Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2#define VERSION "0.23"
   3/* ns83820.c by Benjamin LaHaise with contributions.
   4 *
   5 * Questions/comments/discussion to linux-ns83820@kvack.org.
   6 *
   7 * $Revision: 1.34.2.23 $
   8 *
   9 * Copyright 2001 Benjamin LaHaise.
  10 * Copyright 2001, 2002 Red Hat.
  11 *
  12 * Mmmm, chocolate vanilla mocha...
  13 *
  14 * ChangeLog
  15 * =========
  16 *	20010414	0.1 - created
  17 *	20010622	0.2 - basic rx and tx.
  18 *	20010711	0.3 - added duplex and link state detection support.
  19 *	20010713	0.4 - zero copy, no hangs.
  20 *			0.5 - 64 bit dma support (davem will hate me for this)
  21 *			    - disable jumbo frames to avoid tx hangs
  22 *			    - work around tx deadlocks on my 1.02 card via
  23 *			      fiddling with TXCFG
  24 *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
  25 *	20010816	0.7 - misc cleanups
  26 *	20010826	0.8 - fix critical zero copy bugs
  27 *			0.9 - internal experiment
  28 *	20010827	0.10 - fix ia64 unaligned access.
  29 *	20010906	0.11 - accept all packets with checksum errors as
  30 *			       otherwise fragments get lost
  31 *			     - fix >> 32 bugs
  32 *			0.12 - add statistics counters
  33 *			     - add allmulti/promisc support
  34 *	20011009	0.13 - hotplug support, other smaller pci api cleanups
  35 *	20011204	0.13a - optical transceiver support added
  36 *				by Michael Clark <michael@metaparadigm.com>
  37 *	20011205	0.13b - call register_netdev earlier in initialization
  38 *				suppress duplicate link status messages
  39 *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  40 *	20011204 	0.15	get ppc (big endian) working
  41 *	20011218	0.16	various cleanups
  42 *	20020310	0.17	speedups
  43 *	20020610	0.18 -	actually use the pci dma api for highmem
  44 *			     -	remove pci latency register fiddling
  45 *			0.19 -	better bist support
  46 *			     -	add ihr and reset_phy parameters
  47 *			     -	gmii bus probing
  48 *			     -	fix missed txok introduced during performance
  49 *				tuning
  50 *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
  51 *	20040828	0.21 -	add hardware vlan accleration
  52 *				by Neil Horman <nhorman@redhat.com>
  53 *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
  54 *			     -	removal of dead code from Adrian Bunk
  55 *			     -	fix half duplex collision behaviour
  56 * Driver Overview
  57 * ===============
  58 *
  59 * This driver was originally written for the National Semiconductor
  60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  61 * this code will turn out to be a) clean, b) correct, and c) fast.
  62 * With that in mind, I'm aiming to split the code up as much as
  63 * reasonably possible.  At present there are X major sections that
  64 * break down into a) packet receive, b) packet transmit, c) link
  65 * management, d) initialization and configuration.  Where possible,
  66 * these code paths are designed to run in parallel.
  67 *
  68 * This driver has been tested and found to work with the following
  69 * cards (in no particular order):
  70 *
  71 *	Cameo		SOHO-GA2000T	SOHO-GA2500T
  72 *	D-Link		DGE-500T
  73 *	PureData	PDP8023Z-TG
  74 *	SMC		SMC9452TX	SMC9462TX
  75 *	Netgear		GA621
  76 *
  77 * Special thanks to SMC for providing hardware to test this driver on.
  78 *
  79 * Reports of success or failure would be greatly appreciated.
  80 */
  81//#define dprintk		printk
  82#define dprintk(x...)		do { } while (0)
  83
  84#include <linux/module.h>
  85#include <linux/moduleparam.h>
  86#include <linux/types.h>
  87#include <linux/pci.h>
  88#include <linux/dma-mapping.h>
  89#include <linux/netdevice.h>
  90#include <linux/etherdevice.h>
  91#include <linux/delay.h>
  92#include <linux/workqueue.h>
  93#include <linux/init.h>
  94#include <linux/interrupt.h>
  95#include <linux/ip.h>	/* for iph */
  96#include <linux/in.h>	/* for IPPROTO_... */
  97#include <linux/compiler.h>
  98#include <linux/prefetch.h>
  99#include <linux/ethtool.h>
 100#include <linux/sched.h>
 101#include <linux/timer.h>
 102#include <linux/if_vlan.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/jiffies.h>
 105#include <linux/slab.h>
 106
 107#include <asm/io.h>
 108#include <linux/uaccess.h>
 109
 110#define DRV_NAME "ns83820"
 111
 112/* Global parameters.  See module_param near the bottom. */
 113static int ihr = 2;
 114static int reset_phy = 0;
 115static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
 116
 117/* Dprintk is used for more interesting debug events */
 118#undef Dprintk
 119#define	Dprintk			dprintk
 120
 121/* tunables */
 122#define RX_BUF_SIZE	1500	/* 8192 */
 123#if IS_ENABLED(CONFIG_VLAN_8021Q)
 124#define NS83820_VLAN_ACCEL_SUPPORT
 125#endif
 126
 127/* Must not exceed ~65000. */
 128#define NR_RX_DESC	64
 129#define NR_TX_DESC	128
 130
 131/* not tunable */
 132#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
 133
 134#define MIN_TX_DESC_FREE	8
 135
 136/* register defines */
 137#define CFGCS		0x04
 138
 139#define CR_TXE		0x00000001
 140#define CR_TXD		0x00000002
 141/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 142 * The Receive engine skips one descriptor and moves
 143 * onto the next one!! */
 144#define CR_RXE		0x00000004
 145#define CR_RXD		0x00000008
 146#define CR_TXR		0x00000010
 147#define CR_RXR		0x00000020
 148#define CR_SWI		0x00000080
 149#define CR_RST		0x00000100
 150
 151#define PTSCR_EEBIST_FAIL       0x00000001
 152#define PTSCR_EEBIST_EN         0x00000002
 153#define PTSCR_EELOAD_EN         0x00000004
 154#define PTSCR_RBIST_FAIL        0x000001b8
 155#define PTSCR_RBIST_DONE        0x00000200
 156#define PTSCR_RBIST_EN          0x00000400
 157#define PTSCR_RBIST_RST         0x00002000
 158
 159#define MEAR_EEDI		0x00000001
 160#define MEAR_EEDO		0x00000002
 161#define MEAR_EECLK		0x00000004
 162#define MEAR_EESEL		0x00000008
 163#define MEAR_MDIO		0x00000010
 164#define MEAR_MDDIR		0x00000020
 165#define MEAR_MDC		0x00000040
 166
 167#define ISR_TXDESC3	0x40000000
 168#define ISR_TXDESC2	0x20000000
 169#define ISR_TXDESC1	0x10000000
 170#define ISR_TXDESC0	0x08000000
 171#define ISR_RXDESC3	0x04000000
 172#define ISR_RXDESC2	0x02000000
 173#define ISR_RXDESC1	0x01000000
 174#define ISR_RXDESC0	0x00800000
 175#define ISR_TXRCMP	0x00400000
 176#define ISR_RXRCMP	0x00200000
 177#define ISR_DPERR	0x00100000
 178#define ISR_SSERR	0x00080000
 179#define ISR_RMABT	0x00040000
 180#define ISR_RTABT	0x00020000
 181#define ISR_RXSOVR	0x00010000
 182#define ISR_HIBINT	0x00008000
 183#define ISR_PHY		0x00004000
 184#define ISR_PME		0x00002000
 185#define ISR_SWI		0x00001000
 186#define ISR_MIB		0x00000800
 187#define ISR_TXURN	0x00000400
 188#define ISR_TXIDLE	0x00000200
 189#define ISR_TXERR	0x00000100
 190#define ISR_TXDESC	0x00000080
 191#define ISR_TXOK	0x00000040
 192#define ISR_RXORN	0x00000020
 193#define ISR_RXIDLE	0x00000010
 194#define ISR_RXEARLY	0x00000008
 195#define ISR_RXERR	0x00000004
 196#define ISR_RXDESC	0x00000002
 197#define ISR_RXOK	0x00000001
 198
 199#define TXCFG_CSI	0x80000000
 200#define TXCFG_HBI	0x40000000
 201#define TXCFG_MLB	0x20000000
 202#define TXCFG_ATP	0x10000000
 203#define TXCFG_ECRETRY	0x00800000
 204#define TXCFG_BRST_DIS	0x00080000
 205#define TXCFG_MXDMA1024	0x00000000
 206#define TXCFG_MXDMA512	0x00700000
 207#define TXCFG_MXDMA256	0x00600000
 208#define TXCFG_MXDMA128	0x00500000
 209#define TXCFG_MXDMA64	0x00400000
 210#define TXCFG_MXDMA32	0x00300000
 211#define TXCFG_MXDMA16	0x00200000
 212#define TXCFG_MXDMA8	0x00100000
 213
 214#define CFG_LNKSTS	0x80000000
 215#define CFG_SPDSTS	0x60000000
 216#define CFG_SPDSTS1	0x40000000
 217#define CFG_SPDSTS0	0x20000000
 218#define CFG_DUPSTS	0x10000000
 219#define CFG_TBI_EN	0x01000000
 220#define CFG_MODE_1000	0x00400000
 221/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 222 * Read the Phy response and then configure the MAC accordingly */
 223#define CFG_AUTO_1000	0x00200000
 224#define CFG_PINT_CTL	0x001c0000
 225#define CFG_PINT_DUPSTS	0x00100000
 226#define CFG_PINT_LNKSTS	0x00080000
 227#define CFG_PINT_SPDSTS	0x00040000
 228#define CFG_TMRTEST	0x00020000
 229#define CFG_MRM_DIS	0x00010000
 230#define CFG_MWI_DIS	0x00008000
 231#define CFG_T64ADDR	0x00004000
 232#define CFG_PCI64_DET	0x00002000
 233#define CFG_DATA64_EN	0x00001000
 234#define CFG_M64ADDR	0x00000800
 235#define CFG_PHY_RST	0x00000400
 236#define CFG_PHY_DIS	0x00000200
 237#define CFG_EXTSTS_EN	0x00000100
 238#define CFG_REQALG	0x00000080
 239#define CFG_SB		0x00000040
 240#define CFG_POW		0x00000020
 241#define CFG_EXD		0x00000010
 242#define CFG_PESEL	0x00000008
 243#define CFG_BROM_DIS	0x00000004
 244#define CFG_EXT_125	0x00000002
 245#define CFG_BEM		0x00000001
 246
 247#define EXTSTS_UDPPKT	0x00200000
 248#define EXTSTS_TCPPKT	0x00080000
 249#define EXTSTS_IPPKT	0x00020000
 250#define EXTSTS_VPKT	0x00010000
 251#define EXTSTS_VTG_MASK	0x0000ffff
 252
 253#define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 254
 255#define MIBC_MIBS	0x00000008
 256#define MIBC_ACLR	0x00000004
 257#define MIBC_FRZ	0x00000002
 258#define MIBC_WRN	0x00000001
 259
 260#define PCR_PSEN	(1 << 31)
 261#define PCR_PS_MCAST	(1 << 30)
 262#define PCR_PS_DA	(1 << 29)
 263#define PCR_STHI_8	(3 << 23)
 264#define PCR_STLO_4	(1 << 23)
 265#define PCR_FFHI_8K	(3 << 21)
 266#define PCR_FFLO_4K	(1 << 21)
 267#define PCR_PAUSE_CNT	0xFFFE
 268
 269#define RXCFG_AEP	0x80000000
 270#define RXCFG_ARP	0x40000000
 271#define RXCFG_STRIPCRC	0x20000000
 272#define RXCFG_RX_FD	0x10000000
 273#define RXCFG_ALP	0x08000000
 274#define RXCFG_AIRL	0x04000000
 275#define RXCFG_MXDMA512	0x00700000
 276#define RXCFG_DRTH	0x0000003e
 277#define RXCFG_DRTH0	0x00000002
 278
 279#define RFCR_RFEN	0x80000000
 280#define RFCR_AAB	0x40000000
 281#define RFCR_AAM	0x20000000
 282#define RFCR_AAU	0x10000000
 283#define RFCR_APM	0x08000000
 284#define RFCR_APAT	0x07800000
 285#define RFCR_APAT3	0x04000000
 286#define RFCR_APAT2	0x02000000
 287#define RFCR_APAT1	0x01000000
 288#define RFCR_APAT0	0x00800000
 289#define RFCR_AARP	0x00400000
 290#define RFCR_MHEN	0x00200000
 291#define RFCR_UHEN	0x00100000
 292#define RFCR_ULM	0x00080000
 293
 294#define VRCR_RUDPE	0x00000080
 295#define VRCR_RTCPE	0x00000040
 296#define VRCR_RIPE	0x00000020
 297#define VRCR_IPEN	0x00000010
 298#define VRCR_DUTF	0x00000008
 299#define VRCR_DVTF	0x00000004
 300#define VRCR_VTREN	0x00000002
 301#define VRCR_VTDEN	0x00000001
 302
 303#define VTCR_PPCHK	0x00000008
 304#define VTCR_GCHK	0x00000004
 305#define VTCR_VPPTI	0x00000002
 306#define VTCR_VGTI	0x00000001
 307
 308#define CR		0x00
 309#define CFG		0x04
 310#define MEAR		0x08
 311#define PTSCR		0x0c
 312#define	ISR		0x10
 313#define	IMR		0x14
 314#define	IER		0x18
 315#define	IHR		0x1c
 316#define TXDP		0x20
 317#define TXDP_HI		0x24
 318#define TXCFG		0x28
 319#define GPIOR		0x2c
 320#define RXDP		0x30
 321#define RXDP_HI		0x34
 322#define RXCFG		0x38
 323#define PQCR		0x3c
 324#define WCSR		0x40
 325#define PCR		0x44
 326#define RFCR		0x48
 327#define RFDR		0x4c
 328
 329#define SRR		0x58
 330
 331#define VRCR		0xbc
 332#define VTCR		0xc0
 333#define VDR		0xc4
 334#define CCSR		0xcc
 335
 336#define TBICR		0xe0
 337#define TBISR		0xe4
 338#define TANAR		0xe8
 339#define TANLPAR		0xec
 340#define TANER		0xf0
 341#define TESR		0xf4
 342
 343#define TBICR_MR_AN_ENABLE	0x00001000
 344#define TBICR_MR_RESTART_AN	0x00000200
 345
 346#define TBISR_MR_LINK_STATUS	0x00000020
 347#define TBISR_MR_AN_COMPLETE	0x00000004
 348
 349#define TANAR_PS2 		0x00000100
 350#define TANAR_PS1 		0x00000080
 351#define TANAR_HALF_DUP 		0x00000040
 352#define TANAR_FULL_DUP 		0x00000020
 353
 354#define GPIOR_GP5_OE		0x00000200
 355#define GPIOR_GP4_OE		0x00000100
 356#define GPIOR_GP3_OE		0x00000080
 357#define GPIOR_GP2_OE		0x00000040
 358#define GPIOR_GP1_OE		0x00000020
 359#define GPIOR_GP3_OUT		0x00000004
 360#define GPIOR_GP1_OUT		0x00000001
 361
 362#define LINK_AUTONEGOTIATE	0x01
 363#define LINK_DOWN		0x02
 364#define LINK_UP			0x04
 365
 366#define HW_ADDR_LEN	sizeof(dma_addr_t)
 367#define desc_addr_set(desc, addr)				\
 368	do {							\
 369		((desc)[0] = cpu_to_le32(addr));		\
 370		if (HW_ADDR_LEN == 8)		 		\
 371			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
 372	} while(0)
 373#define desc_addr_get(desc)					\
 374	(le32_to_cpu((desc)[0]) | \
 375	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 376
 377#define DESC_LINK		0
 378#define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
 379#define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
 380#define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
 381
 382#define CMDSTS_OWN	0x80000000
 383#define CMDSTS_MORE	0x40000000
 384#define CMDSTS_INTR	0x20000000
 385#define CMDSTS_ERR	0x10000000
 386#define CMDSTS_OK	0x08000000
 387#define CMDSTS_RUNT	0x00200000
 388#define CMDSTS_LEN_MASK	0x0000ffff
 389
 390#define CMDSTS_DEST_MASK	0x01800000
 391#define CMDSTS_DEST_SELF	0x00800000
 392#define CMDSTS_DEST_MULTI	0x01000000
 393
 394#define DESC_SIZE	8		/* Should be cache line sized */
 395
 396struct rx_info {
 397	spinlock_t	lock;
 398	int		up;
 399	unsigned long	idle;
 400
 401	struct sk_buff	*skbs[NR_RX_DESC];
 402
 403	__le32		*next_rx_desc;
 404	u16		next_rx, next_empty;
 405
 406	__le32		*descs;
 407	dma_addr_t	phy_descs;
 408};
 409
 410
 411struct ns83820 {
 412	u8			__iomem *base;
 413
 414	struct pci_dev		*pci_dev;
 415	struct net_device	*ndev;
 416
 417	struct rx_info		rx_info;
 418	struct tasklet_struct	rx_tasklet;
 419
 420	unsigned		ihr;
 421	struct work_struct	tq_refill;
 422
 423	/* protects everything below.  irqsave when using. */
 424	spinlock_t		misc_lock;
 425
 426	u32			CFG_cache;
 427
 428	u32			MEAR_cache;
 429	u32			IMR_cache;
 430
 431	unsigned		linkstate;
 432
 433	spinlock_t	tx_lock;
 434
 435	u16		tx_done_idx;
 436	u16		tx_idx;
 437	volatile u16	tx_free_idx;	/* idx of free desc chain */
 438	u16		tx_intr_idx;
 439
 440	atomic_t	nr_tx_skbs;
 441	struct sk_buff	*tx_skbs[NR_TX_DESC];
 442
 443	char		pad[16] __attribute__((aligned(16)));
 444	__le32		*tx_descs;
 445	dma_addr_t	tx_phy_descs;
 446
 447	struct timer_list	tx_watchdog;
 448};
 449
 450static inline struct ns83820 *PRIV(struct net_device *dev)
 451{
 452	return netdev_priv(dev);
 453}
 454
 455#define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
 456
 457static inline void kick_rx(struct net_device *ndev)
 458{
 459	struct ns83820 *dev = PRIV(ndev);
 460	dprintk("kick_rx: maybe kicking\n");
 461	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 462		dprintk("actually kicking\n");
 463		writel(dev->rx_info.phy_descs +
 464			(4 * DESC_SIZE * dev->rx_info.next_rx),
 465		       dev->base + RXDP);
 466		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 467			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 468				ndev->name);
 469		__kick_rx(dev);
 470	}
 471}
 472
 473//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 474#define start_tx_okay(dev)	\
 475	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 476
 477/* Packet Receiver
 478 *
 479 * The hardware supports linked lists of receive descriptors for
 480 * which ownership is transferred back and forth by means of an
 481 * ownership bit.  While the hardware does support the use of a
 482 * ring for receive descriptors, we only make use of a chain in
 483 * an attempt to reduce bus traffic under heavy load scenarios.
 484 * This will also make bugs a bit more obvious.  The current code
 485 * only makes use of a single rx chain; I hope to implement
 486 * priority based rx for version 1.0.  Goal: even under overload
 487 * conditions, still route realtime traffic with as low jitter as
 488 * possible.
 489 */
 490static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 491{
 492	desc_addr_set(desc + DESC_LINK, link);
 493	desc_addr_set(desc + DESC_BUFPTR, buf);
 494	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 495	mb();
 496	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 497}
 498
 499#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 500static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 501{
 502	unsigned next_empty;
 503	u32 cmdsts;
 504	__le32 *sg;
 505	dma_addr_t buf;
 506
 507	next_empty = dev->rx_info.next_empty;
 508
 509	/* don't overrun last rx marker */
 510	if (unlikely(nr_rx_empty(dev) <= 2)) {
 511		kfree_skb(skb);
 512		return 1;
 513	}
 514
 515#if 0
 516	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 517		dev->rx_info.next_empty,
 518		dev->rx_info.nr_used,
 519		dev->rx_info.next_rx
 520		);
 521#endif
 522
 523	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 524	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 525	dev->rx_info.skbs[next_empty] = skb;
 526
 527	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 528	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 529	buf = pci_map_single(dev->pci_dev, skb->data,
 530			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 531	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 532	/* update link of previous rx */
 533	if (likely(next_empty != dev->rx_info.next_rx))
 534		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 535
 536	return 0;
 537}
 538
 539static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 540{
 541	struct ns83820 *dev = PRIV(ndev);
 542	unsigned i;
 543	unsigned long flags = 0;
 544
 545	if (unlikely(nr_rx_empty(dev) <= 2))
 546		return 0;
 547
 548	dprintk("rx_refill(%p)\n", ndev);
 549	if (gfp == GFP_ATOMIC)
 550		spin_lock_irqsave(&dev->rx_info.lock, flags);
 551	for (i=0; i<NR_RX_DESC; i++) {
 552		struct sk_buff *skb;
 553		long res;
 554
 555		/* extra 16 bytes for alignment */
 556		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 557		if (unlikely(!skb))
 558			break;
 559
 560		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 561		if (gfp != GFP_ATOMIC)
 562			spin_lock_irqsave(&dev->rx_info.lock, flags);
 563		res = ns83820_add_rx_skb(dev, skb);
 564		if (gfp != GFP_ATOMIC)
 565			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 566		if (res) {
 567			i = 1;
 568			break;
 569		}
 570	}
 571	if (gfp == GFP_ATOMIC)
 572		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 573
 574	return i ? 0 : -ENOMEM;
 575}
 576
 577static void rx_refill_atomic(struct net_device *ndev)
 578{
 579	rx_refill(ndev, GFP_ATOMIC);
 580}
 581
 582/* REFILL */
 583static inline void queue_refill(struct work_struct *work)
 584{
 585	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 586	struct net_device *ndev = dev->ndev;
 587
 588	rx_refill(ndev, GFP_KERNEL);
 589	if (dev->rx_info.up)
 590		kick_rx(ndev);
 591}
 592
 593static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 594{
 595	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 596}
 597
 598static void phy_intr(struct net_device *ndev)
 599{
 600	struct ns83820 *dev = PRIV(ndev);
 601	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 602	u32 cfg, new_cfg;
 603	u32 tbisr, tanar, tanlpar;
 604	int speed, fullduplex, newlinkstate;
 605
 606	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 607
 608	if (dev->CFG_cache & CFG_TBI_EN) {
 609		/* we have an optical transceiver */
 610		tbisr = readl(dev->base + TBISR);
 611		tanar = readl(dev->base + TANAR);
 612		tanlpar = readl(dev->base + TANLPAR);
 613		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 614			tbisr, tanar, tanlpar);
 615
 616		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 617		      (tanar & TANAR_FULL_DUP)) ) {
 618
 619			/* both of us are full duplex */
 620			writel(readl(dev->base + TXCFG)
 621			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 622			       dev->base + TXCFG);
 623			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 624			       dev->base + RXCFG);
 625			/* Light up full duplex LED */
 626			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 627			       dev->base + GPIOR);
 628
 629		} else if (((tanlpar & TANAR_HALF_DUP) &&
 630			    (tanar & TANAR_HALF_DUP)) ||
 631			   ((tanlpar & TANAR_FULL_DUP) &&
 632			    (tanar & TANAR_HALF_DUP)) ||
 633			   ((tanlpar & TANAR_HALF_DUP) &&
 634			    (tanar & TANAR_FULL_DUP))) {
 635
 636			/* one or both of us are half duplex */
 637			writel((readl(dev->base + TXCFG)
 638				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 639			       dev->base + TXCFG);
 640			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 641			       dev->base + RXCFG);
 642			/* Turn off full duplex LED */
 643			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 644			       dev->base + GPIOR);
 645		}
 646
 647		speed = 4; /* 1000F */
 648
 649	} else {
 650		/* we have a copper transceiver */
 651		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 652
 653		if (cfg & CFG_SPDSTS1)
 654			new_cfg |= CFG_MODE_1000;
 655		else
 656			new_cfg &= ~CFG_MODE_1000;
 657
 658		speed = ((cfg / CFG_SPDSTS0) & 3);
 659		fullduplex = (cfg & CFG_DUPSTS);
 660
 661		if (fullduplex) {
 662			new_cfg |= CFG_SB;
 663			writel(readl(dev->base + TXCFG)
 664					| TXCFG_CSI | TXCFG_HBI,
 665			       dev->base + TXCFG);
 666			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 667			       dev->base + RXCFG);
 668		} else {
 669			writel(readl(dev->base + TXCFG)
 670					& ~(TXCFG_CSI | TXCFG_HBI),
 671			       dev->base + TXCFG);
 672			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 673			       dev->base + RXCFG);
 674		}
 675
 676		if ((cfg & CFG_LNKSTS) &&
 677		    ((new_cfg ^ dev->CFG_cache) != 0)) {
 678			writel(new_cfg, dev->base + CFG);
 679			dev->CFG_cache = new_cfg;
 680		}
 681
 682		dev->CFG_cache &= ~CFG_SPDSTS;
 683		dev->CFG_cache |= cfg & CFG_SPDSTS;
 684	}
 685
 686	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 687
 688	if (newlinkstate & LINK_UP &&
 689	    dev->linkstate != newlinkstate) {
 690		netif_start_queue(ndev);
 691		netif_wake_queue(ndev);
 692		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 693			ndev->name,
 694			speeds[speed],
 695			fullduplex ? "full" : "half");
 696	} else if (newlinkstate & LINK_DOWN &&
 697		   dev->linkstate != newlinkstate) {
 698		netif_stop_queue(ndev);
 699		printk(KERN_INFO "%s: link now down.\n", ndev->name);
 700	}
 701
 702	dev->linkstate = newlinkstate;
 703}
 704
 705static int ns83820_setup_rx(struct net_device *ndev)
 706{
 707	struct ns83820 *dev = PRIV(ndev);
 708	unsigned i;
 709	int ret;
 710
 711	dprintk("ns83820_setup_rx(%p)\n", ndev);
 712
 713	dev->rx_info.idle = 1;
 714	dev->rx_info.next_rx = 0;
 715	dev->rx_info.next_rx_desc = dev->rx_info.descs;
 716	dev->rx_info.next_empty = 0;
 717
 718	for (i=0; i<NR_RX_DESC; i++)
 719		clear_rx_desc(dev, i);
 720
 721	writel(0, dev->base + RXDP_HI);
 722	writel(dev->rx_info.phy_descs, dev->base + RXDP);
 723
 724	ret = rx_refill(ndev, GFP_KERNEL);
 725	if (!ret) {
 726		dprintk("starting receiver\n");
 727		/* prevent the interrupt handler from stomping on us */
 728		spin_lock_irq(&dev->rx_info.lock);
 729
 730		writel(0x0001, dev->base + CCSR);
 731		writel(0, dev->base + RFCR);
 732		writel(0x7fc00000, dev->base + RFCR);
 733		writel(0xffc00000, dev->base + RFCR);
 734
 735		dev->rx_info.up = 1;
 736
 737		phy_intr(ndev);
 738
 739		/* Okay, let it rip */
 740		spin_lock(&dev->misc_lock);
 741		dev->IMR_cache |= ISR_PHY;
 742		dev->IMR_cache |= ISR_RXRCMP;
 743		//dev->IMR_cache |= ISR_RXERR;
 744		//dev->IMR_cache |= ISR_RXOK;
 745		dev->IMR_cache |= ISR_RXORN;
 746		dev->IMR_cache |= ISR_RXSOVR;
 747		dev->IMR_cache |= ISR_RXDESC;
 748		dev->IMR_cache |= ISR_RXIDLE;
 749		dev->IMR_cache |= ISR_TXDESC;
 750		dev->IMR_cache |= ISR_TXIDLE;
 751
 752		writel(dev->IMR_cache, dev->base + IMR);
 753		writel(1, dev->base + IER);
 754		spin_unlock(&dev->misc_lock);
 755
 756		kick_rx(ndev);
 757
 758		spin_unlock_irq(&dev->rx_info.lock);
 759	}
 760	return ret;
 761}
 762
 763static void ns83820_cleanup_rx(struct ns83820 *dev)
 764{
 765	unsigned i;
 766	unsigned long flags;
 767
 768	dprintk("ns83820_cleanup_rx(%p)\n", dev);
 769
 770	/* disable receive interrupts */
 771	spin_lock_irqsave(&dev->misc_lock, flags);
 772	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 773	writel(dev->IMR_cache, dev->base + IMR);
 774	spin_unlock_irqrestore(&dev->misc_lock, flags);
 775
 776	/* synchronize with the interrupt handler and kill it */
 777	dev->rx_info.up = 0;
 778	synchronize_irq(dev->pci_dev->irq);
 779
 780	/* touch the pci bus... */
 781	readl(dev->base + IMR);
 782
 783	/* assumes the transmitter is already disabled and reset */
 784	writel(0, dev->base + RXDP_HI);
 785	writel(0, dev->base + RXDP);
 786
 787	for (i=0; i<NR_RX_DESC; i++) {
 788		struct sk_buff *skb = dev->rx_info.skbs[i];
 789		dev->rx_info.skbs[i] = NULL;
 790		clear_rx_desc(dev, i);
 791		kfree_skb(skb);
 792	}
 793}
 794
 795static void ns83820_rx_kick(struct net_device *ndev)
 796{
 797	struct ns83820 *dev = PRIV(ndev);
 798	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 799		if (dev->rx_info.up) {
 800			rx_refill_atomic(ndev);
 801			kick_rx(ndev);
 802		}
 803	}
 804
 805	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 806		schedule_work(&dev->tq_refill);
 807	else
 808		kick_rx(ndev);
 809	if (dev->rx_info.idle)
 810		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 811}
 812
 813/* rx_irq
 814 *
 815 */
 816static void rx_irq(struct net_device *ndev)
 817{
 818	struct ns83820 *dev = PRIV(ndev);
 819	struct rx_info *info = &dev->rx_info;
 820	unsigned next_rx;
 821	int rx_rc, len;
 822	u32 cmdsts;
 823	__le32 *desc;
 824	unsigned long flags;
 825	int nr = 0;
 826
 827	dprintk("rx_irq(%p)\n", ndev);
 828	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 829		readl(dev->base + RXDP),
 830		(long)(dev->rx_info.phy_descs),
 831		(int)dev->rx_info.next_rx,
 832		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 833		(int)dev->rx_info.next_empty,
 834		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 835		);
 836
 837	spin_lock_irqsave(&info->lock, flags);
 838	if (!info->up)
 839		goto out;
 840
 841	dprintk("walking descs\n");
 842	next_rx = info->next_rx;
 843	desc = info->next_rx_desc;
 844	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 845	       (cmdsts != CMDSTS_OWN)) {
 846		struct sk_buff *skb;
 847		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 848		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 849
 850		dprintk("cmdsts: %08x\n", cmdsts);
 851		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 852		dprintk("extsts: %08x\n", extsts);
 853
 854		skb = info->skbs[next_rx];
 855		info->skbs[next_rx] = NULL;
 856		info->next_rx = (next_rx + 1) % NR_RX_DESC;
 857
 858		mb();
 859		clear_rx_desc(dev, next_rx);
 860
 861		pci_unmap_single(dev->pci_dev, bufptr,
 862				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 863		len = cmdsts & CMDSTS_LEN_MASK;
 864#ifdef NS83820_VLAN_ACCEL_SUPPORT
 865		/* NH: As was mentioned below, this chip is kinda
 866		 * brain dead about vlan tag stripping.  Frames
 867		 * that are 64 bytes with a vlan header appended
 868		 * like arp frames, or pings, are flagged as Runts
 869		 * when the tag is stripped and hardware.  This
 870		 * also means that the OK bit in the descriptor
 871		 * is cleared when the frame comes in so we have
 872		 * to do a specific length check here to make sure
 873		 * the frame would have been ok, had we not stripped
 874		 * the tag.
 875		 */
 876		if (likely((CMDSTS_OK & cmdsts) ||
 877			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 878#else
 879		if (likely(CMDSTS_OK & cmdsts)) {
 880#endif
 881			skb_put(skb, len);
 882			if (unlikely(!skb))
 883				goto netdev_mangle_me_harder_failed;
 884			if (cmdsts & CMDSTS_DEST_MULTI)
 885				ndev->stats.multicast++;
 886			ndev->stats.rx_packets++;
 887			ndev->stats.rx_bytes += len;
 888			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 889				skb->ip_summed = CHECKSUM_UNNECESSARY;
 890			} else {
 891				skb_checksum_none_assert(skb);
 892			}
 893			skb->protocol = eth_type_trans(skb, ndev);
 894#ifdef NS83820_VLAN_ACCEL_SUPPORT
 895			if(extsts & EXTSTS_VPKT) {
 896				unsigned short tag;
 897
 898				tag = ntohs(extsts & EXTSTS_VTG_MASK);
 899				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
 900			}
 901#endif
 902			rx_rc = netif_rx(skb);
 903			if (NET_RX_DROP == rx_rc) {
 904netdev_mangle_me_harder_failed:
 905				ndev->stats.rx_dropped++;
 906			}
 907		} else {
 908			dev_kfree_skb_irq(skb);
 909		}
 910
 911		nr++;
 912		next_rx = info->next_rx;
 913		desc = info->descs + (DESC_SIZE * next_rx);
 914	}
 915	info->next_rx = next_rx;
 916	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 917
 918out:
 919	if (0 && !nr) {
 920		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 921	}
 922
 923	spin_unlock_irqrestore(&info->lock, flags);
 924}
 925
 926static void rx_action(unsigned long _dev)
 927{
 928	struct net_device *ndev = (void *)_dev;
 929	struct ns83820 *dev = PRIV(ndev);
 930	rx_irq(ndev);
 931	writel(ihr, dev->base + IHR);
 932
 933	spin_lock_irq(&dev->misc_lock);
 934	dev->IMR_cache |= ISR_RXDESC;
 935	writel(dev->IMR_cache, dev->base + IMR);
 936	spin_unlock_irq(&dev->misc_lock);
 937
 938	rx_irq(ndev);
 939	ns83820_rx_kick(ndev);
 940}
 941
 942/* Packet Transmit code
 943 */
 944static inline void kick_tx(struct ns83820 *dev)
 945{
 946	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 947		dev, dev->tx_idx, dev->tx_free_idx);
 948	writel(CR_TXE, dev->base + CR);
 949}
 950
 951/* No spinlock needed on the transmit irq path as the interrupt handler is
 952 * serialized.
 953 */
 954static void do_tx_done(struct net_device *ndev)
 955{
 956	struct ns83820 *dev = PRIV(ndev);
 957	u32 cmdsts, tx_done_idx;
 958	__le32 *desc;
 959
 960	dprintk("do_tx_done(%p)\n", ndev);
 961	tx_done_idx = dev->tx_done_idx;
 962	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 963
 964	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 965		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 966	while ((tx_done_idx != dev->tx_free_idx) &&
 967	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 968		struct sk_buff *skb;
 969		unsigned len;
 970		dma_addr_t addr;
 971
 972		if (cmdsts & CMDSTS_ERR)
 973			ndev->stats.tx_errors++;
 974		if (cmdsts & CMDSTS_OK)
 975			ndev->stats.tx_packets++;
 976		if (cmdsts & CMDSTS_OK)
 977			ndev->stats.tx_bytes += cmdsts & 0xffff;
 978
 979		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 980			tx_done_idx, dev->tx_free_idx, cmdsts);
 981		skb = dev->tx_skbs[tx_done_idx];
 982		dev->tx_skbs[tx_done_idx] = NULL;
 983		dprintk("done(%p)\n", skb);
 984
 985		len = cmdsts & CMDSTS_LEN_MASK;
 986		addr = desc_addr_get(desc + DESC_BUFPTR);
 987		if (skb) {
 988			pci_unmap_single(dev->pci_dev,
 989					addr,
 990					len,
 991					PCI_DMA_TODEVICE);
 992			dev_consume_skb_irq(skb);
 993			atomic_dec(&dev->nr_tx_skbs);
 994		} else
 995			pci_unmap_page(dev->pci_dev,
 996					addr,
 997					len,
 998					PCI_DMA_TODEVICE);
 999
1000		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1001		dev->tx_done_idx = tx_done_idx;
1002		desc[DESC_CMDSTS] = cpu_to_le32(0);
1003		mb();
1004		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1005	}
1006
1007	/* Allow network stack to resume queueing packets after we've
1008	 * finished transmitting at least 1/4 of the packets in the queue.
1009	 */
1010	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1011		dprintk("start_queue(%p)\n", ndev);
1012		netif_start_queue(ndev);
1013		netif_wake_queue(ndev);
1014	}
1015}
1016
1017static void ns83820_cleanup_tx(struct ns83820 *dev)
1018{
1019	unsigned i;
1020
1021	for (i=0; i<NR_TX_DESC; i++) {
1022		struct sk_buff *skb = dev->tx_skbs[i];
1023		dev->tx_skbs[i] = NULL;
1024		if (skb) {
1025			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1026			pci_unmap_single(dev->pci_dev,
1027					desc_addr_get(desc + DESC_BUFPTR),
1028					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1029					PCI_DMA_TODEVICE);
1030			dev_kfree_skb_irq(skb);
1031			atomic_dec(&dev->nr_tx_skbs);
1032		}
1033	}
1034
1035	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1036}
1037
1038/* transmit routine.  This code relies on the network layer serializing
1039 * its calls in, but will run happily in parallel with the interrupt
1040 * handler.  This code currently has provisions for fragmenting tx buffers
1041 * while trying to track down a bug in either the zero copy code or
1042 * the tx fifo (hence the MAX_FRAG_LEN).
1043 */
1044static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1045					   struct net_device *ndev)
1046{
1047	struct ns83820 *dev = PRIV(ndev);
1048	u32 free_idx, cmdsts, extsts;
1049	int nr_free, nr_frags;
1050	unsigned tx_done_idx, last_idx;
1051	dma_addr_t buf;
1052	unsigned len;
1053	skb_frag_t *frag;
1054	int stopped = 0;
1055	int do_intr = 0;
1056	volatile __le32 *first_desc;
1057
1058	dprintk("ns83820_hard_start_xmit\n");
1059
1060	nr_frags =  skb_shinfo(skb)->nr_frags;
1061again:
1062	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1063		netif_stop_queue(ndev);
1064		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1065			return NETDEV_TX_BUSY;
1066		netif_start_queue(ndev);
1067	}
1068
1069	last_idx = free_idx = dev->tx_free_idx;
1070	tx_done_idx = dev->tx_done_idx;
1071	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1072	nr_free -= 1;
1073	if (nr_free <= nr_frags) {
1074		dprintk("stop_queue - not enough(%p)\n", ndev);
1075		netif_stop_queue(ndev);
1076
1077		/* Check again: we may have raced with a tx done irq */
1078		if (dev->tx_done_idx != tx_done_idx) {
1079			dprintk("restart queue(%p)\n", ndev);
1080			netif_start_queue(ndev);
1081			goto again;
1082		}
1083		return NETDEV_TX_BUSY;
1084	}
1085
1086	if (free_idx == dev->tx_intr_idx) {
1087		do_intr = 1;
1088		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1089	}
1090
1091	nr_free -= nr_frags;
1092	if (nr_free < MIN_TX_DESC_FREE) {
1093		dprintk("stop_queue - last entry(%p)\n", ndev);
1094		netif_stop_queue(ndev);
1095		stopped = 1;
1096	}
1097
1098	frag = skb_shinfo(skb)->frags;
1099	if (!nr_frags)
1100		frag = NULL;
1101	extsts = 0;
1102	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1103		extsts |= EXTSTS_IPPKT;
1104		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1105			extsts |= EXTSTS_TCPPKT;
1106		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1107			extsts |= EXTSTS_UDPPKT;
1108	}
1109
1110#ifdef NS83820_VLAN_ACCEL_SUPPORT
1111	if (skb_vlan_tag_present(skb)) {
1112		/* fetch the vlan tag info out of the
1113		 * ancillary data if the vlan code
1114		 * is using hw vlan acceleration
1115		 */
1116		short tag = skb_vlan_tag_get(skb);
1117		extsts |= (EXTSTS_VPKT | htons(tag));
1118	}
1119#endif
1120
1121	len = skb->len;
1122	if (nr_frags)
1123		len -= skb->data_len;
1124	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1125
1126	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1127
1128	for (;;) {
1129		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1130
1131		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1132			(unsigned long long)buf);
1133		last_idx = free_idx;
1134		free_idx = (free_idx + 1) % NR_TX_DESC;
1135		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1136		desc_addr_set(desc + DESC_BUFPTR, buf);
1137		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1138
1139		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1140		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1141		cmdsts |= len;
1142		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1143
1144		if (!nr_frags)
1145			break;
1146
1147		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1148				       skb_frag_size(frag), DMA_TO_DEVICE);
1149		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1150			(long long)buf, (long) page_to_pfn(frag->page),
1151			frag->page_offset);
1152		len = skb_frag_size(frag);
1153		frag++;
1154		nr_frags--;
1155	}
1156	dprintk("done pkt\n");
1157
1158	spin_lock_irq(&dev->tx_lock);
1159	dev->tx_skbs[last_idx] = skb;
1160	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1161	dev->tx_free_idx = free_idx;
1162	atomic_inc(&dev->nr_tx_skbs);
1163	spin_unlock_irq(&dev->tx_lock);
1164
1165	kick_tx(dev);
1166
1167	/* Check again: we may have raced with a tx done irq */
1168	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1169		netif_start_queue(ndev);
1170
1171	return NETDEV_TX_OK;
1172}
1173
1174static void ns83820_update_stats(struct ns83820 *dev)
1175{
1176	struct net_device *ndev = dev->ndev;
1177	u8 __iomem *base = dev->base;
1178
1179	/* the DP83820 will freeze counters, so we need to read all of them */
1180	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1181	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1182	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1183	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1184	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1185	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1186	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1187	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1188	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1189	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1190	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1191}
1192
1193static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1194{
1195	struct ns83820 *dev = PRIV(ndev);
1196
1197	/* somewhat overkill */
1198	spin_lock_irq(&dev->misc_lock);
1199	ns83820_update_stats(dev);
1200	spin_unlock_irq(&dev->misc_lock);
1201
1202	return &ndev->stats;
1203}
1204
1205/* Let ethtool retrieve info */
1206static int ns83820_get_link_ksettings(struct net_device *ndev,
1207				      struct ethtool_link_ksettings *cmd)
1208{
1209	struct ns83820 *dev = PRIV(ndev);
1210	u32 cfg, tanar, tbicr;
1211	int fullduplex   = 0;
1212	u32 supported;
1213
1214	/*
1215	 * Here's the list of available ethtool commands from other drivers:
1216	 *	cmd->advertising =
1217	 *	ethtool_cmd_speed_set(cmd, ...)
1218	 *	cmd->duplex =
1219	 *	cmd->port = 0;
1220	 *	cmd->phy_address =
1221	 *	cmd->transceiver = 0;
1222	 *	cmd->autoneg =
1223	 *	cmd->maxtxpkt = 0;
1224	 *	cmd->maxrxpkt = 0;
1225	 */
1226
1227	/* read current configuration */
1228	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1229	tanar = readl(dev->base + TANAR);
1230	tbicr = readl(dev->base + TBICR);
1231
1232	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1233
1234	supported = SUPPORTED_Autoneg;
1235
1236	if (dev->CFG_cache & CFG_TBI_EN) {
1237		/* we have optical interface */
1238		supported |= SUPPORTED_1000baseT_Half |
1239					SUPPORTED_1000baseT_Full |
1240					SUPPORTED_FIBRE;
1241		cmd->base.port       = PORT_FIBRE;
1242	} else {
1243		/* we have copper */
1244		supported |= SUPPORTED_10baseT_Half |
1245			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1246			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1247			SUPPORTED_1000baseT_Full |
1248			SUPPORTED_MII;
1249		cmd->base.port = PORT_MII;
1250	}
1251
1252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1253						supported);
1254
1255	cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1256	switch (cfg / CFG_SPDSTS0 & 3) {
1257	case 2:
1258		cmd->base.speed = SPEED_1000;
1259		break;
1260	case 1:
1261		cmd->base.speed = SPEED_100;
1262		break;
1263	default:
1264		cmd->base.speed = SPEED_10;
1265		break;
1266	}
1267	cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1268		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1269	return 0;
1270}
1271
1272/* Let ethool change settings*/
1273static int ns83820_set_link_ksettings(struct net_device *ndev,
1274				      const struct ethtool_link_ksettings *cmd)
1275{
1276	struct ns83820 *dev = PRIV(ndev);
1277	u32 cfg, tanar;
1278	int have_optical = 0;
1279	int fullduplex   = 0;
1280
1281	/* read current configuration */
1282	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1283	tanar = readl(dev->base + TANAR);
1284
1285	if (dev->CFG_cache & CFG_TBI_EN) {
1286		/* we have optical */
1287		have_optical = 1;
1288		fullduplex   = (tanar & TANAR_FULL_DUP);
1289
1290	} else {
1291		/* we have copper */
1292		fullduplex = cfg & CFG_DUPSTS;
1293	}
1294
1295	spin_lock_irq(&dev->misc_lock);
1296	spin_lock(&dev->tx_lock);
1297
1298	/* Set duplex */
1299	if (cmd->base.duplex != fullduplex) {
1300		if (have_optical) {
1301			/*set full duplex*/
1302			if (cmd->base.duplex == DUPLEX_FULL) {
1303				/* force full duplex */
1304				writel(readl(dev->base + TXCFG)
1305					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1306					dev->base + TXCFG);
1307				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1308					dev->base + RXCFG);
1309				/* Light up full duplex LED */
1310				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1311					dev->base + GPIOR);
1312			} else {
1313				/*TODO: set half duplex */
1314			}
1315
1316		} else {
1317			/*we have copper*/
1318			/* TODO: Set duplex for copper cards */
1319		}
1320		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1321		ndev->name);
1322	}
1323
1324	/* Set autonegotiation */
1325	if (1) {
1326		if (cmd->base.autoneg == AUTONEG_ENABLE) {
1327			/* restart auto negotiation */
1328			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1329				dev->base + TBICR);
1330			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1331				dev->linkstate = LINK_AUTONEGOTIATE;
1332
1333			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1334				ndev->name);
1335		} else {
1336			/* disable auto negotiation */
1337			writel(0x00000000, dev->base + TBICR);
1338		}
1339
1340		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1341				cmd->base.autoneg ? "ENABLED" : "DISABLED");
1342	}
1343
1344	phy_intr(ndev);
1345	spin_unlock(&dev->tx_lock);
1346	spin_unlock_irq(&dev->misc_lock);
1347
1348	return 0;
1349}
1350/* end ethtool get/set support -df */
1351
1352static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1353{
1354	struct ns83820 *dev = PRIV(ndev);
1355	strlcpy(info->driver, "ns83820", sizeof(info->driver));
1356	strlcpy(info->version, VERSION, sizeof(info->version));
1357	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1358}
1359
1360static u32 ns83820_get_link(struct net_device *ndev)
1361{
1362	struct ns83820 *dev = PRIV(ndev);
1363	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1364	return cfg & CFG_LNKSTS ? 1 : 0;
1365}
1366
1367static const struct ethtool_ops ops = {
1368	.get_drvinfo     = ns83820_get_drvinfo,
1369	.get_link        = ns83820_get_link,
1370	.get_link_ksettings = ns83820_get_link_ksettings,
1371	.set_link_ksettings = ns83820_set_link_ksettings,
1372};
1373
1374static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1375{
1376	writel(0, dev->base + IMR);
1377	writel(0, dev->base + IER);
1378	readl(dev->base + IER);
1379}
1380
1381/* this function is called in irq context from the ISR */
1382static void ns83820_mib_isr(struct ns83820 *dev)
1383{
1384	unsigned long flags;
1385	spin_lock_irqsave(&dev->misc_lock, flags);
1386	ns83820_update_stats(dev);
1387	spin_unlock_irqrestore(&dev->misc_lock, flags);
1388}
1389
1390static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1391static irqreturn_t ns83820_irq(int foo, void *data)
1392{
1393	struct net_device *ndev = data;
1394	struct ns83820 *dev = PRIV(ndev);
1395	u32 isr;
1396	dprintk("ns83820_irq(%p)\n", ndev);
1397
1398	dev->ihr = 0;
1399
1400	isr = readl(dev->base + ISR);
1401	dprintk("irq: %08x\n", isr);
1402	ns83820_do_isr(ndev, isr);
1403	return IRQ_HANDLED;
1404}
1405
1406static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1407{
1408	struct ns83820 *dev = PRIV(ndev);
1409	unsigned long flags;
1410
1411#ifdef DEBUG
1412	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1413		Dprintk("odd isr? 0x%08x\n", isr);
1414#endif
1415
1416	if (ISR_RXIDLE & isr) {
1417		dev->rx_info.idle = 1;
1418		Dprintk("oh dear, we are idle\n");
1419		ns83820_rx_kick(ndev);
1420	}
1421
1422	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1423		prefetch(dev->rx_info.next_rx_desc);
1424
1425		spin_lock_irqsave(&dev->misc_lock, flags);
1426		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1427		writel(dev->IMR_cache, dev->base + IMR);
1428		spin_unlock_irqrestore(&dev->misc_lock, flags);
1429
1430		tasklet_schedule(&dev->rx_tasklet);
1431		//rx_irq(ndev);
1432		//writel(4, dev->base + IHR);
1433	}
1434
1435	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1436		ns83820_rx_kick(ndev);
1437
1438	if (unlikely(ISR_RXSOVR & isr)) {
1439		//printk("overrun: rxsovr\n");
1440		ndev->stats.rx_fifo_errors++;
1441	}
1442
1443	if (unlikely(ISR_RXORN & isr)) {
1444		//printk("overrun: rxorn\n");
1445		ndev->stats.rx_fifo_errors++;
1446	}
1447
1448	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1449		writel(CR_RXE, dev->base + CR);
1450
1451	if (ISR_TXIDLE & isr) {
1452		u32 txdp;
1453		txdp = readl(dev->base + TXDP);
1454		dprintk("txdp: %08x\n", txdp);
1455		txdp -= dev->tx_phy_descs;
1456		dev->tx_idx = txdp / (DESC_SIZE * 4);
1457		if (dev->tx_idx >= NR_TX_DESC) {
1458			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1459			dev->tx_idx = 0;
1460		}
1461		/* The may have been a race between a pci originated read
1462		 * and the descriptor update from the cpu.  Just in case,
1463		 * kick the transmitter if the hardware thinks it is on a
1464		 * different descriptor than we are.
1465		 */
1466		if (dev->tx_idx != dev->tx_free_idx)
1467			kick_tx(dev);
1468	}
1469
1470	/* Defer tx ring processing until more than a minimum amount of
1471	 * work has accumulated
1472	 */
1473	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1474		spin_lock_irqsave(&dev->tx_lock, flags);
1475		do_tx_done(ndev);
1476		spin_unlock_irqrestore(&dev->tx_lock, flags);
1477
1478		/* Disable TxOk if there are no outstanding tx packets.
1479		 */
1480		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1481		    (dev->IMR_cache & ISR_TXOK)) {
1482			spin_lock_irqsave(&dev->misc_lock, flags);
1483			dev->IMR_cache &= ~ISR_TXOK;
1484			writel(dev->IMR_cache, dev->base + IMR);
1485			spin_unlock_irqrestore(&dev->misc_lock, flags);
1486		}
1487	}
1488
1489	/* The TxIdle interrupt can come in before the transmit has
1490	 * completed.  Normally we reap packets off of the combination
1491	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1492	 * occurs on every packet), but when no further irqs of this
1493	 * nature are expected, we must enable TxOk.
1494	 */
1495	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1496		spin_lock_irqsave(&dev->misc_lock, flags);
1497		dev->IMR_cache |= ISR_TXOK;
1498		writel(dev->IMR_cache, dev->base + IMR);
1499		spin_unlock_irqrestore(&dev->misc_lock, flags);
1500	}
1501
1502	/* MIB interrupt: one of the statistics counters is about to overflow */
1503	if (unlikely(ISR_MIB & isr))
1504		ns83820_mib_isr(dev);
1505
1506	/* PHY: Link up/down/negotiation state change */
1507	if (unlikely(ISR_PHY & isr))
1508		phy_intr(ndev);
1509
1510#if 0	/* Still working on the interrupt mitigation strategy */
1511	if (dev->ihr)
1512		writel(dev->ihr, dev->base + IHR);
1513#endif
1514}
1515
1516static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1517{
1518	Dprintk("resetting chip...\n");
1519	writel(which, dev->base + CR);
1520	do {
1521		schedule();
1522	} while (readl(dev->base + CR) & which);
1523	Dprintk("okay!\n");
1524}
1525
1526static int ns83820_stop(struct net_device *ndev)
1527{
1528	struct ns83820 *dev = PRIV(ndev);
1529
1530	/* FIXME: protect against interrupt handler? */
1531	del_timer_sync(&dev->tx_watchdog);
1532
1533	ns83820_disable_interrupts(dev);
1534
1535	dev->rx_info.up = 0;
1536	synchronize_irq(dev->pci_dev->irq);
1537
1538	ns83820_do_reset(dev, CR_RST);
1539
1540	synchronize_irq(dev->pci_dev->irq);
1541
1542	spin_lock_irq(&dev->misc_lock);
1543	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1544	spin_unlock_irq(&dev->misc_lock);
1545
1546	ns83820_cleanup_rx(dev);
1547	ns83820_cleanup_tx(dev);
1548
1549	return 0;
1550}
1551
1552static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1553{
1554	struct ns83820 *dev = PRIV(ndev);
1555        u32 tx_done_idx;
1556	__le32 *desc;
1557	unsigned long flags;
1558
1559	spin_lock_irqsave(&dev->tx_lock, flags);
1560
1561	tx_done_idx = dev->tx_done_idx;
1562	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1563
1564	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1565		ndev->name,
1566		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1567
1568#if defined(DEBUG)
1569	{
1570		u32 isr;
1571		isr = readl(dev->base + ISR);
1572		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1573		ns83820_do_isr(ndev, isr);
1574	}
1575#endif
1576
1577	do_tx_done(ndev);
1578
1579	tx_done_idx = dev->tx_done_idx;
1580	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1581
1582	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1583		ndev->name,
1584		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1585
1586	spin_unlock_irqrestore(&dev->tx_lock, flags);
1587}
1588
1589static void ns83820_tx_watch(struct timer_list *t)
1590{
1591	struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1592	struct net_device *ndev = dev->ndev;
1593
1594#if defined(DEBUG)
1595	printk("ns83820_tx_watch: %u %u %d\n",
1596		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1597		);
1598#endif
1599
1600	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1601	    dev->tx_done_idx != dev->tx_free_idx) {
1602		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1603			ndev->name,
1604			dev->tx_done_idx, dev->tx_free_idx,
1605			atomic_read(&dev->nr_tx_skbs));
1606		ns83820_tx_timeout(ndev, UINT_MAX);
1607	}
1608
1609	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1610}
1611
1612static int ns83820_open(struct net_device *ndev)
1613{
1614	struct ns83820 *dev = PRIV(ndev);
1615	unsigned i;
1616	u32 desc;
1617	int ret;
1618
1619	dprintk("ns83820_open\n");
1620
1621	writel(0, dev->base + PQCR);
1622
1623	ret = ns83820_setup_rx(ndev);
1624	if (ret)
1625		goto failed;
1626
1627	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1628	for (i=0; i<NR_TX_DESC; i++) {
1629		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1630				= cpu_to_le32(
1631				  dev->tx_phy_descs
1632				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1633	}
1634
1635	dev->tx_idx = 0;
1636	dev->tx_done_idx = 0;
1637	desc = dev->tx_phy_descs;
1638	writel(0, dev->base + TXDP_HI);
1639	writel(desc, dev->base + TXDP);
1640
1641	timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1642	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1643
1644	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1645
1646	return 0;
1647
1648failed:
1649	ns83820_stop(ndev);
1650	return ret;
1651}
1652
1653static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1654{
1655	unsigned i;
1656	for (i=0; i<3; i++) {
1657		u32 data;
1658
1659		/* Read from the perfect match memory: this is loaded by
1660		 * the chip from the EEPROM via the EELOAD self test.
1661		 */
1662		writel(i*2, dev->base + RFCR);
1663		data = readl(dev->base + RFDR);
1664
1665		*mac++ = data;
1666		*mac++ = data >> 8;
1667	}
1668}
1669
1670static void ns83820_set_multicast(struct net_device *ndev)
1671{
1672	struct ns83820 *dev = PRIV(ndev);
1673	u8 __iomem *rfcr = dev->base + RFCR;
1674	u32 and_mask = 0xffffffff;
1675	u32 or_mask = 0;
1676	u32 val;
1677
1678	if (ndev->flags & IFF_PROMISC)
1679		or_mask |= RFCR_AAU | RFCR_AAM;
1680	else
1681		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1682
1683	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1684		or_mask |= RFCR_AAM;
1685	else
1686		and_mask &= ~RFCR_AAM;
1687
1688	spin_lock_irq(&dev->misc_lock);
1689	val = (readl(rfcr) & and_mask) | or_mask;
1690	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1691	writel(val & ~RFCR_RFEN, rfcr);
1692	writel(val, rfcr);
1693	spin_unlock_irq(&dev->misc_lock);
1694}
1695
1696static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1697{
1698	struct ns83820 *dev = PRIV(ndev);
1699	int timed_out = 0;
1700	unsigned long start;
1701	u32 status;
1702	int loops = 0;
1703
1704	dprintk("%s: start %s\n", ndev->name, name);
1705
1706	start = jiffies;
1707
1708	writel(enable, dev->base + PTSCR);
1709	for (;;) {
1710		loops++;
1711		status = readl(dev->base + PTSCR);
1712		if (!(status & enable))
1713			break;
1714		if (status & done)
1715			break;
1716		if (status & fail)
1717			break;
1718		if (time_after_eq(jiffies, start + HZ)) {
1719			timed_out = 1;
1720			break;
1721		}
1722		schedule_timeout_uninterruptible(1);
1723	}
1724
1725	if (status & fail)
1726		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1727			ndev->name, name, status, fail);
1728	else if (timed_out)
1729		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1730			ndev->name, name, status);
1731
1732	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1733}
1734
1735#ifdef PHY_CODE_IS_FINISHED
1736static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1737{
1738	/* drive MDC low */
1739	dev->MEAR_cache &= ~MEAR_MDC;
1740	writel(dev->MEAR_cache, dev->base + MEAR);
1741	readl(dev->base + MEAR);
1742
1743	/* enable output, set bit */
1744	dev->MEAR_cache |= MEAR_MDDIR;
1745	if (bit)
1746		dev->MEAR_cache |= MEAR_MDIO;
1747	else
1748		dev->MEAR_cache &= ~MEAR_MDIO;
1749
1750	/* set the output bit */
1751	writel(dev->MEAR_cache, dev->base + MEAR);
1752	readl(dev->base + MEAR);
1753
1754	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1755	udelay(1);
1756
1757	/* drive MDC high causing the data bit to be latched */
1758	dev->MEAR_cache |= MEAR_MDC;
1759	writel(dev->MEAR_cache, dev->base + MEAR);
1760	readl(dev->base + MEAR);
1761
1762	/* Wait again... */
1763	udelay(1);
1764}
1765
1766static int ns83820_mii_read_bit(struct ns83820 *dev)
1767{
1768	int bit;
1769
1770	/* drive MDC low, disable output */
1771	dev->MEAR_cache &= ~MEAR_MDC;
1772	dev->MEAR_cache &= ~MEAR_MDDIR;
1773	writel(dev->MEAR_cache, dev->base + MEAR);
1774	readl(dev->base + MEAR);
1775
1776	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1777	udelay(1);
1778
1779	/* drive MDC high causing the data bit to be latched */
1780	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1781	dev->MEAR_cache |= MEAR_MDC;
1782	writel(dev->MEAR_cache, dev->base + MEAR);
1783
1784	/* Wait again... */
1785	udelay(1);
1786
1787	return bit;
1788}
1789
1790static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1791{
1792	unsigned data = 0;
1793	int i;
1794
1795	/* read some garbage so that we eventually sync up */
1796	for (i=0; i<64; i++)
1797		ns83820_mii_read_bit(dev);
1798
1799	ns83820_mii_write_bit(dev, 0);	/* start */
1800	ns83820_mii_write_bit(dev, 1);
1801	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1802	ns83820_mii_write_bit(dev, 0);
1803
1804	/* write out the phy address: 5 bits, msb first */
1805	for (i=0; i<5; i++)
1806		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1807
1808	/* write out the register address, 5 bits, msb first */
1809	for (i=0; i<5; i++)
1810		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1811
1812	ns83820_mii_read_bit(dev);	/* turn around cycles */
1813	ns83820_mii_read_bit(dev);
1814
1815	/* read in the register data, 16 bits msb first */
1816	for (i=0; i<16; i++) {
1817		data <<= 1;
1818		data |= ns83820_mii_read_bit(dev);
1819	}
1820
1821	return data;
1822}
1823
1824static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1825{
1826	int i;
1827
1828	/* read some garbage so that we eventually sync up */
1829	for (i=0; i<64; i++)
1830		ns83820_mii_read_bit(dev);
1831
1832	ns83820_mii_write_bit(dev, 0);	/* start */
1833	ns83820_mii_write_bit(dev, 1);
1834	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1835	ns83820_mii_write_bit(dev, 1);
1836
1837	/* write out the phy address: 5 bits, msb first */
1838	for (i=0; i<5; i++)
1839		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1840
1841	/* write out the register address, 5 bits, msb first */
1842	for (i=0; i<5; i++)
1843		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1844
1845	ns83820_mii_read_bit(dev);	/* turn around cycles */
1846	ns83820_mii_read_bit(dev);
1847
1848	/* read in the register data, 16 bits msb first */
1849	for (i=0; i<16; i++)
1850		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1851
1852	return data;
1853}
1854
1855static void ns83820_probe_phy(struct net_device *ndev)
1856{
1857	struct ns83820 *dev = PRIV(ndev);
1858	int j;
1859	unsigned a, b;
1860
1861	for (j = 0; j < 0x16; j += 4) {
1862		dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1863			ndev->name, j,
1864			ns83820_mii_read_reg(dev, 1, 0 + j),
1865			ns83820_mii_read_reg(dev, 1, 1 + j),
1866			ns83820_mii_read_reg(dev, 1, 2 + j),
1867			ns83820_mii_read_reg(dev, 1, 3 + j)
1868			);
1869	}
1870
1871	/* read firmware version: memory addr is 0x8402 and 0x8403 */
1872	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1873	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1874	a = ns83820_mii_read_reg(dev, 1, 0x1d);
1875
1876	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1877	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1878	b = ns83820_mii_read_reg(dev, 1, 0x1d);
1879	dprintk("version: 0x%04x 0x%04x\n", a, b);
1880}
1881#endif
1882
1883static const struct net_device_ops netdev_ops = {
1884	.ndo_open		= ns83820_open,
1885	.ndo_stop		= ns83820_stop,
1886	.ndo_start_xmit		= ns83820_hard_start_xmit,
1887	.ndo_get_stats		= ns83820_get_stats,
1888	.ndo_set_rx_mode	= ns83820_set_multicast,
1889	.ndo_validate_addr	= eth_validate_addr,
1890	.ndo_set_mac_address	= eth_mac_addr,
1891	.ndo_tx_timeout		= ns83820_tx_timeout,
1892};
1893
1894static int ns83820_init_one(struct pci_dev *pci_dev,
1895			    const struct pci_device_id *id)
1896{
1897	struct net_device *ndev;
1898	struct ns83820 *dev;
1899	long addr;
1900	int err;
1901	int using_dac = 0;
1902
1903	/* See if we can set the dma mask early on; failure is fatal. */
1904	if (sizeof(dma_addr_t) == 8 &&
1905		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1906		using_dac = 1;
1907	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1908		using_dac = 0;
1909	} else {
1910		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1911		return -ENODEV;
1912	}
1913
1914	ndev = alloc_etherdev(sizeof(struct ns83820));
1915	err = -ENOMEM;
1916	if (!ndev)
1917		goto out;
1918
1919	dev = PRIV(ndev);
1920	dev->ndev = ndev;
1921
1922	spin_lock_init(&dev->rx_info.lock);
1923	spin_lock_init(&dev->tx_lock);
1924	spin_lock_init(&dev->misc_lock);
1925	dev->pci_dev = pci_dev;
1926
1927	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1928
1929	INIT_WORK(&dev->tq_refill, queue_refill);
1930	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1931
1932	err = pci_enable_device(pci_dev);
1933	if (err) {
1934		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1935		goto out_free;
1936	}
1937
1938	pci_set_master(pci_dev);
1939	addr = pci_resource_start(pci_dev, 1);
1940	dev->base = ioremap(addr, PAGE_SIZE);
1941	dev->tx_descs = pci_alloc_consistent(pci_dev,
1942			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1943	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1944			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1945	err = -ENOMEM;
1946	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1947		goto out_disable;
1948
1949	dprintk("%p: %08lx  %p: %08lx\n",
1950		dev->tx_descs, (long)dev->tx_phy_descs,
1951		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1952
1953	ns83820_disable_interrupts(dev);
1954
1955	dev->IMR_cache = 0;
1956
1957	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1958			  DRV_NAME, ndev);
1959	if (err) {
1960		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1961			pci_dev->irq, err);
1962		goto out_disable;
1963	}
1964
1965	/*
1966	 * FIXME: we are holding rtnl_lock() over obscenely long area only
1967	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
1968	 * we should be using driver-specific names for all that stuff.
1969	 * For now that will do, but we really need to come back and kill
1970	 * most of the dev_alloc_name() users later.
1971	 */
1972	rtnl_lock();
1973	err = dev_alloc_name(ndev, ndev->name);
1974	if (err < 0) {
1975		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1976		goto out_free_irq;
1977	}
1978
1979	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1980		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1981		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1982
1983	ndev->netdev_ops = &netdev_ops;
1984	ndev->ethtool_ops = &ops;
1985	ndev->watchdog_timeo = 5 * HZ;
1986	pci_set_drvdata(pci_dev, ndev);
1987
1988	ns83820_do_reset(dev, CR_RST);
1989
1990	/* Must reset the ram bist before running it */
1991	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1992	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1993			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1994	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1995			 PTSCR_EEBIST_FAIL);
1996	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1997
1998	/* I love config registers */
1999	dev->CFG_cache = readl(dev->base + CFG);
2000
2001	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2002		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2003			ndev->name);
2004		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2005		if (!(dev->CFG_cache & CFG_DATA64_EN))
2006			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2007				ndev->name);
2008	} else
2009		dev->CFG_cache &= ~(CFG_DATA64_EN);
2010
2011	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2012			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2013			   CFG_M64ADDR);
2014	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2015			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2016	dev->CFG_cache |= CFG_REQALG;
2017	dev->CFG_cache |= CFG_POW;
2018	dev->CFG_cache |= CFG_TMRTEST;
2019
2020	/* When compiled with 64 bit addressing, we must always enable
2021	 * the 64 bit descriptor format.
2022	 */
2023	if (sizeof(dma_addr_t) == 8)
2024		dev->CFG_cache |= CFG_M64ADDR;
2025	if (using_dac)
2026		dev->CFG_cache |= CFG_T64ADDR;
2027
2028	/* Big endian mode does not seem to do what the docs suggest */
2029	dev->CFG_cache &= ~CFG_BEM;
2030
2031	/* setup optical transceiver if we have one */
2032	if (dev->CFG_cache & CFG_TBI_EN) {
2033		printk(KERN_INFO "%s: enabling optical transceiver\n",
2034			ndev->name);
2035		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2036
2037		/* setup auto negotiation feature advertisement */
2038		writel(readl(dev->base + TANAR)
2039		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2040		       dev->base + TANAR);
2041
2042		/* start auto negotiation */
2043		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2044		       dev->base + TBICR);
2045		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2046		dev->linkstate = LINK_AUTONEGOTIATE;
2047
2048		dev->CFG_cache |= CFG_MODE_1000;
2049	}
2050
2051	writel(dev->CFG_cache, dev->base + CFG);
2052	dprintk("CFG: %08x\n", dev->CFG_cache);
2053
2054	if (reset_phy) {
2055		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2056		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2057		msleep(10);
2058		writel(dev->CFG_cache, dev->base + CFG);
2059	}
2060
2061#if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2062	 * the PCI layer.  FIXME.
2063	 */
2064	if (readl(dev->base + SRR))
2065		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2066#endif
2067
2068	/* Note!  The DMA burst size interacts with packet
2069	 * transmission, such that the largest packet that
2070	 * can be transmitted is 8192 - FLTH - burst size.
2071	 * If only the transmit fifo was larger...
2072	 */
2073	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2074	 * some DELL and COMPAQ SMP systems */
2075	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2076		| ((1600 / 32) * 0x100),
2077		dev->base + TXCFG);
2078
2079	/* Flush the interrupt holdoff timer */
2080	writel(0x000, dev->base + IHR);
2081	writel(0x100, dev->base + IHR);
2082	writel(0x000, dev->base + IHR);
2083
2084	/* Set Rx to full duplex, don't accept runt, errored, long or length
2085	 * range errored packets.  Use 512 byte DMA.
2086	 */
2087	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2088	 * some DELL and COMPAQ SMP systems
2089	 * Turn on ALP, only we are accpeting Jumbo Packets */
2090	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2091		| RXCFG_STRIPCRC
2092		//| RXCFG_ALP
2093		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2094
2095	/* Disable priority queueing */
2096	writel(0, dev->base + PQCR);
2097
2098	/* Enable IP checksum validation and detetion of VLAN headers.
2099	 * Note: do not set the reject options as at least the 0x102
2100	 * revision of the chip does not properly accept IP fragments
2101	 * at least for UDP.
2102	 */
2103	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2104	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2105	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2106	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2107	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2108	 * it discrards it!.  These guys......
2109	 * also turn on tag stripping if hardware acceleration is enabled
2110	 */
2111#ifdef NS83820_VLAN_ACCEL_SUPPORT
2112#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2113#else
2114#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2115#endif
2116	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2117
2118	/* Enable per-packet TCP/UDP/IP checksumming
2119	 * and per packet vlan tag insertion if
2120	 * vlan hardware acceleration is enabled
2121	 */
2122#ifdef NS83820_VLAN_ACCEL_SUPPORT
2123#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2124#else
2125#define VTCR_INIT_VALUE VTCR_PPCHK
2126#endif
2127	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2128
2129	/* Ramit : Enable async and sync pause frames */
2130	/* writel(0, dev->base + PCR); */
2131	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2132		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2133		dev->base + PCR);
2134
2135	/* Disable Wake On Lan */
2136	writel(0, dev->base + WCSR);
2137
2138	ns83820_getmac(dev, ndev->dev_addr);
2139
2140	/* Yes, we support dumb IP checksum on transmit */
2141	ndev->features |= NETIF_F_SG;
2142	ndev->features |= NETIF_F_IP_CSUM;
2143
2144	ndev->min_mtu = 0;
2145
2146#ifdef NS83820_VLAN_ACCEL_SUPPORT
2147	/* We also support hardware vlan acceleration */
2148	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2149#endif
2150
2151	if (using_dac) {
2152		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2153			ndev->name);
2154		ndev->features |= NETIF_F_HIGHDMA;
2155	}
2156
2157	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2158		ndev->name,
2159		(unsigned)readl(dev->base + SRR) >> 8,
2160		(unsigned)readl(dev->base + SRR) & 0xff,
2161		ndev->dev_addr, addr, pci_dev->irq,
2162		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2163		);
2164
2165#ifdef PHY_CODE_IS_FINISHED
2166	ns83820_probe_phy(ndev);
2167#endif
2168
2169	err = register_netdevice(ndev);
2170	if (err) {
2171		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2172		goto out_cleanup;
2173	}
2174	rtnl_unlock();
2175
2176	return 0;
2177
2178out_cleanup:
2179	ns83820_disable_interrupts(dev); /* paranoia */
2180out_free_irq:
2181	rtnl_unlock();
2182	free_irq(pci_dev->irq, ndev);
2183out_disable:
2184	if (dev->base)
2185		iounmap(dev->base);
2186	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2187	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2188	pci_disable_device(pci_dev);
2189out_free:
2190	free_netdev(ndev);
2191out:
2192	return err;
2193}
2194
2195static void ns83820_remove_one(struct pci_dev *pci_dev)
2196{
2197	struct net_device *ndev = pci_get_drvdata(pci_dev);
2198	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2199
2200	if (!ndev)			/* paranoia */
2201		return;
2202
2203	ns83820_disable_interrupts(dev); /* paranoia */
2204
2205	unregister_netdev(ndev);
2206	free_irq(dev->pci_dev->irq, ndev);
2207	iounmap(dev->base);
2208	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2209			dev->tx_descs, dev->tx_phy_descs);
2210	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2211			dev->rx_info.descs, dev->rx_info.phy_descs);
2212	pci_disable_device(dev->pci_dev);
2213	free_netdev(ndev);
2214}
2215
2216static const struct pci_device_id ns83820_pci_tbl[] = {
2217	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2218	{ 0, },
2219};
2220
2221static struct pci_driver driver = {
2222	.name		= "ns83820",
2223	.id_table	= ns83820_pci_tbl,
2224	.probe		= ns83820_init_one,
2225	.remove		= ns83820_remove_one,
2226#if 0	/* FIXME: implement */
2227	.suspend	= ,
2228	.resume		= ,
2229#endif
2230};
2231
2232
2233static int __init ns83820_init(void)
2234{
2235	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2236	return pci_register_driver(&driver);
2237}
2238
2239static void __exit ns83820_exit(void)
2240{
2241	pci_unregister_driver(&driver);
2242}
2243
2244MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2245MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2246MODULE_LICENSE("GPL");
2247
2248MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2249
2250module_param(lnksts, int, 0);
2251MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2252
2253module_param(ihr, int, 0);
2254MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2255
2256module_param(reset_phy, int, 0);
2257MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2258
2259module_init(ns83820_init);
2260module_exit(ns83820_exit);