WakeOnLan %s\n",
2336		    (gp->wake_on_lan && netif_running(dev)) ?
2337		    "enabled" : "disabled");
2338
2339	/* Tell the network stack we're gone. gem_do_stop() below will
2340	 * synchronize with TX, stop NAPI etc...
2341	 */
2342	netif_device_detach(dev);
2343
2344	/* Switch off chip, remember WOL setting */
2345	gp->asleep_wol = gp->wake_on_lan;
2346	gem_do_stop(dev, gp->asleep_wol);
2347
2348	/* Unlock the network stack */
2349	rtnl_unlock();
2350
2351	return 0;
2352}
2353
2354static int gem_resume(struct pci_dev *pdev)
2355{
2356	struct net_device *dev = pci_get_drvdata(pdev);
2357	struct gem *gp = netdev_priv(dev);
2358
2359	/* See locking comment in gem_suspend */
2360	rtnl_lock();
2361
2362	/* Not running, mark ourselves present, no need for
2363	 * a lock here
2364	 */
2365	if (!netif_running(dev)) {
2366		netif_device_attach(dev);
2367		rtnl_unlock();
2368		return 0;
2369	}
2370
2371	/* Restart chip. If that fails there isn't much we can do, we
2372	 * leave things stopped.
2373	 */
2374	gem_do_start(dev);
2375
2376	/* If we had WOL enabled, the cell clock was never turned off during
2377	 * sleep, so we end up beeing unbalanced. Fix that here
2378	 */
2379	if (gp->asleep_wol)
2380		gem_put_cell(gp);
2381
2382	/* Unlock the network stack */
2383	rtnl_unlock();
2384
2385	return 0;
2386}
2387#endif /* CONFIG_PM */
2388
2389static struct net_device_stats *gem_get_stats(struct net_device *dev)
2390{
2391	struct gem *gp = netdev_priv(dev);
2392
2393	/* I have seen this being called while the PM was in progress,
2394	 * so we shield against this. Let's also not poke at registers
2395	 * while the reset task is going on.
2396	 *
2397	 * TODO: Move stats collection elsewhere (link timer ?) and
2398	 * make this a nop to avoid all those synchro issues
2399	 */
2400	if (!netif_device_present(dev) || !netif_running(dev))
2401		goto bail;
2402
2403	/* Better safe than sorry... */
2404	if (WARN_ON(!gp->cell_enabled))
2405		goto bail;
2406
2407	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2408	writel(0, gp->regs + MAC_FCSERR);
2409
2410	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2411	writel(0, gp->regs + MAC_AERR);
2412
2413	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2414	writel(0, gp->regs + MAC_LERR);
2415
2416	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2417	dev->stats.collisions +=
2418		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2419	writel(0, gp->regs + MAC_ECOLL);
2420	writel(0, gp->regs + MAC_LCOLL);
2421 bail:
2422	return &dev->stats;
2423}
2424
2425static int gem_set_mac_address(struct net_device *dev, void *addr)
2426{
2427	struct sockaddr *macaddr = (struct sockaddr *) addr;
2428	struct gem *gp = netdev_priv(dev);
2429	unsigned char *e = &dev->dev_addr[0];
2430
2431	if (!is_valid_ether_addr(macaddr->sa_data))
2432		return -EADDRNOTAVAIL;
2433
2434	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2435
2436	/* We'll just catch it later when the device is up'd or resumed */
2437	if (!netif_running(dev) || !netif_device_present(dev))
2438		return 0;
2439
2440	/* Better safe than sorry... */
2441	if (WARN_ON(!gp->cell_enabled))
2442		return 0;
2443
2444	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2445	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2446	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2447
2448	return 0;
2449}
2450
2451static void gem_set_multicast(struct net_device *dev)
2452{
2453	struct gem *gp = netdev_priv(dev);
2454	u32 rxcfg, rxcfg_new;
2455	int limit = 10000;
2456
2457	if (!netif_running(dev) || !netif_device_present(dev))
2458		return;
2459
2460	/* Better safe than sorry... */
2461	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2462		return;
2463
2464	rxcfg = readl(gp->regs + MAC_RXCFG);
2465	rxcfg_new = gem_setup_multicast(gp);
2466#ifdef STRIP_FCS
2467	rxcfg_new |= MAC_RXCFG_SFCS;
2468#endif
2469	gp->mac_rx_cfg = rxcfg_new;
2470
2471	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2472	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2473		if (!limit--)
2474			break;
2475		udelay(10);
2476	}
2477
2478	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2479	rxcfg |= rxcfg_new;
2480
2481	writel(rxcfg, gp->regs + MAC_RXCFG);
2482}
2483
2484/* Jumbo-grams don't seem to work :-( */
2485#define GEM_MIN_MTU	68
2486#if 1
2487#define GEM_MAX_MTU	1500
2488#else
2489#define GEM_MAX_MTU	9000
2490#endif
2491
2492static int gem_change_mtu(struct net_device *dev, int new_mtu)
2493{
2494	struct gem *gp = netdev_priv(dev);
2495
2496	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2497		return -EINVAL;
2498
2499	dev->mtu = new_mtu;
2500
2501	/* We'll just catch it later when the device is up'd or resumed */
2502	if (!netif_running(dev) || !netif_device_present(dev))
2503		return 0;
2504
2505	/* Better safe than sorry... */
2506	if (WARN_ON(!gp->cell_enabled))
2507		return 0;
2508
2509	gem_netif_stop(gp);
2510	gem_reinit_chip(gp);
2511	if (gp->lstate == link_up)
2512		gem_set_link_modes(gp);
2513	gem_netif_start(gp);
2514
2515	return 0;
2516}
2517
2518static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2519{
2520	struct gem *gp = netdev_priv(dev);
2521
2522	strcpy(info->driver, DRV_NAME);
2523	strcpy(info->version, DRV_VERSION);
2524	strcpy(info->bus_info, pci_name(gp->pdev));
2525}
2526
2527static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2528{
2529	struct gem *gp = netdev_priv(dev);
2530
2531	if (gp->phy_type == phy_mii_mdio0 ||
2532	    gp->phy_type == phy_mii_mdio1) {
2533		if (gp->phy_mii.def)
2534			cmd->supported = gp->phy_mii.def->features;
2535		else
2536			cmd->supported = (SUPPORTED_10baseT_Half |
2537					  SUPPORTED_10baseT_Full);
2538
2539		/* XXX hardcoded stuff for now */
2540		cmd->port = PORT_MII;
2541		cmd->transceiver = XCVR_EXTERNAL;
2542		cmd->phy_address = 0; /* XXX fixed PHYAD */
2543
2544		/* Return current PHY settings */
2545		cmd->autoneg = gp->want_autoneg;
2546		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2547		cmd->duplex = gp->phy_mii.duplex;
2548		cmd->advertising = gp->phy_mii.advertising;
2549
2550		/* If we started with a forced mode, we don't have a default
2551		 * advertise set, we need to return something sensible so
2552		 * userland can re-enable autoneg properly.
2553		 */
2554		if (cmd->advertising == 0)
2555			cmd->advertising = cmd->supported;
2556	} else { // XXX PCS ?
2557		cmd->supported =
2558			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2559			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2560			 SUPPORTED_Autoneg);
2561		cmd->advertising = cmd->supported;
2562		ethtool_cmd_speed_set(cmd, 0);
2563		cmd->duplex = cmd->port = cmd->phy_address =
2564			cmd->transceiver = cmd->autoneg = 0;
2565
2566		/* serdes means usually a Fibre connector, with most fixed */
2567		if (gp->phy_type == phy_serdes) {
2568			cmd->port = PORT_FIBRE;
2569			cmd->supported = (SUPPORTED_1000baseT_Half |
2570				SUPPORTED_1000baseT_Full |
2571				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2572				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2573			cmd->advertising = cmd->supported;
2574			cmd->transceiver = XCVR_INTERNAL;
2575			if (gp->lstate == link_up)
2576				ethtool_cmd_speed_set(cmd, SPEED_1000);
2577			cmd->duplex = DUPLEX_FULL;
2578			cmd->autoneg = 1;
2579		}
2580	}
2581	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2582
2583	return 0;
2584}
2585
2586static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2587{
2588	struct gem *gp = netdev_priv(dev);
2589	u32 speed = ethtool_cmd_speed(cmd);
2590
2591	/* Verify the settings we care about. */
2592	if (cmd->autoneg != AUTONEG_ENABLE &&
2593	    cmd->autoneg != AUTONEG_DISABLE)
2594		return -EINVAL;
2595
2596	if (cmd->autoneg == AUTONEG_ENABLE &&
2597	    cmd->advertising == 0)
2598		return -EINVAL;
2599
2600	if (cmd->autoneg == AUTONEG_DISABLE &&
2601	    ((speed != SPEED_1000 &&
2602	      speed != SPEED_100 &&
2603	      speed != SPEED_10) ||
2604	     (cmd->duplex != DUPLEX_HALF &&
2605	      cmd->duplex != DUPLEX_FULL)))
2606		return -EINVAL;
2607
2608	/* Apply settings and restart link process. */
2609	if (netif_device_present(gp->dev)) {
2610		del_timer_sync(&gp->link_timer);
2611		gem_begin_auto_negotiation(gp, cmd);
2612	}
2613
2614	return 0;
2615}
2616
2617static int gem_nway_reset(struct net_device *dev)
2618{
2619	struct gem *gp = netdev_priv(dev);
2620
2621	if (!gp->want_autoneg)
2622		return -EINVAL;
2623
2624	/* Restart link process  */
2625	if (netif_device_present(gp->dev)) {
2626		del_timer_sync(&gp->link_timer);
2627		gem_begin_auto_negotiation(gp, NULL);
2628	}
2629
2630	return 0;
2631}
2632
2633static u32 gem_get_msglevel(struct net_device *dev)
2634{
2635	struct gem *gp = netdev_priv(dev);
2636	return gp->msg_enable;
2637}
2638
2639static void gem_set_msglevel(struct net_device *dev, u32 value)
2640{
2641	struct gem *gp = netdev_priv(dev);
2642	gp->msg_enable = value;
2643}
2644
2645
2646/* Add more when I understand how to program the chip */
2647/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2648
2649#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2650
2651static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2652{
2653	struct gem *gp = netdev_priv(dev);
2654
2655	/* Add more when I understand how to program the chip */
2656	if (gp->has_wol) {
2657		wol->supported = WOL_SUPPORTED_MASK;
2658		wol->wolopts = gp->wake_on_lan;
2659	} else {
2660		wol->supported = 0;
2661		wol->wolopts = 0;
2662	}
2663}
2664
2665static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666{
2667	struct gem *gp = netdev_priv(dev);
2668
2669	if (!gp->has_wol)
2670		return -EOPNOTSUPP;
2671	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2672	return 0;
2673}
2674
2675static const struct ethtool_ops gem_ethtool_ops = {
2676	.get_drvinfo		= gem_get_drvinfo,
2677	.get_link		= ethtool_op_get_link,
2678	.get_settings		= gem_get_settings,
2679	.set_settings		= gem_set_settings,
2680	.nway_reset		= gem_nway_reset,
2681	.get_msglevel		= gem_get_msglevel,
2682	.set_msglevel		= gem_set_msglevel,
2683	.get_wol		= gem_get_wol,
2684	.set_wol		= gem_set_wol,
2685};
2686
2687static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2688{
2689	struct gem *gp = netdev_priv(dev);
2690	struct mii_ioctl_data *data = if_mii(ifr);
2691	int rc = -EOPNOTSUPP;
2692
2693	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2694	 * netif_device_present() is true and holds rtnl_lock for us
2695	 * so we have nothing to worry about
2696	 */
2697
2698	switch (cmd) {
2699	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2700		data->phy_id = gp->mii_phy_addr;
2701		/* Fallthrough... */
2702
2703	case SIOCGMIIREG:		/* Read MII PHY register. */
2704		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2705					   data->reg_num & 0x1f);
2706		rc = 0;
2707		break;
2708
2709	case SIOCSMIIREG:		/* Write MII PHY register. */
2710		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2711			    data->val_in);
2712		rc = 0;
2713		break;
2714	}
2715	return rc;
2716}
2717
2718#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2719/* Fetch MAC address from vital product data of PCI ROM. */
2720static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2721{
2722	int this_offset;
2723
2724	for (this_offset = 0x20; this_offset < len; this_offset++) {
2725		void __iomem *p = rom_base + this_offset;
2726		int i;
2727
2728		if (readb(p + 0) != 0x90 ||
2729		    readb(p + 1) != 0x00 ||
2730		    readb(p + 2) != 0x09 ||
2731		    readb(p + 3) != 0x4e ||
2732		    readb(p + 4) != 0x41 ||
2733		    readb(p + 5) != 0x06)
2734			continue;
2735
2736		this_offset += 6;
2737		p += 6;
2738
2739		for (i = 0; i < 6; i++)
2740			dev_addr[i] = readb(p + i);
2741		return 1;
2742	}
2743	return 0;
2744}
2745
2746static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2747{
2748	size_t size;
2749	void __iomem *p = pci_map_rom(pdev, &size);
2750
2751	if (p) {
2752			int found;
2753
2754		found = readb(p) == 0x55 &&
2755			readb(p + 1) == 0xaa &&
2756			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2757		pci_unmap_rom(pdev, p);
2758		if (found)
2759			return;
2760	}
2761
2762	/* Sun MAC prefix then 3 random bytes. */
2763	dev_addr[0] = 0x08;
2764	dev_addr[1] = 0x00;
2765	dev_addr[2] = 0x20;
2766	get_random_bytes(dev_addr + 3, 3);
2767}
2768#endif /* not Sparc and not PPC */
2769
2770static int __devinit gem_get_device_address(struct gem *gp)
2771{
2772#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2773	struct net_device *dev = gp->dev;
2774	const unsigned char *addr;
2775
2776	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2777	if (addr == NULL) {
2778#ifdef CONFIG_SPARC
2779		addr = idprom->id_ethaddr;
2780#else
2781		printk("\n");
2782		pr_err("%s: can't get mac-address\n", dev->name);
2783		return -1;
2784#endif
2785	}
2786	memcpy(dev->dev_addr, addr, 6);
2787#else
2788	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2789#endif
2790	return 0;
2791}
2792
2793static void gem_remove_one(struct pci_dev *pdev)
2794{
2795	struct net_device *dev = pci_get_drvdata(pdev);
2796
2797	if (dev) {
2798		struct gem *gp = netdev_priv(dev);
2799
2800		unregister_netdev(dev);
2801
2802		/* Ensure reset task is truely gone */
2803		cancel_work_sync(&gp->reset_task);
2804
2805		/* Free resources */
2806		pci_free_consistent(pdev,
2807				    sizeof(struct gem_init_block),
2808				    gp->init_block,
2809				    gp->gblock_dvma);
2810		iounmap(gp->regs);
2811		pci_release_regions(pdev);
2812		free_netdev(dev);
2813
2814		pci_set_drvdata(pdev, NULL);
2815	}
2816}
2817
2818static const struct net_device_ops gem_netdev_ops = {
2819	.ndo_open		= gem_open,
2820	.ndo_stop		= gem_close,
2821	.ndo_start_xmit		= gem_start_xmit,
2822	.ndo_get_stats		= gem_get_stats,
2823	.ndo_set_multicast_list = gem_set_multicast,
2824	.ndo_do_ioctl		= gem_ioctl,
2825	.ndo_tx_timeout		= gem_tx_timeout,
2826	.ndo_change_mtu		= gem_change_mtu,
2827	.ndo_validate_addr	= eth_validate_addr,
2828	.ndo_set_mac_address    = gem_set_mac_address,
2829#ifdef CONFIG_NET_POLL_CONTROLLER
2830	.ndo_poll_controller    = gem_poll_controller,
2831#endif
2832};
2833
2834static int __devinit gem_init_one(struct pci_dev *pdev,
2835				  const struct pci_device_id *ent)
2836{
2837	unsigned long gemreg_base, gemreg_len;
2838	struct net_device *dev;
2839	struct gem *gp;
2840	int err, pci_using_dac;
2841
2842	printk_once(KERN_INFO "%s", version);
2843
2844	/* Apple gmac note: during probe, the chip is powered up by
2845	 * the arch code to allow the code below to work (and to let
2846	 * the chip be probed on the config space. It won't stay powered
2847	 * up until the interface is brought up however, so we can't rely
2848	 * on register configuration done at this point.
2849	 */
2850	err = pci_enable_device(pdev);
2851	if (err) {
2852		pr_err("Cannot enable MMIO operation, aborting\n");
2853		return err;
2854	}
2855	pci_set_master(pdev);
2856
2857	/* Configure DMA attributes. */
2858
2859	/* All of the GEM documentation states that 64-bit DMA addressing
2860	 * is fully supported and should work just fine.  However the
2861	 * front end for RIO based GEMs is different and only supports
2862	 * 32-bit addressing.
2863	 *
2864	 * For now we assume the various PPC GEMs are 32-bit only as well.
2865	 */
2866	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2867	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2868	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2869		pci_using_dac = 1;
2870	} else {
2871		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2872		if (err) {
2873			pr_err("No usable DMA configuration, aborting\n");
2874			goto err_disable_device;
2875		}
2876		pci_using_dac = 0;
2877	}
2878
2879	gemreg_base = pci_resource_start(pdev, 0);
2880	gemreg_len = pci_resource_len(pdev, 0);
2881
2882	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2883		pr_err("Cannot find proper PCI device base address, aborting\n");
2884		err = -ENODEV;
2885		goto err_disable_device;
2886	}
2887
2888	dev = alloc_etherdev(sizeof(*gp));
2889	if (!dev) {
2890		pr_err("Etherdev alloc failed, aborting\n");
2891		err = -ENOMEM;
2892		goto err_disable_device;
2893	}
2894	SET_NETDEV_DEV(dev, &pdev->dev);
2895
2896	gp = netdev_priv(dev);
2897
2898	err = pci_request_regions(pdev, DRV_NAME);
2899	if (err) {
2900		pr_err("Cannot obtain PCI resources, aborting\n");
2901		goto err_out_free_netdev;
2902	}
2903
2904	gp->pdev = pdev;
2905	dev->base_addr = (long) pdev;
2906	gp->dev = dev;
2907
2908	gp->msg_enable = DEFAULT_MSG;
2909
2910	init_timer(&gp->link_timer);
2911	gp->link_timer.function = gem_link_timer;
2912	gp->link_timer.data = (unsigned long) gp;
2913
2914	INIT_WORK(&gp->reset_task, gem_reset_task);
2915
2916	gp->lstate = link_down;
2917	gp->timer_ticks = 0;
2918	netif_carrier_off(dev);
2919
2920	gp->regs = ioremap(gemreg_base, gemreg_len);
2921	if (!gp->regs) {
2922		pr_err("Cannot map device registers, aborting\n");
2923		err = -EIO;
2924		goto err_out_free_res;
2925	}
2926
2927	/* On Apple, we want a reference to the Open Firmware device-tree
2928	 * node. We use it for clock control.
2929	 */
2930#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2931	gp->of_node = pci_device_to_OF_node(pdev);
2932#endif
2933
2934	/* Only Apple version supports WOL afaik */
2935	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2936		gp->has_wol = 1;
2937
2938	/* Make sure cell is enabled */
2939	gem_get_cell(gp);
2940
2941	/* Make sure everything is stopped and in init state */
2942	gem_reset(gp);
2943
2944	/* Fill up the mii_phy structure (even if we won't use it) */
2945	gp->phy_mii.dev = dev;
2946	gp->phy_mii.mdio_read = _phy_read;
2947	gp->phy_mii.mdio_write = _phy_write;
2948#ifdef CONFIG_PPC_PMAC
2949	gp->phy_mii.platform_data = gp->of_node;
2950#endif
2951	/* By default, we start with autoneg */
2952	gp->want_autoneg = 1;
2953
2954	/* Check fifo sizes, PHY type, etc... */
2955	if (gem_check_invariants(gp)) {
2956		err = -ENODEV;
2957		goto err_out_iounmap;
2958	}
2959
2960	/* It is guaranteed that the returned buffer will be at least
2961	 * PAGE_SIZE aligned.
2962	 */
2963	gp->init_block = (struct gem_init_block *)
2964		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2965				     &gp->gblock_dvma);
2966	if (!gp->init_block) {
2967		pr_err("Cannot allocate init block, aborting\n");
2968		err = -ENOMEM;
2969		goto err_out_iounmap;
2970	}
2971
2972	if (gem_get_device_address(gp))
2973		goto err_out_free_consistent;
2974
2975	dev->netdev_ops = &gem_netdev_ops;
2976	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2977	dev->ethtool_ops = &gem_ethtool_ops;
2978	dev->watchdog_timeo = 5 * HZ;
2979	dev->irq = pdev->irq;
2980	dev->dma = 0;
2981
2982	/* Set that now, in case PM kicks in now */
2983	pci_set_drvdata(pdev, dev);
2984
2985	/* We can do scatter/gather and HW checksum */
2986	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2987	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2988	if (pci_using_dac)
2989		dev->features |= NETIF_F_HIGHDMA;
2990
2991	/* Register with kernel */
2992	if (register_netdev(dev)) {
2993		pr_err("Cannot register net device, aborting\n");
2994		err = -ENOMEM;
2995		goto err_out_free_consistent;
2996	}
2997
2998	/* Undo the get_cell with appropriate locking (we could use
2999	 * ndo_init/uninit but that would be even more clumsy imho)
3000	 */
3001	rtnl_lock();
3002	gem_put_cell(gp);
3003	rtnl_unlock();
3004
3005	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3006		    dev->dev_addr);
3007	return 0;
3008
3009err_out_free_consistent:
3010	gem_remove_one(pdev);
3011err_out_iounmap:
3012	gem_put_cell(gp);
3013	iounmap(gp->regs);
3014
3015err_out_free_res:
3016	pci_release_regions(pdev);
3017
3018err_out_free_netdev:
3019	free_netdev(dev);
3020err_disable_device:
3021	pci_disable_device(pdev);
3022	return err;
3023
3024}
3025
3026
3027static struct pci_driver gem_driver = {
3028	.name		= GEM_MODULE_NAME,
3029	.id_table	= gem_pci_tbl,
3030	.probe		= gem_init_one,
3031	.remove		= gem_remove_one,
3032#ifdef CONFIG_PM
3033	.suspend	= gem_suspend,
3034	.resume		= gem_resume,
3035#endif /* CONFIG_PM */
3036};
3037
3038static int __init gem_init(void)
3039{
3040	return pci_register_driver(&gem_driver);
3041}
3042
3043static void __exit gem_cleanup(void)
3044{
3045	pci_unregister_driver(&gem_driver);
3046}
3047
3048module_init(gem_init);
3049module_exit(gem_cleanup);