Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
   4 *
   5 * Helper functions for devices that use videobuf buffers for both their
   6 * source and destination.
   7 *
   8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
   9 * Pawel Osciak, <pawel@osciak.com>
  10 * Marek Szyprowski, <m.szyprowski@samsung.com>
  11 */
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/slab.h>
  15
  16#include <media/media-device.h>
  17#include <media/videobuf2-v4l2.h>
  18#include <media/v4l2-mem2mem.h>
  19#include <media/v4l2-dev.h>
  20#include <media/v4l2-device.h>
  21#include <media/v4l2-fh.h>
  22#include <media/v4l2-event.h>
  23
  24MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
  25MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
  26MODULE_LICENSE("GPL");
  27
  28static bool debug;
  29module_param(debug, bool, 0644);
  30
  31#define dprintk(fmt, arg...)						\
  32	do {								\
  33		if (debug)						\
  34			printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
  35	} while (0)
  36
  37
  38/* Instance is already queued on the job_queue */
  39#define TRANS_QUEUED		(1 << 0)
  40/* Instance is currently running in hardware */
  41#define TRANS_RUNNING		(1 << 1)
  42/* Instance is currently aborting */
  43#define TRANS_ABORT		(1 << 2)
  44
  45
  46/* Offset base for buffers on the destination queue - used to distinguish
  47 * between source and destination buffers when mmapping - they receive the same
  48 * offsets but for different queues */
  49#define DST_QUEUE_OFF_BASE	(1 << 30)
  50
  51enum v4l2_m2m_entity_type {
  52	MEM2MEM_ENT_TYPE_SOURCE,
  53	MEM2MEM_ENT_TYPE_SINK,
  54	MEM2MEM_ENT_TYPE_PROC
  55};
  56
  57static const char * const m2m_entity_name[] = {
  58	"source",
  59	"sink",
  60	"proc"
  61};
  62
  63/**
  64 * struct v4l2_m2m_dev - per-device context
  65 * @source:		&struct media_entity pointer with the source entity
  66 *			Used only when the M2M device is registered via
  67 *			v4l2_m2m_unregister_media_controller().
  68 * @source_pad:		&struct media_pad with the source pad.
  69 *			Used only when the M2M device is registered via
  70 *			v4l2_m2m_unregister_media_controller().
  71 * @sink:		&struct media_entity pointer with the sink entity
  72 *			Used only when the M2M device is registered via
  73 *			v4l2_m2m_unregister_media_controller().
  74 * @sink_pad:		&struct media_pad with the sink pad.
  75 *			Used only when the M2M device is registered via
  76 *			v4l2_m2m_unregister_media_controller().
  77 * @proc:		&struct media_entity pointer with the M2M device itself.
  78 * @proc_pads:		&struct media_pad with the @proc pads.
  79 *			Used only when the M2M device is registered via
  80 *			v4l2_m2m_unregister_media_controller().
  81 * @intf_devnode:	&struct media_intf devnode pointer with the interface
  82 *			with controls the M2M device.
  83 * @curr_ctx:		currently running instance
  84 * @job_queue:		instances queued to run
  85 * @job_spinlock:	protects job_queue
  86 * @job_work:		worker to run queued jobs.
  87 * @m2m_ops:		driver callbacks
  88 */
  89struct v4l2_m2m_dev {
  90	struct v4l2_m2m_ctx	*curr_ctx;
  91#ifdef CONFIG_MEDIA_CONTROLLER
  92	struct media_entity	*source;
  93	struct media_pad	source_pad;
  94	struct media_entity	sink;
  95	struct media_pad	sink_pad;
  96	struct media_entity	proc;
  97	struct media_pad	proc_pads[2];
  98	struct media_intf_devnode *intf_devnode;
  99#endif
 100
 101	struct list_head	job_queue;
 102	spinlock_t		job_spinlock;
 103	struct work_struct	job_work;
 104
 105	const struct v4l2_m2m_ops *m2m_ops;
 106};
 107
 108static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
 109						enum v4l2_buf_type type)
 110{
 111	if (V4L2_TYPE_IS_OUTPUT(type))
 112		return &m2m_ctx->out_q_ctx;
 113	else
 114		return &m2m_ctx->cap_q_ctx;
 115}
 116
 117struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
 118				       enum v4l2_buf_type type)
 119{
 120	struct v4l2_m2m_queue_ctx *q_ctx;
 121
 122	q_ctx = get_queue_ctx(m2m_ctx, type);
 123	if (!q_ctx)
 124		return NULL;
 125
 126	return &q_ctx->q;
 127}
 128EXPORT_SYMBOL(v4l2_m2m_get_vq);
 129
 130struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
 131{
 132	struct v4l2_m2m_buffer *b;
 133	unsigned long flags;
 134
 135	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 136
 137	if (list_empty(&q_ctx->rdy_queue)) {
 138		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 139		return NULL;
 140	}
 141
 142	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
 143	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 144	return &b->vb;
 145}
 146EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
 147
 148struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
 149{
 150	struct v4l2_m2m_buffer *b;
 151	unsigned long flags;
 152
 153	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 154
 155	if (list_empty(&q_ctx->rdy_queue)) {
 156		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 157		return NULL;
 158	}
 159
 160	b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
 161	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 162	return &b->vb;
 163}
 164EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
 165
 166struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
 167{
 168	struct v4l2_m2m_buffer *b;
 169	unsigned long flags;
 170
 171	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 172	if (list_empty(&q_ctx->rdy_queue)) {
 173		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 174		return NULL;
 175	}
 176	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
 177	list_del(&b->list);
 178	q_ctx->num_rdy--;
 179	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 180
 181	return &b->vb;
 182}
 183EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
 184
 185void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
 186				struct vb2_v4l2_buffer *vbuf)
 187{
 188	struct v4l2_m2m_buffer *b;
 189	unsigned long flags;
 190
 191	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 192	b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
 193	list_del(&b->list);
 194	q_ctx->num_rdy--;
 195	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 196}
 197EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
 198
 199struct vb2_v4l2_buffer *
 200v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
 201
 202{
 203	struct v4l2_m2m_buffer *b, *tmp;
 204	struct vb2_v4l2_buffer *ret = NULL;
 205	unsigned long flags;
 206
 207	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 208	list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
 209		if (b->vb.vb2_buf.index == idx) {
 210			list_del(&b->list);
 211			q_ctx->num_rdy--;
 212			ret = &b->vb;
 213			break;
 214		}
 215	}
 216	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 217
 218	return ret;
 219}
 220EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
 221
 222/*
 223 * Scheduling handlers
 224 */
 225
 226void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
 227{
 228	unsigned long flags;
 229	void *ret = NULL;
 230
 231	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
 232	if (m2m_dev->curr_ctx)
 233		ret = m2m_dev->curr_ctx->priv;
 234	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 235
 236	return ret;
 237}
 238EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
 239
 240/**
 241 * v4l2_m2m_try_run() - select next job to perform and run it if possible
 242 * @m2m_dev: per-device context
 243 *
 244 * Get next transaction (if present) from the waiting jobs list and run it.
 245 *
 246 * Note that this function can run on a given v4l2_m2m_ctx context,
 247 * but call .device_run for another context.
 248 */
 249static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
 250{
 251	unsigned long flags;
 252
 253	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
 254	if (NULL != m2m_dev->curr_ctx) {
 255		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 256		dprintk("Another instance is running, won't run now\n");
 257		return;
 258	}
 259
 260	if (list_empty(&m2m_dev->job_queue)) {
 261		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 262		dprintk("No job pending\n");
 263		return;
 264	}
 265
 266	m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
 267				   struct v4l2_m2m_ctx, queue);
 268	m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
 269	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 270
 271	dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
 272	m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
 273}
 274
 275/*
 276 * __v4l2_m2m_try_queue() - queue a job
 277 * @m2m_dev: m2m device
 278 * @m2m_ctx: m2m context
 279 *
 280 * Check if this context is ready to queue a job.
 281 *
 282 * This function can run in interrupt context.
 283 */
 284static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
 285				 struct v4l2_m2m_ctx *m2m_ctx)
 286{
 287	unsigned long flags_job;
 288	struct vb2_v4l2_buffer *dst, *src;
 289
 290	dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
 291
 292	if (!m2m_ctx->out_q_ctx.q.streaming
 293	    || !m2m_ctx->cap_q_ctx.q.streaming) {
 294		dprintk("Streaming needs to be on for both queues\n");
 295		return;
 296	}
 297
 298	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
 299
 300	/* If the context is aborted then don't schedule it */
 301	if (m2m_ctx->job_flags & TRANS_ABORT) {
 302		dprintk("Aborted context\n");
 303		goto job_unlock;
 304	}
 305
 306	if (m2m_ctx->job_flags & TRANS_QUEUED) {
 307		dprintk("On job queue already\n");
 308		goto job_unlock;
 309	}
 310
 311	src = v4l2_m2m_next_src_buf(m2m_ctx);
 312	dst = v4l2_m2m_next_dst_buf(m2m_ctx);
 313	if (!src && !m2m_ctx->out_q_ctx.buffered) {
 314		dprintk("No input buffers available\n");
 315		goto job_unlock;
 316	}
 317	if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
 318		dprintk("No output buffers available\n");
 319		goto job_unlock;
 320	}
 321
 322	m2m_ctx->new_frame = true;
 323
 324	if (src && dst && dst->is_held &&
 325	    dst->vb2_buf.copied_timestamp &&
 326	    dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
 327		dst->is_held = false;
 328		v4l2_m2m_dst_buf_remove(m2m_ctx);
 329		v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
 330		dst = v4l2_m2m_next_dst_buf(m2m_ctx);
 331
 332		if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
 333			dprintk("No output buffers available after returning held buffer\n");
 334			goto job_unlock;
 335		}
 336	}
 337
 338	if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
 339			   VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
 340		m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
 341			dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
 342
 343	if (m2m_ctx->has_stopped) {
 344		dprintk("Device has stopped\n");
 345		goto job_unlock;
 346	}
 347
 348	if (m2m_dev->m2m_ops->job_ready
 349		&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
 350		dprintk("Driver not ready\n");
 351		goto job_unlock;
 352	}
 353
 354	list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
 355	m2m_ctx->job_flags |= TRANS_QUEUED;
 356
 357job_unlock:
 358	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
 359}
 360
 361/**
 362 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
 363 * @m2m_ctx: m2m context
 364 *
 365 * Check if this context is ready to queue a job. If suitable,
 366 * run the next queued job on the mem2mem device.
 367 *
 368 * This function shouldn't run in interrupt context.
 369 *
 370 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
 371 * and then run another job for another context.
 372 */
 373void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
 374{
 375	struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
 376
 377	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
 378	v4l2_m2m_try_run(m2m_dev);
 379}
 380EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
 381
 382/**
 383 * v4l2_m2m_device_run_work() - run pending jobs for the context
 384 * @work: Work structure used for scheduling the execution of this function.
 385 */
 386static void v4l2_m2m_device_run_work(struct work_struct *work)
 387{
 388	struct v4l2_m2m_dev *m2m_dev =
 389		container_of(work, struct v4l2_m2m_dev, job_work);
 390
 391	v4l2_m2m_try_run(m2m_dev);
 392}
 393
 394/**
 395 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
 396 * @m2m_ctx: m2m context with jobs to be canceled
 397 *
 398 * In case of streamoff or release called on any context,
 399 * 1] If the context is currently running, then abort job will be called
 400 * 2] If the context is queued, then the context will be removed from
 401 *    the job_queue
 402 */
 403static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
 404{
 405	struct v4l2_m2m_dev *m2m_dev;
 406	unsigned long flags;
 407
 408	m2m_dev = m2m_ctx->m2m_dev;
 409	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
 410
 411	m2m_ctx->job_flags |= TRANS_ABORT;
 412	if (m2m_ctx->job_flags & TRANS_RUNNING) {
 413		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 414		if (m2m_dev->m2m_ops->job_abort)
 415			m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
 416		dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
 417		wait_event(m2m_ctx->finished,
 418				!(m2m_ctx->job_flags & TRANS_RUNNING));
 419	} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
 420		list_del(&m2m_ctx->queue);
 421		m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
 422		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 423		dprintk("m2m_ctx: %p had been on queue and was removed\n",
 424			m2m_ctx);
 425	} else {
 426		/* Do nothing, was not on queue/running */
 427		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 428	}
 429}
 430
 431/*
 432 * Schedule the next job, called from v4l2_m2m_job_finish() or
 433 * v4l2_m2m_buf_done_and_job_finish().
 434 */
 435static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
 436				       struct v4l2_m2m_ctx *m2m_ctx)
 437{
 438	/*
 439	 * This instance might have more buffers ready, but since we do not
 440	 * allow more than one job on the job_queue per instance, each has
 441	 * to be scheduled separately after the previous one finishes.
 442	 */
 443	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
 444
 445	/*
 446	 * We might be running in atomic context,
 447	 * but the job must be run in non-atomic context.
 448	 */
 449	schedule_work(&m2m_dev->job_work);
 450}
 451
 452/*
 453 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
 454 * v4l2_m2m_buf_done_and_job_finish().
 455 */
 456static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
 457				 struct v4l2_m2m_ctx *m2m_ctx)
 458{
 459	if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
 460		dprintk("Called by an instance not currently running\n");
 461		return false;
 462	}
 463
 464	list_del(&m2m_dev->curr_ctx->queue);
 465	m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
 466	wake_up(&m2m_dev->curr_ctx->finished);
 467	m2m_dev->curr_ctx = NULL;
 468	return true;
 469}
 470
 471void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
 472			 struct v4l2_m2m_ctx *m2m_ctx)
 473{
 474	unsigned long flags;
 475	bool schedule_next;
 476
 477	/*
 478	 * This function should not be used for drivers that support
 479	 * holding capture buffers. Those should use
 480	 * v4l2_m2m_buf_done_and_job_finish() instead.
 481	 */
 482	WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
 483		VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
 484	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
 485	schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
 486	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 487
 488	if (schedule_next)
 489		v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
 490}
 491EXPORT_SYMBOL(v4l2_m2m_job_finish);
 492
 493void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
 494				      struct v4l2_m2m_ctx *m2m_ctx,
 495				      enum vb2_buffer_state state)
 496{
 497	struct vb2_v4l2_buffer *src_buf, *dst_buf;
 498	bool schedule_next = false;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
 502	src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
 503	dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
 504
 505	if (WARN_ON(!src_buf || !dst_buf))
 506		goto unlock;
 507	dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
 508	if (!dst_buf->is_held) {
 509		v4l2_m2m_dst_buf_remove(m2m_ctx);
 510		v4l2_m2m_buf_done(dst_buf, state);
 511	}
 512	/*
 513	 * If the request API is being used, returning the OUTPUT
 514	 * (src) buffer will wake-up any process waiting on the
 515	 * request file descriptor.
 516	 *
 517	 * Therefore, return the CAPTURE (dst) buffer first,
 518	 * to avoid signalling the request file descriptor
 519	 * before the CAPTURE buffer is done.
 520	 */
 521	v4l2_m2m_buf_done(src_buf, state);
 522	schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
 523unlock:
 524	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
 525
 526	if (schedule_next)
 527		v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
 528}
 529EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
 530
 531int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 532		     struct v4l2_requestbuffers *reqbufs)
 533{
 534	struct vb2_queue *vq;
 535	int ret;
 536
 537	vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
 538	ret = vb2_reqbufs(vq, reqbufs);
 539	/* If count == 0, then the owner has released all buffers and he
 540	   is no longer owner of the queue. Otherwise we have an owner. */
 541	if (ret == 0)
 542		vq->owner = reqbufs->count ? file->private_data : NULL;
 543
 544	return ret;
 545}
 546EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
 547
 548int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 549		      struct v4l2_buffer *buf)
 550{
 551	struct vb2_queue *vq;
 552	int ret = 0;
 553	unsigned int i;
 554
 555	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
 556	ret = vb2_querybuf(vq, buf);
 557
 558	/* Adjust MMAP memory offsets for the CAPTURE queue */
 559	if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
 560		if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
 561			for (i = 0; i < buf->length; ++i)
 562				buf->m.planes[i].m.mem_offset
 563					+= DST_QUEUE_OFF_BASE;
 564		} else {
 565			buf->m.offset += DST_QUEUE_OFF_BASE;
 566		}
 567	}
 568
 569	return ret;
 570}
 571EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
 572
 573/*
 574 * This will add the LAST flag and mark the buffer management
 575 * state as stopped.
 576 * This is called when the last capture buffer must be flagged as LAST
 577 * in draining mode from the encoder/decoder driver buf_queue() callback
 578 * or from v4l2_update_last_buf_state() when a capture buffer is available.
 579 */
 580void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
 581			       struct vb2_v4l2_buffer *vbuf)
 582{
 583	vbuf->flags |= V4L2_BUF_FLAG_LAST;
 584	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
 585
 586	v4l2_m2m_mark_stopped(m2m_ctx);
 587}
 588EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
 589
 590/* When stop command is issued, update buffer management state */
 591static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
 592{
 593	struct vb2_v4l2_buffer *next_dst_buf;
 594
 595	if (m2m_ctx->is_draining)
 596		return -EBUSY;
 597
 598	if (m2m_ctx->has_stopped)
 599		return 0;
 600
 601	m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
 602	m2m_ctx->is_draining = true;
 603
 604	/*
 605	 * The processing of the last output buffer queued before
 606	 * the STOP command is expected to mark the buffer management
 607	 * state as stopped with v4l2_m2m_mark_stopped().
 608	 */
 609	if (m2m_ctx->last_src_buf)
 610		return 0;
 611
 612	/*
 613	 * In case the output queue is empty, try to mark the last capture
 614	 * buffer as LAST.
 615	 */
 616	next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
 617	if (!next_dst_buf) {
 618		/*
 619		 * Wait for the next queued one in encoder/decoder driver
 620		 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
 621		 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
 622		 * streaming.
 623		 */
 624		m2m_ctx->next_buf_last = true;
 625		return 0;
 626	}
 627
 628	v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
 629
 630	return 0;
 631}
 632
 633/*
 634 * Updates the encoding/decoding buffer management state, should
 635 * be called from encoder/decoder drivers start_streaming()
 636 */
 637void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
 638					   struct vb2_queue *q)
 639{
 640	/* If start streaming again, untag the last output buffer */
 641	if (V4L2_TYPE_IS_OUTPUT(q->type))
 642		m2m_ctx->last_src_buf = NULL;
 643}
 644EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
 645
 646/*
 647 * Updates the encoding/decoding buffer management state, should
 648 * be called from encoder/decoder driver stop_streaming()
 649 */
 650void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
 651					  struct vb2_queue *q)
 652{
 653	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
 654		/*
 655		 * If in draining state, either mark next dst buffer as
 656		 * done or flag next one to be marked as done either
 657		 * in encoder/decoder driver buf_queue() callback using
 658		 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
 659		 * if encoder/decoder is not yet streaming
 660		 */
 661		if (m2m_ctx->is_draining) {
 662			struct vb2_v4l2_buffer *next_dst_buf;
 663
 664			m2m_ctx->last_src_buf = NULL;
 665			next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
 666			if (!next_dst_buf)
 667				m2m_ctx->next_buf_last = true;
 668			else
 669				v4l2_m2m_last_buffer_done(m2m_ctx,
 670							  next_dst_buf);
 671		}
 672	} else {
 673		v4l2_m2m_clear_state(m2m_ctx);
 674	}
 675}
 676EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
 677
 678static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
 679					 struct vb2_queue *q)
 680{
 681	struct vb2_buffer *vb;
 682	struct vb2_v4l2_buffer *vbuf;
 683	unsigned int i;
 684
 685	if (WARN_ON(q->is_output))
 686		return;
 687	if (list_empty(&q->queued_list))
 688		return;
 689
 690	vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
 691	for (i = 0; i < vb->num_planes; i++)
 692		vb2_set_plane_payload(vb, i, 0);
 693
 694	/*
 695	 * Since the buffer hasn't been queued to the ready queue,
 696	 * mark is active and owned before marking it LAST and DONE
 697	 */
 698	vb->state = VB2_BUF_STATE_ACTIVE;
 699	atomic_inc(&q->owned_by_drv_count);
 700
 701	vbuf = to_vb2_v4l2_buffer(vb);
 702	vbuf->field = V4L2_FIELD_NONE;
 703
 704	v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
 705}
 706
 707int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 708		  struct v4l2_buffer *buf)
 709{
 710	struct video_device *vdev = video_devdata(file);
 711	struct vb2_queue *vq;
 712	int ret;
 713
 714	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
 715	if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
 716	    (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
 717		dprintk("%s: requests cannot be used with capture buffers\n",
 718			__func__);
 719		return -EPERM;
 720	}
 721
 722	ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
 723	if (ret)
 724		return ret;
 725
 726	/*
 727	 * If the capture queue is streaming, but streaming hasn't started
 728	 * on the device, but was asked to stop, mark the previously queued
 729	 * buffer as DONE with LAST flag since it won't be queued on the
 730	 * device.
 731	 */
 732	if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
 733	    vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
 734	   (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
 735		v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
 736	else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
 737		v4l2_m2m_try_schedule(m2m_ctx);
 738
 739	return 0;
 740}
 741EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
 742
 743int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 744		   struct v4l2_buffer *buf)
 745{
 746	struct vb2_queue *vq;
 747
 748	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
 749	return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
 750}
 751EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
 752
 753int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 754			 struct v4l2_buffer *buf)
 755{
 756	struct video_device *vdev = video_devdata(file);
 757	struct vb2_queue *vq;
 758
 759	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
 760	return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
 761}
 762EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
 763
 764int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 765			 struct v4l2_create_buffers *create)
 766{
 767	struct vb2_queue *vq;
 768
 769	vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
 770	return vb2_create_bufs(vq, create);
 771}
 772EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
 773
 774int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 775		  struct v4l2_exportbuffer *eb)
 776{
 777	struct vb2_queue *vq;
 778
 779	vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
 780	return vb2_expbuf(vq, eb);
 781}
 782EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
 783
 784int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 785		      enum v4l2_buf_type type)
 786{
 787	struct vb2_queue *vq;
 788	int ret;
 789
 790	vq = v4l2_m2m_get_vq(m2m_ctx, type);
 791	ret = vb2_streamon(vq, type);
 792	if (!ret)
 793		v4l2_m2m_try_schedule(m2m_ctx);
 794
 795	return ret;
 796}
 797EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
 798
 799int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 800		       enum v4l2_buf_type type)
 801{
 802	struct v4l2_m2m_dev *m2m_dev;
 803	struct v4l2_m2m_queue_ctx *q_ctx;
 804	unsigned long flags_job, flags;
 805	int ret;
 806
 807	/* wait until the current context is dequeued from job_queue */
 808	v4l2_m2m_cancel_job(m2m_ctx);
 809
 810	q_ctx = get_queue_ctx(m2m_ctx, type);
 811	ret = vb2_streamoff(&q_ctx->q, type);
 812	if (ret)
 813		return ret;
 814
 815	m2m_dev = m2m_ctx->m2m_dev;
 816	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
 817	/* We should not be scheduled anymore, since we're dropping a queue. */
 818	if (m2m_ctx->job_flags & TRANS_QUEUED)
 819		list_del(&m2m_ctx->queue);
 820	m2m_ctx->job_flags = 0;
 821
 822	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
 823	/* Drop queue, since streamoff returns device to the same state as after
 824	 * calling reqbufs. */
 825	INIT_LIST_HEAD(&q_ctx->rdy_queue);
 826	q_ctx->num_rdy = 0;
 827	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
 828
 829	if (m2m_dev->curr_ctx == m2m_ctx) {
 830		m2m_dev->curr_ctx = NULL;
 831		wake_up(&m2m_ctx->finished);
 832	}
 833	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
 834
 835	return 0;
 836}
 837EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
 838
 839static __poll_t v4l2_m2m_poll_for_data(struct file *file,
 840				       struct v4l2_m2m_ctx *m2m_ctx,
 841				       struct poll_table_struct *wait)
 842{
 843	struct vb2_queue *src_q, *dst_q;
 844	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
 845	__poll_t rc = 0;
 846	unsigned long flags;
 847
 848	src_q = v4l2_m2m_get_src_vq(m2m_ctx);
 849	dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
 850
 851	poll_wait(file, &src_q->done_wq, wait);
 852	poll_wait(file, &dst_q->done_wq, wait);
 853
 854	/*
 855	 * There has to be at least one buffer queued on each queued_list, which
 856	 * means either in driver already or waiting for driver to claim it
 857	 * and start processing.
 858	 */
 859	if ((!src_q->streaming || src_q->error ||
 860	     list_empty(&src_q->queued_list)) &&
 861	    (!dst_q->streaming || dst_q->error ||
 862	     list_empty(&dst_q->queued_list)))
 863		return EPOLLERR;
 864
 865	spin_lock_irqsave(&dst_q->done_lock, flags);
 866	if (list_empty(&dst_q->done_list)) {
 867		/*
 868		 * If the last buffer was dequeued from the capture queue,
 869		 * return immediately. DQBUF will return -EPIPE.
 870		 */
 871		if (dst_q->last_buffer_dequeued) {
 872			spin_unlock_irqrestore(&dst_q->done_lock, flags);
 873			return EPOLLIN | EPOLLRDNORM;
 874		}
 875	}
 876	spin_unlock_irqrestore(&dst_q->done_lock, flags);
 877
 878	spin_lock_irqsave(&src_q->done_lock, flags);
 879	if (!list_empty(&src_q->done_list))
 880		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
 881						done_entry);
 882	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
 883			|| src_vb->state == VB2_BUF_STATE_ERROR))
 884		rc |= EPOLLOUT | EPOLLWRNORM;
 885	spin_unlock_irqrestore(&src_q->done_lock, flags);
 886
 887	spin_lock_irqsave(&dst_q->done_lock, flags);
 888	if (!list_empty(&dst_q->done_list))
 889		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
 890						done_entry);
 891	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
 892			|| dst_vb->state == VB2_BUF_STATE_ERROR))
 893		rc |= EPOLLIN | EPOLLRDNORM;
 894	spin_unlock_irqrestore(&dst_q->done_lock, flags);
 895
 896	return rc;
 897}
 898
 899__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 900		       struct poll_table_struct *wait)
 901{
 902	struct video_device *vfd = video_devdata(file);
 903	__poll_t req_events = poll_requested_events(wait);
 904	__poll_t rc = 0;
 905
 906	if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
 907		rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
 908
 909	if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
 910		struct v4l2_fh *fh = file->private_data;
 911
 912		poll_wait(file, &fh->wait, wait);
 913		if (v4l2_event_pending(fh))
 914			rc |= EPOLLPRI;
 915	}
 916
 917	return rc;
 918}
 919EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
 920
 921int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
 922			 struct vm_area_struct *vma)
 923{
 924	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
 925	struct vb2_queue *vq;
 926
 927	if (offset < DST_QUEUE_OFF_BASE) {
 928		vq = v4l2_m2m_get_src_vq(m2m_ctx);
 929	} else {
 930		vq = v4l2_m2m_get_dst_vq(m2m_ctx);
 931		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
 932	}
 933
 934	return vb2_mmap(vq, vma);
 935}
 936EXPORT_SYMBOL(v4l2_m2m_mmap);
 937
 938#if defined(CONFIG_MEDIA_CONTROLLER)
 939void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
 940{
 941	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
 942	media_devnode_remove(m2m_dev->intf_devnode);
 943
 944	media_entity_remove_links(m2m_dev->source);
 945	media_entity_remove_links(&m2m_dev->sink);
 946	media_entity_remove_links(&m2m_dev->proc);
 947	media_device_unregister_entity(m2m_dev->source);
 948	media_device_unregister_entity(&m2m_dev->sink);
 949	media_device_unregister_entity(&m2m_dev->proc);
 950	kfree(m2m_dev->source->name);
 951	kfree(m2m_dev->sink.name);
 952	kfree(m2m_dev->proc.name);
 953}
 954EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
 955
 956static int v4l2_m2m_register_entity(struct media_device *mdev,
 957	struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
 958	struct video_device *vdev, int function)
 959{
 960	struct media_entity *entity;
 961	struct media_pad *pads;
 962	char *name;
 963	unsigned int len;
 964	int num_pads;
 965	int ret;
 966
 967	switch (type) {
 968	case MEM2MEM_ENT_TYPE_SOURCE:
 969		entity = m2m_dev->source;
 970		pads = &m2m_dev->source_pad;
 971		pads[0].flags = MEDIA_PAD_FL_SOURCE;
 972		num_pads = 1;
 973		break;
 974	case MEM2MEM_ENT_TYPE_SINK:
 975		entity = &m2m_dev->sink;
 976		pads = &m2m_dev->sink_pad;
 977		pads[0].flags = MEDIA_PAD_FL_SINK;
 978		num_pads = 1;
 979		break;
 980	case MEM2MEM_ENT_TYPE_PROC:
 981		entity = &m2m_dev->proc;
 982		pads = m2m_dev->proc_pads;
 983		pads[0].flags = MEDIA_PAD_FL_SINK;
 984		pads[1].flags = MEDIA_PAD_FL_SOURCE;
 985		num_pads = 2;
 986		break;
 987	default:
 988		return -EINVAL;
 989	}
 990
 991	entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
 992	if (type != MEM2MEM_ENT_TYPE_PROC) {
 993		entity->info.dev.major = VIDEO_MAJOR;
 994		entity->info.dev.minor = vdev->minor;
 995	}
 996	len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
 997	name = kmalloc(len, GFP_KERNEL);
 998	if (!name)
 999		return -ENOMEM;
1000	snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1001	entity->name = name;
1002	entity->function = function;
1003
1004	ret = media_entity_pads_init(entity, num_pads, pads);
1005	if (ret)
1006		return ret;
1007	ret = media_device_register_entity(mdev, entity);
1008	if (ret)
1009		return ret;
1010
1011	return 0;
1012}
1013
1014int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1015		struct video_device *vdev, int function)
1016{
1017	struct media_device *mdev = vdev->v4l2_dev->mdev;
1018	struct media_link *link;
1019	int ret;
1020
1021	if (!mdev)
1022		return 0;
1023
1024	/* A memory-to-memory device consists in two
1025	 * DMA engine and one video processing entities.
1026	 * The DMA engine entities are linked to a V4L interface
1027	 */
1028
1029	/* Create the three entities with their pads */
1030	m2m_dev->source = &vdev->entity;
1031	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1032			MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1033	if (ret)
1034		return ret;
1035	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1036			MEM2MEM_ENT_TYPE_PROC, vdev, function);
1037	if (ret)
1038		goto err_rel_entity0;
1039	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1040			MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1041	if (ret)
1042		goto err_rel_entity1;
1043
1044	/* Connect the three entities */
1045	ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1046			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1047	if (ret)
1048		goto err_rel_entity2;
1049
1050	ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1051			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1052	if (ret)
1053		goto err_rm_links0;
1054
1055	/* Create video interface */
1056	m2m_dev->intf_devnode = media_devnode_create(mdev,
1057			MEDIA_INTF_T_V4L_VIDEO, 0,
1058			VIDEO_MAJOR, vdev->minor);
1059	if (!m2m_dev->intf_devnode) {
1060		ret = -ENOMEM;
1061		goto err_rm_links1;
1062	}
1063
1064	/* Connect the two DMA engines to the interface */
1065	link = media_create_intf_link(m2m_dev->source,
1066			&m2m_dev->intf_devnode->intf,
1067			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1068	if (!link) {
1069		ret = -ENOMEM;
1070		goto err_rm_devnode;
1071	}
1072
1073	link = media_create_intf_link(&m2m_dev->sink,
1074			&m2m_dev->intf_devnode->intf,
1075			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1076	if (!link) {
1077		ret = -ENOMEM;
1078		goto err_rm_intf_link;
1079	}
1080	return 0;
1081
1082err_rm_intf_link:
1083	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1084err_rm_devnode:
1085	media_devnode_remove(m2m_dev->intf_devnode);
1086err_rm_links1:
1087	media_entity_remove_links(&m2m_dev->sink);
1088err_rm_links0:
1089	media_entity_remove_links(&m2m_dev->proc);
1090	media_entity_remove_links(m2m_dev->source);
1091err_rel_entity2:
1092	media_device_unregister_entity(&m2m_dev->proc);
1093	kfree(m2m_dev->proc.name);
1094err_rel_entity1:
1095	media_device_unregister_entity(&m2m_dev->sink);
1096	kfree(m2m_dev->sink.name);
1097err_rel_entity0:
1098	media_device_unregister_entity(m2m_dev->source);
1099	kfree(m2m_dev->source->name);
1100	return ret;
1101	return 0;
1102}
1103EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1104#endif
1105
1106struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1107{
1108	struct v4l2_m2m_dev *m2m_dev;
1109
1110	if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1111		return ERR_PTR(-EINVAL);
1112
1113	m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1114	if (!m2m_dev)
1115		return ERR_PTR(-ENOMEM);
1116
1117	m2m_dev->curr_ctx = NULL;
1118	m2m_dev->m2m_ops = m2m_ops;
1119	INIT_LIST_HEAD(&m2m_dev->job_queue);
1120	spin_lock_init(&m2m_dev->job_spinlock);
1121	INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1122
1123	return m2m_dev;
1124}
1125EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1126
1127void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1128{
1129	kfree(m2m_dev);
1130}
1131EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1132
1133struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1134		void *drv_priv,
1135		int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1136{
1137	struct v4l2_m2m_ctx *m2m_ctx;
1138	struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1139	int ret;
1140
1141	m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1142	if (!m2m_ctx)
1143		return ERR_PTR(-ENOMEM);
1144
1145	m2m_ctx->priv = drv_priv;
1146	m2m_ctx->m2m_dev = m2m_dev;
1147	init_waitqueue_head(&m2m_ctx->finished);
1148
1149	out_q_ctx = &m2m_ctx->out_q_ctx;
1150	cap_q_ctx = &m2m_ctx->cap_q_ctx;
1151
1152	INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1153	INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1154	spin_lock_init(&out_q_ctx->rdy_spinlock);
1155	spin_lock_init(&cap_q_ctx->rdy_spinlock);
1156
1157	INIT_LIST_HEAD(&m2m_ctx->queue);
1158
1159	ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1160
1161	if (ret)
1162		goto err;
1163	/*
1164	 * Both queues should use same the mutex to lock the m2m context.
1165	 * This lock is used in some v4l2_m2m_* helpers.
1166	 */
1167	if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1168		ret = -EINVAL;
1169		goto err;
1170	}
1171	m2m_ctx->q_lock = out_q_ctx->q.lock;
1172
1173	return m2m_ctx;
1174err:
1175	kfree(m2m_ctx);
1176	return ERR_PTR(ret);
1177}
1178EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1179
1180void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1181{
1182	/* wait until the current context is dequeued from job_queue */
1183	v4l2_m2m_cancel_job(m2m_ctx);
1184
1185	vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1186	vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1187
1188	kfree(m2m_ctx);
1189}
1190EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1191
1192void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1193		struct vb2_v4l2_buffer *vbuf)
1194{
1195	struct v4l2_m2m_buffer *b = container_of(vbuf,
1196				struct v4l2_m2m_buffer, vb);
1197	struct v4l2_m2m_queue_ctx *q_ctx;
1198	unsigned long flags;
1199
1200	q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1201	if (!q_ctx)
1202		return;
1203
1204	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1205	list_add_tail(&b->list, &q_ctx->rdy_queue);
1206	q_ctx->num_rdy++;
1207	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1208}
1209EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1210
1211void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1212				struct vb2_v4l2_buffer *cap_vb,
1213				bool copy_frame_flags)
1214{
1215	u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1216
1217	if (copy_frame_flags)
1218		mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1219			V4L2_BUF_FLAG_BFRAME;
1220
1221	cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1222
1223	if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1224		cap_vb->timecode = out_vb->timecode;
1225	cap_vb->field = out_vb->field;
1226	cap_vb->flags &= ~mask;
1227	cap_vb->flags |= out_vb->flags & mask;
1228	cap_vb->vb2_buf.copied_timestamp = 1;
1229}
1230EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1231
1232void v4l2_m2m_request_queue(struct media_request *req)
1233{
1234	struct media_request_object *obj, *obj_safe;
1235	struct v4l2_m2m_ctx *m2m_ctx = NULL;
1236
1237	/*
1238	 * Queue all objects. Note that buffer objects are at the end of the
1239	 * objects list, after all other object types. Once buffer objects
1240	 * are queued, the driver might delete them immediately (if the driver
1241	 * processes the buffer at once), so we have to use
1242	 * list_for_each_entry_safe() to handle the case where the object we
1243	 * queue is deleted.
1244	 */
1245	list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1246		struct v4l2_m2m_ctx *m2m_ctx_obj;
1247		struct vb2_buffer *vb;
1248
1249		if (!obj->ops->queue)
1250			continue;
1251
1252		if (vb2_request_object_is_buffer(obj)) {
1253			/* Sanity checks */
1254			vb = container_of(obj, struct vb2_buffer, req_obj);
1255			WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1256			m2m_ctx_obj = container_of(vb->vb2_queue,
1257						   struct v4l2_m2m_ctx,
1258						   out_q_ctx.q);
1259			WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1260			m2m_ctx = m2m_ctx_obj;
1261		}
1262
1263		/*
1264		 * The buffer we queue here can in theory be immediately
1265		 * unbound, hence the use of list_for_each_entry_safe()
1266		 * above and why we call the queue op last.
1267		 */
1268		obj->ops->queue(obj);
1269	}
1270
1271	WARN_ON(!m2m_ctx);
1272
1273	if (m2m_ctx)
1274		v4l2_m2m_try_schedule(m2m_ctx);
1275}
1276EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1277
1278/* Videobuf2 ioctl helpers */
1279
1280int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1281				struct v4l2_requestbuffers *rb)
1282{
1283	struct v4l2_fh *fh = file->private_data;
1284
1285	return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1286}
1287EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1288
1289int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1290				struct v4l2_create_buffers *create)
1291{
1292	struct v4l2_fh *fh = file->private_data;
1293
1294	return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1295}
1296EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1297
1298int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1299				struct v4l2_buffer *buf)
1300{
1301	struct v4l2_fh *fh = file->private_data;
1302
1303	return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1304}
1305EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1306
1307int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1308				struct v4l2_buffer *buf)
1309{
1310	struct v4l2_fh *fh = file->private_data;
1311
1312	return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1313}
1314EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1315
1316int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1317				struct v4l2_buffer *buf)
1318{
1319	struct v4l2_fh *fh = file->private_data;
1320
1321	return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1322}
1323EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1324
1325int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1326			       struct v4l2_buffer *buf)
1327{
1328	struct v4l2_fh *fh = file->private_data;
1329
1330	return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1331}
1332EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1333
1334int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1335				struct v4l2_exportbuffer *eb)
1336{
1337	struct v4l2_fh *fh = file->private_data;
1338
1339	return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1340}
1341EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1342
1343int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1344				enum v4l2_buf_type type)
1345{
1346	struct v4l2_fh *fh = file->private_data;
1347
1348	return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1349}
1350EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1351
1352int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1353				enum v4l2_buf_type type)
1354{
1355	struct v4l2_fh *fh = file->private_data;
1356
1357	return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1358}
1359EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1360
1361int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1362				   struct v4l2_encoder_cmd *ec)
1363{
1364	if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1365		return -EINVAL;
1366
1367	ec->flags = 0;
1368	return 0;
1369}
1370EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1371
1372int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1373				   struct v4l2_decoder_cmd *dc)
1374{
1375	if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1376		return -EINVAL;
1377
1378	dc->flags = 0;
1379
1380	if (dc->cmd == V4L2_DEC_CMD_STOP) {
1381		dc->stop.pts = 0;
1382	} else if (dc->cmd == V4L2_DEC_CMD_START) {
1383		dc->start.speed = 0;
1384		dc->start.format = V4L2_DEC_START_FMT_NONE;
1385	}
1386	return 0;
1387}
1388EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1389
1390/*
1391 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1392 * Should be called from the encoder driver encoder_cmd() callback
1393 */
1394int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1395			 struct v4l2_encoder_cmd *ec)
1396{
1397	if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1398		return -EINVAL;
1399
1400	if (ec->cmd == V4L2_ENC_CMD_STOP)
1401		return v4l2_update_last_buf_state(m2m_ctx);
1402
1403	if (m2m_ctx->is_draining)
1404		return -EBUSY;
1405
1406	if (m2m_ctx->has_stopped)
1407		m2m_ctx->has_stopped = false;
1408
1409	return 0;
1410}
1411EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1412
1413/*
1414 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1415 * Should be called from the decoder driver decoder_cmd() callback
1416 */
1417int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1418			 struct v4l2_decoder_cmd *dc)
1419{
1420	if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1421		return -EINVAL;
1422
1423	if (dc->cmd == V4L2_DEC_CMD_STOP)
1424		return v4l2_update_last_buf_state(m2m_ctx);
1425
1426	if (m2m_ctx->is_draining)
1427		return -EBUSY;
1428
1429	if (m2m_ctx->has_stopped)
1430		m2m_ctx->has_stopped = false;
1431
1432	return 0;
1433}
1434EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1435
1436int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1437			       struct v4l2_encoder_cmd *ec)
1438{
1439	struct v4l2_fh *fh = file->private_data;
1440
1441	return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1442}
1443EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1444
1445int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1446			       struct v4l2_decoder_cmd *dc)
1447{
1448	struct v4l2_fh *fh = file->private_data;
1449
1450	return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1451}
1452EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1453
1454int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1455					     struct v4l2_decoder_cmd *dc)
1456{
1457	if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1458		return -EINVAL;
1459
1460	dc->flags = 0;
1461
1462	return 0;
1463}
1464EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1465
1466int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1467					 struct v4l2_decoder_cmd *dc)
1468{
1469	struct v4l2_fh *fh = file->private_data;
1470	struct vb2_v4l2_buffer *out_vb, *cap_vb;
1471	struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1472	unsigned long flags;
1473	int ret;
1474
1475	ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1476	if (ret < 0)
1477		return ret;
1478
1479	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1480	out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1481	cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1482
1483	/*
1484	 * If there is an out buffer pending, then clear any HOLD flag.
1485	 *
1486	 * By clearing this flag we ensure that when this output
1487	 * buffer is processed any held capture buffer will be released.
1488	 */
1489	if (out_vb) {
1490		out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1491	} else if (cap_vb && cap_vb->is_held) {
1492		/*
1493		 * If there were no output buffers, but there is a
1494		 * capture buffer that is held, then release that
1495		 * buffer.
1496		 */
1497		cap_vb->is_held = false;
1498		v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1499		v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1500	}
1501	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1502
1503	return 0;
1504}
1505EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1506
1507/*
1508 * v4l2_file_operations helpers. It is assumed here same lock is used
1509 * for the output and the capture buffer queue.
1510 */
1511
1512int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1513{
1514	struct v4l2_fh *fh = file->private_data;
1515
1516	return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1517}
1518EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1519
1520__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1521{
1522	struct v4l2_fh *fh = file->private_data;
1523	struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1524	__poll_t ret;
1525
1526	if (m2m_ctx->q_lock)
1527		mutex_lock(m2m_ctx->q_lock);
1528
1529	ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1530
1531	if (m2m_ctx->q_lock)
1532		mutex_unlock(m2m_ctx->q_lock);
1533
1534	return ret;
1535}
1536EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1537