Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright(c) 2016 - 2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/hash.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/vmalloc.h>
  52#include <linux/slab.h>
  53#include <rdma/ib_verbs.h>
  54#include <rdma/ib_hdrs.h>
  55#include <rdma/opa_addr.h>
  56#include <rdma/uverbs_ioctl.h>
  57#include "qp.h"
  58#include "vt.h"
  59#include "trace.h"
  60
  61#define RVT_RWQ_COUNT_THRESHOLD 16
  62
  63static void rvt_rc_timeout(struct timer_list *t);
  64static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
  65			 enum ib_qp_type type);
  66
  67/*
  68 * Convert the AETH RNR timeout code into the number of microseconds.
  69 */
  70static const u32 ib_rvt_rnr_table[32] = {
  71	655360, /* 00: 655.36 */
  72	10,     /* 01:    .01 */
  73	20,     /* 02     .02 */
  74	30,     /* 03:    .03 */
  75	40,     /* 04:    .04 */
  76	60,     /* 05:    .06 */
  77	80,     /* 06:    .08 */
  78	120,    /* 07:    .12 */
  79	160,    /* 08:    .16 */
  80	240,    /* 09:    .24 */
  81	320,    /* 0A:    .32 */
  82	480,    /* 0B:    .48 */
  83	640,    /* 0C:    .64 */
  84	960,    /* 0D:    .96 */
  85	1280,   /* 0E:   1.28 */
  86	1920,   /* 0F:   1.92 */
  87	2560,   /* 10:   2.56 */
  88	3840,   /* 11:   3.84 */
  89	5120,   /* 12:   5.12 */
  90	7680,   /* 13:   7.68 */
  91	10240,  /* 14:  10.24 */
  92	15360,  /* 15:  15.36 */
  93	20480,  /* 16:  20.48 */
  94	30720,  /* 17:  30.72 */
  95	40960,  /* 18:  40.96 */
  96	61440,  /* 19:  61.44 */
  97	81920,  /* 1A:  81.92 */
  98	122880, /* 1B: 122.88 */
  99	163840, /* 1C: 163.84 */
 100	245760, /* 1D: 245.76 */
 101	327680, /* 1E: 327.68 */
 102	491520  /* 1F: 491.52 */
 103};
 104
 105/*
 106 * Note that it is OK to post send work requests in the SQE and ERR
 107 * states; rvt_do_send() will process them and generate error
 108 * completions as per IB 1.2 C10-96.
 109 */
 110const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
 111	[IB_QPS_RESET] = 0,
 112	[IB_QPS_INIT] = RVT_POST_RECV_OK,
 113	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
 114	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 115	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
 116	    RVT_PROCESS_NEXT_SEND_OK,
 117	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 118	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
 119	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 120	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 121	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
 122	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 123};
 124EXPORT_SYMBOL(ib_rvt_state_ops);
 125
 126/* platform specific: return the last level cache (llc) size, in KiB */
 127static int rvt_wss_llc_size(void)
 128{
 129	/* assume that the boot CPU value is universal for all CPUs */
 130	return boot_cpu_data.x86_cache_size;
 131}
 132
 133/* platform specific: cacheless copy */
 134static void cacheless_memcpy(void *dst, void *src, size_t n)
 135{
 136	/*
 137	 * Use the only available X64 cacheless copy.  Add a __user cast
 138	 * to quiet sparse.  The src agument is already in the kernel so
 139	 * there are no security issues.  The extra fault recovery machinery
 140	 * is not invoked.
 141	 */
 142	__copy_user_nocache(dst, (void __user *)src, n, 0);
 143}
 144
 145void rvt_wss_exit(struct rvt_dev_info *rdi)
 146{
 147	struct rvt_wss *wss = rdi->wss;
 148
 149	if (!wss)
 150		return;
 151
 152	/* coded to handle partially initialized and repeat callers */
 153	kfree(wss->entries);
 154	wss->entries = NULL;
 155	kfree(rdi->wss);
 156	rdi->wss = NULL;
 157}
 158
 159/**
 160 * rvt_wss_init - Init wss data structures
 161 *
 162 * Return: 0 on success
 163 */
 164int rvt_wss_init(struct rvt_dev_info *rdi)
 165{
 166	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
 167	unsigned int wss_threshold = rdi->dparms.wss_threshold;
 168	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
 169	long llc_size;
 170	long llc_bits;
 171	long table_size;
 172	long table_bits;
 173	struct rvt_wss *wss;
 174	int node = rdi->dparms.node;
 175
 176	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
 177		rdi->wss = NULL;
 178		return 0;
 179	}
 180
 181	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
 182	if (!rdi->wss)
 183		return -ENOMEM;
 184	wss = rdi->wss;
 185
 186	/* check for a valid percent range - default to 80 if none or invalid */
 187	if (wss_threshold < 1 || wss_threshold > 100)
 188		wss_threshold = 80;
 189
 190	/* reject a wildly large period */
 191	if (wss_clean_period > 1000000)
 192		wss_clean_period = 256;
 193
 194	/* reject a zero period */
 195	if (wss_clean_period == 0)
 196		wss_clean_period = 1;
 197
 198	/*
 199	 * Calculate the table size - the next power of 2 larger than the
 200	 * LLC size.  LLC size is in KiB.
 201	 */
 202	llc_size = rvt_wss_llc_size() * 1024;
 203	table_size = roundup_pow_of_two(llc_size);
 204
 205	/* one bit per page in rounded up table */
 206	llc_bits = llc_size / PAGE_SIZE;
 207	table_bits = table_size / PAGE_SIZE;
 208	wss->pages_mask = table_bits - 1;
 209	wss->num_entries = table_bits / BITS_PER_LONG;
 210
 211	wss->threshold = (llc_bits * wss_threshold) / 100;
 212	if (wss->threshold == 0)
 213		wss->threshold = 1;
 214
 215	wss->clean_period = wss_clean_period;
 216	atomic_set(&wss->clean_counter, wss_clean_period);
 217
 218	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
 219				    GFP_KERNEL, node);
 220	if (!wss->entries) {
 221		rvt_wss_exit(rdi);
 222		return -ENOMEM;
 223	}
 224
 225	return 0;
 226}
 227
 228/*
 229 * Advance the clean counter.  When the clean period has expired,
 230 * clean an entry.
 231 *
 232 * This is implemented in atomics to avoid locking.  Because multiple
 233 * variables are involved, it can be racy which can lead to slightly
 234 * inaccurate information.  Since this is only a heuristic, this is
 235 * OK.  Any innaccuracies will clean themselves out as the counter
 236 * advances.  That said, it is unlikely the entry clean operation will
 237 * race - the next possible racer will not start until the next clean
 238 * period.
 239 *
 240 * The clean counter is implemented as a decrement to zero.  When zero
 241 * is reached an entry is cleaned.
 242 */
 243static void wss_advance_clean_counter(struct rvt_wss *wss)
 244{
 245	int entry;
 246	int weight;
 247	unsigned long bits;
 248
 249	/* become the cleaner if we decrement the counter to zero */
 250	if (atomic_dec_and_test(&wss->clean_counter)) {
 251		/*
 252		 * Set, not add, the clean period.  This avoids an issue
 253		 * where the counter could decrement below the clean period.
 254		 * Doing a set can result in lost decrements, slowing the
 255		 * clean advance.  Since this a heuristic, this possible
 256		 * slowdown is OK.
 257		 *
 258		 * An alternative is to loop, advancing the counter by a
 259		 * clean period until the result is > 0. However, this could
 260		 * lead to several threads keeping another in the clean loop.
 261		 * This could be mitigated by limiting the number of times
 262		 * we stay in the loop.
 263		 */
 264		atomic_set(&wss->clean_counter, wss->clean_period);
 265
 266		/*
 267		 * Uniquely grab the entry to clean and move to next.
 268		 * The current entry is always the lower bits of
 269		 * wss.clean_entry.  The table size, wss.num_entries,
 270		 * is always a power-of-2.
 271		 */
 272		entry = (atomic_inc_return(&wss->clean_entry) - 1)
 273			& (wss->num_entries - 1);
 274
 275		/* clear the entry and count the bits */
 276		bits = xchg(&wss->entries[entry], 0);
 277		weight = hweight64((u64)bits);
 278		/* only adjust the contended total count if needed */
 279		if (weight)
 280			atomic_sub(weight, &wss->total_count);
 281	}
 282}
 283
 284/*
 285 * Insert the given address into the working set array.
 286 */
 287static void wss_insert(struct rvt_wss *wss, void *address)
 288{
 289	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
 290	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 291	u32 nr = page & (BITS_PER_LONG - 1);
 292
 293	if (!test_and_set_bit(nr, &wss->entries[entry]))
 294		atomic_inc(&wss->total_count);
 295
 296	wss_advance_clean_counter(wss);
 297}
 298
 299/*
 300 * Is the working set larger than the threshold?
 301 */
 302static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
 303{
 304	return atomic_read(&wss->total_count) >= wss->threshold;
 305}
 306
 307static void get_map_page(struct rvt_qpn_table *qpt,
 308			 struct rvt_qpn_map *map)
 309{
 310	unsigned long page = get_zeroed_page(GFP_KERNEL);
 311
 312	/*
 313	 * Free the page if someone raced with us installing it.
 314	 */
 315
 316	spin_lock(&qpt->lock);
 317	if (map->page)
 318		free_page(page);
 319	else
 320		map->page = (void *)page;
 321	spin_unlock(&qpt->lock);
 322}
 323
 324/**
 325 * init_qpn_table - initialize the QP number table for a device
 326 * @qpt: the QPN table
 327 */
 328static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
 329{
 330	u32 offset, i;
 331	struct rvt_qpn_map *map;
 332	int ret = 0;
 333
 334	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
 335		return -EINVAL;
 336
 337	spin_lock_init(&qpt->lock);
 338
 339	qpt->last = rdi->dparms.qpn_start;
 340	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
 341
 342	/*
 343	 * Drivers may want some QPs beyond what we need for verbs let them use
 344	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
 345	 * for those. The reserved range must be *after* the range which verbs
 346	 * will pick from.
 347	 */
 348
 349	/* Figure out number of bit maps needed before reserved range */
 350	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
 351
 352	/* This should always be zero */
 353	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
 354
 355	/* Starting with the first reserved bit map */
 356	map = &qpt->map[qpt->nmaps];
 357
 358	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
 359		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
 360	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
 361		if (!map->page) {
 362			get_map_page(qpt, map);
 363			if (!map->page) {
 364				ret = -ENOMEM;
 365				break;
 366			}
 367		}
 368		set_bit(offset, map->page);
 369		offset++;
 370		if (offset == RVT_BITS_PER_PAGE) {
 371			/* next page */
 372			qpt->nmaps++;
 373			map++;
 374			offset = 0;
 375		}
 376	}
 377	return ret;
 378}
 379
 380/**
 381 * free_qpn_table - free the QP number table for a device
 382 * @qpt: the QPN table
 383 */
 384static void free_qpn_table(struct rvt_qpn_table *qpt)
 385{
 386	int i;
 387
 388	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
 389		free_page((unsigned long)qpt->map[i].page);
 390}
 391
 392/**
 393 * rvt_driver_qp_init - Init driver qp resources
 394 * @rdi: rvt dev strucutre
 395 *
 396 * Return: 0 on success
 397 */
 398int rvt_driver_qp_init(struct rvt_dev_info *rdi)
 399{
 400	int i;
 401	int ret = -ENOMEM;
 402
 403	if (!rdi->dparms.qp_table_size)
 404		return -EINVAL;
 405
 406	/*
 407	 * If driver is not doing any QP allocation then make sure it is
 408	 * providing the necessary QP functions.
 409	 */
 410	if (!rdi->driver_f.free_all_qps ||
 411	    !rdi->driver_f.qp_priv_alloc ||
 412	    !rdi->driver_f.qp_priv_free ||
 413	    !rdi->driver_f.notify_qp_reset ||
 414	    !rdi->driver_f.notify_restart_rc)
 415		return -EINVAL;
 416
 417	/* allocate parent object */
 418	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
 419				   rdi->dparms.node);
 420	if (!rdi->qp_dev)
 421		return -ENOMEM;
 422
 423	/* allocate hash table */
 424	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
 425	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
 426	rdi->qp_dev->qp_table =
 427		kmalloc_array_node(rdi->qp_dev->qp_table_size,
 428			     sizeof(*rdi->qp_dev->qp_table),
 429			     GFP_KERNEL, rdi->dparms.node);
 430	if (!rdi->qp_dev->qp_table)
 431		goto no_qp_table;
 432
 433	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
 434		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
 435
 436	spin_lock_init(&rdi->qp_dev->qpt_lock);
 437
 438	/* initialize qpn map */
 439	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
 440		goto fail_table;
 441
 442	spin_lock_init(&rdi->n_qps_lock);
 443
 444	return 0;
 445
 446fail_table:
 447	kfree(rdi->qp_dev->qp_table);
 448	free_qpn_table(&rdi->qp_dev->qpn_table);
 449
 450no_qp_table:
 451	kfree(rdi->qp_dev);
 452
 453	return ret;
 454}
 455
 456/**
 457 * rvt_free_qp_cb - callback function to reset a qp
 458 * @qp: the qp to reset
 459 * @v: a 64-bit value
 460 *
 461 * This function resets the qp and removes it from the
 462 * qp hash table.
 463 */
 464static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
 465{
 466	unsigned int *qp_inuse = (unsigned int *)v;
 467	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 468
 469	/* Reset the qp and remove it from the qp hash list */
 470	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
 471
 472	/* Increment the qp_inuse count */
 473	(*qp_inuse)++;
 474}
 475
 476/**
 477 * rvt_free_all_qps - check for QPs still in use
 478 * @rdi: rvt device info structure
 479 *
 480 * There should not be any QPs still in use.
 481 * Free memory for table.
 482 * Return the number of QPs still in use.
 483 */
 484static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
 485{
 486	unsigned int qp_inuse = 0;
 487
 488	qp_inuse += rvt_mcast_tree_empty(rdi);
 489
 490	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
 491
 492	return qp_inuse;
 493}
 494
 495/**
 496 * rvt_qp_exit - clean up qps on device exit
 497 * @rdi: rvt dev structure
 498 *
 499 * Check for qp leaks and free resources.
 500 */
 501void rvt_qp_exit(struct rvt_dev_info *rdi)
 502{
 503	u32 qps_inuse = rvt_free_all_qps(rdi);
 504
 505	if (qps_inuse)
 506		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
 507			   qps_inuse);
 508	if (!rdi->qp_dev)
 509		return;
 510
 511	kfree(rdi->qp_dev->qp_table);
 512	free_qpn_table(&rdi->qp_dev->qpn_table);
 513	kfree(rdi->qp_dev);
 514}
 515
 516static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
 517			      struct rvt_qpn_map *map, unsigned off)
 518{
 519	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
 520}
 521
 522/**
 523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
 524 *	       IB_QPT_SMI/IB_QPT_GSI
 525 * @rdi: rvt device info structure
 526 * @qpt: queue pair number table pointer
 527 * @port_num: IB port number, 1 based, comes from core
 528 * @exclude_prefix: prefix of special queue pair number being allocated
 529 *
 530 * Return: The queue pair number
 531 */
 532static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
 533		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
 534{
 535	u32 i, offset, max_scan, qpn;
 536	struct rvt_qpn_map *map;
 537	u32 ret;
 538	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
 539		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
 540
 541	if (rdi->driver_f.alloc_qpn)
 542		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
 543
 544	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
 545		unsigned n;
 546
 547		ret = type == IB_QPT_GSI;
 548		n = 1 << (ret + 2 * (port_num - 1));
 549		spin_lock(&qpt->lock);
 550		if (qpt->flags & n)
 551			ret = -EINVAL;
 552		else
 553			qpt->flags |= n;
 554		spin_unlock(&qpt->lock);
 555		goto bail;
 556	}
 557
 558	qpn = qpt->last + qpt->incr;
 559	if (qpn >= max_qpn)
 560		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
 561	/* offset carries bit 0 */
 562	offset = qpn & RVT_BITS_PER_PAGE_MASK;
 563	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
 564	max_scan = qpt->nmaps - !offset;
 565	for (i = 0;;) {
 566		if (unlikely(!map->page)) {
 567			get_map_page(qpt, map);
 568			if (unlikely(!map->page))
 569				break;
 570		}
 571		do {
 572			if (!test_and_set_bit(offset, map->page)) {
 573				qpt->last = qpn;
 574				ret = qpn;
 575				goto bail;
 576			}
 577			offset += qpt->incr;
 578			/*
 579			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
 580			 * That is OK.   It gets re-assigned below
 581			 */
 582			qpn = mk_qpn(qpt, map, offset);
 583		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
 584		/*
 585		 * In order to keep the number of pages allocated to a
 586		 * minimum, we scan the all existing pages before increasing
 587		 * the size of the bitmap table.
 588		 */
 589		if (++i > max_scan) {
 590			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
 591				break;
 592			map = &qpt->map[qpt->nmaps++];
 593			/* start at incr with current bit 0 */
 594			offset = qpt->incr | (offset & 1);
 595		} else if (map < &qpt->map[qpt->nmaps]) {
 596			++map;
 597			/* start at incr with current bit 0 */
 598			offset = qpt->incr | (offset & 1);
 599		} else {
 600			map = &qpt->map[0];
 601			/* wrap to first map page, invert bit 0 */
 602			offset = qpt->incr | ((offset & 1) ^ 1);
 603		}
 604		/* there can be no set bits in low-order QoS bits */
 605		WARN_ON(rdi->dparms.qos_shift > 1 &&
 606			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
 607		qpn = mk_qpn(qpt, map, offset);
 608	}
 609
 610	ret = -ENOMEM;
 611
 612bail:
 613	return ret;
 614}
 615
 616/**
 617 * rvt_clear_mr_refs - Drop help mr refs
 618 * @qp: rvt qp data structure
 619 * @clr_sends: If shoudl clear send side or not
 620 */
 621static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
 622{
 623	unsigned n;
 624	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 625
 626	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
 627		rvt_put_ss(&qp->s_rdma_read_sge);
 628
 629	rvt_put_ss(&qp->r_sge);
 630
 631	if (clr_sends) {
 632		while (qp->s_last != qp->s_head) {
 633			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
 634
 635			rvt_put_qp_swqe(qp, wqe);
 636			if (++qp->s_last >= qp->s_size)
 637				qp->s_last = 0;
 638			smp_wmb(); /* see qp_set_savail */
 639		}
 640		if (qp->s_rdma_mr) {
 641			rvt_put_mr(qp->s_rdma_mr);
 642			qp->s_rdma_mr = NULL;
 643		}
 644	}
 645
 646	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
 647		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
 648
 649		if (e->rdma_sge.mr) {
 650			rvt_put_mr(e->rdma_sge.mr);
 651			e->rdma_sge.mr = NULL;
 652		}
 653	}
 654}
 655
 656/**
 657 * rvt_swqe_has_lkey - return true if lkey is used by swqe
 658 * @wqe - the send wqe
 659 * @lkey - the lkey
 660 *
 661 * Test the swqe for using lkey
 662 */
 663static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
 664{
 665	int i;
 666
 667	for (i = 0; i < wqe->wr.num_sge; i++) {
 668		struct rvt_sge *sge = &wqe->sg_list[i];
 669
 670		if (rvt_mr_has_lkey(sge->mr, lkey))
 671			return true;
 672	}
 673	return false;
 674}
 675
 676/**
 677 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
 678 * @qp - the rvt_qp
 679 * @lkey - the lkey
 680 */
 681static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
 682{
 683	u32 s_last = qp->s_last;
 684
 685	while (s_last != qp->s_head) {
 686		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
 687
 688		if (rvt_swqe_has_lkey(wqe, lkey))
 689			return true;
 690
 691		if (++s_last >= qp->s_size)
 692			s_last = 0;
 693	}
 694	if (qp->s_rdma_mr)
 695		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
 696			return true;
 697	return false;
 698}
 699
 700/**
 701 * rvt_qp_acks_has_lkey - return true if acks have lkey
 702 * @qp - the qp
 703 * @lkey - the lkey
 704 */
 705static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
 706{
 707	int i;
 708	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 709
 710	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
 711		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
 712
 713		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
 714			return true;
 715	}
 716	return false;
 717}
 718
 719/*
 720 * rvt_qp_mr_clean - clean up remote ops for lkey
 721 * @qp - the qp
 722 * @lkey - the lkey that is being de-registered
 723 *
 724 * This routine checks if the lkey is being used by
 725 * the qp.
 726 *
 727 * If so, the qp is put into an error state to elminate
 728 * any references from the qp.
 729 */
 730void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
 731{
 732	bool lastwqe = false;
 733
 734	if (qp->ibqp.qp_type == IB_QPT_SMI ||
 735	    qp->ibqp.qp_type == IB_QPT_GSI)
 736		/* avoid special QPs */
 737		return;
 738	spin_lock_irq(&qp->r_lock);
 739	spin_lock(&qp->s_hlock);
 740	spin_lock(&qp->s_lock);
 741
 742	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
 743		goto check_lwqe;
 744
 745	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
 746	    rvt_qp_sends_has_lkey(qp, lkey) ||
 747	    rvt_qp_acks_has_lkey(qp, lkey))
 748		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
 749check_lwqe:
 750	spin_unlock(&qp->s_lock);
 751	spin_unlock(&qp->s_hlock);
 752	spin_unlock_irq(&qp->r_lock);
 753	if (lastwqe) {
 754		struct ib_event ev;
 755
 756		ev.device = qp->ibqp.device;
 757		ev.element.qp = &qp->ibqp;
 758		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
 759		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
 760	}
 761}
 762
 763/**
 764 * rvt_remove_qp - remove qp form table
 765 * @rdi: rvt dev struct
 766 * @qp: qp to remove
 767 *
 768 * Remove the QP from the table so it can't be found asynchronously by
 769 * the receive routine.
 770 */
 771static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
 772{
 773	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
 774	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
 775	unsigned long flags;
 776	int removed = 1;
 777
 778	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
 779
 780	if (rcu_dereference_protected(rvp->qp[0],
 781			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 782		RCU_INIT_POINTER(rvp->qp[0], NULL);
 783	} else if (rcu_dereference_protected(rvp->qp[1],
 784			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 785		RCU_INIT_POINTER(rvp->qp[1], NULL);
 786	} else {
 787		struct rvt_qp *q;
 788		struct rvt_qp __rcu **qpp;
 789
 790		removed = 0;
 791		qpp = &rdi->qp_dev->qp_table[n];
 792		for (; (q = rcu_dereference_protected(*qpp,
 793			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
 794			qpp = &q->next) {
 795			if (q == qp) {
 796				RCU_INIT_POINTER(*qpp,
 797				     rcu_dereference_protected(qp->next,
 798				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
 799				removed = 1;
 800				trace_rvt_qpremove(qp, n);
 801				break;
 802			}
 803		}
 804	}
 805
 806	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
 807	if (removed) {
 808		synchronize_rcu();
 809		rvt_put_qp(qp);
 810	}
 811}
 812
 813/**
 814 * rvt_alloc_rq - allocate memory for user or kernel buffer
 815 * @rq: receive queue data structure
 816 * @size: number of request queue entries
 817 * @node: The NUMA node
 818 * @udata: True if user data is available or not false
 819 *
 820 * Return: If memory allocation failed, return -ENONEM
 821 * This function is used by both shared receive
 822 * queues and non-shared receive queues to allocate
 823 * memory.
 824 */
 825int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
 826		 struct ib_udata *udata)
 827{
 828	if (udata) {
 829		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
 830		if (!rq->wq)
 831			goto bail;
 832		/* need kwq with no buffers */
 833		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
 834		if (!rq->kwq)
 835			goto bail;
 836		rq->kwq->curr_wq = rq->wq->wq;
 837	} else {
 838		/* need kwq with buffers */
 839		rq->kwq =
 840			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
 841		if (!rq->kwq)
 842			goto bail;
 843		rq->kwq->curr_wq = rq->kwq->wq;
 844	}
 845
 846	spin_lock_init(&rq->kwq->p_lock);
 847	spin_lock_init(&rq->kwq->c_lock);
 848	return 0;
 849bail:
 850	rvt_free_rq(rq);
 851	return -ENOMEM;
 852}
 853
 854/**
 855 * rvt_init_qp - initialize the QP state to the reset state
 856 * @qp: the QP to init or reinit
 857 * @type: the QP type
 858 *
 859 * This function is called from both rvt_create_qp() and
 860 * rvt_reset_qp().   The difference is that the reset
 861 * patch the necessary locks to protect against concurent
 862 * access.
 863 */
 864static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 865			enum ib_qp_type type)
 866{
 867	qp->remote_qpn = 0;
 868	qp->qkey = 0;
 869	qp->qp_access_flags = 0;
 870	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
 871	qp->s_hdrwords = 0;
 872	qp->s_wqe = NULL;
 873	qp->s_draining = 0;
 874	qp->s_next_psn = 0;
 875	qp->s_last_psn = 0;
 876	qp->s_sending_psn = 0;
 877	qp->s_sending_hpsn = 0;
 878	qp->s_psn = 0;
 879	qp->r_psn = 0;
 880	qp->r_msn = 0;
 881	if (type == IB_QPT_RC) {
 882		qp->s_state = IB_OPCODE_RC_SEND_LAST;
 883		qp->r_state = IB_OPCODE_RC_SEND_LAST;
 884	} else {
 885		qp->s_state = IB_OPCODE_UC_SEND_LAST;
 886		qp->r_state = IB_OPCODE_UC_SEND_LAST;
 887	}
 888	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
 889	qp->r_nak_state = 0;
 890	qp->r_aflags = 0;
 891	qp->r_flags = 0;
 892	qp->s_head = 0;
 893	qp->s_tail = 0;
 894	qp->s_cur = 0;
 895	qp->s_acked = 0;
 896	qp->s_last = 0;
 897	qp->s_ssn = 1;
 898	qp->s_lsn = 0;
 899	qp->s_mig_state = IB_MIG_MIGRATED;
 900	qp->r_head_ack_queue = 0;
 901	qp->s_tail_ack_queue = 0;
 902	qp->s_acked_ack_queue = 0;
 903	qp->s_num_rd_atomic = 0;
 904	qp->r_sge.num_sge = 0;
 905	atomic_set(&qp->s_reserved_used, 0);
 906}
 907
 908/**
 909 * _rvt_reset_qp - initialize the QP state to the reset state
 910 * @qp: the QP to reset
 911 * @type: the QP type
 912 *
 913 * r_lock, s_hlock, and s_lock are required to be held by the caller
 914 */
 915static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 916			  enum ib_qp_type type)
 917	__must_hold(&qp->s_lock)
 918	__must_hold(&qp->s_hlock)
 919	__must_hold(&qp->r_lock)
 920{
 921	lockdep_assert_held(&qp->r_lock);
 922	lockdep_assert_held(&qp->s_hlock);
 923	lockdep_assert_held(&qp->s_lock);
 924	if (qp->state != IB_QPS_RESET) {
 925		qp->state = IB_QPS_RESET;
 926
 927		/* Let drivers flush their waitlist */
 928		rdi->driver_f.flush_qp_waiters(qp);
 929		rvt_stop_rc_timers(qp);
 930		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
 931		spin_unlock(&qp->s_lock);
 932		spin_unlock(&qp->s_hlock);
 933		spin_unlock_irq(&qp->r_lock);
 934
 935		/* Stop the send queue and the retry timer */
 936		rdi->driver_f.stop_send_queue(qp);
 937		rvt_del_timers_sync(qp);
 938		/* Wait for things to stop */
 939		rdi->driver_f.quiesce_qp(qp);
 940
 941		/* take qp out the hash and wait for it to be unused */
 942		rvt_remove_qp(rdi, qp);
 943
 944		/* grab the lock b/c it was locked at call time */
 945		spin_lock_irq(&qp->r_lock);
 946		spin_lock(&qp->s_hlock);
 947		spin_lock(&qp->s_lock);
 948
 949		rvt_clear_mr_refs(qp, 1);
 950		/*
 951		 * Let the driver do any tear down or re-init it needs to for
 952		 * a qp that has been reset
 953		 */
 954		rdi->driver_f.notify_qp_reset(qp);
 955	}
 956	rvt_init_qp(rdi, qp, type);
 957	lockdep_assert_held(&qp->r_lock);
 958	lockdep_assert_held(&qp->s_hlock);
 959	lockdep_assert_held(&qp->s_lock);
 960}
 961
 962/**
 963 * rvt_reset_qp - initialize the QP state to the reset state
 964 * @rdi: the device info
 965 * @qp: the QP to reset
 966 * @type: the QP type
 967 *
 968 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
 969 * before calling _rvt_reset_qp().
 970 */
 971static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 972			 enum ib_qp_type type)
 973{
 974	spin_lock_irq(&qp->r_lock);
 975	spin_lock(&qp->s_hlock);
 976	spin_lock(&qp->s_lock);
 977	_rvt_reset_qp(rdi, qp, type);
 978	spin_unlock(&qp->s_lock);
 979	spin_unlock(&qp->s_hlock);
 980	spin_unlock_irq(&qp->r_lock);
 981}
 982
 983/** rvt_free_qpn - Free a qpn from the bit map
 984 * @qpt: QP table
 985 * @qpn: queue pair number to free
 986 */
 987static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
 988{
 989	struct rvt_qpn_map *map;
 990
 991	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
 992		qpn &= RVT_AIP_QP_SUFFIX;
 993
 994	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
 995	if (map->page)
 996		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
 997}
 998
 999/**
1000 * get_allowed_ops - Given a QP type return the appropriate allowed OP
1001 * @type: valid, supported, QP type
1002 */
1003static u8 get_allowed_ops(enum ib_qp_type type)
1004{
1005	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1006		IB_OPCODE_UC : IB_OPCODE_UD;
1007}
1008
1009/**
1010 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1011 * @qp: Valid QP with allowed_ops set
1012 *
1013 * The rvt_swqe data structure being used is a union, so this is
1014 * only valid for UD QPs.
1015 */
1016static void free_ud_wq_attr(struct rvt_qp *qp)
1017{
1018	struct rvt_swqe *wqe;
1019	int i;
1020
1021	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1022		wqe = rvt_get_swqe_ptr(qp, i);
1023		kfree(wqe->ud_wr.attr);
1024		wqe->ud_wr.attr = NULL;
1025	}
1026}
1027
1028/**
1029 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1030 * @qp: Valid QP with allowed_ops set
1031 * @node: Numa node for allocation
1032 *
1033 * The rvt_swqe data structure being used is a union, so this is
1034 * only valid for UD QPs.
1035 */
1036static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1037{
1038	struct rvt_swqe *wqe;
1039	int i;
1040
1041	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1042		wqe = rvt_get_swqe_ptr(qp, i);
1043		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1044					       GFP_KERNEL, node);
1045		if (!wqe->ud_wr.attr) {
1046			free_ud_wq_attr(qp);
1047			return -ENOMEM;
1048		}
1049	}
1050
1051	return 0;
1052}
1053
1054/**
1055 * rvt_create_qp - create a queue pair for a device
1056 * @ibpd: the protection domain who's device we create the queue pair for
1057 * @init_attr: the attributes of the queue pair
1058 * @udata: user data for libibverbs.so
1059 *
1060 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1061 * unique idea of what queue pair numbers mean. For instance there is a reserved
1062 * range for PSM.
1063 *
1064 * Return: the queue pair on success, otherwise returns an errno.
1065 *
1066 * Called by the ib_create_qp() core verbs function.
1067 */
1068struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1069			    struct ib_qp_init_attr *init_attr,
1070			    struct ib_udata *udata)
1071{
1072	struct rvt_qp *qp;
1073	int err;
1074	struct rvt_swqe *swq = NULL;
1075	size_t sz;
1076	size_t sg_list_sz;
1077	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1078	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1079	void *priv = NULL;
1080	size_t sqsize;
1081	u8 exclude_prefix = 0;
1082
1083	if (!rdi)
1084		return ERR_PTR(-EINVAL);
1085
1086	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1087	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1088	    (init_attr->create_flags &&
1089	     init_attr->create_flags != IB_QP_CREATE_NETDEV_USE))
1090		return ERR_PTR(-EINVAL);
1091
1092	/* Check receive queue parameters if no SRQ is specified. */
1093	if (!init_attr->srq) {
1094		if (init_attr->cap.max_recv_sge >
1095		    rdi->dparms.props.max_recv_sge ||
1096		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1097			return ERR_PTR(-EINVAL);
1098
1099		if (init_attr->cap.max_send_sge +
1100		    init_attr->cap.max_send_wr +
1101		    init_attr->cap.max_recv_sge +
1102		    init_attr->cap.max_recv_wr == 0)
1103			return ERR_PTR(-EINVAL);
1104	}
1105	sqsize =
1106		init_attr->cap.max_send_wr + 1 +
1107		rdi->dparms.reserved_operations;
1108	switch (init_attr->qp_type) {
1109	case IB_QPT_SMI:
1110	case IB_QPT_GSI:
1111		if (init_attr->port_num == 0 ||
1112		    init_attr->port_num > ibpd->device->phys_port_cnt)
1113			return ERR_PTR(-EINVAL);
1114		fallthrough;
1115	case IB_QPT_UC:
1116	case IB_QPT_RC:
1117	case IB_QPT_UD:
1118		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1119		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1120		if (!swq)
1121			return ERR_PTR(-ENOMEM);
1122
1123		sz = sizeof(*qp);
1124		sg_list_sz = 0;
1125		if (init_attr->srq) {
1126			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1127
1128			if (srq->rq.max_sge > 1)
1129				sg_list_sz = sizeof(*qp->r_sg_list) *
1130					(srq->rq.max_sge - 1);
1131		} else if (init_attr->cap.max_recv_sge > 1)
1132			sg_list_sz = sizeof(*qp->r_sg_list) *
1133				(init_attr->cap.max_recv_sge - 1);
1134		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1135				  rdi->dparms.node);
1136		if (!qp)
1137			goto bail_swq;
1138		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1139
1140		RCU_INIT_POINTER(qp->next, NULL);
1141		if (init_attr->qp_type == IB_QPT_RC) {
1142			qp->s_ack_queue =
1143				kcalloc_node(rvt_max_atomic(rdi),
1144					     sizeof(*qp->s_ack_queue),
1145					     GFP_KERNEL,
1146					     rdi->dparms.node);
1147			if (!qp->s_ack_queue)
1148				goto bail_qp;
1149		}
1150		/* initialize timers needed for rc qp */
1151		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1152		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1153			     HRTIMER_MODE_REL);
1154		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1155
1156		/*
1157		 * Driver needs to set up it's private QP structure and do any
1158		 * initialization that is needed.
1159		 */
1160		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1161		if (IS_ERR(priv)) {
1162			ret = priv;
1163			goto bail_qp;
1164		}
1165		qp->priv = priv;
1166		qp->timeout_jiffies =
1167			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1168				1000UL);
1169		if (init_attr->srq) {
1170			sz = 0;
1171		} else {
1172			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1173			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1174			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1175				sizeof(struct rvt_rwqe);
1176			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1177					   rdi->dparms.node, udata);
1178			if (err) {
1179				ret = ERR_PTR(err);
1180				goto bail_driver_priv;
1181			}
1182		}
1183
1184		/*
1185		 * ib_create_qp() will initialize qp->ibqp
1186		 * except for qp->ibqp.qp_num.
1187		 */
1188		spin_lock_init(&qp->r_lock);
1189		spin_lock_init(&qp->s_hlock);
1190		spin_lock_init(&qp->s_lock);
1191		atomic_set(&qp->refcount, 0);
1192		atomic_set(&qp->local_ops_pending, 0);
1193		init_waitqueue_head(&qp->wait);
1194		INIT_LIST_HEAD(&qp->rspwait);
1195		qp->state = IB_QPS_RESET;
1196		qp->s_wq = swq;
1197		qp->s_size = sqsize;
1198		qp->s_avail = init_attr->cap.max_send_wr;
1199		qp->s_max_sge = init_attr->cap.max_send_sge;
1200		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1201			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1202		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1203		if (err) {
1204			ret = (ERR_PTR(err));
1205			goto bail_rq_rvt;
1206		}
1207
1208		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1209			exclude_prefix = RVT_AIP_QP_PREFIX;
1210
1211		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1212				init_attr->qp_type,
1213				init_attr->port_num,
1214				exclude_prefix);
1215		if (err < 0) {
1216			ret = ERR_PTR(err);
1217			goto bail_rq_wq;
1218		}
1219		qp->ibqp.qp_num = err;
1220		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1221			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1222		qp->port_num = init_attr->port_num;
1223		rvt_init_qp(rdi, qp, init_attr->qp_type);
1224		if (rdi->driver_f.qp_priv_init) {
1225			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1226			if (err) {
1227				ret = ERR_PTR(err);
1228				goto bail_rq_wq;
1229			}
1230		}
1231		break;
1232
1233	default:
1234		/* Don't support raw QPs */
1235		return ERR_PTR(-EOPNOTSUPP);
1236	}
1237
1238	init_attr->cap.max_inline_data = 0;
1239
1240	/*
1241	 * Return the address of the RWQ as the offset to mmap.
1242	 * See rvt_mmap() for details.
1243	 */
1244	if (udata && udata->outlen >= sizeof(__u64)) {
1245		if (!qp->r_rq.wq) {
1246			__u64 offset = 0;
1247
1248			err = ib_copy_to_udata(udata, &offset,
1249					       sizeof(offset));
1250			if (err) {
1251				ret = ERR_PTR(err);
1252				goto bail_qpn;
1253			}
1254		} else {
1255			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1256
1257			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1258						      qp->r_rq.wq);
1259			if (IS_ERR(qp->ip)) {
1260				ret = ERR_CAST(qp->ip);
1261				goto bail_qpn;
1262			}
1263
1264			err = ib_copy_to_udata(udata, &qp->ip->offset,
1265					       sizeof(qp->ip->offset));
1266			if (err) {
1267				ret = ERR_PTR(err);
1268				goto bail_ip;
1269			}
1270		}
1271		qp->pid = current->pid;
1272	}
1273
1274	spin_lock(&rdi->n_qps_lock);
1275	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1276		spin_unlock(&rdi->n_qps_lock);
1277		ret = ERR_PTR(-ENOMEM);
1278		goto bail_ip;
1279	}
1280
1281	rdi->n_qps_allocated++;
1282	/*
1283	 * Maintain a busy_jiffies variable that will be added to the timeout
1284	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1285	 * is scaled by the number of rc qps created for the device to reduce
1286	 * the number of timeouts occurring when there is a large number of
1287	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1288	 * The scaling interval is selected based on extensive performance
1289	 * evaluation of targeted workloads.
1290	 */
1291	if (init_attr->qp_type == IB_QPT_RC) {
1292		rdi->n_rc_qps++;
1293		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1294	}
1295	spin_unlock(&rdi->n_qps_lock);
1296
1297	if (qp->ip) {
1298		spin_lock_irq(&rdi->pending_lock);
1299		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1300		spin_unlock_irq(&rdi->pending_lock);
1301	}
1302
1303	ret = &qp->ibqp;
1304
1305	return ret;
1306
1307bail_ip:
1308	if (qp->ip)
1309		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1310
1311bail_qpn:
1312	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1313
1314bail_rq_wq:
1315	free_ud_wq_attr(qp);
1316
1317bail_rq_rvt:
1318	rvt_free_rq(&qp->r_rq);
1319
1320bail_driver_priv:
1321	rdi->driver_f.qp_priv_free(rdi, qp);
1322
1323bail_qp:
1324	kfree(qp->s_ack_queue);
1325	kfree(qp);
1326
1327bail_swq:
1328	vfree(swq);
1329
1330	return ret;
1331}
1332
1333/**
1334 * rvt_error_qp - put a QP into the error state
1335 * @qp: the QP to put into the error state
1336 * @err: the receive completion error to signal if a RWQE is active
1337 *
1338 * Flushes both send and receive work queues.
1339 *
1340 * Return: true if last WQE event should be generated.
1341 * The QP r_lock and s_lock should be held and interrupts disabled.
1342 * If we are already in error state, just return.
1343 */
1344int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1345{
1346	struct ib_wc wc;
1347	int ret = 0;
1348	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1349
1350	lockdep_assert_held(&qp->r_lock);
1351	lockdep_assert_held(&qp->s_lock);
1352	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1353		goto bail;
1354
1355	qp->state = IB_QPS_ERR;
1356
1357	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1358		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1359		del_timer(&qp->s_timer);
1360	}
1361
1362	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1363		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1364
1365	rdi->driver_f.notify_error_qp(qp);
1366
1367	/* Schedule the sending tasklet to drain the send work queue. */
1368	if (READ_ONCE(qp->s_last) != qp->s_head)
1369		rdi->driver_f.schedule_send(qp);
1370
1371	rvt_clear_mr_refs(qp, 0);
1372
1373	memset(&wc, 0, sizeof(wc));
1374	wc.qp = &qp->ibqp;
1375	wc.opcode = IB_WC_RECV;
1376
1377	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1378		wc.wr_id = qp->r_wr_id;
1379		wc.status = err;
1380		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1381	}
1382	wc.status = IB_WC_WR_FLUSH_ERR;
1383
1384	if (qp->r_rq.kwq) {
1385		u32 head;
1386		u32 tail;
1387		struct rvt_rwq *wq = NULL;
1388		struct rvt_krwq *kwq = NULL;
1389
1390		spin_lock(&qp->r_rq.kwq->c_lock);
1391		/* qp->ip used to validate if there is a  user buffer mmaped */
1392		if (qp->ip) {
1393			wq = qp->r_rq.wq;
1394			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1395			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1396		} else {
1397			kwq = qp->r_rq.kwq;
1398			head = kwq->head;
1399			tail = kwq->tail;
1400		}
1401		/* sanity check pointers before trusting them */
1402		if (head >= qp->r_rq.size)
1403			head = 0;
1404		if (tail >= qp->r_rq.size)
1405			tail = 0;
1406		while (tail != head) {
1407			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1408			if (++tail >= qp->r_rq.size)
1409				tail = 0;
1410			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1411		}
1412		if (qp->ip)
1413			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1414		else
1415			kwq->tail = tail;
1416		spin_unlock(&qp->r_rq.kwq->c_lock);
1417	} else if (qp->ibqp.event_handler) {
1418		ret = 1;
1419	}
1420
1421bail:
1422	return ret;
1423}
1424EXPORT_SYMBOL(rvt_error_qp);
1425
1426/*
1427 * Put the QP into the hash table.
1428 * The hash table holds a reference to the QP.
1429 */
1430static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1431{
1432	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1433	unsigned long flags;
1434
1435	rvt_get_qp(qp);
1436	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1437
1438	if (qp->ibqp.qp_num <= 1) {
1439		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1440	} else {
1441		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1442
1443		qp->next = rdi->qp_dev->qp_table[n];
1444		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1445		trace_rvt_qpinsert(qp, n);
1446	}
1447
1448	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1449}
1450
1451/**
1452 * rvt_modify_qp - modify the attributes of a queue pair
1453 * @ibqp: the queue pair who's attributes we're modifying
1454 * @attr: the new attributes
1455 * @attr_mask: the mask of attributes to modify
1456 * @udata: user data for libibverbs.so
1457 *
1458 * Return: 0 on success, otherwise returns an errno.
1459 */
1460int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1461		  int attr_mask, struct ib_udata *udata)
1462{
1463	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1464	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1465	enum ib_qp_state cur_state, new_state;
1466	struct ib_event ev;
1467	int lastwqe = 0;
1468	int mig = 0;
1469	int pmtu = 0; /* for gcc warning only */
1470	int opa_ah;
1471
1472	spin_lock_irq(&qp->r_lock);
1473	spin_lock(&qp->s_hlock);
1474	spin_lock(&qp->s_lock);
1475
1476	cur_state = attr_mask & IB_QP_CUR_STATE ?
1477		attr->cur_qp_state : qp->state;
1478	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1479	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1480
1481	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1482				attr_mask))
1483		goto inval;
1484
1485	if (rdi->driver_f.check_modify_qp &&
1486	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1487		goto inval;
1488
1489	if (attr_mask & IB_QP_AV) {
1490		if (opa_ah) {
1491			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1492				opa_get_mcast_base(OPA_MCAST_NR))
1493				goto inval;
1494		} else {
1495			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1496				be16_to_cpu(IB_MULTICAST_LID_BASE))
1497				goto inval;
1498		}
1499
1500		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1501			goto inval;
1502	}
1503
1504	if (attr_mask & IB_QP_ALT_PATH) {
1505		if (opa_ah) {
1506			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1507				opa_get_mcast_base(OPA_MCAST_NR))
1508				goto inval;
1509		} else {
1510			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1511				be16_to_cpu(IB_MULTICAST_LID_BASE))
1512				goto inval;
1513		}
1514
1515		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1516			goto inval;
1517		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1518			goto inval;
1519	}
1520
1521	if (attr_mask & IB_QP_PKEY_INDEX)
1522		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1523			goto inval;
1524
1525	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1526		if (attr->min_rnr_timer > 31)
1527			goto inval;
1528
1529	if (attr_mask & IB_QP_PORT)
1530		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1531		    qp->ibqp.qp_type == IB_QPT_GSI ||
1532		    attr->port_num == 0 ||
1533		    attr->port_num > ibqp->device->phys_port_cnt)
1534			goto inval;
1535
1536	if (attr_mask & IB_QP_DEST_QPN)
1537		if (attr->dest_qp_num > RVT_QPN_MASK)
1538			goto inval;
1539
1540	if (attr_mask & IB_QP_RETRY_CNT)
1541		if (attr->retry_cnt > 7)
1542			goto inval;
1543
1544	if (attr_mask & IB_QP_RNR_RETRY)
1545		if (attr->rnr_retry > 7)
1546			goto inval;
1547
1548	/*
1549	 * Don't allow invalid path_mtu values.  OK to set greater
1550	 * than the active mtu (or even the max_cap, if we have tuned
1551	 * that to a small mtu.  We'll set qp->path_mtu
1552	 * to the lesser of requested attribute mtu and active,
1553	 * for packetizing messages.
1554	 * Note that the QP port has to be set in INIT and MTU in RTR.
1555	 */
1556	if (attr_mask & IB_QP_PATH_MTU) {
1557		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1558		if (pmtu < 0)
1559			goto inval;
1560	}
1561
1562	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1563		if (attr->path_mig_state == IB_MIG_REARM) {
1564			if (qp->s_mig_state == IB_MIG_ARMED)
1565				goto inval;
1566			if (new_state != IB_QPS_RTS)
1567				goto inval;
1568		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1569			if (qp->s_mig_state == IB_MIG_REARM)
1570				goto inval;
1571			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1572				goto inval;
1573			if (qp->s_mig_state == IB_MIG_ARMED)
1574				mig = 1;
1575		} else {
1576			goto inval;
1577		}
1578	}
1579
1580	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1581		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1582			goto inval;
1583
1584	switch (new_state) {
1585	case IB_QPS_RESET:
1586		if (qp->state != IB_QPS_RESET)
1587			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1588		break;
1589
1590	case IB_QPS_RTR:
1591		/* Allow event to re-trigger if QP set to RTR more than once */
1592		qp->r_flags &= ~RVT_R_COMM_EST;
1593		qp->state = new_state;
1594		break;
1595
1596	case IB_QPS_SQD:
1597		qp->s_draining = qp->s_last != qp->s_cur;
1598		qp->state = new_state;
1599		break;
1600
1601	case IB_QPS_SQE:
1602		if (qp->ibqp.qp_type == IB_QPT_RC)
1603			goto inval;
1604		qp->state = new_state;
1605		break;
1606
1607	case IB_QPS_ERR:
1608		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1609		break;
1610
1611	default:
1612		qp->state = new_state;
1613		break;
1614	}
1615
1616	if (attr_mask & IB_QP_PKEY_INDEX)
1617		qp->s_pkey_index = attr->pkey_index;
1618
1619	if (attr_mask & IB_QP_PORT)
1620		qp->port_num = attr->port_num;
1621
1622	if (attr_mask & IB_QP_DEST_QPN)
1623		qp->remote_qpn = attr->dest_qp_num;
1624
1625	if (attr_mask & IB_QP_SQ_PSN) {
1626		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1627		qp->s_psn = qp->s_next_psn;
1628		qp->s_sending_psn = qp->s_next_psn;
1629		qp->s_last_psn = qp->s_next_psn - 1;
1630		qp->s_sending_hpsn = qp->s_last_psn;
1631	}
1632
1633	if (attr_mask & IB_QP_RQ_PSN)
1634		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1635
1636	if (attr_mask & IB_QP_ACCESS_FLAGS)
1637		qp->qp_access_flags = attr->qp_access_flags;
1638
1639	if (attr_mask & IB_QP_AV) {
1640		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1641		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1642		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1643	}
1644
1645	if (attr_mask & IB_QP_ALT_PATH) {
1646		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1647		qp->s_alt_pkey_index = attr->alt_pkey_index;
1648	}
1649
1650	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1651		qp->s_mig_state = attr->path_mig_state;
1652		if (mig) {
1653			qp->remote_ah_attr = qp->alt_ah_attr;
1654			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1655			qp->s_pkey_index = qp->s_alt_pkey_index;
1656		}
1657	}
1658
1659	if (attr_mask & IB_QP_PATH_MTU) {
1660		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1661		qp->log_pmtu = ilog2(qp->pmtu);
1662	}
1663
1664	if (attr_mask & IB_QP_RETRY_CNT) {
1665		qp->s_retry_cnt = attr->retry_cnt;
1666		qp->s_retry = attr->retry_cnt;
1667	}
1668
1669	if (attr_mask & IB_QP_RNR_RETRY) {
1670		qp->s_rnr_retry_cnt = attr->rnr_retry;
1671		qp->s_rnr_retry = attr->rnr_retry;
1672	}
1673
1674	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1675		qp->r_min_rnr_timer = attr->min_rnr_timer;
1676
1677	if (attr_mask & IB_QP_TIMEOUT) {
1678		qp->timeout = attr->timeout;
1679		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1680	}
1681
1682	if (attr_mask & IB_QP_QKEY)
1683		qp->qkey = attr->qkey;
1684
1685	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1686		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1687
1688	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1689		qp->s_max_rd_atomic = attr->max_rd_atomic;
1690
1691	if (rdi->driver_f.modify_qp)
1692		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1693
1694	spin_unlock(&qp->s_lock);
1695	spin_unlock(&qp->s_hlock);
1696	spin_unlock_irq(&qp->r_lock);
1697
1698	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1699		rvt_insert_qp(rdi, qp);
1700
1701	if (lastwqe) {
1702		ev.device = qp->ibqp.device;
1703		ev.element.qp = &qp->ibqp;
1704		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1705		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1706	}
1707	if (mig) {
1708		ev.device = qp->ibqp.device;
1709		ev.element.qp = &qp->ibqp;
1710		ev.event = IB_EVENT_PATH_MIG;
1711		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1712	}
1713	return 0;
1714
1715inval:
1716	spin_unlock(&qp->s_lock);
1717	spin_unlock(&qp->s_hlock);
1718	spin_unlock_irq(&qp->r_lock);
1719	return -EINVAL;
1720}
1721
1722/**
1723 * rvt_destroy_qp - destroy a queue pair
1724 * @ibqp: the queue pair to destroy
1725 *
1726 * Note that this can be called while the QP is actively sending or
1727 * receiving!
1728 *
1729 * Return: 0 on success.
1730 */
1731int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1732{
1733	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1734	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1735
1736	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1737
1738	wait_event(qp->wait, !atomic_read(&qp->refcount));
1739	/* qpn is now available for use again */
1740	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1741
1742	spin_lock(&rdi->n_qps_lock);
1743	rdi->n_qps_allocated--;
1744	if (qp->ibqp.qp_type == IB_QPT_RC) {
1745		rdi->n_rc_qps--;
1746		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1747	}
1748	spin_unlock(&rdi->n_qps_lock);
1749
1750	if (qp->ip)
1751		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1752	kvfree(qp->r_rq.kwq);
1753	rdi->driver_f.qp_priv_free(rdi, qp);
1754	kfree(qp->s_ack_queue);
1755	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1756	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1757	free_ud_wq_attr(qp);
1758	vfree(qp->s_wq);
1759	kfree(qp);
1760	return 0;
1761}
1762
1763/**
1764 * rvt_query_qp - query an ipbq
1765 * @ibqp: IB qp to query
1766 * @attr: attr struct to fill in
1767 * @attr_mask: attr mask ignored
1768 * @init_attr: struct to fill in
1769 *
1770 * Return: always 0
1771 */
1772int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1773		 int attr_mask, struct ib_qp_init_attr *init_attr)
1774{
1775	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1776	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1777
1778	attr->qp_state = qp->state;
1779	attr->cur_qp_state = attr->qp_state;
1780	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1781	attr->path_mig_state = qp->s_mig_state;
1782	attr->qkey = qp->qkey;
1783	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1784	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1785	attr->dest_qp_num = qp->remote_qpn;
1786	attr->qp_access_flags = qp->qp_access_flags;
1787	attr->cap.max_send_wr = qp->s_size - 1 -
1788		rdi->dparms.reserved_operations;
1789	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1790	attr->cap.max_send_sge = qp->s_max_sge;
1791	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1792	attr->cap.max_inline_data = 0;
1793	attr->ah_attr = qp->remote_ah_attr;
1794	attr->alt_ah_attr = qp->alt_ah_attr;
1795	attr->pkey_index = qp->s_pkey_index;
1796	attr->alt_pkey_index = qp->s_alt_pkey_index;
1797	attr->en_sqd_async_notify = 0;
1798	attr->sq_draining = qp->s_draining;
1799	attr->max_rd_atomic = qp->s_max_rd_atomic;
1800	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1801	attr->min_rnr_timer = qp->r_min_rnr_timer;
1802	attr->port_num = qp->port_num;
1803	attr->timeout = qp->timeout;
1804	attr->retry_cnt = qp->s_retry_cnt;
1805	attr->rnr_retry = qp->s_rnr_retry_cnt;
1806	attr->alt_port_num =
1807		rdma_ah_get_port_num(&qp->alt_ah_attr);
1808	attr->alt_timeout = qp->alt_timeout;
1809
1810	init_attr->event_handler = qp->ibqp.event_handler;
1811	init_attr->qp_context = qp->ibqp.qp_context;
1812	init_attr->send_cq = qp->ibqp.send_cq;
1813	init_attr->recv_cq = qp->ibqp.recv_cq;
1814	init_attr->srq = qp->ibqp.srq;
1815	init_attr->cap = attr->cap;
1816	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1817		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1818	else
1819		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1820	init_attr->qp_type = qp->ibqp.qp_type;
1821	init_attr->port_num = qp->port_num;
1822	return 0;
1823}
1824
1825/**
1826 * rvt_post_receive - post a receive on a QP
1827 * @ibqp: the QP to post the receive on
1828 * @wr: the WR to post
1829 * @bad_wr: the first bad WR is put here
1830 *
1831 * This may be called from interrupt context.
1832 *
1833 * Return: 0 on success otherwise errno
1834 */
1835int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1836		  const struct ib_recv_wr **bad_wr)
1837{
1838	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1839	struct rvt_krwq *wq = qp->r_rq.kwq;
1840	unsigned long flags;
1841	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1842				!qp->ibqp.srq;
1843
1844	/* Check that state is OK to post receive. */
1845	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1846		*bad_wr = wr;
1847		return -EINVAL;
1848	}
1849
1850	for (; wr; wr = wr->next) {
1851		struct rvt_rwqe *wqe;
1852		u32 next;
1853		int i;
1854
1855		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1856			*bad_wr = wr;
1857			return -EINVAL;
1858		}
1859
1860		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1861		next = wq->head + 1;
1862		if (next >= qp->r_rq.size)
1863			next = 0;
1864		if (next == READ_ONCE(wq->tail)) {
1865			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1866			*bad_wr = wr;
1867			return -ENOMEM;
1868		}
1869		if (unlikely(qp_err_flush)) {
1870			struct ib_wc wc;
1871
1872			memset(&wc, 0, sizeof(wc));
1873			wc.qp = &qp->ibqp;
1874			wc.opcode = IB_WC_RECV;
1875			wc.wr_id = wr->wr_id;
1876			wc.status = IB_WC_WR_FLUSH_ERR;
1877			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1878		} else {
1879			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1880			wqe->wr_id = wr->wr_id;
1881			wqe->num_sge = wr->num_sge;
1882			for (i = 0; i < wr->num_sge; i++) {
1883				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1884				wqe->sg_list[i].length = wr->sg_list[i].length;
1885				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1886			}
1887			/*
1888			 * Make sure queue entry is written
1889			 * before the head index.
1890			 */
1891			smp_store_release(&wq->head, next);
1892		}
1893		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1894	}
1895	return 0;
1896}
1897
1898/**
1899 * rvt_qp_valid_operation - validate post send wr request
1900 * @qp - the qp
1901 * @post-parms - the post send table for the driver
1902 * @wr - the work request
1903 *
1904 * The routine validates the operation based on the
1905 * validation table an returns the length of the operation
1906 * which can extend beyond the ib_send_bw.  Operation
1907 * dependent flags key atomic operation validation.
1908 *
1909 * There is an exception for UD qps that validates the pd and
1910 * overrides the length to include the additional UD specific
1911 * length.
1912 *
1913 * Returns a negative error or the length of the work request
1914 * for building the swqe.
1915 */
1916static inline int rvt_qp_valid_operation(
1917	struct rvt_qp *qp,
1918	const struct rvt_operation_params *post_parms,
1919	const struct ib_send_wr *wr)
1920{
1921	int len;
1922
1923	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1924		return -EINVAL;
1925	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1926		return -EINVAL;
1927	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1928	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1929		return -EINVAL;
1930	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1931	    (wr->num_sge == 0 ||
1932	     wr->sg_list[0].length < sizeof(u64) ||
1933	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1934		return -EINVAL;
1935	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1936	    !qp->s_max_rd_atomic)
1937		return -EINVAL;
1938	len = post_parms[wr->opcode].length;
1939	/* UD specific */
1940	if (qp->ibqp.qp_type != IB_QPT_UC &&
1941	    qp->ibqp.qp_type != IB_QPT_RC) {
1942		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1943			return -EINVAL;
1944		len = sizeof(struct ib_ud_wr);
1945	}
1946	return len;
1947}
1948
1949/**
1950 * rvt_qp_is_avail - determine queue capacity
1951 * @qp: the qp
1952 * @rdi: the rdmavt device
1953 * @reserved_op: is reserved operation
1954 *
1955 * This assumes the s_hlock is held but the s_last
1956 * qp variable is uncontrolled.
1957 *
1958 * For non reserved operations, the qp->s_avail
1959 * may be changed.
1960 *
1961 * The return value is zero or a -ENOMEM.
1962 */
1963static inline int rvt_qp_is_avail(
1964	struct rvt_qp *qp,
1965	struct rvt_dev_info *rdi,
1966	bool reserved_op)
1967{
1968	u32 slast;
1969	u32 avail;
1970	u32 reserved_used;
1971
1972	/* see rvt_qp_wqe_unreserve() */
1973	smp_mb__before_atomic();
1974	if (unlikely(reserved_op)) {
1975		/* see rvt_qp_wqe_unreserve() */
1976		reserved_used = atomic_read(&qp->s_reserved_used);
1977		if (reserved_used >= rdi->dparms.reserved_operations)
1978			return -ENOMEM;
1979		return 0;
1980	}
1981	/* non-reserved operations */
1982	if (likely(qp->s_avail))
1983		return 0;
1984	/* See rvt_qp_complete_swqe() */
1985	slast = smp_load_acquire(&qp->s_last);
1986	if (qp->s_head >= slast)
1987		avail = qp->s_size - (qp->s_head - slast);
1988	else
1989		avail = slast - qp->s_head;
1990
1991	reserved_used = atomic_read(&qp->s_reserved_used);
1992	avail =  avail - 1 -
1993		(rdi->dparms.reserved_operations - reserved_used);
1994	/* insure we don't assign a negative s_avail */
1995	if ((s32)avail <= 0)
1996		return -ENOMEM;
1997	qp->s_avail = avail;
1998	if (WARN_ON(qp->s_avail >
1999		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
2000		rvt_pr_err(rdi,
2001			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2002			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2003			   qp->s_head, qp->s_tail, qp->s_cur,
2004			   qp->s_acked, qp->s_last);
2005	return 0;
2006}
2007
2008/**
2009 * rvt_post_one_wr - post one RC, UC, or UD send work request
2010 * @qp: the QP to post on
2011 * @wr: the work request to send
2012 */
2013static int rvt_post_one_wr(struct rvt_qp *qp,
2014			   const struct ib_send_wr *wr,
2015			   bool *call_send)
2016{
2017	struct rvt_swqe *wqe;
2018	u32 next;
2019	int i;
2020	int j;
2021	int acc;
2022	struct rvt_lkey_table *rkt;
2023	struct rvt_pd *pd;
2024	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2025	u8 log_pmtu;
2026	int ret;
2027	size_t cplen;
2028	bool reserved_op;
2029	int local_ops_delayed = 0;
2030
2031	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2032
2033	/* IB spec says that num_sge == 0 is OK. */
2034	if (unlikely(wr->num_sge > qp->s_max_sge))
2035		return -EINVAL;
2036
2037	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2038	if (ret < 0)
2039		return ret;
2040	cplen = ret;
2041
2042	/*
2043	 * Local operations include fast register and local invalidate.
2044	 * Fast register needs to be processed immediately because the
2045	 * registered lkey may be used by following work requests and the
2046	 * lkey needs to be valid at the time those requests are posted.
2047	 * Local invalidate can be processed immediately if fencing is
2048	 * not required and no previous local invalidate ops are pending.
2049	 * Signaled local operations that have been processed immediately
2050	 * need to have requests with "completion only" flags set posted
2051	 * to the send queue in order to generate completions.
2052	 */
2053	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2054		switch (wr->opcode) {
2055		case IB_WR_REG_MR:
2056			ret = rvt_fast_reg_mr(qp,
2057					      reg_wr(wr)->mr,
2058					      reg_wr(wr)->key,
2059					      reg_wr(wr)->access);
2060			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2061				return ret;
2062			break;
2063		case IB_WR_LOCAL_INV:
2064			if ((wr->send_flags & IB_SEND_FENCE) ||
2065			    atomic_read(&qp->local_ops_pending)) {
2066				local_ops_delayed = 1;
2067			} else {
2068				ret = rvt_invalidate_rkey(
2069					qp, wr->ex.invalidate_rkey);
2070				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2071					return ret;
2072			}
2073			break;
2074		default:
2075			return -EINVAL;
2076		}
2077	}
2078
2079	reserved_op = rdi->post_parms[wr->opcode].flags &
2080			RVT_OPERATION_USE_RESERVE;
2081	/* check for avail */
2082	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2083	if (ret)
2084		return ret;
2085	next = qp->s_head + 1;
2086	if (next >= qp->s_size)
2087		next = 0;
2088
2089	rkt = &rdi->lkey_table;
2090	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2091	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2092
2093	/* cplen has length from above */
2094	memcpy(&wqe->wr, wr, cplen);
2095
2096	wqe->length = 0;
2097	j = 0;
2098	if (wr->num_sge) {
2099		struct rvt_sge *last_sge = NULL;
2100
2101		acc = wr->opcode >= IB_WR_RDMA_READ ?
2102			IB_ACCESS_LOCAL_WRITE : 0;
2103		for (i = 0; i < wr->num_sge; i++) {
2104			u32 length = wr->sg_list[i].length;
2105
2106			if (length == 0)
2107				continue;
2108			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2109					  &wr->sg_list[i], acc);
2110			if (unlikely(ret < 0))
2111				goto bail_inval_free;
2112			wqe->length += length;
2113			if (ret)
2114				last_sge = &wqe->sg_list[j];
2115			j += ret;
2116		}
2117		wqe->wr.num_sge = j;
2118	}
2119
2120	/*
2121	 * Calculate and set SWQE PSN values prior to handing it off
2122	 * to the driver's check routine. This give the driver the
2123	 * opportunity to adjust PSN values based on internal checks.
2124	 */
2125	log_pmtu = qp->log_pmtu;
2126	if (qp->allowed_ops == IB_OPCODE_UD) {
2127		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2128
2129		log_pmtu = ah->log_pmtu;
2130		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2131	}
2132
2133	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2134		if (local_ops_delayed)
2135			atomic_inc(&qp->local_ops_pending);
2136		else
2137			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2138		wqe->ssn = 0;
2139		wqe->psn = 0;
2140		wqe->lpsn = 0;
2141	} else {
2142		wqe->ssn = qp->s_ssn++;
2143		wqe->psn = qp->s_next_psn;
2144		wqe->lpsn = wqe->psn +
2145				(wqe->length ?
2146					((wqe->length - 1) >> log_pmtu) :
2147					0);
2148	}
2149
2150	/* general part of wqe valid - allow for driver checks */
2151	if (rdi->driver_f.setup_wqe) {
2152		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2153		if (ret < 0)
2154			goto bail_inval_free_ref;
2155	}
2156
2157	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2158		qp->s_next_psn = wqe->lpsn + 1;
2159
2160	if (unlikely(reserved_op)) {
2161		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2162		rvt_qp_wqe_reserve(qp, wqe);
2163	} else {
2164		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2165		qp->s_avail--;
2166	}
2167	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2168	smp_wmb(); /* see request builders */
2169	qp->s_head = next;
2170
2171	return 0;
2172
2173bail_inval_free_ref:
2174	if (qp->allowed_ops == IB_OPCODE_UD)
2175		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2176bail_inval_free:
2177	/* release mr holds */
2178	while (j) {
2179		struct rvt_sge *sge = &wqe->sg_list[--j];
2180
2181		rvt_put_mr(sge->mr);
2182	}
2183	return ret;
2184}
2185
2186/**
2187 * rvt_post_send - post a send on a QP
2188 * @ibqp: the QP to post the send on
2189 * @wr: the list of work requests to post
2190 * @bad_wr: the first bad WR is put here
2191 *
2192 * This may be called from interrupt context.
2193 *
2194 * Return: 0 on success else errno
2195 */
2196int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2197		  const struct ib_send_wr **bad_wr)
2198{
2199	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2200	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2201	unsigned long flags = 0;
2202	bool call_send;
2203	unsigned nreq = 0;
2204	int err = 0;
2205
2206	spin_lock_irqsave(&qp->s_hlock, flags);
2207
2208	/*
2209	 * Ensure QP state is such that we can send. If not bail out early,
2210	 * there is no need to do this every time we post a send.
2211	 */
2212	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2213		spin_unlock_irqrestore(&qp->s_hlock, flags);
2214		return -EINVAL;
2215	}
2216
2217	/*
2218	 * If the send queue is empty, and we only have a single WR then just go
2219	 * ahead and kick the send engine into gear. Otherwise we will always
2220	 * just schedule the send to happen later.
2221	 */
2222	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2223
2224	for (; wr; wr = wr->next) {
2225		err = rvt_post_one_wr(qp, wr, &call_send);
2226		if (unlikely(err)) {
2227			*bad_wr = wr;
2228			goto bail;
2229		}
2230		nreq++;
2231	}
2232bail:
2233	spin_unlock_irqrestore(&qp->s_hlock, flags);
2234	if (nreq) {
2235		/*
2236		 * Only call do_send if there is exactly one packet, and the
2237		 * driver said it was ok.
2238		 */
2239		if (nreq == 1 && call_send)
2240			rdi->driver_f.do_send(qp);
2241		else
2242			rdi->driver_f.schedule_send_no_lock(qp);
2243	}
2244	return err;
2245}
2246
2247/**
2248 * rvt_post_srq_receive - post a receive on a shared receive queue
2249 * @ibsrq: the SRQ to post the receive on
2250 * @wr: the list of work requests to post
2251 * @bad_wr: A pointer to the first WR to cause a problem is put here
2252 *
2253 * This may be called from interrupt context.
2254 *
2255 * Return: 0 on success else errno
2256 */
2257int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2258		      const struct ib_recv_wr **bad_wr)
2259{
2260	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2261	struct rvt_krwq *wq;
2262	unsigned long flags;
2263
2264	for (; wr; wr = wr->next) {
2265		struct rvt_rwqe *wqe;
2266		u32 next;
2267		int i;
2268
2269		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2270			*bad_wr = wr;
2271			return -EINVAL;
2272		}
2273
2274		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2275		wq = srq->rq.kwq;
2276		next = wq->head + 1;
2277		if (next >= srq->rq.size)
2278			next = 0;
2279		if (next == READ_ONCE(wq->tail)) {
2280			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2281			*bad_wr = wr;
2282			return -ENOMEM;
2283		}
2284
2285		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2286		wqe->wr_id = wr->wr_id;
2287		wqe->num_sge = wr->num_sge;
2288		for (i = 0; i < wr->num_sge; i++) {
2289			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2290			wqe->sg_list[i].length = wr->sg_list[i].length;
2291			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2292		}
2293		/* Make sure queue entry is written before the head index. */
2294		smp_store_release(&wq->head, next);
2295		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2296	}
2297	return 0;
2298}
2299
2300/*
2301 * rvt used the internal kernel struct as part of its ABI, for now make sure
2302 * the kernel struct does not change layout. FIXME: rvt should never cast the
2303 * user struct to a kernel struct.
2304 */
2305static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2306{
2307	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2308		     offsetof(struct rvt_wqe_sge, addr));
2309	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2310		     offsetof(struct rvt_wqe_sge, length));
2311	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2312		     offsetof(struct rvt_wqe_sge, lkey));
2313	return (struct ib_sge *)sge;
2314}
2315
2316/*
2317 * Validate a RWQE and fill in the SGE state.
2318 * Return 1 if OK.
2319 */
2320static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2321{
2322	int i, j, ret;
2323	struct ib_wc wc;
2324	struct rvt_lkey_table *rkt;
2325	struct rvt_pd *pd;
2326	struct rvt_sge_state *ss;
2327	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2328
2329	rkt = &rdi->lkey_table;
2330	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2331	ss = &qp->r_sge;
2332	ss->sg_list = qp->r_sg_list;
2333	qp->r_len = 0;
2334	for (i = j = 0; i < wqe->num_sge; i++) {
2335		if (wqe->sg_list[i].length == 0)
2336			continue;
2337		/* Check LKEY */
2338		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2339				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2340				  IB_ACCESS_LOCAL_WRITE);
2341		if (unlikely(ret <= 0))
2342			goto bad_lkey;
2343		qp->r_len += wqe->sg_list[i].length;
2344		j++;
2345	}
2346	ss->num_sge = j;
2347	ss->total_len = qp->r_len;
2348	return 1;
2349
2350bad_lkey:
2351	while (j) {
2352		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2353
2354		rvt_put_mr(sge->mr);
2355	}
2356	ss->num_sge = 0;
2357	memset(&wc, 0, sizeof(wc));
2358	wc.wr_id = wqe->wr_id;
2359	wc.status = IB_WC_LOC_PROT_ERR;
2360	wc.opcode = IB_WC_RECV;
2361	wc.qp = &qp->ibqp;
2362	/* Signal solicited completion event. */
2363	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2364	return 0;
2365}
2366
2367/**
2368 * get_rvt_head - get head indices of the circular buffer
2369 * @rq: data structure for request queue entry
2370 * @ip: the QP
2371 *
2372 * Return - head index value
2373 */
2374static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2375{
2376	u32 head;
2377
2378	if (ip)
2379		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2380	else
2381		head = rq->kwq->head;
2382
2383	return head;
2384}
2385
2386/**
2387 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2388 * @qp: the QP
2389 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2390 *
2391 * Return -1 if there is a local error, 0 if no RWQE is available,
2392 * otherwise return 1.
2393 *
2394 * Can be called from interrupt level.
2395 */
2396int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2397{
2398	unsigned long flags;
2399	struct rvt_rq *rq;
2400	struct rvt_krwq *kwq = NULL;
2401	struct rvt_rwq *wq;
2402	struct rvt_srq *srq;
2403	struct rvt_rwqe *wqe;
2404	void (*handler)(struct ib_event *, void *);
2405	u32 tail;
2406	u32 head;
2407	int ret;
2408	void *ip = NULL;
2409
2410	if (qp->ibqp.srq) {
2411		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2412		handler = srq->ibsrq.event_handler;
2413		rq = &srq->rq;
2414		ip = srq->ip;
2415	} else {
2416		srq = NULL;
2417		handler = NULL;
2418		rq = &qp->r_rq;
2419		ip = qp->ip;
2420	}
2421
2422	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2423	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2424		ret = 0;
2425		goto unlock;
2426	}
2427	kwq = rq->kwq;
2428	if (ip) {
2429		wq = rq->wq;
2430		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2431	} else {
2432		tail = kwq->tail;
2433	}
2434
2435	/* Validate tail before using it since it is user writable. */
2436	if (tail >= rq->size)
2437		tail = 0;
2438
2439	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2440		head = get_rvt_head(rq, ip);
2441		kwq->count = rvt_get_rq_count(rq, head, tail);
2442	}
2443	if (unlikely(kwq->count == 0)) {
2444		ret = 0;
2445		goto unlock;
2446	}
2447	/* Make sure entry is read after the count is read. */
2448	smp_rmb();
2449	wqe = rvt_get_rwqe_ptr(rq, tail);
2450	/*
2451	 * Even though we update the tail index in memory, the verbs
2452	 * consumer is not supposed to post more entries until a
2453	 * completion is generated.
2454	 */
2455	if (++tail >= rq->size)
2456		tail = 0;
2457	if (ip)
2458		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2459	else
2460		kwq->tail = tail;
2461	if (!wr_id_only && !init_sge(qp, wqe)) {
2462		ret = -1;
2463		goto unlock;
2464	}
2465	qp->r_wr_id = wqe->wr_id;
2466
2467	kwq->count--;
2468	ret = 1;
2469	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2470	if (handler) {
2471		/*
2472		 * Validate head pointer value and compute
2473		 * the number of remaining WQEs.
2474		 */
2475		if (kwq->count < srq->limit) {
2476			kwq->count =
2477				rvt_get_rq_count(rq,
2478						 get_rvt_head(rq, ip), tail);
2479			if (kwq->count < srq->limit) {
2480				struct ib_event ev;
2481
2482				srq->limit = 0;
2483				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2484				ev.device = qp->ibqp.device;
2485				ev.element.srq = qp->ibqp.srq;
2486				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2487				handler(&ev, srq->ibsrq.srq_context);
2488				goto bail;
2489			}
2490		}
2491	}
2492unlock:
2493	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2494bail:
2495	return ret;
2496}
2497EXPORT_SYMBOL(rvt_get_rwqe);
2498
2499/**
2500 * qp_comm_est - handle trap with QP established
2501 * @qp: the QP
2502 */
2503void rvt_comm_est(struct rvt_qp *qp)
2504{
2505	qp->r_flags |= RVT_R_COMM_EST;
2506	if (qp->ibqp.event_handler) {
2507		struct ib_event ev;
2508
2509		ev.device = qp->ibqp.device;
2510		ev.element.qp = &qp->ibqp;
2511		ev.event = IB_EVENT_COMM_EST;
2512		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2513	}
2514}
2515EXPORT_SYMBOL(rvt_comm_est);
2516
2517void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2518{
2519	unsigned long flags;
2520	int lastwqe;
2521
2522	spin_lock_irqsave(&qp->s_lock, flags);
2523	lastwqe = rvt_error_qp(qp, err);
2524	spin_unlock_irqrestore(&qp->s_lock, flags);
2525
2526	if (lastwqe) {
2527		struct ib_event ev;
2528
2529		ev.device = qp->ibqp.device;
2530		ev.element.qp = &qp->ibqp;
2531		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2532		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2533	}
2534}
2535EXPORT_SYMBOL(rvt_rc_error);
2536
2537/*
2538 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2539 *  @index - the index
2540 *  return usec from an index into ib_rvt_rnr_table
2541 */
2542unsigned long rvt_rnr_tbl_to_usec(u32 index)
2543{
2544	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2545}
2546EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2547
2548static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2549{
2550	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2551				  IB_AETH_CREDIT_MASK];
2552}
2553
2554/*
2555 *  rvt_add_retry_timer_ext - add/start a retry timer
2556 *  @qp - the QP
2557 *  @shift - timeout shift to wait for multiple packets
2558 *  add a retry timer on the QP
2559 */
2560void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2561{
2562	struct ib_qp *ibqp = &qp->ibqp;
2563	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2564
2565	lockdep_assert_held(&qp->s_lock);
2566	qp->s_flags |= RVT_S_TIMER;
2567       /* 4.096 usec. * (1 << qp->timeout) */
2568	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2569			      (qp->timeout_jiffies << shift);
2570	add_timer(&qp->s_timer);
2571}
2572EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2573
2574/**
2575 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2576 * @qp: the QP
2577 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2578 */
2579void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2580{
2581	u32 to;
2582
2583	lockdep_assert_held(&qp->s_lock);
2584	qp->s_flags |= RVT_S_WAIT_RNR;
2585	to = rvt_aeth_to_usec(aeth);
2586	trace_rvt_rnrnak_add(qp, to);
2587	hrtimer_start(&qp->s_rnr_timer,
2588		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2589}
2590EXPORT_SYMBOL(rvt_add_rnr_timer);
2591
2592/**
2593 * rvt_stop_rc_timers - stop all timers
2594 * @qp: the QP
2595 * stop any pending timers
2596 */
2597void rvt_stop_rc_timers(struct rvt_qp *qp)
2598{
2599	lockdep_assert_held(&qp->s_lock);
2600	/* Remove QP from all timers */
2601	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2602		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2603		del_timer(&qp->s_timer);
2604		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2605	}
2606}
2607EXPORT_SYMBOL(rvt_stop_rc_timers);
2608
2609/**
2610 * rvt_stop_rnr_timer - stop an rnr timer
2611 * @qp - the QP
2612 *
2613 * stop an rnr timer and return if the timer
2614 * had been pending.
2615 */
2616static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2617{
2618	lockdep_assert_held(&qp->s_lock);
2619	/* Remove QP from rnr timer */
2620	if (qp->s_flags & RVT_S_WAIT_RNR) {
2621		qp->s_flags &= ~RVT_S_WAIT_RNR;
2622		trace_rvt_rnrnak_stop(qp, 0);
2623	}
2624}
2625
2626/**
2627 * rvt_del_timers_sync - wait for any timeout routines to exit
2628 * @qp: the QP
2629 */
2630void rvt_del_timers_sync(struct rvt_qp *qp)
2631{
2632	del_timer_sync(&qp->s_timer);
2633	hrtimer_cancel(&qp->s_rnr_timer);
2634}
2635EXPORT_SYMBOL(rvt_del_timers_sync);
2636
2637/*
2638 * This is called from s_timer for missing responses.
2639 */
2640static void rvt_rc_timeout(struct timer_list *t)
2641{
2642	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2643	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2644	unsigned long flags;
2645
2646	spin_lock_irqsave(&qp->r_lock, flags);
2647	spin_lock(&qp->s_lock);
2648	if (qp->s_flags & RVT_S_TIMER) {
2649		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2650
2651		qp->s_flags &= ~RVT_S_TIMER;
2652		rvp->n_rc_timeouts++;
2653		del_timer(&qp->s_timer);
2654		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2655		if (rdi->driver_f.notify_restart_rc)
2656			rdi->driver_f.notify_restart_rc(qp,
2657							qp->s_last_psn + 1,
2658							1);
2659		rdi->driver_f.schedule_send(qp);
2660	}
2661	spin_unlock(&qp->s_lock);
2662	spin_unlock_irqrestore(&qp->r_lock, flags);
2663}
2664
2665/*
2666 * This is called from s_timer for RNR timeouts.
2667 */
2668enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2669{
2670	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2671	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2672	unsigned long flags;
2673
2674	spin_lock_irqsave(&qp->s_lock, flags);
2675	rvt_stop_rnr_timer(qp);
2676	trace_rvt_rnrnak_timeout(qp, 0);
2677	rdi->driver_f.schedule_send(qp);
2678	spin_unlock_irqrestore(&qp->s_lock, flags);
2679	return HRTIMER_NORESTART;
2680}
2681EXPORT_SYMBOL(rvt_rc_rnr_retry);
2682
2683/**
2684 * rvt_qp_iter_init - initial for QP iteration
2685 * @rdi: rvt devinfo
2686 * @v: u64 value
2687 * @cb: user-defined callback
2688 *
2689 * This returns an iterator suitable for iterating QPs
2690 * in the system.
2691 *
2692 * The @cb is a user-defined callback and @v is a 64-bit
2693 * value passed to and relevant for processing in the
2694 * @cb.  An example use case would be to alter QP processing
2695 * based on criteria not part of the rvt_qp.
2696 *
2697 * Use cases that require memory allocation to succeed
2698 * must preallocate appropriately.
2699 *
2700 * Return: a pointer to an rvt_qp_iter or NULL
2701 */
2702struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2703				     u64 v,
2704				     void (*cb)(struct rvt_qp *qp, u64 v))
2705{
2706	struct rvt_qp_iter *i;
2707
2708	i = kzalloc(sizeof(*i), GFP_KERNEL);
2709	if (!i)
2710		return NULL;
2711
2712	i->rdi = rdi;
2713	/* number of special QPs (SMI/GSI) for device */
2714	i->specials = rdi->ibdev.phys_port_cnt * 2;
2715	i->v = v;
2716	i->cb = cb;
2717
2718	return i;
2719}
2720EXPORT_SYMBOL(rvt_qp_iter_init);
2721
2722/**
2723 * rvt_qp_iter_next - return the next QP in iter
2724 * @iter: the iterator
2725 *
2726 * Fine grained QP iterator suitable for use
2727 * with debugfs seq_file mechanisms.
2728 *
2729 * Updates iter->qp with the current QP when the return
2730 * value is 0.
2731 *
2732 * Return: 0 - iter->qp is valid 1 - no more QPs
2733 */
2734int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2735	__must_hold(RCU)
2736{
2737	int n = iter->n;
2738	int ret = 1;
2739	struct rvt_qp *pqp = iter->qp;
2740	struct rvt_qp *qp;
2741	struct rvt_dev_info *rdi = iter->rdi;
2742
2743	/*
2744	 * The approach is to consider the special qps
2745	 * as additional table entries before the
2746	 * real hash table.  Since the qp code sets
2747	 * the qp->next hash link to NULL, this works just fine.
2748	 *
2749	 * iter->specials is 2 * # ports
2750	 *
2751	 * n = 0..iter->specials is the special qp indices
2752	 *
2753	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2754	 * the potential hash bucket entries
2755	 *
2756	 */
2757	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2758		if (pqp) {
2759			qp = rcu_dereference(pqp->next);
2760		} else {
2761			if (n < iter->specials) {
2762				struct rvt_ibport *rvp;
2763				int pidx;
2764
2765				pidx = n % rdi->ibdev.phys_port_cnt;
2766				rvp = rdi->ports[pidx];
2767				qp = rcu_dereference(rvp->qp[n & 1]);
2768			} else {
2769				qp = rcu_dereference(
2770					rdi->qp_dev->qp_table[
2771						(n - iter->specials)]);
2772			}
2773		}
2774		pqp = qp;
2775		if (qp) {
2776			iter->qp = qp;
2777			iter->n = n;
2778			return 0;
2779		}
2780	}
2781	return ret;
2782}
2783EXPORT_SYMBOL(rvt_qp_iter_next);
2784
2785/**
2786 * rvt_qp_iter - iterate all QPs
2787 * @rdi: rvt devinfo
2788 * @v: a 64-bit value
2789 * @cb: a callback
2790 *
2791 * This provides a way for iterating all QPs.
2792 *
2793 * The @cb is a user-defined callback and @v is a 64-bit
2794 * value passed to and relevant for processing in the
2795 * cb.  An example use case would be to alter QP processing
2796 * based on criteria not part of the rvt_qp.
2797 *
2798 * The code has an internal iterator to simplify
2799 * non seq_file use cases.
2800 */
2801void rvt_qp_iter(struct rvt_dev_info *rdi,
2802		 u64 v,
2803		 void (*cb)(struct rvt_qp *qp, u64 v))
2804{
2805	int ret;
2806	struct rvt_qp_iter i = {
2807		.rdi = rdi,
2808		.specials = rdi->ibdev.phys_port_cnt * 2,
2809		.v = v,
2810		.cb = cb
2811	};
2812
2813	rcu_read_lock();
2814	do {
2815		ret = rvt_qp_iter_next(&i);
2816		if (!ret) {
2817			rvt_get_qp(i.qp);
2818			rcu_read_unlock();
2819			i.cb(i.qp, i.v);
2820			rcu_read_lock();
2821			rvt_put_qp(i.qp);
2822		}
2823	} while (!ret);
2824	rcu_read_unlock();
2825}
2826EXPORT_SYMBOL(rvt_qp_iter);
2827
2828/*
2829 * This should be called with s_lock held.
2830 */
2831void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2832		       enum ib_wc_status status)
2833{
2834	u32 old_last, last;
2835	struct rvt_dev_info *rdi;
2836
2837	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2838		return;
2839	rdi = ib_to_rvt(qp->ibqp.device);
2840
2841	old_last = qp->s_last;
2842	trace_rvt_qp_send_completion(qp, wqe, old_last);
2843	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2844				    status);
2845	if (qp->s_acked == old_last)
2846		qp->s_acked = last;
2847	if (qp->s_cur == old_last)
2848		qp->s_cur = last;
2849	if (qp->s_tail == old_last)
2850		qp->s_tail = last;
2851	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2852		qp->s_draining = 0;
2853}
2854EXPORT_SYMBOL(rvt_send_complete);
2855
2856/**
2857 * rvt_copy_sge - copy data to SGE memory
2858 * @qp: associated QP
2859 * @ss: the SGE state
2860 * @data: the data to copy
2861 * @length: the length of the data
2862 * @release: boolean to release MR
2863 * @copy_last: do a separate copy of the last 8 bytes
2864 */
2865void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2866		  void *data, u32 length,
2867		  bool release, bool copy_last)
2868{
2869	struct rvt_sge *sge = &ss->sge;
2870	int i;
2871	bool in_last = false;
2872	bool cacheless_copy = false;
2873	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2874	struct rvt_wss *wss = rdi->wss;
2875	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2876
2877	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2878		cacheless_copy = length >= PAGE_SIZE;
2879	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2880		if (length >= PAGE_SIZE) {
2881			/*
2882			 * NOTE: this *assumes*:
2883			 * o The first vaddr is the dest.
2884			 * o If multiple pages, then vaddr is sequential.
2885			 */
2886			wss_insert(wss, sge->vaddr);
2887			if (length >= (2 * PAGE_SIZE))
2888				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2889
2890			cacheless_copy = wss_exceeds_threshold(wss);
2891		} else {
2892			wss_advance_clean_counter(wss);
2893		}
2894	}
2895
2896	if (copy_last) {
2897		if (length > 8) {
2898			length -= 8;
2899		} else {
2900			copy_last = false;
2901			in_last = true;
2902		}
2903	}
2904
2905again:
2906	while (length) {
2907		u32 len = rvt_get_sge_length(sge, length);
2908
2909		WARN_ON_ONCE(len == 0);
2910		if (unlikely(in_last)) {
2911			/* enforce byte transfer ordering */
2912			for (i = 0; i < len; i++)
2913				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2914		} else if (cacheless_copy) {
2915			cacheless_memcpy(sge->vaddr, data, len);
2916		} else {
2917			memcpy(sge->vaddr, data, len);
2918		}
2919		rvt_update_sge(ss, len, release);
2920		data += len;
2921		length -= len;
2922	}
2923
2924	if (copy_last) {
2925		copy_last = false;
2926		in_last = true;
2927		length = 8;
2928		goto again;
2929	}
2930}
2931EXPORT_SYMBOL(rvt_copy_sge);
2932
2933static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2934					  struct rvt_qp *sqp)
2935{
2936	rvp->n_pkt_drops++;
2937	/*
2938	 * For RC, the requester would timeout and retry so
2939	 * shortcut the timeouts and just signal too many retries.
2940	 */
2941	return sqp->ibqp.qp_type == IB_QPT_RC ?
2942		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2943}
2944
2945/**
2946 * ruc_loopback - handle UC and RC loopback requests
2947 * @sqp: the sending QP
2948 *
2949 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2950 * Note that although we are single threaded due to the send engine, we still
2951 * have to protect against post_send().  We don't have to worry about
2952 * receive interrupts since this is a connected protocol and all packets
2953 * will pass through here.
2954 */
2955void rvt_ruc_loopback(struct rvt_qp *sqp)
2956{
2957	struct rvt_ibport *rvp =  NULL;
2958	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2959	struct rvt_qp *qp;
2960	struct rvt_swqe *wqe;
2961	struct rvt_sge *sge;
2962	unsigned long flags;
2963	struct ib_wc wc;
2964	u64 sdata;
2965	atomic64_t *maddr;
2966	enum ib_wc_status send_status;
2967	bool release;
2968	int ret;
2969	bool copy_last = false;
2970	int local_ops = 0;
2971
2972	rcu_read_lock();
2973	rvp = rdi->ports[sqp->port_num - 1];
2974
2975	/*
2976	 * Note that we check the responder QP state after
2977	 * checking the requester's state.
2978	 */
2979
2980	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2981			    sqp->remote_qpn);
2982
2983	spin_lock_irqsave(&sqp->s_lock, flags);
2984
2985	/* Return if we are already busy processing a work request. */
2986	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2987	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2988		goto unlock;
2989
2990	sqp->s_flags |= RVT_S_BUSY;
2991
2992again:
2993	if (sqp->s_last == READ_ONCE(sqp->s_head))
2994		goto clr_busy;
2995	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2996
2997	/* Return if it is not OK to start a new work request. */
2998	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2999		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3000			goto clr_busy;
3001		/* We are in the error state, flush the work request. */
3002		send_status = IB_WC_WR_FLUSH_ERR;
3003		goto flush_send;
3004	}
3005
3006	/*
3007	 * We can rely on the entry not changing without the s_lock
3008	 * being held until we update s_last.
3009	 * We increment s_cur to indicate s_last is in progress.
3010	 */
3011	if (sqp->s_last == sqp->s_cur) {
3012		if (++sqp->s_cur >= sqp->s_size)
3013			sqp->s_cur = 0;
3014	}
3015	spin_unlock_irqrestore(&sqp->s_lock, flags);
3016
3017	if (!qp) {
3018		send_status = loopback_qp_drop(rvp, sqp);
3019		goto serr_no_r_lock;
3020	}
3021	spin_lock_irqsave(&qp->r_lock, flags);
3022	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3023	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3024		send_status = loopback_qp_drop(rvp, sqp);
3025		goto serr;
3026	}
3027
3028	memset(&wc, 0, sizeof(wc));
3029	send_status = IB_WC_SUCCESS;
3030
3031	release = true;
3032	sqp->s_sge.sge = wqe->sg_list[0];
3033	sqp->s_sge.sg_list = wqe->sg_list + 1;
3034	sqp->s_sge.num_sge = wqe->wr.num_sge;
3035	sqp->s_len = wqe->length;
3036	switch (wqe->wr.opcode) {
3037	case IB_WR_REG_MR:
3038		goto send_comp;
3039
3040	case IB_WR_LOCAL_INV:
3041		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3042			if (rvt_invalidate_rkey(sqp,
3043						wqe->wr.ex.invalidate_rkey))
3044				send_status = IB_WC_LOC_PROT_ERR;
3045			local_ops = 1;
3046		}
3047		goto send_comp;
3048
3049	case IB_WR_SEND_WITH_INV:
3050	case IB_WR_SEND_WITH_IMM:
3051	case IB_WR_SEND:
3052		ret = rvt_get_rwqe(qp, false);
3053		if (ret < 0)
3054			goto op_err;
3055		if (!ret)
3056			goto rnr_nak;
3057		if (wqe->length > qp->r_len)
3058			goto inv_err;
3059		switch (wqe->wr.opcode) {
3060		case IB_WR_SEND_WITH_INV:
3061			if (!rvt_invalidate_rkey(qp,
3062						 wqe->wr.ex.invalidate_rkey)) {
3063				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3064				wc.ex.invalidate_rkey =
3065					wqe->wr.ex.invalidate_rkey;
3066			}
3067			break;
3068		case IB_WR_SEND_WITH_IMM:
3069			wc.wc_flags = IB_WC_WITH_IMM;
3070			wc.ex.imm_data = wqe->wr.ex.imm_data;
3071			break;
3072		default:
3073			break;
3074		}
3075		break;
3076
3077	case IB_WR_RDMA_WRITE_WITH_IMM:
3078		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3079			goto inv_err;
3080		wc.wc_flags = IB_WC_WITH_IMM;
3081		wc.ex.imm_data = wqe->wr.ex.imm_data;
3082		ret = rvt_get_rwqe(qp, true);
3083		if (ret < 0)
3084			goto op_err;
3085		if (!ret)
3086			goto rnr_nak;
3087		/* skip copy_last set and qp_access_flags recheck */
3088		goto do_write;
3089	case IB_WR_RDMA_WRITE:
3090		copy_last = rvt_is_user_qp(qp);
3091		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3092			goto inv_err;
3093do_write:
3094		if (wqe->length == 0)
3095			break;
3096		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3097					  wqe->rdma_wr.remote_addr,
3098					  wqe->rdma_wr.rkey,
3099					  IB_ACCESS_REMOTE_WRITE)))
3100			goto acc_err;
3101		qp->r_sge.sg_list = NULL;
3102		qp->r_sge.num_sge = 1;
3103		qp->r_sge.total_len = wqe->length;
3104		break;
3105
3106	case IB_WR_RDMA_READ:
3107		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3108			goto inv_err;
3109		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3110					  wqe->rdma_wr.remote_addr,
3111					  wqe->rdma_wr.rkey,
3112					  IB_ACCESS_REMOTE_READ)))
3113			goto acc_err;
3114		release = false;
3115		sqp->s_sge.sg_list = NULL;
3116		sqp->s_sge.num_sge = 1;
3117		qp->r_sge.sge = wqe->sg_list[0];
3118		qp->r_sge.sg_list = wqe->sg_list + 1;
3119		qp->r_sge.num_sge = wqe->wr.num_sge;
3120		qp->r_sge.total_len = wqe->length;
3121		break;
3122
3123	case IB_WR_ATOMIC_CMP_AND_SWP:
3124	case IB_WR_ATOMIC_FETCH_AND_ADD:
3125		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3126			goto inv_err;
3127		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3128					  wqe->atomic_wr.remote_addr,
3129					  wqe->atomic_wr.rkey,
3130					  IB_ACCESS_REMOTE_ATOMIC)))
3131			goto acc_err;
3132		/* Perform atomic OP and save result. */
3133		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3134		sdata = wqe->atomic_wr.compare_add;
3135		*(u64 *)sqp->s_sge.sge.vaddr =
3136			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3137			(u64)atomic64_add_return(sdata, maddr) - sdata :
3138			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3139				      sdata, wqe->atomic_wr.swap);
3140		rvt_put_mr(qp->r_sge.sge.mr);
3141		qp->r_sge.num_sge = 0;
3142		goto send_comp;
3143
3144	default:
3145		send_status = IB_WC_LOC_QP_OP_ERR;
3146		goto serr;
3147	}
3148
3149	sge = &sqp->s_sge.sge;
3150	while (sqp->s_len) {
3151		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3152
3153		WARN_ON_ONCE(len == 0);
3154		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3155			     len, release, copy_last);
3156		rvt_update_sge(&sqp->s_sge, len, !release);
3157		sqp->s_len -= len;
3158	}
3159	if (release)
3160		rvt_put_ss(&qp->r_sge);
3161
3162	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3163		goto send_comp;
3164
3165	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3166		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3167	else
3168		wc.opcode = IB_WC_RECV;
3169	wc.wr_id = qp->r_wr_id;
3170	wc.status = IB_WC_SUCCESS;
3171	wc.byte_len = wqe->length;
3172	wc.qp = &qp->ibqp;
3173	wc.src_qp = qp->remote_qpn;
3174	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3175	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3176	wc.port_num = 1;
3177	/* Signal completion event if the solicited bit is set. */
3178	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3179
3180send_comp:
3181	spin_unlock_irqrestore(&qp->r_lock, flags);
3182	spin_lock_irqsave(&sqp->s_lock, flags);
3183	rvp->n_loop_pkts++;
3184flush_send:
3185	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3186	rvt_send_complete(sqp, wqe, send_status);
3187	if (local_ops) {
3188		atomic_dec(&sqp->local_ops_pending);
3189		local_ops = 0;
3190	}
3191	goto again;
3192
3193rnr_nak:
3194	/* Handle RNR NAK */
3195	if (qp->ibqp.qp_type == IB_QPT_UC)
3196		goto send_comp;
3197	rvp->n_rnr_naks++;
3198	/*
3199	 * Note: we don't need the s_lock held since the BUSY flag
3200	 * makes this single threaded.
3201	 */
3202	if (sqp->s_rnr_retry == 0) {
3203		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3204		goto serr;
3205	}
3206	if (sqp->s_rnr_retry_cnt < 7)
3207		sqp->s_rnr_retry--;
3208	spin_unlock_irqrestore(&qp->r_lock, flags);
3209	spin_lock_irqsave(&sqp->s_lock, flags);
3210	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3211		goto clr_busy;
3212	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3213				IB_AETH_CREDIT_SHIFT);
3214	goto clr_busy;
3215
3216op_err:
3217	send_status = IB_WC_REM_OP_ERR;
3218	wc.status = IB_WC_LOC_QP_OP_ERR;
3219	goto err;
3220
3221inv_err:
3222	send_status =
3223		sqp->ibqp.qp_type == IB_QPT_RC ?
3224			IB_WC_REM_INV_REQ_ERR :
3225			IB_WC_SUCCESS;
3226	wc.status = IB_WC_LOC_QP_OP_ERR;
3227	goto err;
3228
3229acc_err:
3230	send_status = IB_WC_REM_ACCESS_ERR;
3231	wc.status = IB_WC_LOC_PROT_ERR;
3232err:
3233	/* responder goes to error state */
3234	rvt_rc_error(qp, wc.status);
3235
3236serr:
3237	spin_unlock_irqrestore(&qp->r_lock, flags);
3238serr_no_r_lock:
3239	spin_lock_irqsave(&sqp->s_lock, flags);
3240	rvt_send_complete(sqp, wqe, send_status);
3241	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3242		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3243
3244		sqp->s_flags &= ~RVT_S_BUSY;
3245		spin_unlock_irqrestore(&sqp->s_lock, flags);
3246		if (lastwqe) {
3247			struct ib_event ev;
3248
3249			ev.device = sqp->ibqp.device;
3250			ev.element.qp = &sqp->ibqp;
3251			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3252			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3253		}
3254		goto done;
3255	}
3256clr_busy:
3257	sqp->s_flags &= ~RVT_S_BUSY;
3258unlock:
3259	spin_unlock_irqrestore(&sqp->s_lock, flags);
3260done:
3261	rcu_read_unlock();
3262}
3263EXPORT_SYMBOL(rvt_ruc_loopback);