Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0+
2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 *
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 *
7 * This driver uses the sungem driver (c) David Miller
8 * (davem@redhat.com) as its basis.
9 *
10 * The cassini chip has a number of features that distinguish it from
11 * the gem chip:
12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
13 * load balancing (non-VLAN mode)
14 * batching of multiple packets
15 * multiple CPU dispatching
16 * page-based RX descriptor engine with separate completion rings
17 * Gigabit support (GMII and PCS interface)
18 * MIF link up/down detection works
19 *
20 * RX is handled by page sized buffers that are attached as fragments to
21 * the skb. here's what's done:
22 * -- driver allocates pages at a time and keeps reference counts
23 * on them.
24 * -- the upper protocol layers assume that the header is in the skb
25 * itself. as a result, cassini will copy a small amount (64 bytes)
26 * to make them happy.
27 * -- driver appends the rest of the data pages as frags to skbuffs
28 * and increments the reference count
29 * -- on page reclamation, the driver swaps the page with a spare page.
30 * if that page is still in use, it frees its reference to that page,
31 * and allocates a new page for use. otherwise, it just recycles the
32 * the page.
33 *
34 * NOTE: cassini can parse the header. however, it's not worth it
35 * as long as the network stack requires a header copy.
36 *
37 * TX has 4 queues. currently these queues are used in a round-robin
38 * fashion for load balancing. They can also be used for QoS. for that
39 * to work, however, QoS information needs to be exposed down to the driver
40 * level so that subqueues get targeted to particular transmit rings.
41 * alternatively, the queues can be configured via use of the all-purpose
42 * ioctl.
43 *
44 * RX DATA: the rx completion ring has all the info, but the rx desc
45 * ring has all of the data. RX can conceivably come in under multiple
46 * interrupts, but the INT# assignment needs to be set up properly by
47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48 * that. also, the two descriptor rings are designed to distinguish between
49 * encrypted and non-encrypted packets, but we use them for buffering
50 * instead.
51 *
52 * by default, the selective clear mask is set up to process rx packets.
53 */
54
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57#include <linux/module.h>
58#include <linux/kernel.h>
59#include <linux/types.h>
60#include <linux/compiler.h>
61#include <linux/slab.h>
62#include <linux/delay.h>
63#include <linux/init.h>
64#include <linux/interrupt.h>
65#include <linux/vmalloc.h>
66#include <linux/ioport.h>
67#include <linux/pci.h>
68#include <linux/mm.h>
69#include <linux/highmem.h>
70#include <linux/list.h>
71#include <linux/dma-mapping.h>
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/ethtool.h>
77#include <linux/crc32.h>
78#include <linux/random.h>
79#include <linux/mii.h>
80#include <linux/ip.h>
81#include <linux/tcp.h>
82#include <linux/mutex.h>
83#include <linux/firmware.h>
84
85#include <net/checksum.h>
86
87#include <linux/atomic.h>
88#include <asm/io.h>
89#include <asm/byteorder.h>
90#include <linux/uaccess.h>
91
92#define cas_page_map(x) kmap_atomic((x))
93#define cas_page_unmap(x) kunmap_atomic((x))
94#define CAS_NCPUS num_online_cpus()
95
96#define cas_skb_release(x) netif_rx(x)
97
98/* select which firmware to use */
99#define USE_HP_WORKAROUND
100#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
102
103#include "cassini.h"
104
105#define USE_TX_COMPWB /* use completion writeback registers */
106#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
107#define USE_RX_BLANK /* hw interrupt mitigation */
108#undef USE_ENTROPY_DEV /* don't test for entropy device */
109
110/* NOTE: these aren't useable unless PCI interrupts can be assigned.
111 * also, we need to make cp->lock finer-grained.
112 */
113#undef USE_PCI_INTB
114#undef USE_PCI_INTC
115#undef USE_PCI_INTD
116#undef USE_QOS
117
118#undef USE_VPD_DEBUG /* debug vpd information if defined */
119
120/* rx processing options */
121#define USE_PAGE_ORDER /* specify to allocate large rx pages */
122#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
123#define RX_COPY_ALWAYS 0 /* if 0, use frags */
124#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
125#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
126
127#define DRV_MODULE_NAME "cassini"
128#define DRV_MODULE_VERSION "1.6"
129#define DRV_MODULE_RELDATE "21 May 2008"
130
131#define CAS_DEF_MSG_ENABLE \
132 (NETIF_MSG_DRV | \
133 NETIF_MSG_PROBE | \
134 NETIF_MSG_LINK | \
135 NETIF_MSG_TIMER | \
136 NETIF_MSG_IFDOWN | \
137 NETIF_MSG_IFUP | \
138 NETIF_MSG_RX_ERR | \
139 NETIF_MSG_TX_ERR)
140
141/* length of time before we decide the hardware is borked,
142 * and dev->tx_timeout() should be called to fix the problem
143 */
144#define CAS_TX_TIMEOUT (HZ)
145#define CAS_LINK_TIMEOUT (22*HZ/10)
146#define CAS_LINK_FAST_TIMEOUT (1)
147
148/* timeout values for state changing. these specify the number
149 * of 10us delays to be used before giving up.
150 */
151#define STOP_TRIES_PHY 1000
152#define STOP_TRIES 5000
153
154/* specify a minimum frame size to deal with some fifo issues
155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
156 * 2 * page_size - 0x50
157 */
158#define CAS_MIN_FRAME 97
159#define CAS_1000MB_MIN_FRAME 255
160#define CAS_MIN_MTU 60
161#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
162
163#if 1
164/*
165 * Eliminate these and use separate atomic counters for each, to
166 * avoid a race condition.
167 */
168#else
169#define CAS_RESET_MTU 1
170#define CAS_RESET_ALL 2
171#define CAS_RESET_SPARE 3
172#endif
173
174static char version[] =
175 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
176
177static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
178static int link_mode;
179
180MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
181MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182MODULE_LICENSE("GPL");
183MODULE_FIRMWARE("sun/cassini.bin");
184module_param(cassini_debug, int, 0);
185MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
186module_param(link_mode, int, 0);
187MODULE_PARM_DESC(link_mode, "default link mode");
188
189/*
190 * Work around for a PCS bug in which the link goes down due to the chip
191 * being confused and never showing a link status of "up."
192 */
193#define DEFAULT_LINKDOWN_TIMEOUT 5
194/*
195 * Value in seconds, for user input.
196 */
197static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
198module_param(linkdown_timeout, int, 0);
199MODULE_PARM_DESC(linkdown_timeout,
200"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
201
202/*
203 * value in 'ticks' (units used by jiffies). Set when we init the
204 * module because 'HZ' in actually a function call on some flavors of
205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
206 */
207static int link_transition_timeout;
208
209
210
211static u16 link_modes[] = {
212 BMCR_ANENABLE, /* 0 : autoneg */
213 0, /* 1 : 10bt half duplex */
214 BMCR_SPEED100, /* 2 : 100bt half duplex */
215 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
216 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
217 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
218};
219
220static const struct pci_device_id cas_pci_tbl[] = {
221 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
223 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
225 { 0, }
226};
227
228MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
229
230static void cas_set_link_modes(struct cas *cp);
231
232static inline void cas_lock_tx(struct cas *cp)
233{
234 int i;
235
236 for (i = 0; i < N_TX_RINGS; i++)
237 spin_lock_nested(&cp->tx_lock[i], i);
238}
239
240/* WTZ: QA was finding deadlock problems with the previous
241 * versions after long test runs with multiple cards per machine.
242 * See if replacing cas_lock_all with safer versions helps. The
243 * symptoms QA is reporting match those we'd expect if interrupts
244 * aren't being properly restored, and we fixed a previous deadlock
245 * with similar symptoms by using save/restore versions in other
246 * places.
247 */
248#define cas_lock_all_save(cp, flags) \
249do { \
250 struct cas *xxxcp = (cp); \
251 spin_lock_irqsave(&xxxcp->lock, flags); \
252 cas_lock_tx(xxxcp); \
253} while (0)
254
255static inline void cas_unlock_tx(struct cas *cp)
256{
257 int i;
258
259 for (i = N_TX_RINGS; i > 0; i--)
260 spin_unlock(&cp->tx_lock[i - 1]);
261}
262
263#define cas_unlock_all_restore(cp, flags) \
264do { \
265 struct cas *xxxcp = (cp); \
266 cas_unlock_tx(xxxcp); \
267 spin_unlock_irqrestore(&xxxcp->lock, flags); \
268} while (0)
269
270static void cas_disable_irq(struct cas *cp, const int ring)
271{
272 /* Make sure we won't get any more interrupts */
273 if (ring == 0) {
274 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
275 return;
276 }
277
278 /* disable completion interrupts and selectively mask */
279 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
280 switch (ring) {
281#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
282#ifdef USE_PCI_INTB
283 case 1:
284#endif
285#ifdef USE_PCI_INTC
286 case 2:
287#endif
288#ifdef USE_PCI_INTD
289 case 3:
290#endif
291 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
292 cp->regs + REG_PLUS_INTRN_MASK(ring));
293 break;
294#endif
295 default:
296 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
297 REG_PLUS_INTRN_MASK(ring));
298 break;
299 }
300 }
301}
302
303static inline void cas_mask_intr(struct cas *cp)
304{
305 int i;
306
307 for (i = 0; i < N_RX_COMP_RINGS; i++)
308 cas_disable_irq(cp, i);
309}
310
311static void cas_enable_irq(struct cas *cp, const int ring)
312{
313 if (ring == 0) { /* all but TX_DONE */
314 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
315 return;
316 }
317
318 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
319 switch (ring) {
320#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
321#ifdef USE_PCI_INTB
322 case 1:
323#endif
324#ifdef USE_PCI_INTC
325 case 2:
326#endif
327#ifdef USE_PCI_INTD
328 case 3:
329#endif
330 writel(INTRN_MASK_RX_EN, cp->regs +
331 REG_PLUS_INTRN_MASK(ring));
332 break;
333#endif
334 default:
335 break;
336 }
337 }
338}
339
340static inline void cas_unmask_intr(struct cas *cp)
341{
342 int i;
343
344 for (i = 0; i < N_RX_COMP_RINGS; i++)
345 cas_enable_irq(cp, i);
346}
347
348static inline void cas_entropy_gather(struct cas *cp)
349{
350#ifdef USE_ENTROPY_DEV
351 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
352 return;
353
354 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
355 readl(cp->regs + REG_ENTROPY_IV),
356 sizeof(uint64_t)*8);
357#endif
358}
359
360static inline void cas_entropy_reset(struct cas *cp)
361{
362#ifdef USE_ENTROPY_DEV
363 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
364 return;
365
366 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
367 cp->regs + REG_BIM_LOCAL_DEV_EN);
368 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
369 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
370
371 /* if we read back 0x0, we don't have an entropy device */
372 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
373 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
374#endif
375}
376
377/* access to the phy. the following assumes that we've initialized the MIF to
378 * be in frame rather than bit-bang mode
379 */
380static u16 cas_phy_read(struct cas *cp, int reg)
381{
382 u32 cmd;
383 int limit = STOP_TRIES_PHY;
384
385 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
386 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
387 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
388 cmd |= MIF_FRAME_TURN_AROUND_MSB;
389 writel(cmd, cp->regs + REG_MIF_FRAME);
390
391 /* poll for completion */
392 while (limit-- > 0) {
393 udelay(10);
394 cmd = readl(cp->regs + REG_MIF_FRAME);
395 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
396 return cmd & MIF_FRAME_DATA_MASK;
397 }
398 return 0xFFFF; /* -1 */
399}
400
401static int cas_phy_write(struct cas *cp, int reg, u16 val)
402{
403 int limit = STOP_TRIES_PHY;
404 u32 cmd;
405
406 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
407 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
408 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
409 cmd |= MIF_FRAME_TURN_AROUND_MSB;
410 cmd |= val & MIF_FRAME_DATA_MASK;
411 writel(cmd, cp->regs + REG_MIF_FRAME);
412
413 /* poll for completion */
414 while (limit-- > 0) {
415 udelay(10);
416 cmd = readl(cp->regs + REG_MIF_FRAME);
417 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
418 return 0;
419 }
420 return -1;
421}
422
423static void cas_phy_powerup(struct cas *cp)
424{
425 u16 ctl = cas_phy_read(cp, MII_BMCR);
426
427 if ((ctl & BMCR_PDOWN) == 0)
428 return;
429 ctl &= ~BMCR_PDOWN;
430 cas_phy_write(cp, MII_BMCR, ctl);
431}
432
433static void cas_phy_powerdown(struct cas *cp)
434{
435 u16 ctl = cas_phy_read(cp, MII_BMCR);
436
437 if (ctl & BMCR_PDOWN)
438 return;
439 ctl |= BMCR_PDOWN;
440 cas_phy_write(cp, MII_BMCR, ctl);
441}
442
443/* cp->lock held. note: the last put_page will free the buffer */
444static int cas_page_free(struct cas *cp, cas_page_t *page)
445{
446 dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
447 DMA_FROM_DEVICE);
448 __free_pages(page->buffer, cp->page_order);
449 kfree(page);
450 return 0;
451}
452
453#ifdef RX_COUNT_BUFFERS
454#define RX_USED_ADD(x, y) ((x)->used += (y))
455#define RX_USED_SET(x, y) ((x)->used = (y))
456#else
457#define RX_USED_ADD(x, y)
458#define RX_USED_SET(x, y)
459#endif
460
461/* local page allocation routines for the receive buffers. jumbo pages
462 * require at least 8K contiguous and 8K aligned buffers.
463 */
464static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
465{
466 cas_page_t *page;
467
468 page = kmalloc(sizeof(cas_page_t), flags);
469 if (!page)
470 return NULL;
471
472 INIT_LIST_HEAD(&page->list);
473 RX_USED_SET(page, 0);
474 page->buffer = alloc_pages(flags, cp->page_order);
475 if (!page->buffer)
476 goto page_err;
477 page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
478 cp->page_size, DMA_FROM_DEVICE);
479 return page;
480
481page_err:
482 kfree(page);
483 return NULL;
484}
485
486/* initialize spare pool of rx buffers, but allocate during the open */
487static void cas_spare_init(struct cas *cp)
488{
489 spin_lock(&cp->rx_inuse_lock);
490 INIT_LIST_HEAD(&cp->rx_inuse_list);
491 spin_unlock(&cp->rx_inuse_lock);
492
493 spin_lock(&cp->rx_spare_lock);
494 INIT_LIST_HEAD(&cp->rx_spare_list);
495 cp->rx_spares_needed = RX_SPARE_COUNT;
496 spin_unlock(&cp->rx_spare_lock);
497}
498
499/* used on close. free all the spare buffers. */
500static void cas_spare_free(struct cas *cp)
501{
502 struct list_head list, *elem, *tmp;
503
504 /* free spare buffers */
505 INIT_LIST_HEAD(&list);
506 spin_lock(&cp->rx_spare_lock);
507 list_splice_init(&cp->rx_spare_list, &list);
508 spin_unlock(&cp->rx_spare_lock);
509 list_for_each_safe(elem, tmp, &list) {
510 cas_page_free(cp, list_entry(elem, cas_page_t, list));
511 }
512
513 INIT_LIST_HEAD(&list);
514#if 1
515 /*
516 * Looks like Adrian had protected this with a different
517 * lock than used everywhere else to manipulate this list.
518 */
519 spin_lock(&cp->rx_inuse_lock);
520 list_splice_init(&cp->rx_inuse_list, &list);
521 spin_unlock(&cp->rx_inuse_lock);
522#else
523 spin_lock(&cp->rx_spare_lock);
524 list_splice_init(&cp->rx_inuse_list, &list);
525 spin_unlock(&cp->rx_spare_lock);
526#endif
527 list_for_each_safe(elem, tmp, &list) {
528 cas_page_free(cp, list_entry(elem, cas_page_t, list));
529 }
530}
531
532/* replenish spares if needed */
533static void cas_spare_recover(struct cas *cp, const gfp_t flags)
534{
535 struct list_head list, *elem, *tmp;
536 int needed, i;
537
538 /* check inuse list. if we don't need any more free buffers,
539 * just free it
540 */
541
542 /* make a local copy of the list */
543 INIT_LIST_HEAD(&list);
544 spin_lock(&cp->rx_inuse_lock);
545 list_splice_init(&cp->rx_inuse_list, &list);
546 spin_unlock(&cp->rx_inuse_lock);
547
548 list_for_each_safe(elem, tmp, &list) {
549 cas_page_t *page = list_entry(elem, cas_page_t, list);
550
551 /*
552 * With the lockless pagecache, cassini buffering scheme gets
553 * slightly less accurate: we might find that a page has an
554 * elevated reference count here, due to a speculative ref,
555 * and skip it as in-use. Ideally we would be able to reclaim
556 * it. However this would be such a rare case, it doesn't
557 * matter too much as we should pick it up the next time round.
558 *
559 * Importantly, if we find that the page has a refcount of 1
560 * here (our refcount), then we know it is definitely not inuse
561 * so we can reuse it.
562 */
563 if (page_count(page->buffer) > 1)
564 continue;
565
566 list_del(elem);
567 spin_lock(&cp->rx_spare_lock);
568 if (cp->rx_spares_needed > 0) {
569 list_add(elem, &cp->rx_spare_list);
570 cp->rx_spares_needed--;
571 spin_unlock(&cp->rx_spare_lock);
572 } else {
573 spin_unlock(&cp->rx_spare_lock);
574 cas_page_free(cp, page);
575 }
576 }
577
578 /* put any inuse buffers back on the list */
579 if (!list_empty(&list)) {
580 spin_lock(&cp->rx_inuse_lock);
581 list_splice(&list, &cp->rx_inuse_list);
582 spin_unlock(&cp->rx_inuse_lock);
583 }
584
585 spin_lock(&cp->rx_spare_lock);
586 needed = cp->rx_spares_needed;
587 spin_unlock(&cp->rx_spare_lock);
588 if (!needed)
589 return;
590
591 /* we still need spares, so try to allocate some */
592 INIT_LIST_HEAD(&list);
593 i = 0;
594 while (i < needed) {
595 cas_page_t *spare = cas_page_alloc(cp, flags);
596 if (!spare)
597 break;
598 list_add(&spare->list, &list);
599 i++;
600 }
601
602 spin_lock(&cp->rx_spare_lock);
603 list_splice(&list, &cp->rx_spare_list);
604 cp->rx_spares_needed -= i;
605 spin_unlock(&cp->rx_spare_lock);
606}
607
608/* pull a page from the list. */
609static cas_page_t *cas_page_dequeue(struct cas *cp)
610{
611 struct list_head *entry;
612 int recover;
613
614 spin_lock(&cp->rx_spare_lock);
615 if (list_empty(&cp->rx_spare_list)) {
616 /* try to do a quick recovery */
617 spin_unlock(&cp->rx_spare_lock);
618 cas_spare_recover(cp, GFP_ATOMIC);
619 spin_lock(&cp->rx_spare_lock);
620 if (list_empty(&cp->rx_spare_list)) {
621 netif_err(cp, rx_err, cp->dev,
622 "no spare buffers available\n");
623 spin_unlock(&cp->rx_spare_lock);
624 return NULL;
625 }
626 }
627
628 entry = cp->rx_spare_list.next;
629 list_del(entry);
630 recover = ++cp->rx_spares_needed;
631 spin_unlock(&cp->rx_spare_lock);
632
633 /* trigger the timer to do the recovery */
634 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
635#if 1
636 atomic_inc(&cp->reset_task_pending);
637 atomic_inc(&cp->reset_task_pending_spare);
638 schedule_work(&cp->reset_task);
639#else
640 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
641 schedule_work(&cp->reset_task);
642#endif
643 }
644 return list_entry(entry, cas_page_t, list);
645}
646
647
648static void cas_mif_poll(struct cas *cp, const int enable)
649{
650 u32 cfg;
651
652 cfg = readl(cp->regs + REG_MIF_CFG);
653 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
654
655 if (cp->phy_type & CAS_PHY_MII_MDIO1)
656 cfg |= MIF_CFG_PHY_SELECT;
657
658 /* poll and interrupt on link status change. */
659 if (enable) {
660 cfg |= MIF_CFG_POLL_EN;
661 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
662 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
663 }
664 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
665 cp->regs + REG_MIF_MASK);
666 writel(cfg, cp->regs + REG_MIF_CFG);
667}
668
669/* Must be invoked under cp->lock */
670static void cas_begin_auto_negotiation(struct cas *cp,
671 const struct ethtool_link_ksettings *ep)
672{
673 u16 ctl;
674#if 1
675 int lcntl;
676 int changed = 0;
677 int oldstate = cp->lstate;
678 int link_was_not_down = !(oldstate == link_down);
679#endif
680 /* Setup link parameters */
681 if (!ep)
682 goto start_aneg;
683 lcntl = cp->link_cntl;
684 if (ep->base.autoneg == AUTONEG_ENABLE) {
685 cp->link_cntl = BMCR_ANENABLE;
686 } else {
687 u32 speed = ep->base.speed;
688 cp->link_cntl = 0;
689 if (speed == SPEED_100)
690 cp->link_cntl |= BMCR_SPEED100;
691 else if (speed == SPEED_1000)
692 cp->link_cntl |= CAS_BMCR_SPEED1000;
693 if (ep->base.duplex == DUPLEX_FULL)
694 cp->link_cntl |= BMCR_FULLDPLX;
695 }
696#if 1
697 changed = (lcntl != cp->link_cntl);
698#endif
699start_aneg:
700 if (cp->lstate == link_up) {
701 netdev_info(cp->dev, "PCS link down\n");
702 } else {
703 if (changed) {
704 netdev_info(cp->dev, "link configuration changed\n");
705 }
706 }
707 cp->lstate = link_down;
708 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
709 if (!cp->hw_running)
710 return;
711#if 1
712 /*
713 * WTZ: If the old state was link_up, we turn off the carrier
714 * to replicate everything we do elsewhere on a link-down
715 * event when we were already in a link-up state..
716 */
717 if (oldstate == link_up)
718 netif_carrier_off(cp->dev);
719 if (changed && link_was_not_down) {
720 /*
721 * WTZ: This branch will simply schedule a full reset after
722 * we explicitly changed link modes in an ioctl. See if this
723 * fixes the link-problems we were having for forced mode.
724 */
725 atomic_inc(&cp->reset_task_pending);
726 atomic_inc(&cp->reset_task_pending_all);
727 schedule_work(&cp->reset_task);
728 cp->timer_ticks = 0;
729 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
730 return;
731 }
732#endif
733 if (cp->phy_type & CAS_PHY_SERDES) {
734 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
735
736 if (cp->link_cntl & BMCR_ANENABLE) {
737 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
738 cp->lstate = link_aneg;
739 } else {
740 if (cp->link_cntl & BMCR_FULLDPLX)
741 val |= PCS_MII_CTRL_DUPLEX;
742 val &= ~PCS_MII_AUTONEG_EN;
743 cp->lstate = link_force_ok;
744 }
745 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
746 writel(val, cp->regs + REG_PCS_MII_CTRL);
747
748 } else {
749 cas_mif_poll(cp, 0);
750 ctl = cas_phy_read(cp, MII_BMCR);
751 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
752 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
753 ctl |= cp->link_cntl;
754 if (ctl & BMCR_ANENABLE) {
755 ctl |= BMCR_ANRESTART;
756 cp->lstate = link_aneg;
757 } else {
758 cp->lstate = link_force_ok;
759 }
760 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
761 cas_phy_write(cp, MII_BMCR, ctl);
762 cas_mif_poll(cp, 1);
763 }
764
765 cp->timer_ticks = 0;
766 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
767}
768
769/* Must be invoked under cp->lock. */
770static int cas_reset_mii_phy(struct cas *cp)
771{
772 int limit = STOP_TRIES_PHY;
773 u16 val;
774
775 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
776 udelay(100);
777 while (--limit) {
778 val = cas_phy_read(cp, MII_BMCR);
779 if ((val & BMCR_RESET) == 0)
780 break;
781 udelay(10);
782 }
783 return limit <= 0;
784}
785
786static void cas_saturn_firmware_init(struct cas *cp)
787{
788 const struct firmware *fw;
789 const char fw_name[] = "sun/cassini.bin";
790 int err;
791
792 if (PHY_NS_DP83065 != cp->phy_id)
793 return;
794
795 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
796 if (err) {
797 pr_err("Failed to load firmware \"%s\"\n",
798 fw_name);
799 return;
800 }
801 if (fw->size < 2) {
802 pr_err("bogus length %zu in \"%s\"\n",
803 fw->size, fw_name);
804 goto out;
805 }
806 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
807 cp->fw_size = fw->size - 2;
808 cp->fw_data = vmalloc(cp->fw_size);
809 if (!cp->fw_data)
810 goto out;
811 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
812out:
813 release_firmware(fw);
814}
815
816static void cas_saturn_firmware_load(struct cas *cp)
817{
818 int i;
819
820 if (!cp->fw_data)
821 return;
822
823 cas_phy_powerdown(cp);
824
825 /* expanded memory access mode */
826 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
827
828 /* pointer configuration for new firmware */
829 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
830 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
832 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
833 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
834 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
836 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
837
838 /* download new firmware */
839 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
840 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
841 for (i = 0; i < cp->fw_size; i++)
842 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
843
844 /* enable firmware */
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
847}
848
849
850/* phy initialization */
851static void cas_phy_init(struct cas *cp)
852{
853 u16 val;
854
855 /* if we're in MII/GMII mode, set up phy */
856 if (CAS_PHY_MII(cp->phy_type)) {
857 writel(PCS_DATAPATH_MODE_MII,
858 cp->regs + REG_PCS_DATAPATH_MODE);
859
860 cas_mif_poll(cp, 0);
861 cas_reset_mii_phy(cp); /* take out of isolate mode */
862
863 if (PHY_LUCENT_B0 == cp->phy_id) {
864 /* workaround link up/down issue with lucent */
865 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
866 cas_phy_write(cp, MII_BMCR, 0x00f1);
867 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
868
869 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
870 /* workarounds for broadcom phy */
871 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
872 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
873 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
874 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
875 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
876 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
877 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
878 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
879 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
880 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
881 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
882
883 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
884 val = cas_phy_read(cp, BROADCOM_MII_REG4);
885 val = cas_phy_read(cp, BROADCOM_MII_REG4);
886 if (val & 0x0080) {
887 /* link workaround */
888 cas_phy_write(cp, BROADCOM_MII_REG4,
889 val & ~0x0080);
890 }
891
892 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
893 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
894 SATURN_PCFG_FSI : 0x0,
895 cp->regs + REG_SATURN_PCFG);
896
897 /* load firmware to address 10Mbps auto-negotiation
898 * issue. NOTE: this will need to be changed if the
899 * default firmware gets fixed.
900 */
901 if (PHY_NS_DP83065 == cp->phy_id) {
902 cas_saturn_firmware_load(cp);
903 }
904 cas_phy_powerup(cp);
905 }
906
907 /* advertise capabilities */
908 val = cas_phy_read(cp, MII_BMCR);
909 val &= ~BMCR_ANENABLE;
910 cas_phy_write(cp, MII_BMCR, val);
911 udelay(10);
912
913 cas_phy_write(cp, MII_ADVERTISE,
914 cas_phy_read(cp, MII_ADVERTISE) |
915 (ADVERTISE_10HALF | ADVERTISE_10FULL |
916 ADVERTISE_100HALF | ADVERTISE_100FULL |
917 CAS_ADVERTISE_PAUSE |
918 CAS_ADVERTISE_ASYM_PAUSE));
919
920 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
921 /* make sure that we don't advertise half
922 * duplex to avoid a chip issue
923 */
924 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
925 val &= ~CAS_ADVERTISE_1000HALF;
926 val |= CAS_ADVERTISE_1000FULL;
927 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
928 }
929
930 } else {
931 /* reset pcs for serdes */
932 u32 val;
933 int limit;
934
935 writel(PCS_DATAPATH_MODE_SERDES,
936 cp->regs + REG_PCS_DATAPATH_MODE);
937
938 /* enable serdes pins on saturn */
939 if (cp->cas_flags & CAS_FLAG_SATURN)
940 writel(0, cp->regs + REG_SATURN_PCFG);
941
942 /* Reset PCS unit. */
943 val = readl(cp->regs + REG_PCS_MII_CTRL);
944 val |= PCS_MII_RESET;
945 writel(val, cp->regs + REG_PCS_MII_CTRL);
946
947 limit = STOP_TRIES;
948 while (--limit > 0) {
949 udelay(10);
950 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
951 PCS_MII_RESET) == 0)
952 break;
953 }
954 if (limit <= 0)
955 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
956 readl(cp->regs + REG_PCS_STATE_MACHINE));
957
958 /* Make sure PCS is disabled while changing advertisement
959 * configuration.
960 */
961 writel(0x0, cp->regs + REG_PCS_CFG);
962
963 /* Advertise all capabilities except half-duplex. */
964 val = readl(cp->regs + REG_PCS_MII_ADVERT);
965 val &= ~PCS_MII_ADVERT_HD;
966 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
967 PCS_MII_ADVERT_ASYM_PAUSE);
968 writel(val, cp->regs + REG_PCS_MII_ADVERT);
969
970 /* enable PCS */
971 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
972
973 /* pcs workaround: enable sync detect */
974 writel(PCS_SERDES_CTRL_SYNCD_EN,
975 cp->regs + REG_PCS_SERDES_CTRL);
976 }
977}
978
979
980static int cas_pcs_link_check(struct cas *cp)
981{
982 u32 stat, state_machine;
983 int retval = 0;
984
985 /* The link status bit latches on zero, so you must
986 * read it twice in such a case to see a transition
987 * to the link being up.
988 */
989 stat = readl(cp->regs + REG_PCS_MII_STATUS);
990 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
991 stat = readl(cp->regs + REG_PCS_MII_STATUS);
992
993 /* The remote-fault indication is only valid
994 * when autoneg has completed.
995 */
996 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
997 PCS_MII_STATUS_REMOTE_FAULT)) ==
998 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
999 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1000
1001 /* work around link detection issue by querying the PCS state
1002 * machine directly.
1003 */
1004 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008 stat |= PCS_MII_STATUS_LINK_STATUS;
1009 }
1010
1011 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012 if (cp->lstate != link_up) {
1013 if (cp->opened) {
1014 cp->lstate = link_up;
1015 cp->link_transition = LINK_TRANSITION_LINK_UP;
1016
1017 cas_set_link_modes(cp);
1018 netif_carrier_on(cp->dev);
1019 }
1020 }
1021 } else if (cp->lstate == link_up) {
1022 cp->lstate = link_down;
1023 if (link_transition_timeout != 0 &&
1024 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025 !cp->link_transition_jiffies_valid) {
1026 /*
1027 * force a reset, as a workaround for the
1028 * link-failure problem. May want to move this to a
1029 * point a bit earlier in the sequence. If we had
1030 * generated a reset a short time ago, we'll wait for
1031 * the link timer to check the status until a
1032 * timer expires (link_transistion_jiffies_valid is
1033 * true when the timer is running.) Instead of using
1034 * a system timer, we just do a check whenever the
1035 * link timer is running - this clears the flag after
1036 * a suitable delay.
1037 */
1038 retval = 1;
1039 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040 cp->link_transition_jiffies = jiffies;
1041 cp->link_transition_jiffies_valid = 1;
1042 } else {
1043 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044 }
1045 netif_carrier_off(cp->dev);
1046 if (cp->opened)
1047 netif_info(cp, link, cp->dev, "PCS link down\n");
1048
1049 /* Cassini only: if you force a mode, there can be
1050 * sync problems on link down. to fix that, the following
1051 * things need to be checked:
1052 * 1) read serialink state register
1053 * 2) read pcs status register to verify link down.
1054 * 3) if link down and serial link == 0x03, then you need
1055 * to global reset the chip.
1056 */
1057 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058 /* should check to see if we're in a forced mode */
1059 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060 if (stat == 0x03)
1061 return 1;
1062 }
1063 } else if (cp->lstate == link_down) {
1064 if (link_transition_timeout != 0 &&
1065 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066 !cp->link_transition_jiffies_valid) {
1067 /* force a reset, as a workaround for the
1068 * link-failure problem. May want to move
1069 * this to a point a bit earlier in the
1070 * sequence.
1071 */
1072 retval = 1;
1073 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074 cp->link_transition_jiffies = jiffies;
1075 cp->link_transition_jiffies_valid = 1;
1076 } else {
1077 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078 }
1079 }
1080
1081 return retval;
1082}
1083
1084static int cas_pcs_interrupt(struct net_device *dev,
1085 struct cas *cp, u32 status)
1086{
1087 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088
1089 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1090 return 0;
1091 return cas_pcs_link_check(cp);
1092}
1093
1094static int cas_txmac_interrupt(struct net_device *dev,
1095 struct cas *cp, u32 status)
1096{
1097 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098
1099 if (!txmac_stat)
1100 return 0;
1101
1102 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1104
1105 /* Defer timer expiration is quite normal,
1106 * don't even log the event.
1107 */
1108 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110 return 0;
1111
1112 spin_lock(&cp->stat_lock[0]);
1113 if (txmac_stat & MAC_TX_UNDERRUN) {
1114 netdev_err(dev, "TX MAC xmit underrun\n");
1115 cp->net_stats[0].tx_fifo_errors++;
1116 }
1117
1118 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1119 netdev_err(dev, "TX MAC max packet size error\n");
1120 cp->net_stats[0].tx_errors++;
1121 }
1122
1123 /* The rest are all cases of one of the 16-bit TX
1124 * counters expiring.
1125 */
1126 if (txmac_stat & MAC_TX_COLL_NORMAL)
1127 cp->net_stats[0].collisions += 0x10000;
1128
1129 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131 cp->net_stats[0].collisions += 0x10000;
1132 }
1133
1134 if (txmac_stat & MAC_TX_COLL_LATE) {
1135 cp->net_stats[0].tx_aborted_errors += 0x10000;
1136 cp->net_stats[0].collisions += 0x10000;
1137 }
1138 spin_unlock(&cp->stat_lock[0]);
1139
1140 /* We do not keep track of MAC_TX_COLL_FIRST and
1141 * MAC_TX_PEAK_ATTEMPTS events.
1142 */
1143 return 0;
1144}
1145
1146static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147{
1148 cas_hp_inst_t *inst;
1149 u32 val;
1150 int i;
1151
1152 i = 0;
1153 while ((inst = firmware) && inst->note) {
1154 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155
1156 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159
1160 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168
1169 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174 ++firmware;
1175 ++i;
1176 }
1177}
1178
1179static void cas_init_rx_dma(struct cas *cp)
1180{
1181 u64 desc_dma = cp->block_dvma;
1182 u32 val;
1183 int i, size;
1184
1185 /* rx free descriptors */
1186 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1187 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189 if ((N_RX_DESC_RINGS > 1) &&
1190 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1191 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192 writel(val, cp->regs + REG_RX_CFG);
1193
1194 val = (unsigned long) cp->init_rxds[0] -
1195 (unsigned long) cp->init_block;
1196 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199
1200 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1201 /* rx desc 2 is for IPSEC packets. however,
1202 * we don't it that for that purpose.
1203 */
1204 val = (unsigned long) cp->init_rxds[1] -
1205 (unsigned long) cp->init_block;
1206 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1207 writel((desc_dma + val) & 0xffffffff, cp->regs +
1208 REG_PLUS_RX_DB1_LOW);
1209 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1210 REG_PLUS_RX_KICK1);
1211 }
1212
1213 /* rx completion registers */
1214 val = (unsigned long) cp->init_rxcs[0] -
1215 (unsigned long) cp->init_block;
1216 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218
1219 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220 /* rx comp 2-4 */
1221 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1222 val = (unsigned long) cp->init_rxcs[i] -
1223 (unsigned long) cp->init_block;
1224 writel((desc_dma + val) >> 32, cp->regs +
1225 REG_PLUS_RX_CBN_HI(i));
1226 writel((desc_dma + val) & 0xffffffff, cp->regs +
1227 REG_PLUS_RX_CBN_LOW(i));
1228 }
1229 }
1230
1231 /* read selective clear regs to prevent spurious interrupts
1232 * on reset because complete == kick.
1233 * selective clear set up to prevent interrupts on resets
1234 */
1235 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1238 for (i = 1; i < N_RX_COMP_RINGS; i++)
1239 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1240
1241 /* 2 is different from 3 and 4 */
1242 if (N_RX_COMP_RINGS > 1)
1243 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1244 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1245
1246 for (i = 2; i < N_RX_COMP_RINGS; i++)
1247 writel(INTR_RX_DONE_ALT,
1248 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1249 }
1250
1251 /* set up pause thresholds */
1252 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1253 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1254 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1255 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1256 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1257
1258 /* zero out dma reassembly buffers */
1259 for (i = 0; i < 64; i++) {
1260 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1263 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1264 }
1265
1266 /* make sure address register is 0 for normal operation */
1267 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1268 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1269
1270 /* interrupt mitigation */
1271#ifdef USE_RX_BLANK
1272 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1273 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1274 writel(val, cp->regs + REG_RX_BLANK);
1275#else
1276 writel(0x0, cp->regs + REG_RX_BLANK);
1277#endif
1278
1279 /* interrupt generation as a function of low water marks for
1280 * free desc and completion entries. these are used to trigger
1281 * housekeeping for rx descs. we don't use the free interrupt
1282 * as it's not very useful
1283 */
1284 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1285 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1286 writel(val, cp->regs + REG_RX_AE_THRESH);
1287 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1288 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1289 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1290 }
1291
1292 /* Random early detect registers. useful for congestion avoidance.
1293 * this should be tunable.
1294 */
1295 writel(0x0, cp->regs + REG_RX_RED);
1296
1297 /* receive page sizes. default == 2K (0x800) */
1298 val = 0;
1299 if (cp->page_size == 0x1000)
1300 val = 0x1;
1301 else if (cp->page_size == 0x2000)
1302 val = 0x2;
1303 else if (cp->page_size == 0x4000)
1304 val = 0x3;
1305
1306 /* round mtu + offset. constrain to page size. */
1307 size = cp->dev->mtu + 64;
1308 if (size > cp->page_size)
1309 size = cp->page_size;
1310
1311 if (size <= 0x400)
1312 i = 0x0;
1313 else if (size <= 0x800)
1314 i = 0x1;
1315 else if (size <= 0x1000)
1316 i = 0x2;
1317 else
1318 i = 0x3;
1319
1320 cp->mtu_stride = 1 << (i + 10);
1321 val = CAS_BASE(RX_PAGE_SIZE, val);
1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1324 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1325 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1326
1327 /* enable the header parser if desired */
1328 if (CAS_HP_FIRMWARE == cas_prog_null)
1329 return;
1330
1331 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1332 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1333 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1334 writel(val, cp->regs + REG_HP_CFG);
1335}
1336
1337static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1338{
1339 memset(rxc, 0, sizeof(*rxc));
1340 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1341}
1342
1343/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1344 * flipping is protected by the fact that the chip will not
1345 * hand back the same page index while it's being processed.
1346 */
1347static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1348{
1349 cas_page_t *page = cp->rx_pages[1][index];
1350 cas_page_t *new;
1351
1352 if (page_count(page->buffer) == 1)
1353 return page;
1354
1355 new = cas_page_dequeue(cp);
1356 if (new) {
1357 spin_lock(&cp->rx_inuse_lock);
1358 list_add(&page->list, &cp->rx_inuse_list);
1359 spin_unlock(&cp->rx_inuse_lock);
1360 }
1361 return new;
1362}
1363
1364/* this needs to be changed if we actually use the ENC RX DESC ring */
1365static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1366 const int index)
1367{
1368 cas_page_t **page0 = cp->rx_pages[0];
1369 cas_page_t **page1 = cp->rx_pages[1];
1370
1371 /* swap if buffer is in use */
1372 if (page_count(page0[index]->buffer) > 1) {
1373 cas_page_t *new = cas_page_spare(cp, index);
1374 if (new) {
1375 page1[index] = page0[index];
1376 page0[index] = new;
1377 }
1378 }
1379 RX_USED_SET(page0[index], 0);
1380 return page0[index];
1381}
1382
1383static void cas_clean_rxds(struct cas *cp)
1384{
1385 /* only clean ring 0 as ring 1 is used for spare buffers */
1386 struct cas_rx_desc *rxd = cp->init_rxds[0];
1387 int i, size;
1388
1389 /* release all rx flows */
1390 for (i = 0; i < N_RX_FLOWS; i++) {
1391 struct sk_buff *skb;
1392 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1393 cas_skb_release(skb);
1394 }
1395 }
1396
1397 /* initialize descriptors */
1398 size = RX_DESC_RINGN_SIZE(0);
1399 for (i = 0; i < size; i++) {
1400 cas_page_t *page = cas_page_swap(cp, 0, i);
1401 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1402 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1403 CAS_BASE(RX_INDEX_RING, 0));
1404 }
1405
1406 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1407 cp->rx_last[0] = 0;
1408 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1409}
1410
1411static void cas_clean_rxcs(struct cas *cp)
1412{
1413 int i, j;
1414
1415 /* take ownership of rx comp descriptors */
1416 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1417 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1418 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1419 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1420 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1421 cas_rxc_init(rxc + j);
1422 }
1423 }
1424}
1425
1426#if 0
1427/* When we get a RX fifo overflow, the RX unit is probably hung
1428 * so we do the following.
1429 *
1430 * If any part of the reset goes wrong, we return 1 and that causes the
1431 * whole chip to be reset.
1432 */
1433static int cas_rxmac_reset(struct cas *cp)
1434{
1435 struct net_device *dev = cp->dev;
1436 int limit;
1437 u32 val;
1438
1439 /* First, reset MAC RX. */
1440 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1441 for (limit = 0; limit < STOP_TRIES; limit++) {
1442 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1443 break;
1444 udelay(10);
1445 }
1446 if (limit == STOP_TRIES) {
1447 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1448 return 1;
1449 }
1450
1451 /* Second, disable RX DMA. */
1452 writel(0, cp->regs + REG_RX_CFG);
1453 for (limit = 0; limit < STOP_TRIES; limit++) {
1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455 break;
1456 udelay(10);
1457 }
1458 if (limit == STOP_TRIES) {
1459 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1460 return 1;
1461 }
1462
1463 mdelay(5);
1464
1465 /* Execute RX reset command. */
1466 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1467 for (limit = 0; limit < STOP_TRIES; limit++) {
1468 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1469 break;
1470 udelay(10);
1471 }
1472 if (limit == STOP_TRIES) {
1473 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1474 return 1;
1475 }
1476
1477 /* reset driver rx state */
1478 cas_clean_rxds(cp);
1479 cas_clean_rxcs(cp);
1480
1481 /* Now, reprogram the rest of RX unit. */
1482 cas_init_rx_dma(cp);
1483
1484 /* re-enable */
1485 val = readl(cp->regs + REG_RX_CFG);
1486 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1487 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1488 val = readl(cp->regs + REG_MAC_RX_CFG);
1489 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1490 return 0;
1491}
1492#endif
1493
1494static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1495 u32 status)
1496{
1497 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1498
1499 if (!stat)
1500 return 0;
1501
1502 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1503
1504 /* these are all rollovers */
1505 spin_lock(&cp->stat_lock[0]);
1506 if (stat & MAC_RX_ALIGN_ERR)
1507 cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509 if (stat & MAC_RX_CRC_ERR)
1510 cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512 if (stat & MAC_RX_LEN_ERR)
1513 cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515 if (stat & MAC_RX_OVERFLOW) {
1516 cp->net_stats[0].rx_over_errors++;
1517 cp->net_stats[0].rx_fifo_errors++;
1518 }
1519
1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521 * events.
1522 */
1523 spin_unlock(&cp->stat_lock[0]);
1524 return 0;
1525}
1526
1527static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528 u32 status)
1529{
1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532 if (!stat)
1533 return 0;
1534
1535 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1536 "mac interrupt, stat: 0x%x\n", stat);
1537
1538 /* This interrupt is just for pause frame and pause
1539 * tracking. It is useful for diagnostics and debug
1540 * but probably by default we will mask these events.
1541 */
1542 if (stat & MAC_CTRL_PAUSE_STATE)
1543 cp->pause_entered++;
1544
1545 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1546 cp->pause_last_time_recvd = (stat >> 16);
1547
1548 return 0;
1549}
1550
1551
1552/* Must be invoked under cp->lock. */
1553static inline int cas_mdio_link_not_up(struct cas *cp)
1554{
1555 u16 val;
1556
1557 switch (cp->lstate) {
1558 case link_force_ret:
1559 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1560 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1561 cp->timer_ticks = 5;
1562 cp->lstate = link_force_ok;
1563 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1564 break;
1565
1566 case link_aneg:
1567 val = cas_phy_read(cp, MII_BMCR);
1568
1569 /* Try forced modes. we try things in the following order:
1570 * 1000 full -> 100 full/half -> 10 half
1571 */
1572 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1573 val |= BMCR_FULLDPLX;
1574 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1575 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1576 cas_phy_write(cp, MII_BMCR, val);
1577 cp->timer_ticks = 5;
1578 cp->lstate = link_force_try;
1579 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1580 break;
1581
1582 case link_force_try:
1583 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1584 val = cas_phy_read(cp, MII_BMCR);
1585 cp->timer_ticks = 5;
1586 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1587 val &= ~CAS_BMCR_SPEED1000;
1588 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1589 cas_phy_write(cp, MII_BMCR, val);
1590 break;
1591 }
1592
1593 if (val & BMCR_SPEED100) {
1594 if (val & BMCR_FULLDPLX) /* fd failed */
1595 val &= ~BMCR_FULLDPLX;
1596 else { /* 100Mbps failed */
1597 val &= ~BMCR_SPEED100;
1598 }
1599 cas_phy_write(cp, MII_BMCR, val);
1600 break;
1601 }
1602 default:
1603 break;
1604 }
1605 return 0;
1606}
1607
1608
1609/* must be invoked with cp->lock held */
1610static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1611{
1612 int restart;
1613
1614 if (bmsr & BMSR_LSTATUS) {
1615 /* Ok, here we got a link. If we had it due to a forced
1616 * fallback, and we were configured for autoneg, we
1617 * retry a short autoneg pass. If you know your hub is
1618 * broken, use ethtool ;)
1619 */
1620 if ((cp->lstate == link_force_try) &&
1621 (cp->link_cntl & BMCR_ANENABLE)) {
1622 cp->lstate = link_force_ret;
1623 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1624 cas_mif_poll(cp, 0);
1625 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1626 cp->timer_ticks = 5;
1627 if (cp->opened)
1628 netif_info(cp, link, cp->dev,
1629 "Got link after fallback, retrying autoneg once...\n");
1630 cas_phy_write(cp, MII_BMCR,
1631 cp->link_fcntl | BMCR_ANENABLE |
1632 BMCR_ANRESTART);
1633 cas_mif_poll(cp, 1);
1634
1635 } else if (cp->lstate != link_up) {
1636 cp->lstate = link_up;
1637 cp->link_transition = LINK_TRANSITION_LINK_UP;
1638
1639 if (cp->opened) {
1640 cas_set_link_modes(cp);
1641 netif_carrier_on(cp->dev);
1642 }
1643 }
1644 return 0;
1645 }
1646
1647 /* link not up. if the link was previously up, we restart the
1648 * whole process
1649 */
1650 restart = 0;
1651 if (cp->lstate == link_up) {
1652 cp->lstate = link_down;
1653 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1654
1655 netif_carrier_off(cp->dev);
1656 if (cp->opened)
1657 netif_info(cp, link, cp->dev, "Link down\n");
1658 restart = 1;
1659
1660 } else if (++cp->timer_ticks > 10)
1661 cas_mdio_link_not_up(cp);
1662
1663 return restart;
1664}
1665
1666static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1667 u32 status)
1668{
1669 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1670 u16 bmsr;
1671
1672 /* check for a link change */
1673 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1674 return 0;
1675
1676 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1677 return cas_mii_link_check(cp, bmsr);
1678}
1679
1680static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1681 u32 status)
1682{
1683 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1684
1685 if (!stat)
1686 return 0;
1687
1688 netdev_err(dev, "PCI error [%04x:%04x]",
1689 stat, readl(cp->regs + REG_BIM_DIAG));
1690
1691 /* cassini+ has this reserved */
1692 if ((stat & PCI_ERR_BADACK) &&
1693 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1694 pr_cont(" <No ACK64# during ABS64 cycle>");
1695
1696 if (stat & PCI_ERR_DTRTO)
1697 pr_cont(" <Delayed transaction timeout>");
1698 if (stat & PCI_ERR_OTHER)
1699 pr_cont(" <other>");
1700 if (stat & PCI_ERR_BIM_DMA_WRITE)
1701 pr_cont(" <BIM DMA 0 write req>");
1702 if (stat & PCI_ERR_BIM_DMA_READ)
1703 pr_cont(" <BIM DMA 0 read req>");
1704 pr_cont("\n");
1705
1706 if (stat & PCI_ERR_OTHER) {
1707 int pci_errs;
1708
1709 /* Interrogate PCI config space for the
1710 * true cause.
1711 */
1712 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1713
1714 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1715 if (pci_errs & PCI_STATUS_PARITY)
1716 netdev_err(dev, "PCI parity error detected\n");
1717 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1718 netdev_err(dev, "PCI target abort\n");
1719 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1720 netdev_err(dev, "PCI master acks target abort\n");
1721 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1722 netdev_err(dev, "PCI master abort\n");
1723 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1724 netdev_err(dev, "PCI system error SERR#\n");
1725 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1726 netdev_err(dev, "PCI parity error\n");
1727 }
1728
1729 /* For all PCI errors, we should reset the chip. */
1730 return 1;
1731}
1732
1733/* All non-normal interrupt conditions get serviced here.
1734 * Returns non-zero if we should just exit the interrupt
1735 * handler right now (ie. if we reset the card which invalidates
1736 * all of the other original irq status bits).
1737 */
1738static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1739 u32 status)
1740{
1741 if (status & INTR_RX_TAG_ERROR) {
1742 /* corrupt RX tag framing */
1743 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1744 "corrupt rx tag framing\n");
1745 spin_lock(&cp->stat_lock[0]);
1746 cp->net_stats[0].rx_errors++;
1747 spin_unlock(&cp->stat_lock[0]);
1748 goto do_reset;
1749 }
1750
1751 if (status & INTR_RX_LEN_MISMATCH) {
1752 /* length mismatch. */
1753 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1754 "length mismatch for rx frame\n");
1755 spin_lock(&cp->stat_lock[0]);
1756 cp->net_stats[0].rx_errors++;
1757 spin_unlock(&cp->stat_lock[0]);
1758 goto do_reset;
1759 }
1760
1761 if (status & INTR_PCS_STATUS) {
1762 if (cas_pcs_interrupt(dev, cp, status))
1763 goto do_reset;
1764 }
1765
1766 if (status & INTR_TX_MAC_STATUS) {
1767 if (cas_txmac_interrupt(dev, cp, status))
1768 goto do_reset;
1769 }
1770
1771 if (status & INTR_RX_MAC_STATUS) {
1772 if (cas_rxmac_interrupt(dev, cp, status))
1773 goto do_reset;
1774 }
1775
1776 if (status & INTR_MAC_CTRL_STATUS) {
1777 if (cas_mac_interrupt(dev, cp, status))
1778 goto do_reset;
1779 }
1780
1781 if (status & INTR_MIF_STATUS) {
1782 if (cas_mif_interrupt(dev, cp, status))
1783 goto do_reset;
1784 }
1785
1786 if (status & INTR_PCI_ERROR_STATUS) {
1787 if (cas_pci_interrupt(dev, cp, status))
1788 goto do_reset;
1789 }
1790 return 0;
1791
1792do_reset:
1793#if 1
1794 atomic_inc(&cp->reset_task_pending);
1795 atomic_inc(&cp->reset_task_pending_all);
1796 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1797 schedule_work(&cp->reset_task);
1798#else
1799 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1800 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1801 schedule_work(&cp->reset_task);
1802#endif
1803 return 1;
1804}
1805
1806/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1807 * determining whether to do a netif_stop/wakeup
1808 */
1809#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1810#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1811static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1812 const int len)
1813{
1814 unsigned long off = addr + len;
1815
1816 if (CAS_TABORT(cp) == 1)
1817 return 0;
1818 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1819 return 0;
1820 return TX_TARGET_ABORT_LEN;
1821}
1822
1823static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1824{
1825 struct cas_tx_desc *txds;
1826 struct sk_buff **skbs;
1827 struct net_device *dev = cp->dev;
1828 int entry, count;
1829
1830 spin_lock(&cp->tx_lock[ring]);
1831 txds = cp->init_txds[ring];
1832 skbs = cp->tx_skbs[ring];
1833 entry = cp->tx_old[ring];
1834
1835 count = TX_BUFF_COUNT(ring, entry, limit);
1836 while (entry != limit) {
1837 struct sk_buff *skb = skbs[entry];
1838 dma_addr_t daddr;
1839 u32 dlen;
1840 int frag;
1841
1842 if (!skb) {
1843 /* this should never occur */
1844 entry = TX_DESC_NEXT(ring, entry);
1845 continue;
1846 }
1847
1848 /* however, we might get only a partial skb release. */
1849 count -= skb_shinfo(skb)->nr_frags +
1850 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1851 if (count < 0)
1852 break;
1853
1854 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1855 "tx[%d] done, slot %d\n", ring, entry);
1856
1857 skbs[entry] = NULL;
1858 cp->tx_tiny_use[ring][entry].nbufs = 0;
1859
1860 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1861 struct cas_tx_desc *txd = txds + entry;
1862
1863 daddr = le64_to_cpu(txd->buffer);
1864 dlen = CAS_VAL(TX_DESC_BUFLEN,
1865 le64_to_cpu(txd->control));
1866 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1867 DMA_TO_DEVICE);
1868 entry = TX_DESC_NEXT(ring, entry);
1869
1870 /* tiny buffer may follow */
1871 if (cp->tx_tiny_use[ring][entry].used) {
1872 cp->tx_tiny_use[ring][entry].used = 0;
1873 entry = TX_DESC_NEXT(ring, entry);
1874 }
1875 }
1876
1877 spin_lock(&cp->stat_lock[ring]);
1878 cp->net_stats[ring].tx_packets++;
1879 cp->net_stats[ring].tx_bytes += skb->len;
1880 spin_unlock(&cp->stat_lock[ring]);
1881 dev_consume_skb_irq(skb);
1882 }
1883 cp->tx_old[ring] = entry;
1884
1885 /* this is wrong for multiple tx rings. the net device needs
1886 * multiple queues for this to do the right thing. we wait
1887 * for 2*packets to be available when using tiny buffers
1888 */
1889 if (netif_queue_stopped(dev) &&
1890 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1891 netif_wake_queue(dev);
1892 spin_unlock(&cp->tx_lock[ring]);
1893}
1894
1895static void cas_tx(struct net_device *dev, struct cas *cp,
1896 u32 status)
1897{
1898 int limit, ring;
1899#ifdef USE_TX_COMPWB
1900 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1901#endif
1902 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1903 "tx interrupt, status: 0x%x, %llx\n",
1904 status, (unsigned long long)compwb);
1905 /* process all the rings */
1906 for (ring = 0; ring < N_TX_RINGS; ring++) {
1907#ifdef USE_TX_COMPWB
1908 /* use the completion writeback registers */
1909 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1910 CAS_VAL(TX_COMPWB_LSB, compwb);
1911 compwb = TX_COMPWB_NEXT(compwb);
1912#else
1913 limit = readl(cp->regs + REG_TX_COMPN(ring));
1914#endif
1915 if (cp->tx_old[ring] != limit)
1916 cas_tx_ringN(cp, ring, limit);
1917 }
1918}
1919
1920
1921static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1922 int entry, const u64 *words,
1923 struct sk_buff **skbref)
1924{
1925 int dlen, hlen, len, i, alloclen;
1926 int off, swivel = RX_SWIVEL_OFF_VAL;
1927 struct cas_page *page;
1928 struct sk_buff *skb;
1929 void *addr, *crcaddr;
1930 __sum16 csum;
1931 char *p;
1932
1933 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1934 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1935 len = hlen + dlen;
1936
1937 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1938 alloclen = len;
1939 else
1940 alloclen = max(hlen, RX_COPY_MIN);
1941
1942 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1943 if (skb == NULL)
1944 return -1;
1945
1946 *skbref = skb;
1947 skb_reserve(skb, swivel);
1948
1949 p = skb->data;
1950 addr = crcaddr = NULL;
1951 if (hlen) { /* always copy header pages */
1952 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1953 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1954 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1955 swivel;
1956
1957 i = hlen;
1958 if (!dlen) /* attach FCS */
1959 i += cp->crc_size;
1960 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1961 i, DMA_FROM_DEVICE);
1962 addr = cas_page_map(page->buffer);
1963 memcpy(p, addr + off, i);
1964 dma_sync_single_for_device(&cp->pdev->dev,
1965 page->dma_addr + off, i,
1966 DMA_FROM_DEVICE);
1967 cas_page_unmap(addr);
1968 RX_USED_ADD(page, 0x100);
1969 p += hlen;
1970 swivel = 0;
1971 }
1972
1973
1974 if (alloclen < (hlen + dlen)) {
1975 skb_frag_t *frag = skb_shinfo(skb)->frags;
1976
1977 /* normal or jumbo packets. we use frags */
1978 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1979 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1980 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1981
1982 hlen = min(cp->page_size - off, dlen);
1983 if (hlen < 0) {
1984 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1985 "rx page overflow: %d\n", hlen);
1986 dev_kfree_skb_irq(skb);
1987 return -1;
1988 }
1989 i = hlen;
1990 if (i == dlen) /* attach FCS */
1991 i += cp->crc_size;
1992 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1993 i, DMA_FROM_DEVICE);
1994
1995 /* make sure we always copy a header */
1996 swivel = 0;
1997 if (p == (char *) skb->data) { /* not split */
1998 addr = cas_page_map(page->buffer);
1999 memcpy(p, addr + off, RX_COPY_MIN);
2000 dma_sync_single_for_device(&cp->pdev->dev,
2001 page->dma_addr + off, i,
2002 DMA_FROM_DEVICE);
2003 cas_page_unmap(addr);
2004 off += RX_COPY_MIN;
2005 swivel = RX_COPY_MIN;
2006 RX_USED_ADD(page, cp->mtu_stride);
2007 } else {
2008 RX_USED_ADD(page, hlen);
2009 }
2010 skb_put(skb, alloclen);
2011
2012 skb_shinfo(skb)->nr_frags++;
2013 skb->data_len += hlen - swivel;
2014 skb->truesize += hlen - swivel;
2015 skb->len += hlen - swivel;
2016
2017 __skb_frag_set_page(frag, page->buffer);
2018 __skb_frag_ref(frag);
2019 skb_frag_off_set(frag, off);
2020 skb_frag_size_set(frag, hlen - swivel);
2021
2022 /* any more data? */
2023 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2024 hlen = dlen;
2025 off = 0;
2026
2027 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2028 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2029 dma_sync_single_for_cpu(&cp->pdev->dev,
2030 page->dma_addr,
2031 hlen + cp->crc_size,
2032 DMA_FROM_DEVICE);
2033 dma_sync_single_for_device(&cp->pdev->dev,
2034 page->dma_addr,
2035 hlen + cp->crc_size,
2036 DMA_FROM_DEVICE);
2037
2038 skb_shinfo(skb)->nr_frags++;
2039 skb->data_len += hlen;
2040 skb->len += hlen;
2041 frag++;
2042
2043 __skb_frag_set_page(frag, page->buffer);
2044 __skb_frag_ref(frag);
2045 skb_frag_off_set(frag, 0);
2046 skb_frag_size_set(frag, hlen);
2047 RX_USED_ADD(page, hlen + cp->crc_size);
2048 }
2049
2050 if (cp->crc_size) {
2051 addr = cas_page_map(page->buffer);
2052 crcaddr = addr + off + hlen;
2053 }
2054
2055 } else {
2056 /* copying packet */
2057 if (!dlen)
2058 goto end_copy_pkt;
2059
2060 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2061 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2062 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2063 hlen = min(cp->page_size - off, dlen);
2064 if (hlen < 0) {
2065 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2066 "rx page overflow: %d\n", hlen);
2067 dev_kfree_skb_irq(skb);
2068 return -1;
2069 }
2070 i = hlen;
2071 if (i == dlen) /* attach FCS */
2072 i += cp->crc_size;
2073 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2074 i, DMA_FROM_DEVICE);
2075 addr = cas_page_map(page->buffer);
2076 memcpy(p, addr + off, i);
2077 dma_sync_single_for_device(&cp->pdev->dev,
2078 page->dma_addr + off, i,
2079 DMA_FROM_DEVICE);
2080 cas_page_unmap(addr);
2081 if (p == (char *) skb->data) /* not split */
2082 RX_USED_ADD(page, cp->mtu_stride);
2083 else
2084 RX_USED_ADD(page, i);
2085
2086 /* any more data? */
2087 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2088 p += hlen;
2089 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2090 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091 dma_sync_single_for_cpu(&cp->pdev->dev,
2092 page->dma_addr,
2093 dlen + cp->crc_size,
2094 DMA_FROM_DEVICE);
2095 addr = cas_page_map(page->buffer);
2096 memcpy(p, addr, dlen + cp->crc_size);
2097 dma_sync_single_for_device(&cp->pdev->dev,
2098 page->dma_addr,
2099 dlen + cp->crc_size,
2100 DMA_FROM_DEVICE);
2101 cas_page_unmap(addr);
2102 RX_USED_ADD(page, dlen + cp->crc_size);
2103 }
2104end_copy_pkt:
2105 if (cp->crc_size) {
2106 addr = NULL;
2107 crcaddr = skb->data + alloclen;
2108 }
2109 skb_put(skb, alloclen);
2110 }
2111
2112 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2113 if (cp->crc_size) {
2114 /* checksum includes FCS. strip it out. */
2115 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2116 csum_unfold(csum)));
2117 if (addr)
2118 cas_page_unmap(addr);
2119 }
2120 skb->protocol = eth_type_trans(skb, cp->dev);
2121 if (skb->protocol == htons(ETH_P_IP)) {
2122 skb->csum = csum_unfold(~csum);
2123 skb->ip_summed = CHECKSUM_COMPLETE;
2124 } else
2125 skb_checksum_none_assert(skb);
2126 return len;
2127}
2128
2129
2130/* we can handle up to 64 rx flows at a time. we do the same thing
2131 * as nonreassm except that we batch up the buffers.
2132 * NOTE: we currently just treat each flow as a bunch of packets that
2133 * we pass up. a better way would be to coalesce the packets
2134 * into a jumbo packet. to do that, we need to do the following:
2135 * 1) the first packet will have a clean split between header and
2136 * data. save both.
2137 * 2) each time the next flow packet comes in, extend the
2138 * data length and merge the checksums.
2139 * 3) on flow release, fix up the header.
2140 * 4) make sure the higher layer doesn't care.
2141 * because packets get coalesced, we shouldn't run into fragment count
2142 * issues.
2143 */
2144static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2145 struct sk_buff *skb)
2146{
2147 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2148 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2149
2150 /* this is protected at a higher layer, so no need to
2151 * do any additional locking here. stick the buffer
2152 * at the end.
2153 */
2154 __skb_queue_tail(flow, skb);
2155 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2156 while ((skb = __skb_dequeue(flow))) {
2157 cas_skb_release(skb);
2158 }
2159 }
2160}
2161
2162/* put rx descriptor back on ring. if a buffer is in use by a higher
2163 * layer, this will need to put in a replacement.
2164 */
2165static void cas_post_page(struct cas *cp, const int ring, const int index)
2166{
2167 cas_page_t *new;
2168 int entry;
2169
2170 entry = cp->rx_old[ring];
2171
2172 new = cas_page_swap(cp, ring, index);
2173 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2174 cp->init_rxds[ring][entry].index =
2175 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2176 CAS_BASE(RX_INDEX_RING, ring));
2177
2178 entry = RX_DESC_ENTRY(ring, entry + 1);
2179 cp->rx_old[ring] = entry;
2180
2181 if (entry % 4)
2182 return;
2183
2184 if (ring == 0)
2185 writel(entry, cp->regs + REG_RX_KICK);
2186 else if ((N_RX_DESC_RINGS > 1) &&
2187 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2188 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2189}
2190
2191
2192/* only when things are bad */
2193static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2194{
2195 unsigned int entry, last, count, released;
2196 int cluster;
2197 cas_page_t **page = cp->rx_pages[ring];
2198
2199 entry = cp->rx_old[ring];
2200
2201 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2202 "rxd[%d] interrupt, done: %d\n", ring, entry);
2203
2204 cluster = -1;
2205 count = entry & 0x3;
2206 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2207 released = 0;
2208 while (entry != last) {
2209 /* make a new buffer if it's still in use */
2210 if (page_count(page[entry]->buffer) > 1) {
2211 cas_page_t *new = cas_page_dequeue(cp);
2212 if (!new) {
2213 /* let the timer know that we need to
2214 * do this again
2215 */
2216 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2217 if (!timer_pending(&cp->link_timer))
2218 mod_timer(&cp->link_timer, jiffies +
2219 CAS_LINK_FAST_TIMEOUT);
2220 cp->rx_old[ring] = entry;
2221 cp->rx_last[ring] = num ? num - released : 0;
2222 return -ENOMEM;
2223 }
2224 spin_lock(&cp->rx_inuse_lock);
2225 list_add(&page[entry]->list, &cp->rx_inuse_list);
2226 spin_unlock(&cp->rx_inuse_lock);
2227 cp->init_rxds[ring][entry].buffer =
2228 cpu_to_le64(new->dma_addr);
2229 page[entry] = new;
2230
2231 }
2232
2233 if (++count == 4) {
2234 cluster = entry;
2235 count = 0;
2236 }
2237 released++;
2238 entry = RX_DESC_ENTRY(ring, entry + 1);
2239 }
2240 cp->rx_old[ring] = entry;
2241
2242 if (cluster < 0)
2243 return 0;
2244
2245 if (ring == 0)
2246 writel(cluster, cp->regs + REG_RX_KICK);
2247 else if ((N_RX_DESC_RINGS > 1) &&
2248 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2249 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2250 return 0;
2251}
2252
2253
2254/* process a completion ring. packets are set up in three basic ways:
2255 * small packets: should be copied header + data in single buffer.
2256 * large packets: header and data in a single buffer.
2257 * split packets: header in a separate buffer from data.
2258 * data may be in multiple pages. data may be > 256
2259 * bytes but in a single page.
2260 *
2261 * NOTE: RX page posting is done in this routine as well. while there's
2262 * the capability of using multiple RX completion rings, it isn't
2263 * really worthwhile due to the fact that the page posting will
2264 * force serialization on the single descriptor ring.
2265 */
2266static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2267{
2268 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2269 int entry, drops;
2270 int npackets = 0;
2271
2272 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2273 "rx[%d] interrupt, done: %d/%d\n",
2274 ring,
2275 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2276
2277 entry = cp->rx_new[ring];
2278 drops = 0;
2279 while (1) {
2280 struct cas_rx_comp *rxc = rxcs + entry;
2281 struct sk_buff *skb;
2282 int type, len;
2283 u64 words[4];
2284 int i, dring;
2285
2286 words[0] = le64_to_cpu(rxc->word1);
2287 words[1] = le64_to_cpu(rxc->word2);
2288 words[2] = le64_to_cpu(rxc->word3);
2289 words[3] = le64_to_cpu(rxc->word4);
2290
2291 /* don't touch if still owned by hw */
2292 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2293 if (type == 0)
2294 break;
2295
2296 /* hw hasn't cleared the zero bit yet */
2297 if (words[3] & RX_COMP4_ZERO) {
2298 break;
2299 }
2300
2301 /* get info on the packet */
2302 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2303 spin_lock(&cp->stat_lock[ring]);
2304 cp->net_stats[ring].rx_errors++;
2305 if (words[3] & RX_COMP4_LEN_MISMATCH)
2306 cp->net_stats[ring].rx_length_errors++;
2307 if (words[3] & RX_COMP4_BAD)
2308 cp->net_stats[ring].rx_crc_errors++;
2309 spin_unlock(&cp->stat_lock[ring]);
2310
2311 /* We'll just return it to Cassini. */
2312 drop_it:
2313 spin_lock(&cp->stat_lock[ring]);
2314 ++cp->net_stats[ring].rx_dropped;
2315 spin_unlock(&cp->stat_lock[ring]);
2316 goto next;
2317 }
2318
2319 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2320 if (len < 0) {
2321 ++drops;
2322 goto drop_it;
2323 }
2324
2325 /* see if it's a flow re-assembly or not. the driver
2326 * itself handles release back up.
2327 */
2328 if (RX_DONT_BATCH || (type == 0x2)) {
2329 /* non-reassm: these always get released */
2330 cas_skb_release(skb);
2331 } else {
2332 cas_rx_flow_pkt(cp, words, skb);
2333 }
2334
2335 spin_lock(&cp->stat_lock[ring]);
2336 cp->net_stats[ring].rx_packets++;
2337 cp->net_stats[ring].rx_bytes += len;
2338 spin_unlock(&cp->stat_lock[ring]);
2339
2340 next:
2341 npackets++;
2342
2343 /* should it be released? */
2344 if (words[0] & RX_COMP1_RELEASE_HDR) {
2345 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2346 dring = CAS_VAL(RX_INDEX_RING, i);
2347 i = CAS_VAL(RX_INDEX_NUM, i);
2348 cas_post_page(cp, dring, i);
2349 }
2350
2351 if (words[0] & RX_COMP1_RELEASE_DATA) {
2352 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2353 dring = CAS_VAL(RX_INDEX_RING, i);
2354 i = CAS_VAL(RX_INDEX_NUM, i);
2355 cas_post_page(cp, dring, i);
2356 }
2357
2358 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2359 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2360 dring = CAS_VAL(RX_INDEX_RING, i);
2361 i = CAS_VAL(RX_INDEX_NUM, i);
2362 cas_post_page(cp, dring, i);
2363 }
2364
2365 /* skip to the next entry */
2366 entry = RX_COMP_ENTRY(ring, entry + 1 +
2367 CAS_VAL(RX_COMP1_SKIP, words[0]));
2368#ifdef USE_NAPI
2369 if (budget && (npackets >= budget))
2370 break;
2371#endif
2372 }
2373 cp->rx_new[ring] = entry;
2374
2375 if (drops)
2376 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2377 return npackets;
2378}
2379
2380
2381/* put completion entries back on the ring */
2382static void cas_post_rxcs_ringN(struct net_device *dev,
2383 struct cas *cp, int ring)
2384{
2385 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2386 int last, entry;
2387
2388 last = cp->rx_cur[ring];
2389 entry = cp->rx_new[ring];
2390 netif_printk(cp, intr, KERN_DEBUG, dev,
2391 "rxc[%d] interrupt, done: %d/%d\n",
2392 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2393
2394 /* zero and re-mark descriptors */
2395 while (last != entry) {
2396 cas_rxc_init(rxc + last);
2397 last = RX_COMP_ENTRY(ring, last + 1);
2398 }
2399 cp->rx_cur[ring] = last;
2400
2401 if (ring == 0)
2402 writel(last, cp->regs + REG_RX_COMP_TAIL);
2403 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2404 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2405}
2406
2407
2408
2409/* cassini can use all four PCI interrupts for the completion ring.
2410 * rings 3 and 4 are identical
2411 */
2412#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2413static inline void cas_handle_irqN(struct net_device *dev,
2414 struct cas *cp, const u32 status,
2415 const int ring)
2416{
2417 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2418 cas_post_rxcs_ringN(dev, cp, ring);
2419}
2420
2421static irqreturn_t cas_interruptN(int irq, void *dev_id)
2422{
2423 struct net_device *dev = dev_id;
2424 struct cas *cp = netdev_priv(dev);
2425 unsigned long flags;
2426 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2427 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2428
2429 /* check for shared irq */
2430 if (status == 0)
2431 return IRQ_NONE;
2432
2433 spin_lock_irqsave(&cp->lock, flags);
2434 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2435#ifdef USE_NAPI
2436 cas_mask_intr(cp);
2437 napi_schedule(&cp->napi);
2438#else
2439 cas_rx_ringN(cp, ring, 0);
2440#endif
2441 status &= ~INTR_RX_DONE_ALT;
2442 }
2443
2444 if (status)
2445 cas_handle_irqN(dev, cp, status, ring);
2446 spin_unlock_irqrestore(&cp->lock, flags);
2447 return IRQ_HANDLED;
2448}
2449#endif
2450
2451#ifdef USE_PCI_INTB
2452/* everything but rx packets */
2453static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2454{
2455 if (status & INTR_RX_BUF_UNAVAIL_1) {
2456 /* Frame arrived, no free RX buffers available.
2457 * NOTE: we can get this on a link transition. */
2458 cas_post_rxds_ringN(cp, 1, 0);
2459 spin_lock(&cp->stat_lock[1]);
2460 cp->net_stats[1].rx_dropped++;
2461 spin_unlock(&cp->stat_lock[1]);
2462 }
2463
2464 if (status & INTR_RX_BUF_AE_1)
2465 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2466 RX_AE_FREEN_VAL(1));
2467
2468 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2469 cas_post_rxcs_ringN(cp, 1);
2470}
2471
2472/* ring 2 handles a few more events than 3 and 4 */
2473static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2474{
2475 struct net_device *dev = dev_id;
2476 struct cas *cp = netdev_priv(dev);
2477 unsigned long flags;
2478 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2479
2480 /* check for shared interrupt */
2481 if (status == 0)
2482 return IRQ_NONE;
2483
2484 spin_lock_irqsave(&cp->lock, flags);
2485 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2486#ifdef USE_NAPI
2487 cas_mask_intr(cp);
2488 napi_schedule(&cp->napi);
2489#else
2490 cas_rx_ringN(cp, 1, 0);
2491#endif
2492 status &= ~INTR_RX_DONE_ALT;
2493 }
2494 if (status)
2495 cas_handle_irq1(cp, status);
2496 spin_unlock_irqrestore(&cp->lock, flags);
2497 return IRQ_HANDLED;
2498}
2499#endif
2500
2501static inline void cas_handle_irq(struct net_device *dev,
2502 struct cas *cp, const u32 status)
2503{
2504 /* housekeeping interrupts */
2505 if (status & INTR_ERROR_MASK)
2506 cas_abnormal_irq(dev, cp, status);
2507
2508 if (status & INTR_RX_BUF_UNAVAIL) {
2509 /* Frame arrived, no free RX buffers available.
2510 * NOTE: we can get this on a link transition.
2511 */
2512 cas_post_rxds_ringN(cp, 0, 0);
2513 spin_lock(&cp->stat_lock[0]);
2514 cp->net_stats[0].rx_dropped++;
2515 spin_unlock(&cp->stat_lock[0]);
2516 } else if (status & INTR_RX_BUF_AE) {
2517 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2518 RX_AE_FREEN_VAL(0));
2519 }
2520
2521 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2522 cas_post_rxcs_ringN(dev, cp, 0);
2523}
2524
2525static irqreturn_t cas_interrupt(int irq, void *dev_id)
2526{
2527 struct net_device *dev = dev_id;
2528 struct cas *cp = netdev_priv(dev);
2529 unsigned long flags;
2530 u32 status = readl(cp->regs + REG_INTR_STATUS);
2531
2532 if (status == 0)
2533 return IRQ_NONE;
2534
2535 spin_lock_irqsave(&cp->lock, flags);
2536 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2537 cas_tx(dev, cp, status);
2538 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2539 }
2540
2541 if (status & INTR_RX_DONE) {
2542#ifdef USE_NAPI
2543 cas_mask_intr(cp);
2544 napi_schedule(&cp->napi);
2545#else
2546 cas_rx_ringN(cp, 0, 0);
2547#endif
2548 status &= ~INTR_RX_DONE;
2549 }
2550
2551 if (status)
2552 cas_handle_irq(dev, cp, status);
2553 spin_unlock_irqrestore(&cp->lock, flags);
2554 return IRQ_HANDLED;
2555}
2556
2557
2558#ifdef USE_NAPI
2559static int cas_poll(struct napi_struct *napi, int budget)
2560{
2561 struct cas *cp = container_of(napi, struct cas, napi);
2562 struct net_device *dev = cp->dev;
2563 int i, enable_intr, credits;
2564 u32 status = readl(cp->regs + REG_INTR_STATUS);
2565 unsigned long flags;
2566
2567 spin_lock_irqsave(&cp->lock, flags);
2568 cas_tx(dev, cp, status);
2569 spin_unlock_irqrestore(&cp->lock, flags);
2570
2571 /* NAPI rx packets. we spread the credits across all of the
2572 * rxc rings
2573 *
2574 * to make sure we're fair with the work we loop through each
2575 * ring N_RX_COMP_RING times with a request of
2576 * budget / N_RX_COMP_RINGS
2577 */
2578 enable_intr = 1;
2579 credits = 0;
2580 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2581 int j;
2582 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2583 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2584 if (credits >= budget) {
2585 enable_intr = 0;
2586 goto rx_comp;
2587 }
2588 }
2589 }
2590
2591rx_comp:
2592 /* final rx completion */
2593 spin_lock_irqsave(&cp->lock, flags);
2594 if (status)
2595 cas_handle_irq(dev, cp, status);
2596
2597#ifdef USE_PCI_INTB
2598 if (N_RX_COMP_RINGS > 1) {
2599 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2600 if (status)
2601 cas_handle_irq1(dev, cp, status);
2602 }
2603#endif
2604
2605#ifdef USE_PCI_INTC
2606 if (N_RX_COMP_RINGS > 2) {
2607 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2608 if (status)
2609 cas_handle_irqN(dev, cp, status, 2);
2610 }
2611#endif
2612
2613#ifdef USE_PCI_INTD
2614 if (N_RX_COMP_RINGS > 3) {
2615 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2616 if (status)
2617 cas_handle_irqN(dev, cp, status, 3);
2618 }
2619#endif
2620 spin_unlock_irqrestore(&cp->lock, flags);
2621 if (enable_intr) {
2622 napi_complete(napi);
2623 cas_unmask_intr(cp);
2624 }
2625 return credits;
2626}
2627#endif
2628
2629#ifdef CONFIG_NET_POLL_CONTROLLER
2630static void cas_netpoll(struct net_device *dev)
2631{
2632 struct cas *cp = netdev_priv(dev);
2633
2634 cas_disable_irq(cp, 0);
2635 cas_interrupt(cp->pdev->irq, dev);
2636 cas_enable_irq(cp, 0);
2637
2638#ifdef USE_PCI_INTB
2639 if (N_RX_COMP_RINGS > 1) {
2640 /* cas_interrupt1(); */
2641 }
2642#endif
2643#ifdef USE_PCI_INTC
2644 if (N_RX_COMP_RINGS > 2) {
2645 /* cas_interruptN(); */
2646 }
2647#endif
2648#ifdef USE_PCI_INTD
2649 if (N_RX_COMP_RINGS > 3) {
2650 /* cas_interruptN(); */
2651 }
2652#endif
2653}
2654#endif
2655
2656static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2657{
2658 struct cas *cp = netdev_priv(dev);
2659
2660 netdev_err(dev, "transmit timed out, resetting\n");
2661 if (!cp->hw_running) {
2662 netdev_err(dev, "hrm.. hw not running!\n");
2663 return;
2664 }
2665
2666 netdev_err(dev, "MIF_STATE[%08x]\n",
2667 readl(cp->regs + REG_MIF_STATE_MACHINE));
2668
2669 netdev_err(dev, "MAC_STATE[%08x]\n",
2670 readl(cp->regs + REG_MAC_STATE_MACHINE));
2671
2672 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2673 readl(cp->regs + REG_TX_CFG),
2674 readl(cp->regs + REG_MAC_TX_STATUS),
2675 readl(cp->regs + REG_MAC_TX_CFG),
2676 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2677 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2678 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2679 readl(cp->regs + REG_TX_SM_1),
2680 readl(cp->regs + REG_TX_SM_2));
2681
2682 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2683 readl(cp->regs + REG_RX_CFG),
2684 readl(cp->regs + REG_MAC_RX_STATUS),
2685 readl(cp->regs + REG_MAC_RX_CFG));
2686
2687 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2688 readl(cp->regs + REG_HP_STATE_MACHINE),
2689 readl(cp->regs + REG_HP_STATUS0),
2690 readl(cp->regs + REG_HP_STATUS1),
2691 readl(cp->regs + REG_HP_STATUS2));
2692
2693#if 1
2694 atomic_inc(&cp->reset_task_pending);
2695 atomic_inc(&cp->reset_task_pending_all);
2696 schedule_work(&cp->reset_task);
2697#else
2698 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2699 schedule_work(&cp->reset_task);
2700#endif
2701}
2702
2703static inline int cas_intme(int ring, int entry)
2704{
2705 /* Algorithm: IRQ every 1/2 of descriptors. */
2706 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2707 return 1;
2708 return 0;
2709}
2710
2711
2712static void cas_write_txd(struct cas *cp, int ring, int entry,
2713 dma_addr_t mapping, int len, u64 ctrl, int last)
2714{
2715 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2716
2717 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2718 if (cas_intme(ring, entry))
2719 ctrl |= TX_DESC_INTME;
2720 if (last)
2721 ctrl |= TX_DESC_EOF;
2722 txd->control = cpu_to_le64(ctrl);
2723 txd->buffer = cpu_to_le64(mapping);
2724}
2725
2726static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2727 const int entry)
2728{
2729 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2730}
2731
2732static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2733 const int entry, const int tentry)
2734{
2735 cp->tx_tiny_use[ring][tentry].nbufs++;
2736 cp->tx_tiny_use[ring][entry].used = 1;
2737 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2738}
2739
2740static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2741 struct sk_buff *skb)
2742{
2743 struct net_device *dev = cp->dev;
2744 int entry, nr_frags, frag, tabort, tentry;
2745 dma_addr_t mapping;
2746 unsigned long flags;
2747 u64 ctrl;
2748 u32 len;
2749
2750 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2751
2752 /* This is a hard error, log it. */
2753 if (TX_BUFFS_AVAIL(cp, ring) <=
2754 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2755 netif_stop_queue(dev);
2756 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2757 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2758 return 1;
2759 }
2760
2761 ctrl = 0;
2762 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2763 const u64 csum_start_off = skb_checksum_start_offset(skb);
2764 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2765
2766 ctrl = TX_DESC_CSUM_EN |
2767 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2768 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2769 }
2770
2771 entry = cp->tx_new[ring];
2772 cp->tx_skbs[ring][entry] = skb;
2773
2774 nr_frags = skb_shinfo(skb)->nr_frags;
2775 len = skb_headlen(skb);
2776 mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2777 offset_in_page(skb->data), len, DMA_TO_DEVICE);
2778
2779 tentry = entry;
2780 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2781 if (unlikely(tabort)) {
2782 /* NOTE: len is always > tabort */
2783 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2784 ctrl | TX_DESC_SOF, 0);
2785 entry = TX_DESC_NEXT(ring, entry);
2786
2787 skb_copy_from_linear_data_offset(skb, len - tabort,
2788 tx_tiny_buf(cp, ring, entry), tabort);
2789 mapping = tx_tiny_map(cp, ring, entry, tentry);
2790 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2791 (nr_frags == 0));
2792 } else {
2793 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2794 TX_DESC_SOF, (nr_frags == 0));
2795 }
2796 entry = TX_DESC_NEXT(ring, entry);
2797
2798 for (frag = 0; frag < nr_frags; frag++) {
2799 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2800
2801 len = skb_frag_size(fragp);
2802 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2803 DMA_TO_DEVICE);
2804
2805 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2806 if (unlikely(tabort)) {
2807 void *addr;
2808
2809 /* NOTE: len is always > tabort */
2810 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811 ctrl, 0);
2812 entry = TX_DESC_NEXT(ring, entry);
2813
2814 addr = cas_page_map(skb_frag_page(fragp));
2815 memcpy(tx_tiny_buf(cp, ring, entry),
2816 addr + skb_frag_off(fragp) + len - tabort,
2817 tabort);
2818 cas_page_unmap(addr);
2819 mapping = tx_tiny_map(cp, ring, entry, tentry);
2820 len = tabort;
2821 }
2822
2823 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2824 (frag + 1 == nr_frags));
2825 entry = TX_DESC_NEXT(ring, entry);
2826 }
2827
2828 cp->tx_new[ring] = entry;
2829 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2830 netif_stop_queue(dev);
2831
2832 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2833 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2834 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2835 writel(entry, cp->regs + REG_TX_KICKN(ring));
2836 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2837 return 0;
2838}
2839
2840static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2841{
2842 struct cas *cp = netdev_priv(dev);
2843
2844 /* this is only used as a load-balancing hint, so it doesn't
2845 * need to be SMP safe
2846 */
2847 static int ring;
2848
2849 if (skb_padto(skb, cp->min_frame_size))
2850 return NETDEV_TX_OK;
2851
2852 /* XXX: we need some higher-level QoS hooks to steer packets to
2853 * individual queues.
2854 */
2855 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2856 return NETDEV_TX_BUSY;
2857 return NETDEV_TX_OK;
2858}
2859
2860static void cas_init_tx_dma(struct cas *cp)
2861{
2862 u64 desc_dma = cp->block_dvma;
2863 unsigned long off;
2864 u32 val;
2865 int i;
2866
2867 /* set up tx completion writeback registers. must be 8-byte aligned */
2868#ifdef USE_TX_COMPWB
2869 off = offsetof(struct cas_init_block, tx_compwb);
2870 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2871 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2872#endif
2873
2874 /* enable completion writebacks, enable paced mode,
2875 * disable read pipe, and disable pre-interrupt compwbs
2876 */
2877 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2878 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2879 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2880 TX_CFG_INTR_COMPWB_DIS;
2881
2882 /* write out tx ring info and tx desc bases */
2883 for (i = 0; i < MAX_TX_RINGS; i++) {
2884 off = (unsigned long) cp->init_txds[i] -
2885 (unsigned long) cp->init_block;
2886
2887 val |= CAS_TX_RINGN_BASE(i);
2888 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2889 writel((desc_dma + off) & 0xffffffff, cp->regs +
2890 REG_TX_DBN_LOW(i));
2891 /* don't zero out the kick register here as the system
2892 * will wedge
2893 */
2894 }
2895 writel(val, cp->regs + REG_TX_CFG);
2896
2897 /* program max burst sizes. these numbers should be different
2898 * if doing QoS.
2899 */
2900#ifdef USE_QOS
2901 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2902 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2903 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2904 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2905#else
2906 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2907 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2908 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2909 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2910#endif
2911}
2912
2913/* Must be invoked under cp->lock. */
2914static inline void cas_init_dma(struct cas *cp)
2915{
2916 cas_init_tx_dma(cp);
2917 cas_init_rx_dma(cp);
2918}
2919
2920static void cas_process_mc_list(struct cas *cp)
2921{
2922 u16 hash_table[16];
2923 u32 crc;
2924 struct netdev_hw_addr *ha;
2925 int i = 1;
2926
2927 memset(hash_table, 0, sizeof(hash_table));
2928 netdev_for_each_mc_addr(ha, cp->dev) {
2929 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2930 /* use the alternate mac address registers for the
2931 * first 15 multicast addresses
2932 */
2933 writel((ha->addr[4] << 8) | ha->addr[5],
2934 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2935 writel((ha->addr[2] << 8) | ha->addr[3],
2936 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2937 writel((ha->addr[0] << 8) | ha->addr[1],
2938 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2939 i++;
2940 }
2941 else {
2942 /* use hw hash table for the next series of
2943 * multicast addresses
2944 */
2945 crc = ether_crc_le(ETH_ALEN, ha->addr);
2946 crc >>= 24;
2947 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2948 }
2949 }
2950 for (i = 0; i < 16; i++)
2951 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2952}
2953
2954/* Must be invoked under cp->lock. */
2955static u32 cas_setup_multicast(struct cas *cp)
2956{
2957 u32 rxcfg = 0;
2958 int i;
2959
2960 if (cp->dev->flags & IFF_PROMISC) {
2961 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2962
2963 } else if (cp->dev->flags & IFF_ALLMULTI) {
2964 for (i=0; i < 16; i++)
2965 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2966 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2967
2968 } else {
2969 cas_process_mc_list(cp);
2970 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2971 }
2972
2973 return rxcfg;
2974}
2975
2976/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2977static void cas_clear_mac_err(struct cas *cp)
2978{
2979 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2980 writel(0, cp->regs + REG_MAC_COLL_FIRST);
2981 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2982 writel(0, cp->regs + REG_MAC_COLL_LATE);
2983 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2984 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2985 writel(0, cp->regs + REG_MAC_RECV_FRAME);
2986 writel(0, cp->regs + REG_MAC_LEN_ERR);
2987 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2988 writel(0, cp->regs + REG_MAC_FCS_ERR);
2989 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2990}
2991
2992
2993static void cas_mac_reset(struct cas *cp)
2994{
2995 int i;
2996
2997 /* do both TX and RX reset */
2998 writel(0x1, cp->regs + REG_MAC_TX_RESET);
2999 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3000
3001 /* wait for TX */
3002 i = STOP_TRIES;
3003 while (i-- > 0) {
3004 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3005 break;
3006 udelay(10);
3007 }
3008
3009 /* wait for RX */
3010 i = STOP_TRIES;
3011 while (i-- > 0) {
3012 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3013 break;
3014 udelay(10);
3015 }
3016
3017 if (readl(cp->regs + REG_MAC_TX_RESET) |
3018 readl(cp->regs + REG_MAC_RX_RESET))
3019 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3020 readl(cp->regs + REG_MAC_TX_RESET),
3021 readl(cp->regs + REG_MAC_RX_RESET),
3022 readl(cp->regs + REG_MAC_STATE_MACHINE));
3023}
3024
3025
3026/* Must be invoked under cp->lock. */
3027static void cas_init_mac(struct cas *cp)
3028{
3029 unsigned char *e = &cp->dev->dev_addr[0];
3030 int i;
3031 cas_mac_reset(cp);
3032
3033 /* setup core arbitration weight register */
3034 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3035
3036#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3037 /* set the infinite burst register for chips that don't have
3038 * pci issues.
3039 */
3040 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3041 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3042#endif
3043
3044 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3045
3046 writel(0x00, cp->regs + REG_MAC_IPG0);
3047 writel(0x08, cp->regs + REG_MAC_IPG1);
3048 writel(0x04, cp->regs + REG_MAC_IPG2);
3049
3050 /* change later for 802.3z */
3051 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3052
3053 /* min frame + FCS */
3054 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3055
3056 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3057 * specify the maximum frame size to prevent RX tag errors on
3058 * oversized frames.
3059 */
3060 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3061 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3062 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3063 cp->regs + REG_MAC_FRAMESIZE_MAX);
3064
3065 /* NOTE: crc_size is used as a surrogate for half-duplex.
3066 * workaround saturn half-duplex issue by increasing preamble
3067 * size to 65 bytes.
3068 */
3069 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3070 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3071 else
3072 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3073 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3074 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3075 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3076
3077 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3078
3079 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3080 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3081 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3082 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3083 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3084
3085 /* setup mac address in perfect filter array */
3086 for (i = 0; i < 45; i++)
3087 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3088
3089 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3090 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3091 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3092
3093 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3094 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3095 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3096
3097 cp->mac_rx_cfg = cas_setup_multicast(cp);
3098
3099 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3100 cas_clear_mac_err(cp);
3101 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3102
3103 /* Setup MAC interrupts. We want to get all of the interesting
3104 * counter expiration events, but we do not want to hear about
3105 * normal rx/tx as the DMA engine tells us that.
3106 */
3107 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3108 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3109
3110 /* Don't enable even the PAUSE interrupts for now, we
3111 * make no use of those events other than to record them.
3112 */
3113 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3114}
3115
3116/* Must be invoked under cp->lock. */
3117static void cas_init_pause_thresholds(struct cas *cp)
3118{
3119 /* Calculate pause thresholds. Setting the OFF threshold to the
3120 * full RX fifo size effectively disables PAUSE generation
3121 */
3122 if (cp->rx_fifo_size <= (2 * 1024)) {
3123 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3124 } else {
3125 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3126 if (max_frame * 3 > cp->rx_fifo_size) {
3127 cp->rx_pause_off = 7104;
3128 cp->rx_pause_on = 960;
3129 } else {
3130 int off = (cp->rx_fifo_size - (max_frame * 2));
3131 int on = off - max_frame;
3132 cp->rx_pause_off = off;
3133 cp->rx_pause_on = on;
3134 }
3135 }
3136}
3137
3138static int cas_vpd_match(const void __iomem *p, const char *str)
3139{
3140 int len = strlen(str) + 1;
3141 int i;
3142
3143 for (i = 0; i < len; i++) {
3144 if (readb(p + i) != str[i])
3145 return 0;
3146 }
3147 return 1;
3148}
3149
3150
3151/* get the mac address by reading the vpd information in the rom.
3152 * also get the phy type and determine if there's an entropy generator.
3153 * NOTE: this is a bit convoluted for the following reasons:
3154 * 1) vpd info has order-dependent mac addresses for multinic cards
3155 * 2) the only way to determine the nic order is to use the slot
3156 * number.
3157 * 3) fiber cards don't have bridges, so their slot numbers don't
3158 * mean anything.
3159 * 4) we don't actually know we have a fiber card until after
3160 * the mac addresses are parsed.
3161 */
3162static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3163 const int offset)
3164{
3165 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3166 void __iomem *base, *kstart;
3167 int i, len;
3168 int found = 0;
3169#define VPD_FOUND_MAC 0x01
3170#define VPD_FOUND_PHY 0x02
3171
3172 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3173 int mac_off = 0;
3174
3175#if defined(CONFIG_SPARC)
3176 const unsigned char *addr;
3177#endif
3178
3179 /* give us access to the PROM */
3180 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3181 cp->regs + REG_BIM_LOCAL_DEV_EN);
3182
3183 /* check for an expansion rom */
3184 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3185 goto use_random_mac_addr;
3186
3187 /* search for beginning of vpd */
3188 base = NULL;
3189 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3190 /* check for PCIR */
3191 if ((readb(p + i + 0) == 0x50) &&
3192 (readb(p + i + 1) == 0x43) &&
3193 (readb(p + i + 2) == 0x49) &&
3194 (readb(p + i + 3) == 0x52)) {
3195 base = p + (readb(p + i + 8) |
3196 (readb(p + i + 9) << 8));
3197 break;
3198 }
3199 }
3200
3201 if (!base || (readb(base) != 0x82))
3202 goto use_random_mac_addr;
3203
3204 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3205 while (i < EXPANSION_ROM_SIZE) {
3206 if (readb(base + i) != 0x90) /* no vpd found */
3207 goto use_random_mac_addr;
3208
3209 /* found a vpd field */
3210 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3211
3212 /* extract keywords */
3213 kstart = base + i + 3;
3214 p = kstart;
3215 while ((p - kstart) < len) {
3216 int klen = readb(p + 2);
3217 int j;
3218 char type;
3219
3220 p += 3;
3221
3222 /* look for the following things:
3223 * -- correct length == 29
3224 * 3 (type) + 2 (size) +
3225 * 18 (strlen("local-mac-address") + 1) +
3226 * 6 (mac addr)
3227 * -- VPD Instance 'I'
3228 * -- VPD Type Bytes 'B'
3229 * -- VPD data length == 6
3230 * -- property string == local-mac-address
3231 *
3232 * -- correct length == 24
3233 * 3 (type) + 2 (size) +
3234 * 12 (strlen("entropy-dev") + 1) +
3235 * 7 (strlen("vms110") + 1)
3236 * -- VPD Instance 'I'
3237 * -- VPD Type String 'B'
3238 * -- VPD data length == 7
3239 * -- property string == entropy-dev
3240 *
3241 * -- correct length == 18
3242 * 3 (type) + 2 (size) +
3243 * 9 (strlen("phy-type") + 1) +
3244 * 4 (strlen("pcs") + 1)
3245 * -- VPD Instance 'I'
3246 * -- VPD Type String 'S'
3247 * -- VPD data length == 4
3248 * -- property string == phy-type
3249 *
3250 * -- correct length == 23
3251 * 3 (type) + 2 (size) +
3252 * 14 (strlen("phy-interface") + 1) +
3253 * 4 (strlen("pcs") + 1)
3254 * -- VPD Instance 'I'
3255 * -- VPD Type String 'S'
3256 * -- VPD data length == 4
3257 * -- property string == phy-interface
3258 */
3259 if (readb(p) != 'I')
3260 goto next;
3261
3262 /* finally, check string and length */
3263 type = readb(p + 3);
3264 if (type == 'B') {
3265 if ((klen == 29) && readb(p + 4) == 6 &&
3266 cas_vpd_match(p + 5,
3267 "local-mac-address")) {
3268 if (mac_off++ > offset)
3269 goto next;
3270
3271 /* set mac address */
3272 for (j = 0; j < 6; j++)
3273 dev_addr[j] =
3274 readb(p + 23 + j);
3275 goto found_mac;
3276 }
3277 }
3278
3279 if (type != 'S')
3280 goto next;
3281
3282#ifdef USE_ENTROPY_DEV
3283 if ((klen == 24) &&
3284 cas_vpd_match(p + 5, "entropy-dev") &&
3285 cas_vpd_match(p + 17, "vms110")) {
3286 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3287 goto next;
3288 }
3289#endif
3290
3291 if (found & VPD_FOUND_PHY)
3292 goto next;
3293
3294 if ((klen == 18) && readb(p + 4) == 4 &&
3295 cas_vpd_match(p + 5, "phy-type")) {
3296 if (cas_vpd_match(p + 14, "pcs")) {
3297 phy_type = CAS_PHY_SERDES;
3298 goto found_phy;
3299 }
3300 }
3301
3302 if ((klen == 23) && readb(p + 4) == 4 &&
3303 cas_vpd_match(p + 5, "phy-interface")) {
3304 if (cas_vpd_match(p + 19, "pcs")) {
3305 phy_type = CAS_PHY_SERDES;
3306 goto found_phy;
3307 }
3308 }
3309found_mac:
3310 found |= VPD_FOUND_MAC;
3311 goto next;
3312
3313found_phy:
3314 found |= VPD_FOUND_PHY;
3315
3316next:
3317 p += klen;
3318 }
3319 i += len + 3;
3320 }
3321
3322use_random_mac_addr:
3323 if (found & VPD_FOUND_MAC)
3324 goto done;
3325
3326#if defined(CONFIG_SPARC)
3327 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3328 if (addr != NULL) {
3329 memcpy(dev_addr, addr, ETH_ALEN);
3330 goto done;
3331 }
3332#endif
3333
3334 /* Sun MAC prefix then 3 random bytes. */
3335 pr_info("MAC address not found in ROM VPD\n");
3336 dev_addr[0] = 0x08;
3337 dev_addr[1] = 0x00;
3338 dev_addr[2] = 0x20;
3339 get_random_bytes(dev_addr + 3, 3);
3340
3341done:
3342 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3343 return phy_type;
3344}
3345
3346/* check pci invariants */
3347static void cas_check_pci_invariants(struct cas *cp)
3348{
3349 struct pci_dev *pdev = cp->pdev;
3350
3351 cp->cas_flags = 0;
3352 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3353 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3354 if (pdev->revision >= CAS_ID_REVPLUS)
3355 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3356 if (pdev->revision < CAS_ID_REVPLUS02u)
3357 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3358
3359 /* Original Cassini supports HW CSUM, but it's not
3360 * enabled by default as it can trigger TX hangs.
3361 */
3362 if (pdev->revision < CAS_ID_REV2)
3363 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3364 } else {
3365 /* Only sun has original cassini chips. */
3366 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3367
3368 /* We use a flag because the same phy might be externally
3369 * connected.
3370 */
3371 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3372 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3373 cp->cas_flags |= CAS_FLAG_SATURN;
3374 }
3375}
3376
3377
3378static int cas_check_invariants(struct cas *cp)
3379{
3380 struct pci_dev *pdev = cp->pdev;
3381 u32 cfg;
3382 int i;
3383
3384 /* get page size for rx buffers. */
3385 cp->page_order = 0;
3386#ifdef USE_PAGE_ORDER
3387 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3388 /* see if we can allocate larger pages */
3389 struct page *page = alloc_pages(GFP_ATOMIC,
3390 CAS_JUMBO_PAGE_SHIFT -
3391 PAGE_SHIFT);
3392 if (page) {
3393 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3394 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3395 } else {
3396 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3397 }
3398 }
3399#endif
3400 cp->page_size = (PAGE_SIZE << cp->page_order);
3401
3402 /* Fetch the FIFO configurations. */
3403 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3404 cp->rx_fifo_size = RX_FIFO_SIZE;
3405
3406 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3407 * they're both connected.
3408 */
3409 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3410 PCI_SLOT(pdev->devfn));
3411 if (cp->phy_type & CAS_PHY_SERDES) {
3412 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3413 return 0; /* no more checking needed */
3414 }
3415
3416 /* MII */
3417 cfg = readl(cp->regs + REG_MIF_CFG);
3418 if (cfg & MIF_CFG_MDIO_1) {
3419 cp->phy_type = CAS_PHY_MII_MDIO1;
3420 } else if (cfg & MIF_CFG_MDIO_0) {
3421 cp->phy_type = CAS_PHY_MII_MDIO0;
3422 }
3423
3424 cas_mif_poll(cp, 0);
3425 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3426
3427 for (i = 0; i < 32; i++) {
3428 u32 phy_id;
3429 int j;
3430
3431 for (j = 0; j < 3; j++) {
3432 cp->phy_addr = i;
3433 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3434 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3435 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3436 cp->phy_id = phy_id;
3437 goto done;
3438 }
3439 }
3440 }
3441 pr_err("MII phy did not respond [%08x]\n",
3442 readl(cp->regs + REG_MIF_STATE_MACHINE));
3443 return -1;
3444
3445done:
3446 /* see if we can do gigabit */
3447 cfg = cas_phy_read(cp, MII_BMSR);
3448 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3449 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3450 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3451 return 0;
3452}
3453
3454/* Must be invoked under cp->lock. */
3455static inline void cas_start_dma(struct cas *cp)
3456{
3457 int i;
3458 u32 val;
3459 int txfailed = 0;
3460
3461 /* enable dma */
3462 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3463 writel(val, cp->regs + REG_TX_CFG);
3464 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3465 writel(val, cp->regs + REG_RX_CFG);
3466
3467 /* enable the mac */
3468 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3469 writel(val, cp->regs + REG_MAC_TX_CFG);
3470 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3471 writel(val, cp->regs + REG_MAC_RX_CFG);
3472
3473 i = STOP_TRIES;
3474 while (i-- > 0) {
3475 val = readl(cp->regs + REG_MAC_TX_CFG);
3476 if ((val & MAC_TX_CFG_EN))
3477 break;
3478 udelay(10);
3479 }
3480 if (i < 0) txfailed = 1;
3481 i = STOP_TRIES;
3482 while (i-- > 0) {
3483 val = readl(cp->regs + REG_MAC_RX_CFG);
3484 if ((val & MAC_RX_CFG_EN)) {
3485 if (txfailed) {
3486 netdev_err(cp->dev,
3487 "enabling mac failed [tx:%08x:%08x]\n",
3488 readl(cp->regs + REG_MIF_STATE_MACHINE),
3489 readl(cp->regs + REG_MAC_STATE_MACHINE));
3490 }
3491 goto enable_rx_done;
3492 }
3493 udelay(10);
3494 }
3495 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3496 (txfailed ? "tx,rx" : "rx"),
3497 readl(cp->regs + REG_MIF_STATE_MACHINE),
3498 readl(cp->regs + REG_MAC_STATE_MACHINE));
3499
3500enable_rx_done:
3501 cas_unmask_intr(cp); /* enable interrupts */
3502 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3503 writel(0, cp->regs + REG_RX_COMP_TAIL);
3504
3505 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3506 if (N_RX_DESC_RINGS > 1)
3507 writel(RX_DESC_RINGN_SIZE(1) - 4,
3508 cp->regs + REG_PLUS_RX_KICK1);
3509
3510 for (i = 1; i < N_RX_COMP_RINGS; i++)
3511 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3512 }
3513}
3514
3515/* Must be invoked under cp->lock. */
3516static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3517 int *pause)
3518{
3519 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3520 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3521 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3522 if (val & PCS_MII_LPA_ASYM_PAUSE)
3523 *pause |= 0x10;
3524 *spd = 1000;
3525}
3526
3527/* Must be invoked under cp->lock. */
3528static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3529 int *pause)
3530{
3531 u32 val;
3532
3533 *fd = 0;
3534 *spd = 10;
3535 *pause = 0;
3536
3537 /* use GMII registers */
3538 val = cas_phy_read(cp, MII_LPA);
3539 if (val & CAS_LPA_PAUSE)
3540 *pause = 0x01;
3541
3542 if (val & CAS_LPA_ASYM_PAUSE)
3543 *pause |= 0x10;
3544
3545 if (val & LPA_DUPLEX)
3546 *fd = 1;
3547 if (val & LPA_100)
3548 *spd = 100;
3549
3550 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3551 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3552 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3553 *spd = 1000;
3554 if (val & CAS_LPA_1000FULL)
3555 *fd = 1;
3556 }
3557}
3558
3559/* A link-up condition has occurred, initialize and enable the
3560 * rest of the chip.
3561 *
3562 * Must be invoked under cp->lock.
3563 */
3564static void cas_set_link_modes(struct cas *cp)
3565{
3566 u32 val;
3567 int full_duplex, speed, pause;
3568
3569 full_duplex = 0;
3570 speed = 10;
3571 pause = 0;
3572
3573 if (CAS_PHY_MII(cp->phy_type)) {
3574 cas_mif_poll(cp, 0);
3575 val = cas_phy_read(cp, MII_BMCR);
3576 if (val & BMCR_ANENABLE) {
3577 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3578 &pause);
3579 } else {
3580 if (val & BMCR_FULLDPLX)
3581 full_duplex = 1;
3582
3583 if (val & BMCR_SPEED100)
3584 speed = 100;
3585 else if (val & CAS_BMCR_SPEED1000)
3586 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3587 1000 : 100;
3588 }
3589 cas_mif_poll(cp, 1);
3590
3591 } else {
3592 val = readl(cp->regs + REG_PCS_MII_CTRL);
3593 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3594 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3595 if (val & PCS_MII_CTRL_DUPLEX)
3596 full_duplex = 1;
3597 }
3598 }
3599
3600 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3601 speed, full_duplex ? "full" : "half");
3602
3603 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3604 if (CAS_PHY_MII(cp->phy_type)) {
3605 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3606 if (!full_duplex)
3607 val |= MAC_XIF_DISABLE_ECHO;
3608 }
3609 if (full_duplex)
3610 val |= MAC_XIF_FDPLX_LED;
3611 if (speed == 1000)
3612 val |= MAC_XIF_GMII_MODE;
3613 writel(val, cp->regs + REG_MAC_XIF_CFG);
3614
3615 /* deal with carrier and collision detect. */
3616 val = MAC_TX_CFG_IPG_EN;
3617 if (full_duplex) {
3618 val |= MAC_TX_CFG_IGNORE_CARRIER;
3619 val |= MAC_TX_CFG_IGNORE_COLL;
3620 } else {
3621#ifndef USE_CSMA_CD_PROTO
3622 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3623 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3624#endif
3625 }
3626 /* val now set up for REG_MAC_TX_CFG */
3627
3628 /* If gigabit and half-duplex, enable carrier extension
3629 * mode. increase slot time to 512 bytes as well.
3630 * else, disable it and make sure slot time is 64 bytes.
3631 * also activate checksum bug workaround
3632 */
3633 if ((speed == 1000) && !full_duplex) {
3634 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3635 cp->regs + REG_MAC_TX_CFG);
3636
3637 val = readl(cp->regs + REG_MAC_RX_CFG);
3638 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3639 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3640 cp->regs + REG_MAC_RX_CFG);
3641
3642 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3643
3644 cp->crc_size = 4;
3645 /* minimum size gigabit frame at half duplex */
3646 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3647
3648 } else {
3649 writel(val, cp->regs + REG_MAC_TX_CFG);
3650
3651 /* checksum bug workaround. don't strip FCS when in
3652 * half-duplex mode
3653 */
3654 val = readl(cp->regs + REG_MAC_RX_CFG);
3655 if (full_duplex) {
3656 val |= MAC_RX_CFG_STRIP_FCS;
3657 cp->crc_size = 0;
3658 cp->min_frame_size = CAS_MIN_MTU;
3659 } else {
3660 val &= ~MAC_RX_CFG_STRIP_FCS;
3661 cp->crc_size = 4;
3662 cp->min_frame_size = CAS_MIN_FRAME;
3663 }
3664 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3665 cp->regs + REG_MAC_RX_CFG);
3666 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3667 }
3668
3669 if (netif_msg_link(cp)) {
3670 if (pause & 0x01) {
3671 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3672 cp->rx_fifo_size,
3673 cp->rx_pause_off,
3674 cp->rx_pause_on);
3675 } else if (pause & 0x10) {
3676 netdev_info(cp->dev, "TX pause enabled\n");
3677 } else {
3678 netdev_info(cp->dev, "Pause is disabled\n");
3679 }
3680 }
3681
3682 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3683 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3684 if (pause) { /* symmetric or asymmetric pause */
3685 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3686 if (pause & 0x01) { /* symmetric pause */
3687 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3688 }
3689 }
3690 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3691 cas_start_dma(cp);
3692}
3693
3694/* Must be invoked under cp->lock. */
3695static void cas_init_hw(struct cas *cp, int restart_link)
3696{
3697 if (restart_link)
3698 cas_phy_init(cp);
3699
3700 cas_init_pause_thresholds(cp);
3701 cas_init_mac(cp);
3702 cas_init_dma(cp);
3703
3704 if (restart_link) {
3705 /* Default aneg parameters */
3706 cp->timer_ticks = 0;
3707 cas_begin_auto_negotiation(cp, NULL);
3708 } else if (cp->lstate == link_up) {
3709 cas_set_link_modes(cp);
3710 netif_carrier_on(cp->dev);
3711 }
3712}
3713
3714/* Must be invoked under cp->lock. on earlier cassini boards,
3715 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3716 * let it settle out, and then restore pci state.
3717 */
3718static void cas_hard_reset(struct cas *cp)
3719{
3720 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3721 udelay(20);
3722 pci_restore_state(cp->pdev);
3723}
3724
3725
3726static void cas_global_reset(struct cas *cp, int blkflag)
3727{
3728 int limit;
3729
3730 /* issue a global reset. don't use RSTOUT. */
3731 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3732 /* For PCS, when the blkflag is set, we should set the
3733 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3734 * the last autonegotiation from being cleared. We'll
3735 * need some special handling if the chip is set into a
3736 * loopback mode.
3737 */
3738 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3739 cp->regs + REG_SW_RESET);
3740 } else {
3741 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3742 }
3743
3744 /* need to wait at least 3ms before polling register */
3745 mdelay(3);
3746
3747 limit = STOP_TRIES;
3748 while (limit-- > 0) {
3749 u32 val = readl(cp->regs + REG_SW_RESET);
3750 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3751 goto done;
3752 udelay(10);
3753 }
3754 netdev_err(cp->dev, "sw reset failed\n");
3755
3756done:
3757 /* enable various BIM interrupts */
3758 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3759 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3760
3761 /* clear out pci error status mask for handled errors.
3762 * we don't deal with DMA counter overflows as they happen
3763 * all the time.
3764 */
3765 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3766 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3767 PCI_ERR_BIM_DMA_READ), cp->regs +
3768 REG_PCI_ERR_STATUS_MASK);
3769
3770 /* set up for MII by default to address mac rx reset timeout
3771 * issue
3772 */
3773 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3774}
3775
3776static void cas_reset(struct cas *cp, int blkflag)
3777{
3778 u32 val;
3779
3780 cas_mask_intr(cp);
3781 cas_global_reset(cp, blkflag);
3782 cas_mac_reset(cp);
3783 cas_entropy_reset(cp);
3784
3785 /* disable dma engines. */
3786 val = readl(cp->regs + REG_TX_CFG);
3787 val &= ~TX_CFG_DMA_EN;
3788 writel(val, cp->regs + REG_TX_CFG);
3789
3790 val = readl(cp->regs + REG_RX_CFG);
3791 val &= ~RX_CFG_DMA_EN;
3792 writel(val, cp->regs + REG_RX_CFG);
3793
3794 /* program header parser */
3795 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3796 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3797 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3798 } else {
3799 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3800 }
3801
3802 /* clear out error registers */
3803 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3804 cas_clear_mac_err(cp);
3805 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3806}
3807
3808/* Shut down the chip, must be called with pm_mutex held. */
3809static void cas_shutdown(struct cas *cp)
3810{
3811 unsigned long flags;
3812
3813 /* Make us not-running to avoid timers respawning */
3814 cp->hw_running = 0;
3815
3816 del_timer_sync(&cp->link_timer);
3817
3818 /* Stop the reset task */
3819#if 0
3820 while (atomic_read(&cp->reset_task_pending_mtu) ||
3821 atomic_read(&cp->reset_task_pending_spare) ||
3822 atomic_read(&cp->reset_task_pending_all))
3823 schedule();
3824
3825#else
3826 while (atomic_read(&cp->reset_task_pending))
3827 schedule();
3828#endif
3829 /* Actually stop the chip */
3830 cas_lock_all_save(cp, flags);
3831 cas_reset(cp, 0);
3832 if (cp->cas_flags & CAS_FLAG_SATURN)
3833 cas_phy_powerdown(cp);
3834 cas_unlock_all_restore(cp, flags);
3835}
3836
3837static int cas_change_mtu(struct net_device *dev, int new_mtu)
3838{
3839 struct cas *cp = netdev_priv(dev);
3840
3841 dev->mtu = new_mtu;
3842 if (!netif_running(dev) || !netif_device_present(dev))
3843 return 0;
3844
3845 /* let the reset task handle it */
3846#if 1
3847 atomic_inc(&cp->reset_task_pending);
3848 if ((cp->phy_type & CAS_PHY_SERDES)) {
3849 atomic_inc(&cp->reset_task_pending_all);
3850 } else {
3851 atomic_inc(&cp->reset_task_pending_mtu);
3852 }
3853 schedule_work(&cp->reset_task);
3854#else
3855 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3856 CAS_RESET_ALL : CAS_RESET_MTU);
3857 pr_err("reset called in cas_change_mtu\n");
3858 schedule_work(&cp->reset_task);
3859#endif
3860
3861 flush_work(&cp->reset_task);
3862 return 0;
3863}
3864
3865static void cas_clean_txd(struct cas *cp, int ring)
3866{
3867 struct cas_tx_desc *txd = cp->init_txds[ring];
3868 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3869 u64 daddr, dlen;
3870 int i, size;
3871
3872 size = TX_DESC_RINGN_SIZE(ring);
3873 for (i = 0; i < size; i++) {
3874 int frag;
3875
3876 if (skbs[i] == NULL)
3877 continue;
3878
3879 skb = skbs[i];
3880 skbs[i] = NULL;
3881
3882 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3883 int ent = i & (size - 1);
3884
3885 /* first buffer is never a tiny buffer and so
3886 * needs to be unmapped.
3887 */
3888 daddr = le64_to_cpu(txd[ent].buffer);
3889 dlen = CAS_VAL(TX_DESC_BUFLEN,
3890 le64_to_cpu(txd[ent].control));
3891 dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3892 DMA_TO_DEVICE);
3893
3894 if (frag != skb_shinfo(skb)->nr_frags) {
3895 i++;
3896
3897 /* next buffer might by a tiny buffer.
3898 * skip past it.
3899 */
3900 ent = i & (size - 1);
3901 if (cp->tx_tiny_use[ring][ent].used)
3902 i++;
3903 }
3904 }
3905 dev_kfree_skb_any(skb);
3906 }
3907
3908 /* zero out tiny buf usage */
3909 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3910}
3911
3912/* freed on close */
3913static inline void cas_free_rx_desc(struct cas *cp, int ring)
3914{
3915 cas_page_t **page = cp->rx_pages[ring];
3916 int i, size;
3917
3918 size = RX_DESC_RINGN_SIZE(ring);
3919 for (i = 0; i < size; i++) {
3920 if (page[i]) {
3921 cas_page_free(cp, page[i]);
3922 page[i] = NULL;
3923 }
3924 }
3925}
3926
3927static void cas_free_rxds(struct cas *cp)
3928{
3929 int i;
3930
3931 for (i = 0; i < N_RX_DESC_RINGS; i++)
3932 cas_free_rx_desc(cp, i);
3933}
3934
3935/* Must be invoked under cp->lock. */
3936static void cas_clean_rings(struct cas *cp)
3937{
3938 int i;
3939
3940 /* need to clean all tx rings */
3941 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3942 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3943 for (i = 0; i < N_TX_RINGS; i++)
3944 cas_clean_txd(cp, i);
3945
3946 /* zero out init block */
3947 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3948 cas_clean_rxds(cp);
3949 cas_clean_rxcs(cp);
3950}
3951
3952/* allocated on open */
3953static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3954{
3955 cas_page_t **page = cp->rx_pages[ring];
3956 int size, i = 0;
3957
3958 size = RX_DESC_RINGN_SIZE(ring);
3959 for (i = 0; i < size; i++) {
3960 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3961 return -1;
3962 }
3963 return 0;
3964}
3965
3966static int cas_alloc_rxds(struct cas *cp)
3967{
3968 int i;
3969
3970 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3971 if (cas_alloc_rx_desc(cp, i) < 0) {
3972 cas_free_rxds(cp);
3973 return -1;
3974 }
3975 }
3976 return 0;
3977}
3978
3979static void cas_reset_task(struct work_struct *work)
3980{
3981 struct cas *cp = container_of(work, struct cas, reset_task);
3982#if 0
3983 int pending = atomic_read(&cp->reset_task_pending);
3984#else
3985 int pending_all = atomic_read(&cp->reset_task_pending_all);
3986 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3987 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3988
3989 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3990 /* We can have more tasks scheduled than actually
3991 * needed.
3992 */
3993 atomic_dec(&cp->reset_task_pending);
3994 return;
3995 }
3996#endif
3997 /* The link went down, we reset the ring, but keep
3998 * DMA stopped. Use this function for reset
3999 * on error as well.
4000 */
4001 if (cp->hw_running) {
4002 unsigned long flags;
4003
4004 /* Make sure we don't get interrupts or tx packets */
4005 netif_device_detach(cp->dev);
4006 cas_lock_all_save(cp, flags);
4007
4008 if (cp->opened) {
4009 /* We call cas_spare_recover when we call cas_open.
4010 * but we do not initialize the lists cas_spare_recover
4011 * uses until cas_open is called.
4012 */
4013 cas_spare_recover(cp, GFP_ATOMIC);
4014 }
4015#if 1
4016 /* test => only pending_spare set */
4017 if (!pending_all && !pending_mtu)
4018 goto done;
4019#else
4020 if (pending == CAS_RESET_SPARE)
4021 goto done;
4022#endif
4023 /* when pending == CAS_RESET_ALL, the following
4024 * call to cas_init_hw will restart auto negotiation.
4025 * Setting the second argument of cas_reset to
4026 * !(pending == CAS_RESET_ALL) will set this argument
4027 * to 1 (avoiding reinitializing the PHY for the normal
4028 * PCS case) when auto negotiation is not restarted.
4029 */
4030#if 1
4031 cas_reset(cp, !(pending_all > 0));
4032 if (cp->opened)
4033 cas_clean_rings(cp);
4034 cas_init_hw(cp, (pending_all > 0));
4035#else
4036 cas_reset(cp, !(pending == CAS_RESET_ALL));
4037 if (cp->opened)
4038 cas_clean_rings(cp);
4039 cas_init_hw(cp, pending == CAS_RESET_ALL);
4040#endif
4041
4042done:
4043 cas_unlock_all_restore(cp, flags);
4044 netif_device_attach(cp->dev);
4045 }
4046#if 1
4047 atomic_sub(pending_all, &cp->reset_task_pending_all);
4048 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4049 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4050 atomic_dec(&cp->reset_task_pending);
4051#else
4052 atomic_set(&cp->reset_task_pending, 0);
4053#endif
4054}
4055
4056static void cas_link_timer(struct timer_list *t)
4057{
4058 struct cas *cp = from_timer(cp, t, link_timer);
4059 int mask, pending = 0, reset = 0;
4060 unsigned long flags;
4061
4062 if (link_transition_timeout != 0 &&
4063 cp->link_transition_jiffies_valid &&
4064 ((jiffies - cp->link_transition_jiffies) >
4065 (link_transition_timeout))) {
4066 /* One-second counter so link-down workaround doesn't
4067 * cause resets to occur so fast as to fool the switch
4068 * into thinking the link is down.
4069 */
4070 cp->link_transition_jiffies_valid = 0;
4071 }
4072
4073 if (!cp->hw_running)
4074 return;
4075
4076 spin_lock_irqsave(&cp->lock, flags);
4077 cas_lock_tx(cp);
4078 cas_entropy_gather(cp);
4079
4080 /* If the link task is still pending, we just
4081 * reschedule the link timer
4082 */
4083#if 1
4084 if (atomic_read(&cp->reset_task_pending_all) ||
4085 atomic_read(&cp->reset_task_pending_spare) ||
4086 atomic_read(&cp->reset_task_pending_mtu))
4087 goto done;
4088#else
4089 if (atomic_read(&cp->reset_task_pending))
4090 goto done;
4091#endif
4092
4093 /* check for rx cleaning */
4094 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4095 int i, rmask;
4096
4097 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4098 rmask = CAS_FLAG_RXD_POST(i);
4099 if ((mask & rmask) == 0)
4100 continue;
4101
4102 /* post_rxds will do a mod_timer */
4103 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4104 pending = 1;
4105 continue;
4106 }
4107 cp->cas_flags &= ~rmask;
4108 }
4109 }
4110
4111 if (CAS_PHY_MII(cp->phy_type)) {
4112 u16 bmsr;
4113 cas_mif_poll(cp, 0);
4114 bmsr = cas_phy_read(cp, MII_BMSR);
4115 /* WTZ: Solaris driver reads this twice, but that
4116 * may be due to the PCS case and the use of a
4117 * common implementation. Read it twice here to be
4118 * safe.
4119 */
4120 bmsr = cas_phy_read(cp, MII_BMSR);
4121 cas_mif_poll(cp, 1);
4122 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4123 reset = cas_mii_link_check(cp, bmsr);
4124 } else {
4125 reset = cas_pcs_link_check(cp);
4126 }
4127
4128 if (reset)
4129 goto done;
4130
4131 /* check for tx state machine confusion */
4132 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4133 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4134 u32 wptr, rptr;
4135 int tlm = CAS_VAL(MAC_SM_TLM, val);
4136
4137 if (((tlm == 0x5) || (tlm == 0x3)) &&
4138 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4139 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4140 "tx err: MAC_STATE[%08x]\n", val);
4141 reset = 1;
4142 goto done;
4143 }
4144
4145 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4146 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4147 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4148 if ((val == 0) && (wptr != rptr)) {
4149 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4150 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4151 val, wptr, rptr);
4152 reset = 1;
4153 }
4154
4155 if (reset)
4156 cas_hard_reset(cp);
4157 }
4158
4159done:
4160 if (reset) {
4161#if 1
4162 atomic_inc(&cp->reset_task_pending);
4163 atomic_inc(&cp->reset_task_pending_all);
4164 schedule_work(&cp->reset_task);
4165#else
4166 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4167 pr_err("reset called in cas_link_timer\n");
4168 schedule_work(&cp->reset_task);
4169#endif
4170 }
4171
4172 if (!pending)
4173 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4174 cas_unlock_tx(cp);
4175 spin_unlock_irqrestore(&cp->lock, flags);
4176}
4177
4178/* tiny buffers are used to avoid target abort issues with
4179 * older cassini's
4180 */
4181static void cas_tx_tiny_free(struct cas *cp)
4182{
4183 struct pci_dev *pdev = cp->pdev;
4184 int i;
4185
4186 for (i = 0; i < N_TX_RINGS; i++) {
4187 if (!cp->tx_tiny_bufs[i])
4188 continue;
4189
4190 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4191 cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4192 cp->tx_tiny_bufs[i] = NULL;
4193 }
4194}
4195
4196static int cas_tx_tiny_alloc(struct cas *cp)
4197{
4198 struct pci_dev *pdev = cp->pdev;
4199 int i;
4200
4201 for (i = 0; i < N_TX_RINGS; i++) {
4202 cp->tx_tiny_bufs[i] =
4203 dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4204 &cp->tx_tiny_dvma[i], GFP_KERNEL);
4205 if (!cp->tx_tiny_bufs[i]) {
4206 cas_tx_tiny_free(cp);
4207 return -1;
4208 }
4209 }
4210 return 0;
4211}
4212
4213
4214static int cas_open(struct net_device *dev)
4215{
4216 struct cas *cp = netdev_priv(dev);
4217 int hw_was_up, err;
4218 unsigned long flags;
4219
4220 mutex_lock(&cp->pm_mutex);
4221
4222 hw_was_up = cp->hw_running;
4223
4224 /* The power-management mutex protects the hw_running
4225 * etc. state so it is safe to do this bit without cp->lock
4226 */
4227 if (!cp->hw_running) {
4228 /* Reset the chip */
4229 cas_lock_all_save(cp, flags);
4230 /* We set the second arg to cas_reset to zero
4231 * because cas_init_hw below will have its second
4232 * argument set to non-zero, which will force
4233 * autonegotiation to start.
4234 */
4235 cas_reset(cp, 0);
4236 cp->hw_running = 1;
4237 cas_unlock_all_restore(cp, flags);
4238 }
4239
4240 err = -ENOMEM;
4241 if (cas_tx_tiny_alloc(cp) < 0)
4242 goto err_unlock;
4243
4244 /* alloc rx descriptors */
4245 if (cas_alloc_rxds(cp) < 0)
4246 goto err_tx_tiny;
4247
4248 /* allocate spares */
4249 cas_spare_init(cp);
4250 cas_spare_recover(cp, GFP_KERNEL);
4251
4252 /* We can now request the interrupt as we know it's masked
4253 * on the controller. cassini+ has up to 4 interrupts
4254 * that can be used, but you need to do explicit pci interrupt
4255 * mapping to expose them
4256 */
4257 if (request_irq(cp->pdev->irq, cas_interrupt,
4258 IRQF_SHARED, dev->name, (void *) dev)) {
4259 netdev_err(cp->dev, "failed to request irq !\n");
4260 err = -EAGAIN;
4261 goto err_spare;
4262 }
4263
4264#ifdef USE_NAPI
4265 napi_enable(&cp->napi);
4266#endif
4267 /* init hw */
4268 cas_lock_all_save(cp, flags);
4269 cas_clean_rings(cp);
4270 cas_init_hw(cp, !hw_was_up);
4271 cp->opened = 1;
4272 cas_unlock_all_restore(cp, flags);
4273
4274 netif_start_queue(dev);
4275 mutex_unlock(&cp->pm_mutex);
4276 return 0;
4277
4278err_spare:
4279 cas_spare_free(cp);
4280 cas_free_rxds(cp);
4281err_tx_tiny:
4282 cas_tx_tiny_free(cp);
4283err_unlock:
4284 mutex_unlock(&cp->pm_mutex);
4285 return err;
4286}
4287
4288static int cas_close(struct net_device *dev)
4289{
4290 unsigned long flags;
4291 struct cas *cp = netdev_priv(dev);
4292
4293#ifdef USE_NAPI
4294 napi_disable(&cp->napi);
4295#endif
4296 /* Make sure we don't get distracted by suspend/resume */
4297 mutex_lock(&cp->pm_mutex);
4298
4299 netif_stop_queue(dev);
4300
4301 /* Stop traffic, mark us closed */
4302 cas_lock_all_save(cp, flags);
4303 cp->opened = 0;
4304 cas_reset(cp, 0);
4305 cas_phy_init(cp);
4306 cas_begin_auto_negotiation(cp, NULL);
4307 cas_clean_rings(cp);
4308 cas_unlock_all_restore(cp, flags);
4309
4310 free_irq(cp->pdev->irq, (void *) dev);
4311 cas_spare_free(cp);
4312 cas_free_rxds(cp);
4313 cas_tx_tiny_free(cp);
4314 mutex_unlock(&cp->pm_mutex);
4315 return 0;
4316}
4317
4318static struct {
4319 const char name[ETH_GSTRING_LEN];
4320} ethtool_cassini_statnames[] = {
4321 {"collisions"},
4322 {"rx_bytes"},
4323 {"rx_crc_errors"},
4324 {"rx_dropped"},
4325 {"rx_errors"},
4326 {"rx_fifo_errors"},
4327 {"rx_frame_errors"},
4328 {"rx_length_errors"},
4329 {"rx_over_errors"},
4330 {"rx_packets"},
4331 {"tx_aborted_errors"},
4332 {"tx_bytes"},
4333 {"tx_dropped"},
4334 {"tx_errors"},
4335 {"tx_fifo_errors"},
4336 {"tx_packets"}
4337};
4338#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4339
4340static struct {
4341 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4342} ethtool_register_table[] = {
4343 {-MII_BMSR},
4344 {-MII_BMCR},
4345 {REG_CAWR},
4346 {REG_INF_BURST},
4347 {REG_BIM_CFG},
4348 {REG_RX_CFG},
4349 {REG_HP_CFG},
4350 {REG_MAC_TX_CFG},
4351 {REG_MAC_RX_CFG},
4352 {REG_MAC_CTRL_CFG},
4353 {REG_MAC_XIF_CFG},
4354 {REG_MIF_CFG},
4355 {REG_PCS_CFG},
4356 {REG_SATURN_PCFG},
4357 {REG_PCS_MII_STATUS},
4358 {REG_PCS_STATE_MACHINE},
4359 {REG_MAC_COLL_EXCESS},
4360 {REG_MAC_COLL_LATE}
4361};
4362#define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4363#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4364
4365static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4366{
4367 u8 *p;
4368 int i;
4369 unsigned long flags;
4370
4371 spin_lock_irqsave(&cp->lock, flags);
4372 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4373 u16 hval;
4374 u32 val;
4375 if (ethtool_register_table[i].offsets < 0) {
4376 hval = cas_phy_read(cp,
4377 -ethtool_register_table[i].offsets);
4378 val = hval;
4379 } else {
4380 val= readl(cp->regs+ethtool_register_table[i].offsets);
4381 }
4382 memcpy(p, (u8 *)&val, sizeof(u32));
4383 }
4384 spin_unlock_irqrestore(&cp->lock, flags);
4385}
4386
4387static struct net_device_stats *cas_get_stats(struct net_device *dev)
4388{
4389 struct cas *cp = netdev_priv(dev);
4390 struct net_device_stats *stats = cp->net_stats;
4391 unsigned long flags;
4392 int i;
4393 unsigned long tmp;
4394
4395 /* we collate all of the stats into net_stats[N_TX_RING] */
4396 if (!cp->hw_running)
4397 return stats + N_TX_RINGS;
4398
4399 /* collect outstanding stats */
4400 /* WTZ: the Cassini spec gives these as 16 bit counters but
4401 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4402 * in case the chip somehow puts any garbage in the other bits.
4403 * Also, counter usage didn't seem to mach what Adrian did
4404 * in the parts of the code that set these quantities. Made
4405 * that consistent.
4406 */
4407 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4408 stats[N_TX_RINGS].rx_crc_errors +=
4409 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4410 stats[N_TX_RINGS].rx_frame_errors +=
4411 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4412 stats[N_TX_RINGS].rx_length_errors +=
4413 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4414#if 1
4415 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4416 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4417 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4418 stats[N_TX_RINGS].collisions +=
4419 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4420#else
4421 stats[N_TX_RINGS].tx_aborted_errors +=
4422 readl(cp->regs + REG_MAC_COLL_EXCESS);
4423 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4424 readl(cp->regs + REG_MAC_COLL_LATE);
4425#endif
4426 cas_clear_mac_err(cp);
4427
4428 /* saved bits that are unique to ring 0 */
4429 spin_lock(&cp->stat_lock[0]);
4430 stats[N_TX_RINGS].collisions += stats[0].collisions;
4431 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4432 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4433 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4434 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4435 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4436 spin_unlock(&cp->stat_lock[0]);
4437
4438 for (i = 0; i < N_TX_RINGS; i++) {
4439 spin_lock(&cp->stat_lock[i]);
4440 stats[N_TX_RINGS].rx_length_errors +=
4441 stats[i].rx_length_errors;
4442 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4443 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4444 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4445 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4446 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4447 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4448 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4449 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4450 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4451 memset(stats + i, 0, sizeof(struct net_device_stats));
4452 spin_unlock(&cp->stat_lock[i]);
4453 }
4454 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4455 return stats + N_TX_RINGS;
4456}
4457
4458
4459static void cas_set_multicast(struct net_device *dev)
4460{
4461 struct cas *cp = netdev_priv(dev);
4462 u32 rxcfg, rxcfg_new;
4463 unsigned long flags;
4464 int limit = STOP_TRIES;
4465
4466 if (!cp->hw_running)
4467 return;
4468
4469 spin_lock_irqsave(&cp->lock, flags);
4470 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4471
4472 /* disable RX MAC and wait for completion */
4473 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4474 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4475 if (!limit--)
4476 break;
4477 udelay(10);
4478 }
4479
4480 /* disable hash filter and wait for completion */
4481 limit = STOP_TRIES;
4482 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4483 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4484 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4485 if (!limit--)
4486 break;
4487 udelay(10);
4488 }
4489
4490 /* program hash filters */
4491 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4492 rxcfg |= rxcfg_new;
4493 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4494 spin_unlock_irqrestore(&cp->lock, flags);
4495}
4496
4497static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4498{
4499 struct cas *cp = netdev_priv(dev);
4500 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4501 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4502 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4503}
4504
4505static int cas_get_link_ksettings(struct net_device *dev,
4506 struct ethtool_link_ksettings *cmd)
4507{
4508 struct cas *cp = netdev_priv(dev);
4509 u16 bmcr;
4510 int full_duplex, speed, pause;
4511 unsigned long flags;
4512 enum link_state linkstate = link_up;
4513 u32 supported, advertising;
4514
4515 advertising = 0;
4516 supported = SUPPORTED_Autoneg;
4517 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4518 supported |= SUPPORTED_1000baseT_Full;
4519 advertising |= ADVERTISED_1000baseT_Full;
4520 }
4521
4522 /* Record PHY settings if HW is on. */
4523 spin_lock_irqsave(&cp->lock, flags);
4524 bmcr = 0;
4525 linkstate = cp->lstate;
4526 if (CAS_PHY_MII(cp->phy_type)) {
4527 cmd->base.port = PORT_MII;
4528 cmd->base.phy_address = cp->phy_addr;
4529 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4530 ADVERTISED_10baseT_Half |
4531 ADVERTISED_10baseT_Full |
4532 ADVERTISED_100baseT_Half |
4533 ADVERTISED_100baseT_Full;
4534
4535 supported |=
4536 (SUPPORTED_10baseT_Half |
4537 SUPPORTED_10baseT_Full |
4538 SUPPORTED_100baseT_Half |
4539 SUPPORTED_100baseT_Full |
4540 SUPPORTED_TP | SUPPORTED_MII);
4541
4542 if (cp->hw_running) {
4543 cas_mif_poll(cp, 0);
4544 bmcr = cas_phy_read(cp, MII_BMCR);
4545 cas_read_mii_link_mode(cp, &full_duplex,
4546 &speed, &pause);
4547 cas_mif_poll(cp, 1);
4548 }
4549
4550 } else {
4551 cmd->base.port = PORT_FIBRE;
4552 cmd->base.phy_address = 0;
4553 supported |= SUPPORTED_FIBRE;
4554 advertising |= ADVERTISED_FIBRE;
4555
4556 if (cp->hw_running) {
4557 /* pcs uses the same bits as mii */
4558 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4559 cas_read_pcs_link_mode(cp, &full_duplex,
4560 &speed, &pause);
4561 }
4562 }
4563 spin_unlock_irqrestore(&cp->lock, flags);
4564
4565 if (bmcr & BMCR_ANENABLE) {
4566 advertising |= ADVERTISED_Autoneg;
4567 cmd->base.autoneg = AUTONEG_ENABLE;
4568 cmd->base.speed = ((speed == 10) ?
4569 SPEED_10 :
4570 ((speed == 1000) ?
4571 SPEED_1000 : SPEED_100));
4572 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4573 } else {
4574 cmd->base.autoneg = AUTONEG_DISABLE;
4575 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4576 SPEED_1000 :
4577 ((bmcr & BMCR_SPEED100) ?
4578 SPEED_100 : SPEED_10));
4579 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4580 DUPLEX_FULL : DUPLEX_HALF;
4581 }
4582 if (linkstate != link_up) {
4583 /* Force these to "unknown" if the link is not up and
4584 * autonogotiation in enabled. We can set the link
4585 * speed to 0, but not cmd->duplex,
4586 * because its legal values are 0 and 1. Ethtool will
4587 * print the value reported in parentheses after the
4588 * word "Unknown" for unrecognized values.
4589 *
4590 * If in forced mode, we report the speed and duplex
4591 * settings that we configured.
4592 */
4593 if (cp->link_cntl & BMCR_ANENABLE) {
4594 cmd->base.speed = 0;
4595 cmd->base.duplex = 0xff;
4596 } else {
4597 cmd->base.speed = SPEED_10;
4598 if (cp->link_cntl & BMCR_SPEED100) {
4599 cmd->base.speed = SPEED_100;
4600 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4601 cmd->base.speed = SPEED_1000;
4602 }
4603 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4604 DUPLEX_FULL : DUPLEX_HALF;
4605 }
4606 }
4607
4608 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4609 supported);
4610 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4611 advertising);
4612
4613 return 0;
4614}
4615
4616static int cas_set_link_ksettings(struct net_device *dev,
4617 const struct ethtool_link_ksettings *cmd)
4618{
4619 struct cas *cp = netdev_priv(dev);
4620 unsigned long flags;
4621 u32 speed = cmd->base.speed;
4622
4623 /* Verify the settings we care about. */
4624 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4625 cmd->base.autoneg != AUTONEG_DISABLE)
4626 return -EINVAL;
4627
4628 if (cmd->base.autoneg == AUTONEG_DISABLE &&
4629 ((speed != SPEED_1000 &&
4630 speed != SPEED_100 &&
4631 speed != SPEED_10) ||
4632 (cmd->base.duplex != DUPLEX_HALF &&
4633 cmd->base.duplex != DUPLEX_FULL)))
4634 return -EINVAL;
4635
4636 /* Apply settings and restart link process. */
4637 spin_lock_irqsave(&cp->lock, flags);
4638 cas_begin_auto_negotiation(cp, cmd);
4639 spin_unlock_irqrestore(&cp->lock, flags);
4640 return 0;
4641}
4642
4643static int cas_nway_reset(struct net_device *dev)
4644{
4645 struct cas *cp = netdev_priv(dev);
4646 unsigned long flags;
4647
4648 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4649 return -EINVAL;
4650
4651 /* Restart link process. */
4652 spin_lock_irqsave(&cp->lock, flags);
4653 cas_begin_auto_negotiation(cp, NULL);
4654 spin_unlock_irqrestore(&cp->lock, flags);
4655
4656 return 0;
4657}
4658
4659static u32 cas_get_link(struct net_device *dev)
4660{
4661 struct cas *cp = netdev_priv(dev);
4662 return cp->lstate == link_up;
4663}
4664
4665static u32 cas_get_msglevel(struct net_device *dev)
4666{
4667 struct cas *cp = netdev_priv(dev);
4668 return cp->msg_enable;
4669}
4670
4671static void cas_set_msglevel(struct net_device *dev, u32 value)
4672{
4673 struct cas *cp = netdev_priv(dev);
4674 cp->msg_enable = value;
4675}
4676
4677static int cas_get_regs_len(struct net_device *dev)
4678{
4679 struct cas *cp = netdev_priv(dev);
4680 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4681}
4682
4683static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4684 void *p)
4685{
4686 struct cas *cp = netdev_priv(dev);
4687 regs->version = 0;
4688 /* cas_read_regs handles locks (cp->lock). */
4689 cas_read_regs(cp, p, regs->len / sizeof(u32));
4690}
4691
4692static int cas_get_sset_count(struct net_device *dev, int sset)
4693{
4694 switch (sset) {
4695 case ETH_SS_STATS:
4696 return CAS_NUM_STAT_KEYS;
4697 default:
4698 return -EOPNOTSUPP;
4699 }
4700}
4701
4702static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4703{
4704 memcpy(data, ðtool_cassini_statnames,
4705 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4706}
4707
4708static void cas_get_ethtool_stats(struct net_device *dev,
4709 struct ethtool_stats *estats, u64 *data)
4710{
4711 struct cas *cp = netdev_priv(dev);
4712 struct net_device_stats *stats = cas_get_stats(cp->dev);
4713 int i = 0;
4714 data[i++] = stats->collisions;
4715 data[i++] = stats->rx_bytes;
4716 data[i++] = stats->rx_crc_errors;
4717 data[i++] = stats->rx_dropped;
4718 data[i++] = stats->rx_errors;
4719 data[i++] = stats->rx_fifo_errors;
4720 data[i++] = stats->rx_frame_errors;
4721 data[i++] = stats->rx_length_errors;
4722 data[i++] = stats->rx_over_errors;
4723 data[i++] = stats->rx_packets;
4724 data[i++] = stats->tx_aborted_errors;
4725 data[i++] = stats->tx_bytes;
4726 data[i++] = stats->tx_dropped;
4727 data[i++] = stats->tx_errors;
4728 data[i++] = stats->tx_fifo_errors;
4729 data[i++] = stats->tx_packets;
4730 BUG_ON(i != CAS_NUM_STAT_KEYS);
4731}
4732
4733static const struct ethtool_ops cas_ethtool_ops = {
4734 .get_drvinfo = cas_get_drvinfo,
4735 .nway_reset = cas_nway_reset,
4736 .get_link = cas_get_link,
4737 .get_msglevel = cas_get_msglevel,
4738 .set_msglevel = cas_set_msglevel,
4739 .get_regs_len = cas_get_regs_len,
4740 .get_regs = cas_get_regs,
4741 .get_sset_count = cas_get_sset_count,
4742 .get_strings = cas_get_strings,
4743 .get_ethtool_stats = cas_get_ethtool_stats,
4744 .get_link_ksettings = cas_get_link_ksettings,
4745 .set_link_ksettings = cas_set_link_ksettings,
4746};
4747
4748static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4749{
4750 struct cas *cp = netdev_priv(dev);
4751 struct mii_ioctl_data *data = if_mii(ifr);
4752 unsigned long flags;
4753 int rc = -EOPNOTSUPP;
4754
4755 /* Hold the PM mutex while doing ioctl's or we may collide
4756 * with open/close and power management and oops.
4757 */
4758 mutex_lock(&cp->pm_mutex);
4759 switch (cmd) {
4760 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4761 data->phy_id = cp->phy_addr;
4762 fallthrough;
4763
4764 case SIOCGMIIREG: /* Read MII PHY register. */
4765 spin_lock_irqsave(&cp->lock, flags);
4766 cas_mif_poll(cp, 0);
4767 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4768 cas_mif_poll(cp, 1);
4769 spin_unlock_irqrestore(&cp->lock, flags);
4770 rc = 0;
4771 break;
4772
4773 case SIOCSMIIREG: /* Write MII PHY register. */
4774 spin_lock_irqsave(&cp->lock, flags);
4775 cas_mif_poll(cp, 0);
4776 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4777 cas_mif_poll(cp, 1);
4778 spin_unlock_irqrestore(&cp->lock, flags);
4779 break;
4780 default:
4781 break;
4782 }
4783
4784 mutex_unlock(&cp->pm_mutex);
4785 return rc;
4786}
4787
4788/* When this chip sits underneath an Intel 31154 bridge, it is the
4789 * only subordinate device and we can tweak the bridge settings to
4790 * reflect that fact.
4791 */
4792static void cas_program_bridge(struct pci_dev *cas_pdev)
4793{
4794 struct pci_dev *pdev = cas_pdev->bus->self;
4795 u32 val;
4796
4797 if (!pdev)
4798 return;
4799
4800 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4801 return;
4802
4803 /* Clear bit 10 (Bus Parking Control) in the Secondary
4804 * Arbiter Control/Status Register which lives at offset
4805 * 0x41. Using a 32-bit word read/modify/write at 0x40
4806 * is much simpler so that's how we do this.
4807 */
4808 pci_read_config_dword(pdev, 0x40, &val);
4809 val &= ~0x00040000;
4810 pci_write_config_dword(pdev, 0x40, val);
4811
4812 /* Max out the Multi-Transaction Timer settings since
4813 * Cassini is the only device present.
4814 *
4815 * The register is 16-bit and lives at 0x50. When the
4816 * settings are enabled, it extends the GRANT# signal
4817 * for a requestor after a transaction is complete. This
4818 * allows the next request to run without first needing
4819 * to negotiate the GRANT# signal back.
4820 *
4821 * Bits 12:10 define the grant duration:
4822 *
4823 * 1 -- 16 clocks
4824 * 2 -- 32 clocks
4825 * 3 -- 64 clocks
4826 * 4 -- 128 clocks
4827 * 5 -- 256 clocks
4828 *
4829 * All other values are illegal.
4830 *
4831 * Bits 09:00 define which REQ/GNT signal pairs get the
4832 * GRANT# signal treatment. We set them all.
4833 */
4834 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4835
4836 /* The Read Prefecth Policy register is 16-bit and sits at
4837 * offset 0x52. It enables a "smart" pre-fetch policy. We
4838 * enable it and max out all of the settings since only one
4839 * device is sitting underneath and thus bandwidth sharing is
4840 * not an issue.
4841 *
4842 * The register has several 3 bit fields, which indicates a
4843 * multiplier applied to the base amount of prefetching the
4844 * chip would do. These fields are at:
4845 *
4846 * 15:13 --- ReRead Primary Bus
4847 * 12:10 --- FirstRead Primary Bus
4848 * 09:07 --- ReRead Secondary Bus
4849 * 06:04 --- FirstRead Secondary Bus
4850 *
4851 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4852 * get enabled on. Bit 3 is a grouped enabler which controls
4853 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4854 * the individual REQ/GNT pairs [2:0].
4855 */
4856 pci_write_config_word(pdev, 0x52,
4857 (0x7 << 13) |
4858 (0x7 << 10) |
4859 (0x7 << 7) |
4860 (0x7 << 4) |
4861 (0xf << 0));
4862
4863 /* Force cacheline size to 0x8 */
4864 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4865
4866 /* Force latency timer to maximum setting so Cassini can
4867 * sit on the bus as long as it likes.
4868 */
4869 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4870}
4871
4872static const struct net_device_ops cas_netdev_ops = {
4873 .ndo_open = cas_open,
4874 .ndo_stop = cas_close,
4875 .ndo_start_xmit = cas_start_xmit,
4876 .ndo_get_stats = cas_get_stats,
4877 .ndo_set_rx_mode = cas_set_multicast,
4878 .ndo_do_ioctl = cas_ioctl,
4879 .ndo_tx_timeout = cas_tx_timeout,
4880 .ndo_change_mtu = cas_change_mtu,
4881 .ndo_set_mac_address = eth_mac_addr,
4882 .ndo_validate_addr = eth_validate_addr,
4883#ifdef CONFIG_NET_POLL_CONTROLLER
4884 .ndo_poll_controller = cas_netpoll,
4885#endif
4886};
4887
4888static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4889{
4890 static int cas_version_printed = 0;
4891 unsigned long casreg_len;
4892 struct net_device *dev;
4893 struct cas *cp;
4894 int i, err, pci_using_dac;
4895 u16 pci_cmd;
4896 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4897
4898 if (cas_version_printed++ == 0)
4899 pr_info("%s", version);
4900
4901 err = pci_enable_device(pdev);
4902 if (err) {
4903 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4904 return err;
4905 }
4906
4907 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4908 dev_err(&pdev->dev, "Cannot find proper PCI device "
4909 "base address, aborting\n");
4910 err = -ENODEV;
4911 goto err_out_disable_pdev;
4912 }
4913
4914 dev = alloc_etherdev(sizeof(*cp));
4915 if (!dev) {
4916 err = -ENOMEM;
4917 goto err_out_disable_pdev;
4918 }
4919 SET_NETDEV_DEV(dev, &pdev->dev);
4920
4921 err = pci_request_regions(pdev, dev->name);
4922 if (err) {
4923 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4924 goto err_out_free_netdev;
4925 }
4926 pci_set_master(pdev);
4927
4928 /* we must always turn on parity response or else parity
4929 * doesn't get generated properly. disable SERR/PERR as well.
4930 * in addition, we want to turn MWI on.
4931 */
4932 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4933 pci_cmd &= ~PCI_COMMAND_SERR;
4934 pci_cmd |= PCI_COMMAND_PARITY;
4935 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4936 if (pci_try_set_mwi(pdev))
4937 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4938
4939 cas_program_bridge(pdev);
4940
4941 /*
4942 * On some architectures, the default cache line size set
4943 * by pci_try_set_mwi reduces perforamnce. We have to increase
4944 * it for this case. To start, we'll print some configuration
4945 * data.
4946 */
4947#if 1
4948 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4949 &orig_cacheline_size);
4950 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4951 cas_cacheline_size =
4952 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4953 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4954 if (pci_write_config_byte(pdev,
4955 PCI_CACHE_LINE_SIZE,
4956 cas_cacheline_size)) {
4957 dev_err(&pdev->dev, "Could not set PCI cache "
4958 "line size\n");
4959 goto err_out_free_res;
4960 }
4961 }
4962#endif
4963
4964
4965 /* Configure DMA attributes. */
4966 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4967 pci_using_dac = 1;
4968 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4969 if (err < 0) {
4970 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4971 "for consistent allocations\n");
4972 goto err_out_free_res;
4973 }
4974
4975 } else {
4976 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4977 if (err) {
4978 dev_err(&pdev->dev, "No usable DMA configuration, "
4979 "aborting\n");
4980 goto err_out_free_res;
4981 }
4982 pci_using_dac = 0;
4983 }
4984
4985 casreg_len = pci_resource_len(pdev, 0);
4986
4987 cp = netdev_priv(dev);
4988 cp->pdev = pdev;
4989#if 1
4990 /* A value of 0 indicates we never explicitly set it */
4991 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4992#endif
4993 cp->dev = dev;
4994 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4995 cassini_debug;
4996
4997#if defined(CONFIG_SPARC)
4998 cp->of_node = pci_device_to_OF_node(pdev);
4999#endif
5000
5001 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5002 cp->link_transition_jiffies_valid = 0;
5003
5004 spin_lock_init(&cp->lock);
5005 spin_lock_init(&cp->rx_inuse_lock);
5006 spin_lock_init(&cp->rx_spare_lock);
5007 for (i = 0; i < N_TX_RINGS; i++) {
5008 spin_lock_init(&cp->stat_lock[i]);
5009 spin_lock_init(&cp->tx_lock[i]);
5010 }
5011 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5012 mutex_init(&cp->pm_mutex);
5013
5014 timer_setup(&cp->link_timer, cas_link_timer, 0);
5015
5016#if 1
5017 /* Just in case the implementation of atomic operations
5018 * change so that an explicit initialization is necessary.
5019 */
5020 atomic_set(&cp->reset_task_pending, 0);
5021 atomic_set(&cp->reset_task_pending_all, 0);
5022 atomic_set(&cp->reset_task_pending_spare, 0);
5023 atomic_set(&cp->reset_task_pending_mtu, 0);
5024#endif
5025 INIT_WORK(&cp->reset_task, cas_reset_task);
5026
5027 /* Default link parameters */
5028 if (link_mode >= 0 && link_mode < 6)
5029 cp->link_cntl = link_modes[link_mode];
5030 else
5031 cp->link_cntl = BMCR_ANENABLE;
5032 cp->lstate = link_down;
5033 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5034 netif_carrier_off(cp->dev);
5035 cp->timer_ticks = 0;
5036
5037 /* give us access to cassini registers */
5038 cp->regs = pci_iomap(pdev, 0, casreg_len);
5039 if (!cp->regs) {
5040 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5041 goto err_out_free_res;
5042 }
5043 cp->casreg_len = casreg_len;
5044
5045 pci_save_state(pdev);
5046 cas_check_pci_invariants(cp);
5047 cas_hard_reset(cp);
5048 cas_reset(cp, 0);
5049 if (cas_check_invariants(cp))
5050 goto err_out_iounmap;
5051 if (cp->cas_flags & CAS_FLAG_SATURN)
5052 cas_saturn_firmware_init(cp);
5053
5054 cp->init_block =
5055 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5056 &cp->block_dvma, GFP_KERNEL);
5057 if (!cp->init_block) {
5058 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5059 goto err_out_iounmap;
5060 }
5061
5062 for (i = 0; i < N_TX_RINGS; i++)
5063 cp->init_txds[i] = cp->init_block->txds[i];
5064
5065 for (i = 0; i < N_RX_DESC_RINGS; i++)
5066 cp->init_rxds[i] = cp->init_block->rxds[i];
5067
5068 for (i = 0; i < N_RX_COMP_RINGS; i++)
5069 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5070
5071 for (i = 0; i < N_RX_FLOWS; i++)
5072 skb_queue_head_init(&cp->rx_flows[i]);
5073
5074 dev->netdev_ops = &cas_netdev_ops;
5075 dev->ethtool_ops = &cas_ethtool_ops;
5076 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5077
5078#ifdef USE_NAPI
5079 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5080#endif
5081 dev->irq = pdev->irq;
5082 dev->dma = 0;
5083
5084 /* Cassini features. */
5085 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5086 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5087
5088 if (pci_using_dac)
5089 dev->features |= NETIF_F_HIGHDMA;
5090
5091 /* MTU range: 60 - varies or 9000 */
5092 dev->min_mtu = CAS_MIN_MTU;
5093 dev->max_mtu = CAS_MAX_MTU;
5094
5095 if (register_netdev(dev)) {
5096 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5097 goto err_out_free_consistent;
5098 }
5099
5100 i = readl(cp->regs + REG_BIM_CFG);
5101 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5102 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5103 (i & BIM_CFG_32BIT) ? "32" : "64",
5104 (i & BIM_CFG_66MHZ) ? "66" : "33",
5105 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5106 dev->dev_addr);
5107
5108 pci_set_drvdata(pdev, dev);
5109 cp->hw_running = 1;
5110 cas_entropy_reset(cp);
5111 cas_phy_init(cp);
5112 cas_begin_auto_negotiation(cp, NULL);
5113 return 0;
5114
5115err_out_free_consistent:
5116 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5117 cp->init_block, cp->block_dvma);
5118
5119err_out_iounmap:
5120 mutex_lock(&cp->pm_mutex);
5121 if (cp->hw_running)
5122 cas_shutdown(cp);
5123 mutex_unlock(&cp->pm_mutex);
5124
5125 pci_iounmap(pdev, cp->regs);
5126
5127
5128err_out_free_res:
5129 pci_release_regions(pdev);
5130
5131 /* Try to restore it in case the error occurred after we
5132 * set it.
5133 */
5134 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5135
5136err_out_free_netdev:
5137 free_netdev(dev);
5138
5139err_out_disable_pdev:
5140 pci_disable_device(pdev);
5141 return -ENODEV;
5142}
5143
5144static void cas_remove_one(struct pci_dev *pdev)
5145{
5146 struct net_device *dev = pci_get_drvdata(pdev);
5147 struct cas *cp;
5148 if (!dev)
5149 return;
5150
5151 cp = netdev_priv(dev);
5152 unregister_netdev(dev);
5153
5154 vfree(cp->fw_data);
5155
5156 mutex_lock(&cp->pm_mutex);
5157 cancel_work_sync(&cp->reset_task);
5158 if (cp->hw_running)
5159 cas_shutdown(cp);
5160 mutex_unlock(&cp->pm_mutex);
5161
5162#if 1
5163 if (cp->orig_cacheline_size) {
5164 /* Restore the cache line size if we had modified
5165 * it.
5166 */
5167 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5168 cp->orig_cacheline_size);
5169 }
5170#endif
5171 dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5172 cp->init_block, cp->block_dvma);
5173 pci_iounmap(pdev, cp->regs);
5174 free_netdev(dev);
5175 pci_release_regions(pdev);
5176 pci_disable_device(pdev);
5177}
5178
5179static int __maybe_unused cas_suspend(struct device *dev_d)
5180{
5181 struct net_device *dev = dev_get_drvdata(dev_d);
5182 struct cas *cp = netdev_priv(dev);
5183 unsigned long flags;
5184
5185 mutex_lock(&cp->pm_mutex);
5186
5187 /* If the driver is opened, we stop the DMA */
5188 if (cp->opened) {
5189 netif_device_detach(dev);
5190
5191 cas_lock_all_save(cp, flags);
5192
5193 /* We can set the second arg of cas_reset to 0
5194 * because on resume, we'll call cas_init_hw with
5195 * its second arg set so that autonegotiation is
5196 * restarted.
5197 */
5198 cas_reset(cp, 0);
5199 cas_clean_rings(cp);
5200 cas_unlock_all_restore(cp, flags);
5201 }
5202
5203 if (cp->hw_running)
5204 cas_shutdown(cp);
5205 mutex_unlock(&cp->pm_mutex);
5206
5207 return 0;
5208}
5209
5210static int __maybe_unused cas_resume(struct device *dev_d)
5211{
5212 struct net_device *dev = dev_get_drvdata(dev_d);
5213 struct cas *cp = netdev_priv(dev);
5214
5215 netdev_info(dev, "resuming\n");
5216
5217 mutex_lock(&cp->pm_mutex);
5218 cas_hard_reset(cp);
5219 if (cp->opened) {
5220 unsigned long flags;
5221 cas_lock_all_save(cp, flags);
5222 cas_reset(cp, 0);
5223 cp->hw_running = 1;
5224 cas_clean_rings(cp);
5225 cas_init_hw(cp, 1);
5226 cas_unlock_all_restore(cp, flags);
5227
5228 netif_device_attach(dev);
5229 }
5230 mutex_unlock(&cp->pm_mutex);
5231 return 0;
5232}
5233
5234static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5235
5236static struct pci_driver cas_driver = {
5237 .name = DRV_MODULE_NAME,
5238 .id_table = cas_pci_tbl,
5239 .probe = cas_init_one,
5240 .remove = cas_remove_one,
5241 .driver.pm = &cas_pm_ops,
5242};
5243
5244static int __init cas_init(void)
5245{
5246 if (linkdown_timeout > 0)
5247 link_transition_timeout = linkdown_timeout * HZ;
5248 else
5249 link_transition_timeout = 0;
5250
5251 return pci_register_driver(&cas_driver);
5252}
5253
5254static void __exit cas_cleanup(void)
5255{
5256 pci_unregister_driver(&cas_driver);
5257}
5258
5259module_init(cas_init);
5260module_exit(cas_cleanup);