Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG		0x000
  27#define QUP_STATE		0x004
  28#define QUP_IO_MODE		0x008
  29#define QUP_SW_RESET		0x00c
  30#define QUP_OPERATIONAL		0x018
  31#define QUP_ERROR_FLAGS		0x01c
  32#define QUP_ERROR_FLAGS_EN	0x020
  33#define QUP_OPERATIONAL_MASK	0x028
  34#define QUP_HW_VERSION		0x030
  35#define QUP_MX_OUTPUT_CNT	0x100
  36#define QUP_OUT_FIFO_BASE	0x110
  37#define QUP_MX_WRITE_CNT	0x150
  38#define QUP_MX_INPUT_CNT	0x200
  39#define QUP_MX_READ_CNT		0x208
  40#define QUP_IN_FIFO_BASE	0x218
  41#define QUP_I2C_CLK_CTL		0x400
  42#define QUP_I2C_STATUS		0x404
  43#define QUP_I2C_MASTER_GEN	0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE		0
  47#define QUP_RUN_STATE		1
  48#define QUP_PAUSE_STATE		3
  49#define QUP_STATE_MASK		3
  50
  51#define QUP_STATE_VALID		BIT(2)
  52#define QUP_I2C_MAST_GEN	BIT(4)
  53#define QUP_I2C_FLUSH		BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET	0x000ff0
  56#define QUP_I2C_STATUS_RESET	0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG	BIT(3)
  60#define QUP_OUT_NOT_EMPTY	BIT(4)
  61#define QUP_IN_NOT_EMPTY	BIT(5)
  62#define QUP_OUT_FULL		BIT(6)
  63#define QUP_OUT_SVC_FLAG	BIT(8)
  64#define QUP_IN_SVC_FLAG		BIT(9)
  65#define QUP_MX_OUTPUT_DONE	BIT(10)
  66#define QUP_MX_INPUT_DONE	BIT(11)
  67#define OUT_BLOCK_WRITE_REQ	BIT(12)
  68#define IN_BLOCK_READ_REQ	BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT		BIT(7)
  72#define QUP_CLOCK_AUTO_GATE	BIT(13)
  73#define I2C_MINI_CORE		(2 << 8)
  74#define I2C_N_VAL		15
  75#define I2C_N_VAL_V2		7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
  82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
  83#define QUP_INPUT_BLK_MODE	(1 << 12)
  84#define QUP_INPUT_BAM_MODE	(3 << 12)
  85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN		BIT(14)
  87#define QUP_PACK_EN		BIT(15)
  88
  89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN		1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START		(1 << 8)
  99#define QUP_TAG_DATA		(2 << 8)
 100#define QUP_TAG_STOP		(3 << 8)
 101#define QUP_TAG_REC		(4 << 8)
 102#define QUP_BAM_INPUT_EOT		0x93
 103#define QUP_BAM_FLUSH_STOP		0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 116#define I2C_STATUS_ERROR_MASK		0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS		0x7c
 118
 119#define QUP_READ_LIMIT			256
 120#define SET_BIT				0x1
 121#define RESET_BIT			0x0
 122#define ONE_BYTE			0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN			SZ_64K
 127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN			2
 138
 139/* Default values. Use these if FW query fails */
 140#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
 141#define DEFAULT_SRC_CLK 20000000
 142
 143/*
 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 145 * data transfer
 146 */
 147#define QUP_MAX_TAGS_LEN		4
 148/* Max data length for each DATARD tags */
 149#define RECV_MAX_DATA_LEN		254
 150/* TAG length for DATA READ in RX FIFO  */
 151#define READ_RX_TAGS_LEN		2
 152
 153static unsigned int scl_freq;
 154module_param_named(scl_freq, scl_freq, uint, 0444);
 155MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 156
 157/*
 158 * count: no of blocks
 159 * pos: current block number
 160 * tx_tag_len: tx tag length for current block
 161 * rx_tag_len: rx tag length for current block
 162 * data_len: remaining data length for current message
 163 * cur_blk_len: data length for current block
 164 * total_tx_len: total tx length including tag bytes for current QUP transfer
 165 * total_rx_len: total rx length including tag bytes for current QUP transfer
 166 * tx_fifo_data_pos: current byte number in TX FIFO word
 167 * tx_fifo_free: number of free bytes in current QUP block write.
 168 * rx_fifo_data_pos: current byte number in RX FIFO word
 169 * fifo_available: number of available bytes in RX FIFO for current
 170 *		   QUP block read
 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 172 *		 to TX FIFO will be appended in this data and will be written to
 173 *		 TX FIFO when all the 4 bytes are available.
 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 175 *		 contains the 4 bytes of RX data.
 176 * cur_data: pointer to tell cur data position for current message
 177 * cur_tx_tags: pointer to tell cur position in tags
 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 179 * send_last_word: for tx FIFO, last word send is pending in current block
 180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 184 * tags: contains tx tag bytes for current QUP transfer
 185 */
 186struct qup_i2c_block {
 187	int		count;
 188	int		pos;
 189	int		tx_tag_len;
 190	int		rx_tag_len;
 191	int		data_len;
 192	int		cur_blk_len;
 193	int		total_tx_len;
 194	int		total_rx_len;
 195	int		tx_fifo_data_pos;
 196	int		tx_fifo_free;
 197	int		rx_fifo_data_pos;
 198	int		fifo_available;
 199	u32		tx_fifo_data;
 200	u32		rx_fifo_data;
 201	u8		*cur_data;
 202	u8		*cur_tx_tags;
 203	bool		tx_tags_sent;
 204	bool		send_last_word;
 205	bool		rx_tags_fetched;
 206	bool		rx_bytes_read;
 207	bool		is_tx_blk_mode;
 208	bool		is_rx_blk_mode;
 209	u8		tags[6];
 210};
 211
 212struct qup_i2c_tag {
 213	u8 *start;
 214	dma_addr_t addr;
 215};
 216
 217struct qup_i2c_bam {
 218	struct	qup_i2c_tag tag;
 219	struct	dma_chan *dma;
 220	struct	scatterlist *sg;
 221	unsigned int sg_cnt;
 222};
 223
 224struct qup_i2c_dev {
 225	struct device		*dev;
 226	void __iomem		*base;
 227	int			irq;
 228	struct clk		*clk;
 229	struct clk		*pclk;
 230	struct i2c_adapter	adap;
 231
 232	int			clk_ctl;
 233	int			out_fifo_sz;
 234	int			in_fifo_sz;
 235	int			out_blk_sz;
 236	int			in_blk_sz;
 237
 238	int			blk_xfer_limit;
 239	unsigned long		one_byte_t;
 240	unsigned long		xfer_timeout;
 241	struct qup_i2c_block	blk;
 242
 243	struct i2c_msg		*msg;
 244	/* Current posion in user message buffer */
 245	int			pos;
 246	/* I2C protocol errors */
 247	u32			bus_err;
 248	/* QUP core errors */
 249	u32			qup_err;
 250
 251	/* To check if this is the last msg */
 252	bool			is_last;
 253	bool			is_smbus_read;
 254
 255	/* To configure when bus is in run state */
 256	u32			config_run;
 257
 258	/* dma parameters */
 259	bool			is_dma;
 260	/* To check if the current transfer is using DMA */
 261	bool			use_dma;
 262	unsigned int		max_xfer_sg_len;
 263	unsigned int		tag_buf_pos;
 264	/* The threshold length above which block mode will be used */
 265	unsigned int		blk_mode_threshold;
 266	struct			dma_pool *dpool;
 267	struct			qup_i2c_tag start_tag;
 268	struct			qup_i2c_bam brx;
 269	struct			qup_i2c_bam btx;
 270
 271	struct completion	xfer;
 272	/* function to write data in tx fifo */
 273	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 274	/* function to read data from rx fifo */
 275	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 276	/* function to write tags in tx fifo for i2c read transfer */
 277	void (*write_rx_tags)(struct qup_i2c_dev *qup);
 278};
 279
 280static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 281{
 282	struct qup_i2c_dev *qup = dev;
 283	struct qup_i2c_block *blk = &qup->blk;
 284	u32 bus_err;
 285	u32 qup_err;
 286	u32 opflags;
 287
 288	bus_err = readl(qup->base + QUP_I2C_STATUS);
 289	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 290	opflags = readl(qup->base + QUP_OPERATIONAL);
 291
 292	if (!qup->msg) {
 293		/* Clear Error interrupt */
 294		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 295		return IRQ_HANDLED;
 296	}
 297
 298	bus_err &= I2C_STATUS_ERROR_MASK;
 299	qup_err &= QUP_STATUS_ERROR_FLAGS;
 300
 301	/* Clear the error bits in QUP_ERROR_FLAGS */
 302	if (qup_err)
 303		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 304
 305	/* Clear the error bits in QUP_I2C_STATUS */
 306	if (bus_err)
 307		writel(bus_err, qup->base + QUP_I2C_STATUS);
 308
 309	/*
 310	 * Check for BAM mode and returns if already error has come for current
 311	 * transfer. In Error case, sometimes, QUP generates more than one
 312	 * interrupt.
 313	 */
 314	if (qup->use_dma && (qup->qup_err || qup->bus_err))
 315		return IRQ_HANDLED;
 316
 317	/* Reset the QUP State in case of error */
 318	if (qup_err || bus_err) {
 319		/*
 320		 * Don’t reset the QUP state in case of BAM mode. The BAM
 321		 * flush operation needs to be scheduled in transfer function
 322		 * which will clear the remaining schedule descriptors in BAM
 323		 * HW FIFO and generates the BAM interrupt.
 324		 */
 325		if (!qup->use_dma)
 326			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 327		goto done;
 328	}
 329
 330	if (opflags & QUP_OUT_SVC_FLAG) {
 331		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 332
 333		if (opflags & OUT_BLOCK_WRITE_REQ) {
 334			blk->tx_fifo_free += qup->out_blk_sz;
 335			if (qup->msg->flags & I2C_M_RD)
 336				qup->write_rx_tags(qup);
 337			else
 338				qup->write_tx_fifo(qup);
 339		}
 340	}
 341
 342	if (opflags & QUP_IN_SVC_FLAG) {
 343		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 344
 345		if (!blk->is_rx_blk_mode) {
 346			blk->fifo_available += qup->in_fifo_sz;
 347			qup->read_rx_fifo(qup);
 348		} else if (opflags & IN_BLOCK_READ_REQ) {
 349			blk->fifo_available += qup->in_blk_sz;
 350			qup->read_rx_fifo(qup);
 351		}
 352	}
 353
 354	if (qup->msg->flags & I2C_M_RD) {
 355		if (!blk->rx_bytes_read)
 356			return IRQ_HANDLED;
 357	} else {
 358		/*
 359		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 360		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 361		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 362		 * of interrupt for write message in FIFO mode is
 363		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 364		 */
 365		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 366			return IRQ_HANDLED;
 367	}
 368
 369done:
 370	qup->qup_err = qup_err;
 371	qup->bus_err = bus_err;
 372	complete(&qup->xfer);
 373	return IRQ_HANDLED;
 374}
 375
 376static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 377				   u32 req_state, u32 req_mask)
 378{
 379	int retries = 1;
 380	u32 state;
 381
 382	/*
 383	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 384	 * cycles. So retry once after a 1uS delay.
 385	 */
 386	do {
 387		state = readl(qup->base + QUP_STATE);
 388
 389		if (state & QUP_STATE_VALID &&
 390		    (state & req_mask) == req_state)
 391			return 0;
 392
 393		udelay(1);
 394	} while (retries--);
 395
 396	return -ETIMEDOUT;
 397}
 398
 399static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 400{
 401	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 402}
 403
 404static void qup_i2c_flush(struct qup_i2c_dev *qup)
 405{
 406	u32 val = readl(qup->base + QUP_STATE);
 407
 408	val |= QUP_I2C_FLUSH;
 409	writel(val, qup->base + QUP_STATE);
 410}
 411
 412static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 413{
 414	return qup_i2c_poll_state_mask(qup, 0, 0);
 415}
 416
 417static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 418{
 419	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 420}
 421
 422static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 423{
 424	if (qup_i2c_poll_state_valid(qup) != 0)
 425		return -EIO;
 426
 427	writel(state, qup->base + QUP_STATE);
 428
 429	if (qup_i2c_poll_state(qup, state) != 0)
 430		return -EIO;
 431	return 0;
 432}
 433
 434/* Check if I2C bus returns to IDLE state */
 435static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 436{
 437	unsigned long timeout;
 438	u32 status;
 439	int ret = 0;
 440
 441	timeout = jiffies + len * 4;
 442	for (;;) {
 443		status = readl(qup->base + QUP_I2C_STATUS);
 444		if (!(status & I2C_STATUS_BUS_ACTIVE))
 445			break;
 446
 447		if (time_after(jiffies, timeout))
 448			ret = -ETIMEDOUT;
 449
 450		usleep_range(len, len * 2);
 451	}
 452
 453	return ret;
 454}
 455
 456static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 457{
 458	struct qup_i2c_block *blk = &qup->blk;
 459	struct i2c_msg *msg = qup->msg;
 460	u32 addr = i2c_8bit_addr_from_msg(msg);
 461	u32 qup_tag;
 462	int idx;
 463	u32 val;
 464
 465	if (qup->pos == 0) {
 466		val = QUP_TAG_START | addr;
 467		idx = 1;
 468		blk->tx_fifo_free--;
 469	} else {
 470		val = 0;
 471		idx = 0;
 472	}
 473
 474	while (blk->tx_fifo_free && qup->pos < msg->len) {
 475		if (qup->pos == msg->len - 1)
 476			qup_tag = QUP_TAG_STOP;
 477		else
 478			qup_tag = QUP_TAG_DATA;
 479
 480		if (idx & 1)
 481			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 482		else
 483			val = qup_tag | msg->buf[qup->pos];
 484
 485		/* Write out the pair and the last odd value */
 486		if (idx & 1 || qup->pos == msg->len - 1)
 487			writel(val, qup->base + QUP_OUT_FIFO_BASE);
 488
 489		qup->pos++;
 490		idx++;
 491		blk->tx_fifo_free--;
 492	}
 493}
 494
 495static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 496				 struct i2c_msg *msg)
 497{
 498	qup->blk.pos = 0;
 499	qup->blk.data_len = msg->len;
 500	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 501}
 502
 503static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 504{
 505	int data_len;
 506
 507	if (qup->blk.data_len > qup->blk_xfer_limit)
 508		data_len = qup->blk_xfer_limit;
 509	else
 510		data_len = qup->blk.data_len;
 511
 512	return data_len;
 513}
 514
 515static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 516{
 517	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 518}
 519
 520static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 521			struct i2c_msg *msg)
 522{
 523	int len = 0;
 524
 525	if (qup->is_smbus_read) {
 526		tags[len++] = QUP_TAG_V2_DATARD_STOP;
 527		tags[len++] = qup_i2c_get_data_len(qup);
 528	} else {
 529		tags[len++] = QUP_TAG_V2_START;
 530		tags[len++] = addr & 0xff;
 531
 532		if (msg->flags & I2C_M_TEN)
 533			tags[len++] = addr >> 8;
 534
 535		tags[len++] = QUP_TAG_V2_DATARD;
 536		/* Read 1 byte indicating the length of the SMBus message */
 537		tags[len++] = 1;
 538	}
 539	return len;
 540}
 541
 542static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 543			    struct i2c_msg *msg)
 544{
 545	u16 addr = i2c_8bit_addr_from_msg(msg);
 546	int len = 0;
 547	int data_len;
 548
 549	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 550
 551	/* Handle tags for SMBus block read */
 552	if (qup_i2c_check_msg_len(msg))
 553		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 554
 555	if (qup->blk.pos == 0) {
 556		tags[len++] = QUP_TAG_V2_START;
 557		tags[len++] = addr & 0xff;
 558
 559		if (msg->flags & I2C_M_TEN)
 560			tags[len++] = addr >> 8;
 561	}
 562
 563	/* Send _STOP commands for the last block */
 564	if (last) {
 565		if (msg->flags & I2C_M_RD)
 566			tags[len++] = QUP_TAG_V2_DATARD_STOP;
 567		else
 568			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 569	} else {
 570		if (msg->flags & I2C_M_RD)
 571			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 572				      QUP_TAG_V2_DATARD_NACK :
 573				      QUP_TAG_V2_DATARD;
 574		else
 575			tags[len++] = QUP_TAG_V2_DATAWR;
 576	}
 577
 578	data_len = qup_i2c_get_data_len(qup);
 579
 580	/* 0 implies 256 bytes */
 581	if (data_len == QUP_READ_LIMIT)
 582		tags[len++] = 0;
 583	else
 584		tags[len++] = data_len;
 585
 586	return len;
 587}
 588
 589
 590static void qup_i2c_bam_cb(void *data)
 591{
 592	struct qup_i2c_dev *qup = data;
 593
 594	complete(&qup->xfer);
 595}
 596
 597static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 598			  unsigned int buflen, struct qup_i2c_dev *qup,
 599			  int dir)
 600{
 601	int ret;
 602
 603	sg_set_buf(sg, buf, buflen);
 604	ret = dma_map_sg(qup->dev, sg, 1, dir);
 605	if (!ret)
 606		return -EINVAL;
 607
 608	return 0;
 609}
 610
 611static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 612{
 613	if (qup->btx.dma)
 614		dma_release_channel(qup->btx.dma);
 615	if (qup->brx.dma)
 616		dma_release_channel(qup->brx.dma);
 617	qup->btx.dma = NULL;
 618	qup->brx.dma = NULL;
 619}
 620
 621static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 622{
 623	int err;
 624
 625	if (!qup->btx.dma) {
 626		qup->btx.dma = dma_request_chan(qup->dev, "tx");
 627		if (IS_ERR(qup->btx.dma)) {
 628			err = PTR_ERR(qup->btx.dma);
 629			qup->btx.dma = NULL;
 630			dev_err(qup->dev, "\n tx channel not available");
 631			return err;
 632		}
 633	}
 634
 635	if (!qup->brx.dma) {
 636		qup->brx.dma = dma_request_chan(qup->dev, "rx");
 637		if (IS_ERR(qup->brx.dma)) {
 638			dev_err(qup->dev, "\n rx channel not available");
 639			err = PTR_ERR(qup->brx.dma);
 640			qup->brx.dma = NULL;
 641			qup_i2c_rel_dma(qup);
 642			return err;
 643		}
 644	}
 645	return 0;
 646}
 647
 648static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 649{
 650	int ret = 0, limit = QUP_READ_LIMIT;
 651	u32 len = 0, blocks, rem;
 652	u32 i = 0, tlen, tx_len = 0;
 653	u8 *tags;
 654
 655	qup->blk_xfer_limit = QUP_READ_LIMIT;
 656	qup_i2c_set_blk_data(qup, msg);
 657
 658	blocks = qup->blk.count;
 659	rem = msg->len - (blocks - 1) * limit;
 660
 661	if (msg->flags & I2C_M_RD) {
 662		while (qup->blk.pos < blocks) {
 663			tlen = (i == (blocks - 1)) ? rem : limit;
 664			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 665			len += qup_i2c_set_tags(tags, qup, msg);
 666			qup->blk.data_len -= tlen;
 667
 668			/* scratch buf to read the start and len tags */
 669			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 670					     &qup->brx.tag.start[0],
 671					     2, qup, DMA_FROM_DEVICE);
 672
 673			if (ret)
 674				return ret;
 675
 676			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 677					     &msg->buf[limit * i],
 678					     tlen, qup,
 679					     DMA_FROM_DEVICE);
 680			if (ret)
 681				return ret;
 682
 683			i++;
 684			qup->blk.pos = i;
 685		}
 686		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 687				     &qup->start_tag.start[qup->tag_buf_pos],
 688				     len, qup, DMA_TO_DEVICE);
 689		if (ret)
 690			return ret;
 691
 692		qup->tag_buf_pos += len;
 693	} else {
 694		while (qup->blk.pos < blocks) {
 695			tlen = (i == (blocks - 1)) ? rem : limit;
 696			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 697			len = qup_i2c_set_tags(tags, qup, msg);
 698			qup->blk.data_len -= tlen;
 699
 700			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 701					     tags, len,
 702					     qup, DMA_TO_DEVICE);
 703			if (ret)
 704				return ret;
 705
 706			tx_len += len;
 707			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 708					     &msg->buf[limit * i],
 709					     tlen, qup, DMA_TO_DEVICE);
 710			if (ret)
 711				return ret;
 712			i++;
 713			qup->blk.pos = i;
 714		}
 715
 716		qup->tag_buf_pos += tx_len;
 717	}
 718
 719	return 0;
 720}
 721
 722static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 723{
 724	struct dma_async_tx_descriptor *txd, *rxd = NULL;
 725	int ret = 0;
 726	dma_cookie_t cookie_rx, cookie_tx;
 727	u32 len = 0;
 728	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 729
 730	/* schedule the EOT and FLUSH I2C tags */
 731	len = 1;
 732	if (rx_cnt) {
 733		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 734		len++;
 735
 736		/* scratch buf to read the BAM EOT FLUSH tags */
 737		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 738				     &qup->brx.tag.start[0],
 739				     1, qup, DMA_FROM_DEVICE);
 740		if (ret)
 741			return ret;
 742	}
 743
 744	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 745	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 746			     len, qup, DMA_TO_DEVICE);
 747	if (ret)
 748		return ret;
 749
 750	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 751				      DMA_MEM_TO_DEV,
 752				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 753	if (!txd) {
 754		dev_err(qup->dev, "failed to get tx desc\n");
 755		ret = -EINVAL;
 756		goto desc_err;
 757	}
 758
 759	if (!rx_cnt) {
 760		txd->callback = qup_i2c_bam_cb;
 761		txd->callback_param = qup;
 762	}
 763
 764	cookie_tx = dmaengine_submit(txd);
 765	if (dma_submit_error(cookie_tx)) {
 766		ret = -EINVAL;
 767		goto desc_err;
 768	}
 769
 770	dma_async_issue_pending(qup->btx.dma);
 771
 772	if (rx_cnt) {
 773		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 774					      rx_cnt, DMA_DEV_TO_MEM,
 775					      DMA_PREP_INTERRUPT);
 776		if (!rxd) {
 777			dev_err(qup->dev, "failed to get rx desc\n");
 778			ret = -EINVAL;
 779
 780			/* abort TX descriptors */
 781			dmaengine_terminate_all(qup->btx.dma);
 782			goto desc_err;
 783		}
 784
 785		rxd->callback = qup_i2c_bam_cb;
 786		rxd->callback_param = qup;
 787		cookie_rx = dmaengine_submit(rxd);
 788		if (dma_submit_error(cookie_rx)) {
 789			ret = -EINVAL;
 790			goto desc_err;
 791		}
 792
 793		dma_async_issue_pending(qup->brx.dma);
 794	}
 795
 796	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
 797		dev_err(qup->dev, "normal trans timed out\n");
 798		ret = -ETIMEDOUT;
 799	}
 800
 801	if (ret || qup->bus_err || qup->qup_err) {
 802		reinit_completion(&qup->xfer);
 803
 804		if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
 805			dev_err(qup->dev, "change to run state timed out");
 806			goto desc_err;
 807		}
 808
 809		qup_i2c_flush(qup);
 810
 811		/* wait for remaining interrupts to occur */
 812		if (!wait_for_completion_timeout(&qup->xfer, HZ))
 813			dev_err(qup->dev, "flush timed out\n");
 814
 815		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 816	}
 817
 818desc_err:
 819	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 820
 821	if (rx_cnt)
 822		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 823			     DMA_FROM_DEVICE);
 824
 825	return ret;
 826}
 827
 828static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 829{
 830	qup->btx.sg_cnt = 0;
 831	qup->brx.sg_cnt = 0;
 832	qup->tag_buf_pos = 0;
 833}
 834
 835static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 836			    int num)
 837{
 838	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 839	int ret = 0;
 840	int idx = 0;
 841
 842	enable_irq(qup->irq);
 843	ret = qup_i2c_req_dma(qup);
 844
 845	if (ret)
 846		goto out;
 847
 848	writel(0, qup->base + QUP_MX_INPUT_CNT);
 849	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 850
 851	/* set BAM mode */
 852	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 853
 854	/* mask fifo irqs */
 855	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 856
 857	/* set RUN STATE */
 858	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 859	if (ret)
 860		goto out;
 861
 862	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 863	qup_i2c_bam_clear_tag_buffers(qup);
 864
 865	for (idx = 0; idx < num; idx++) {
 866		qup->msg = msg + idx;
 867		qup->is_last = idx == (num - 1);
 868
 869		ret = qup_i2c_bam_make_desc(qup, qup->msg);
 870		if (ret)
 871			break;
 872
 873		/*
 874		 * Make DMA descriptor and schedule the BAM transfer if its
 875		 * already crossed the maximum length. Since the memory for all
 876		 * tags buffers have been taken for 2 maximum possible
 877		 * transfers length so it will never cross the buffer actual
 878		 * length.
 879		 */
 880		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 881		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 882		    qup->is_last) {
 883			ret = qup_i2c_bam_schedule_desc(qup);
 884			if (ret)
 885				break;
 886
 887			qup_i2c_bam_clear_tag_buffers(qup);
 888		}
 889	}
 890
 891out:
 892	disable_irq(qup->irq);
 893
 894	qup->msg = NULL;
 895	return ret;
 896}
 897
 898static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 899				     struct i2c_msg *msg)
 900{
 901	unsigned long left;
 902	int ret = 0;
 903
 904	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 905	if (!left) {
 906		writel(1, qup->base + QUP_SW_RESET);
 907		ret = -ETIMEDOUT;
 908	}
 909
 910	if (qup->bus_err || qup->qup_err)
 911		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 912
 913	return ret;
 914}
 915
 916static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 917{
 918	struct qup_i2c_block *blk = &qup->blk;
 919	struct i2c_msg *msg = qup->msg;
 920	u32 val = 0;
 921	int idx = 0;
 922
 923	while (blk->fifo_available && qup->pos < msg->len) {
 924		if ((idx & 1) == 0) {
 925			/* Reading 2 words at time */
 926			val = readl(qup->base + QUP_IN_FIFO_BASE);
 927			msg->buf[qup->pos++] = val & 0xFF;
 928		} else {
 929			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 930		}
 931		idx++;
 932		blk->fifo_available--;
 933	}
 934
 935	if (qup->pos == msg->len)
 936		blk->rx_bytes_read = true;
 937}
 938
 939static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 940{
 941	struct i2c_msg *msg = qup->msg;
 942	u32 addr, len, val;
 943
 944	addr = i2c_8bit_addr_from_msg(msg);
 945
 946	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 947	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 948
 949	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 950	writel(val, qup->base + QUP_OUT_FIFO_BASE);
 951}
 952
 953static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 954{
 955	struct qup_i2c_block *blk = &qup->blk;
 956	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 957	u32 io_mode = QUP_REPACK_EN;
 958
 959	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
 960	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
 961
 962	if (blk->is_tx_blk_mode) {
 963		io_mode |= QUP_OUTPUT_BLK_MODE;
 964		writel(0, qup->base + QUP_MX_WRITE_CNT);
 965		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 966	} else {
 967		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 968		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 969	}
 970
 971	if (blk->total_rx_len) {
 972		if (blk->is_rx_blk_mode) {
 973			io_mode |= QUP_INPUT_BLK_MODE;
 974			writel(0, qup->base + QUP_MX_READ_CNT);
 975			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 976		} else {
 977			writel(0, qup->base + QUP_MX_INPUT_CNT);
 978			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 979		}
 980	} else {
 981		qup_config |= QUP_NO_INPUT;
 982	}
 983
 984	writel(qup_config, qup->base + QUP_CONFIG);
 985	writel(io_mode, qup->base + QUP_IO_MODE);
 986}
 987
 988static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 989{
 990	blk->tx_fifo_free = 0;
 991	blk->fifo_available = 0;
 992	blk->rx_bytes_read = false;
 993}
 994
 995static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
 996{
 997	struct qup_i2c_block *blk = &qup->blk;
 998	int ret;
 999
1000	qup_i2c_clear_blk_v1(blk);
1001	qup_i2c_conf_v1(qup);
1002	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1003	if (ret)
1004		return ret;
1005
1006	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1007
1008	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1009	if (ret)
1010		return ret;
1011
1012	reinit_completion(&qup->xfer);
1013	enable_irq(qup->irq);
1014	if (!blk->is_tx_blk_mode) {
1015		blk->tx_fifo_free = qup->out_fifo_sz;
1016
1017		if (is_rx)
1018			qup_i2c_write_rx_tags_v1(qup);
1019		else
1020			qup_i2c_write_tx_fifo_v1(qup);
1021	}
1022
1023	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1024	if (ret)
1025		goto err;
1026
1027	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1028	if (ret)
1029		goto err;
1030
1031	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1032
1033err:
1034	disable_irq(qup->irq);
1035	return ret;
1036}
1037
1038static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1039{
1040	struct i2c_msg *msg = qup->msg;
1041	struct qup_i2c_block *blk = &qup->blk;
1042
1043	qup->pos = 0;
1044	blk->total_tx_len = msg->len + 1;
1045	blk->total_rx_len = 0;
1046
1047	return qup_i2c_conf_xfer_v1(qup, false);
1048}
1049
1050static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1051{
1052	struct qup_i2c_block *blk = &qup->blk;
1053
1054	qup->pos = 0;
1055	blk->total_tx_len = 2;
1056	blk->total_rx_len = qup->msg->len;
1057
1058	return qup_i2c_conf_xfer_v1(qup, true);
1059}
1060
1061static int qup_i2c_xfer(struct i2c_adapter *adap,
1062			struct i2c_msg msgs[],
1063			int num)
1064{
1065	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1066	int ret, idx;
1067
1068	ret = pm_runtime_get_sync(qup->dev);
1069	if (ret < 0)
1070		goto out;
1071
1072	qup->bus_err = 0;
1073	qup->qup_err = 0;
1074
1075	writel(1, qup->base + QUP_SW_RESET);
1076	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1077	if (ret)
1078		goto out;
1079
1080	/* Configure QUP as I2C mini core */
1081	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1082
1083	for (idx = 0; idx < num; idx++) {
1084		if (qup_i2c_poll_state_i2c_master(qup)) {
1085			ret = -EIO;
1086			goto out;
1087		}
1088
1089		if (qup_i2c_check_msg_len(&msgs[idx])) {
1090			ret = -EINVAL;
1091			goto out;
1092		}
1093
1094		qup->msg = &msgs[idx];
1095		if (msgs[idx].flags & I2C_M_RD)
1096			ret = qup_i2c_read_one(qup);
1097		else
1098			ret = qup_i2c_write_one(qup);
1099
1100		if (ret)
1101			break;
1102
1103		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1104		if (ret)
1105			break;
1106	}
1107
1108	if (ret == 0)
1109		ret = num;
1110out:
1111
1112	pm_runtime_mark_last_busy(qup->dev);
1113	pm_runtime_put_autosuspend(qup->dev);
1114
1115	return ret;
1116}
1117
1118/*
1119 * Configure registers related with reconfiguration during run and call it
1120 * before each i2c sub transfer.
1121 */
1122static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1123{
1124	struct qup_i2c_block *blk = &qup->blk;
1125	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1126
1127	if (blk->is_tx_blk_mode)
1128		writel(qup->config_run | blk->total_tx_len,
1129		       qup->base + QUP_MX_OUTPUT_CNT);
1130	else
1131		writel(qup->config_run | blk->total_tx_len,
1132		       qup->base + QUP_MX_WRITE_CNT);
1133
1134	if (blk->total_rx_len) {
1135		if (blk->is_rx_blk_mode)
1136			writel(qup->config_run | blk->total_rx_len,
1137			       qup->base + QUP_MX_INPUT_CNT);
1138		else
1139			writel(qup->config_run | blk->total_rx_len,
1140			       qup->base + QUP_MX_READ_CNT);
1141	} else {
1142		qup_config |= QUP_NO_INPUT;
1143	}
1144
1145	writel(qup_config, qup->base + QUP_CONFIG);
1146}
1147
1148/*
1149 * Configure registers related with transfer mode (FIFO/Block)
1150 * before starting of i2c transfer. It will be called only once in
1151 * QUP RESET state.
1152 */
1153static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1154{
1155	struct qup_i2c_block *blk = &qup->blk;
1156	u32 io_mode = QUP_REPACK_EN;
1157
1158	if (blk->is_tx_blk_mode) {
1159		io_mode |= QUP_OUTPUT_BLK_MODE;
1160		writel(0, qup->base + QUP_MX_WRITE_CNT);
1161	} else {
1162		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1163	}
1164
1165	if (blk->is_rx_blk_mode) {
1166		io_mode |= QUP_INPUT_BLK_MODE;
1167		writel(0, qup->base + QUP_MX_READ_CNT);
1168	} else {
1169		writel(0, qup->base + QUP_MX_INPUT_CNT);
1170	}
1171
1172	writel(io_mode, qup->base + QUP_IO_MODE);
1173}
1174
1175/* Clear required variables before starting of any QUP v2 sub transfer. */
1176static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1177{
1178	blk->send_last_word = false;
1179	blk->tx_tags_sent = false;
1180	blk->tx_fifo_data = 0;
1181	blk->tx_fifo_data_pos = 0;
1182	blk->tx_fifo_free = 0;
1183
1184	blk->rx_tags_fetched = false;
1185	blk->rx_bytes_read = false;
1186	blk->rx_fifo_data = 0;
1187	blk->rx_fifo_data_pos = 0;
1188	blk->fifo_available = 0;
1189}
1190
1191/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1192static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1193{
1194	struct qup_i2c_block *blk = &qup->blk;
1195	int j;
1196
1197	for (j = blk->rx_fifo_data_pos;
1198	     blk->cur_blk_len && blk->fifo_available;
1199	     blk->cur_blk_len--, blk->fifo_available--) {
1200		if (j == 0)
1201			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1202
1203		*(blk->cur_data++) = blk->rx_fifo_data;
1204		blk->rx_fifo_data >>= 8;
1205
1206		if (j == 3)
1207			j = 0;
1208		else
1209			j++;
1210	}
1211
1212	blk->rx_fifo_data_pos = j;
1213}
1214
1215/* Receive tags for read message in QUP v2 i2c transfer. */
1216static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1217{
1218	struct qup_i2c_block *blk = &qup->blk;
1219
1220	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1221	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1222	blk->rx_fifo_data_pos = blk->rx_tag_len;
1223	blk->fifo_available -= blk->rx_tag_len;
1224}
1225
1226/*
1227 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1228 * preceded by received data bytes so
1229 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1230 *    all tag bytes and discard that.
1231 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1232 *    set rx_bytes_read to true.
1233 */
1234static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1235{
1236	struct qup_i2c_block *blk = &qup->blk;
1237
1238	if (!blk->rx_tags_fetched) {
1239		qup_i2c_recv_tags(qup);
1240		blk->rx_tags_fetched = true;
1241	}
1242
1243	qup_i2c_recv_data(qup);
1244	if (!blk->cur_blk_len)
1245		blk->rx_bytes_read = true;
1246}
1247
1248/*
1249 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1250 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1251 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1252 */
1253static void
1254qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1255{
1256	struct qup_i2c_block *blk = &qup->blk;
1257	unsigned int j;
1258
1259	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1260	     (*len)--, blk->tx_fifo_free--) {
1261		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1262		if (j == 3) {
1263			writel(blk->tx_fifo_data,
1264			       qup->base + QUP_OUT_FIFO_BASE);
1265			blk->tx_fifo_data = 0x0;
1266			j = 0;
1267		} else {
1268			j++;
1269		}
1270	}
1271
1272	blk->tx_fifo_data_pos = j;
1273}
1274
1275/* Transfer tags for read message in QUP v2 i2c transfer. */
1276static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1277{
1278	struct qup_i2c_block *blk = &qup->blk;
1279
1280	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1281	if (blk->tx_fifo_data_pos)
1282		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1283}
1284
1285/*
1286 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1287 * need to be written and QUP write tags can have maximum 256 data length, so
1288 *
1289 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1290 *    tags to TX FIFO and set tx_tags_sent to true.
1291 * 2. Check if send_last_word is true. It will be set when last few data bytes
1292 *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1293 *    space. All this data bytes are available in tx_fifo_data so write this
1294 *    in FIFO.
1295 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1296 *    then more data is pending otherwise following 3 cases can be possible
1297 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1298 *       have been written in TX FIFO so nothing else is required.
1299 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1300 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1301 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1302 *       will be always greater than or equal to 4 bytes.
1303 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1304 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1305 *       FIFO full so make send_last_word true.
1306 */
1307static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1308{
1309	struct qup_i2c_block *blk = &qup->blk;
1310
1311	if (!blk->tx_tags_sent) {
1312		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1313				       &blk->tx_tag_len);
1314		blk->tx_tags_sent = true;
1315	}
1316
1317	if (blk->send_last_word)
1318		goto send_last_word;
1319
1320	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1321	if (!blk->cur_blk_len) {
1322		if (!blk->tx_fifo_data_pos)
1323			return;
1324
1325		if (blk->tx_fifo_free)
1326			goto send_last_word;
1327
1328		blk->send_last_word = true;
1329	}
1330
1331	return;
1332
1333send_last_word:
1334	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1335}
1336
1337/*
1338 * Main transfer function which read or write i2c data.
1339 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1340 * transfers can be scheduled.
1341 */
1342static int
1343qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1344		     bool change_pause_state)
1345{
1346	struct qup_i2c_block *blk = &qup->blk;
1347	struct i2c_msg *msg = qup->msg;
1348	int ret;
1349
1350	/*
1351	 * Check if its SMBus Block read for which the top level read will be
1352	 * done into 2 QUP reads. One with message length 1 while other one is
1353	 * with actual length.
1354	 */
1355	if (qup_i2c_check_msg_len(msg)) {
1356		if (qup->is_smbus_read) {
1357			/*
1358			 * If the message length is already read in
1359			 * the first byte of the buffer, account for
1360			 * that by setting the offset
1361			 */
1362			blk->cur_data += 1;
1363			is_first = false;
1364		} else {
1365			change_pause_state = false;
1366		}
1367	}
1368
1369	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1370
1371	qup_i2c_clear_blk_v2(blk);
1372	qup_i2c_conf_count_v2(qup);
1373
1374	/* If it is first sub transfer, then configure i2c bus clocks */
1375	if (is_first) {
1376		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1377		if (ret)
1378			return ret;
1379
1380		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1381
1382		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1383		if (ret)
1384			return ret;
1385	}
1386
1387	reinit_completion(&qup->xfer);
1388	enable_irq(qup->irq);
1389	/*
1390	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1391	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1392	 */
1393	if (!blk->is_tx_blk_mode) {
1394		blk->tx_fifo_free = qup->out_fifo_sz;
1395
1396		if (is_rx)
1397			qup_i2c_write_rx_tags_v2(qup);
1398		else
1399			qup_i2c_write_tx_fifo_v2(qup);
1400	}
1401
1402	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1403	if (ret)
1404		goto err;
1405
1406	ret = qup_i2c_wait_for_complete(qup, msg);
1407	if (ret)
1408		goto err;
1409
1410	/* Move to pause state for all the transfers, except last one */
1411	if (change_pause_state) {
1412		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1413		if (ret)
1414			goto err;
1415	}
1416
1417err:
1418	disable_irq(qup->irq);
1419	return ret;
1420}
1421
1422/*
1423 * Transfer one read/write message in i2c transfer. It splits the message into
1424 * multiple of blk_xfer_limit data length blocks and schedule each
1425 * QUP block individually.
1426 */
1427static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1428{
1429	int ret = 0;
1430	unsigned int data_len, i;
1431	struct i2c_msg *msg = qup->msg;
1432	struct qup_i2c_block *blk = &qup->blk;
1433	u8 *msg_buf = msg->buf;
1434
1435	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1436	qup_i2c_set_blk_data(qup, msg);
1437
1438	for (i = 0; i < blk->count; i++) {
1439		data_len =  qup_i2c_get_data_len(qup);
1440		blk->pos = i;
1441		blk->cur_tx_tags = blk->tags;
1442		blk->cur_blk_len = data_len;
1443		blk->tx_tag_len =
1444			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1445
1446		blk->cur_data = msg_buf;
1447
1448		if (is_rx) {
1449			blk->total_tx_len = blk->tx_tag_len;
1450			blk->rx_tag_len = 2;
1451			blk->total_rx_len = blk->rx_tag_len + data_len;
1452		} else {
1453			blk->total_tx_len = blk->tx_tag_len + data_len;
1454			blk->total_rx_len = 0;
1455		}
1456
1457		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1458					   !qup->is_last || i < blk->count - 1);
1459		if (ret)
1460			return ret;
1461
1462		/* Handle SMBus block read length */
1463		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1464		    !qup->is_smbus_read) {
1465			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1466				return -EPROTO;
1467
1468			msg->len = msg->buf[0];
1469			qup->is_smbus_read = true;
1470			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1471			qup->is_smbus_read = false;
1472			if (ret)
1473				return ret;
1474
1475			msg->len += 1;
1476		}
1477
1478		msg_buf += data_len;
1479		blk->data_len -= qup->blk_xfer_limit;
1480	}
1481
1482	return ret;
1483}
1484
1485/*
1486 * QUP v2 supports 3 modes
1487 * Programmed IO using FIFO mode : Less than FIFO size
1488 * Programmed IO using Block mode : Greater than FIFO size
1489 * DMA using BAM : Appropriate for any transaction size but the address should
1490 *		   be DMA applicable
1491 *
1492 * This function determines the mode which will be used for this transfer. An
1493 * i2c transfer contains multiple message. Following are the rules to determine
1494 * the mode used.
1495 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1496 * 2. If complete transfer length is greater than fifo size then use the DMA
1497 *    mode.
1498 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1499 *    for maximum tx and rx length to determine mode.
1500 */
1501static int
1502qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1503			  struct i2c_msg msgs[], int num)
1504{
1505	int idx;
1506	bool no_dma = false;
1507	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1508
1509	/* All i2c_msgs should be transferred using either dma or cpu */
1510	for (idx = 0; idx < num; idx++) {
1511		if (msgs[idx].flags & I2C_M_RD)
1512			max_rx_len = max_t(unsigned int, max_rx_len,
1513					   msgs[idx].len);
1514		else
1515			max_tx_len = max_t(unsigned int, max_tx_len,
1516					   msgs[idx].len);
1517
1518		if (is_vmalloc_addr(msgs[idx].buf))
1519			no_dma = true;
1520
1521		total_len += msgs[idx].len;
1522	}
1523
1524	if (!no_dma && qup->is_dma &&
1525	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1526		qup->use_dma = true;
1527	} else {
1528		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1529			QUP_MAX_TAGS_LEN;
1530		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1531			READ_RX_TAGS_LEN;
1532	}
1533
1534	return 0;
1535}
1536
1537static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1538			   struct i2c_msg msgs[],
1539			   int num)
1540{
1541	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1542	int ret, idx = 0;
1543
1544	qup->bus_err = 0;
1545	qup->qup_err = 0;
1546
1547	ret = pm_runtime_get_sync(qup->dev);
1548	if (ret < 0)
1549		goto out;
1550
1551	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1552	if (ret)
1553		goto out;
1554
1555	writel(1, qup->base + QUP_SW_RESET);
1556	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1557	if (ret)
1558		goto out;
1559
1560	/* Configure QUP as I2C mini core */
1561	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1562	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1563
1564	if (qup_i2c_poll_state_i2c_master(qup)) {
1565		ret = -EIO;
1566		goto out;
1567	}
1568
1569	if (qup->use_dma) {
1570		reinit_completion(&qup->xfer);
1571		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1572		qup->use_dma = false;
1573	} else {
1574		qup_i2c_conf_mode_v2(qup);
1575
1576		for (idx = 0; idx < num; idx++) {
1577			qup->msg = &msgs[idx];
1578			qup->is_last = idx == (num - 1);
1579
1580			ret = qup_i2c_xfer_v2_msg(qup, idx,
1581					!!(msgs[idx].flags & I2C_M_RD));
1582			if (ret)
1583				break;
1584		}
1585		qup->msg = NULL;
1586	}
1587
1588	if (!ret)
1589		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1590
1591	if (!ret)
1592		qup_i2c_change_state(qup, QUP_RESET_STATE);
1593
1594	if (ret == 0)
1595		ret = num;
1596out:
1597	pm_runtime_mark_last_busy(qup->dev);
1598	pm_runtime_put_autosuspend(qup->dev);
1599
1600	return ret;
1601}
1602
1603static u32 qup_i2c_func(struct i2c_adapter *adap)
1604{
1605	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1606}
1607
1608static const struct i2c_algorithm qup_i2c_algo = {
1609	.master_xfer	= qup_i2c_xfer,
1610	.functionality	= qup_i2c_func,
1611};
1612
1613static const struct i2c_algorithm qup_i2c_algo_v2 = {
1614	.master_xfer	= qup_i2c_xfer_v2,
1615	.functionality	= qup_i2c_func,
1616};
1617
1618/*
1619 * The QUP block will issue a NACK and STOP on the bus when reaching
1620 * the end of the read, the length of the read is specified as one byte
1621 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1622 */
1623static const struct i2c_adapter_quirks qup_i2c_quirks = {
1624	.flags = I2C_AQ_NO_ZERO_LEN,
1625	.max_read_len = QUP_READ_LIMIT,
1626};
1627
1628static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1629	.flags = I2C_AQ_NO_ZERO_LEN,
1630};
1631
1632static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1633{
1634	clk_prepare_enable(qup->clk);
1635	clk_prepare_enable(qup->pclk);
1636}
1637
1638static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1639{
1640	u32 config;
1641
1642	qup_i2c_change_state(qup, QUP_RESET_STATE);
1643	clk_disable_unprepare(qup->clk);
1644	config = readl(qup->base + QUP_CONFIG);
1645	config |= QUP_CLOCK_AUTO_GATE;
1646	writel(config, qup->base + QUP_CONFIG);
1647	clk_disable_unprepare(qup->pclk);
1648}
1649
1650static const struct acpi_device_id qup_i2c_acpi_match[] = {
1651	{ "QCOM8010"},
1652	{ },
1653};
1654MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1655
1656static int qup_i2c_probe(struct platform_device *pdev)
1657{
1658	static const int blk_sizes[] = {4, 16, 32};
1659	struct qup_i2c_dev *qup;
1660	unsigned long one_bit_t;
1661	u32 io_mode, hw_ver, size;
1662	int ret, fs_div, hs_div;
1663	u32 src_clk_freq = DEFAULT_SRC_CLK;
1664	u32 clk_freq = DEFAULT_CLK_FREQ;
1665	int blocks;
1666	bool is_qup_v1;
1667
1668	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1669	if (!qup)
1670		return -ENOMEM;
1671
1672	qup->dev = &pdev->dev;
1673	init_completion(&qup->xfer);
1674	platform_set_drvdata(pdev, qup);
1675
1676	if (scl_freq) {
1677		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1678		clk_freq = scl_freq;
1679	} else {
1680		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1681		if (ret) {
1682			dev_notice(qup->dev, "using default clock-frequency %d",
1683				DEFAULT_CLK_FREQ);
1684		}
1685	}
1686
1687	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1688		qup->adap.algo = &qup_i2c_algo;
1689		qup->adap.quirks = &qup_i2c_quirks;
1690		is_qup_v1 = true;
1691	} else {
1692		qup->adap.algo = &qup_i2c_algo_v2;
1693		qup->adap.quirks = &qup_i2c_quirks_v2;
1694		is_qup_v1 = false;
1695		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1696			goto nodma;
1697		else
1698			ret = qup_i2c_req_dma(qup);
1699
1700		if (ret == -EPROBE_DEFER)
1701			goto fail_dma;
1702		else if (ret != 0)
1703			goto nodma;
1704
1705		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1706		blocks = (MX_DMA_BLOCKS << 1) + 1;
1707		qup->btx.sg = devm_kcalloc(&pdev->dev,
1708					   blocks, sizeof(*qup->btx.sg),
1709					   GFP_KERNEL);
1710		if (!qup->btx.sg) {
1711			ret = -ENOMEM;
1712			goto fail_dma;
1713		}
1714		sg_init_table(qup->btx.sg, blocks);
1715
1716		qup->brx.sg = devm_kcalloc(&pdev->dev,
1717					   blocks, sizeof(*qup->brx.sg),
1718					   GFP_KERNEL);
1719		if (!qup->brx.sg) {
1720			ret = -ENOMEM;
1721			goto fail_dma;
1722		}
1723		sg_init_table(qup->brx.sg, blocks);
1724
1725		/* 2 tag bytes for each block + 5 for start, stop tags */
1726		size = blocks * 2 + 5;
1727
1728		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1729						    size, GFP_KERNEL);
1730		if (!qup->start_tag.start) {
1731			ret = -ENOMEM;
1732			goto fail_dma;
1733		}
1734
1735		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1736		if (!qup->brx.tag.start) {
1737			ret = -ENOMEM;
1738			goto fail_dma;
1739		}
1740
1741		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1742		if (!qup->btx.tag.start) {
1743			ret = -ENOMEM;
1744			goto fail_dma;
1745		}
1746		qup->is_dma = true;
1747	}
1748
1749nodma:
1750	/* We support frequencies up to FAST Mode Plus (1MHz) */
1751	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1752		dev_err(qup->dev, "clock frequency not supported %d\n",
1753			clk_freq);
1754		return -EINVAL;
1755	}
1756
1757	qup->base = devm_platform_ioremap_resource(pdev, 0);
1758	if (IS_ERR(qup->base))
1759		return PTR_ERR(qup->base);
1760
1761	qup->irq = platform_get_irq(pdev, 0);
1762	if (qup->irq < 0)
1763		return qup->irq;
1764
1765	if (has_acpi_companion(qup->dev)) {
1766		ret = device_property_read_u32(qup->dev,
1767				"src-clock-hz", &src_clk_freq);
1768		if (ret) {
1769			dev_notice(qup->dev, "using default src-clock-hz %d",
1770				DEFAULT_SRC_CLK);
1771		}
1772		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1773	} else {
1774		qup->clk = devm_clk_get(qup->dev, "core");
1775		if (IS_ERR(qup->clk)) {
1776			dev_err(qup->dev, "Could not get core clock\n");
1777			return PTR_ERR(qup->clk);
1778		}
1779
1780		qup->pclk = devm_clk_get(qup->dev, "iface");
1781		if (IS_ERR(qup->pclk)) {
1782			dev_err(qup->dev, "Could not get iface clock\n");
1783			return PTR_ERR(qup->pclk);
1784		}
1785		qup_i2c_enable_clocks(qup);
1786		src_clk_freq = clk_get_rate(qup->clk);
1787	}
1788
1789	/*
1790	 * Bootloaders might leave a pending interrupt on certain QUP's,
1791	 * so we reset the core before registering for interrupts.
1792	 */
1793	writel(1, qup->base + QUP_SW_RESET);
1794	ret = qup_i2c_poll_state_valid(qup);
1795	if (ret)
1796		goto fail;
1797
1798	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1799			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1800	if (ret) {
1801		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1802		goto fail;
1803	}
1804	disable_irq(qup->irq);
1805
1806	hw_ver = readl(qup->base + QUP_HW_VERSION);
1807	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1808
1809	io_mode = readl(qup->base + QUP_IO_MODE);
1810
1811	/*
1812	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1813	 * associated with each byte written/received
1814	 */
1815	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1816	if (size >= ARRAY_SIZE(blk_sizes)) {
1817		ret = -EIO;
1818		goto fail;
1819	}
1820	qup->out_blk_sz = blk_sizes[size];
1821
1822	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1823	if (size >= ARRAY_SIZE(blk_sizes)) {
1824		ret = -EIO;
1825		goto fail;
1826	}
1827	qup->in_blk_sz = blk_sizes[size];
1828
1829	if (is_qup_v1) {
1830		/*
1831		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1832		 * single transfer but the block size is in bytes so divide the
1833		 * in_blk_sz and out_blk_sz by 2
1834		 */
1835		qup->in_blk_sz /= 2;
1836		qup->out_blk_sz /= 2;
1837		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1838		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1839		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1840	} else {
1841		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1842		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1843		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1844	}
1845
1846	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1847	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1848
1849	size = QUP_INPUT_FIFO_SIZE(io_mode);
1850	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1851
1852	hs_div = 3;
1853	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1854		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1855		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1856	} else {
1857		/* 33%/66% duty cycle */
1858		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1859		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1860	}
1861
1862	/*
1863	 * Time it takes for a byte to be clocked out on the bus.
1864	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1865	 */
1866	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1867	qup->one_byte_t = one_bit_t * 9;
1868	qup->xfer_timeout = TOUT_MIN * HZ +
1869		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1870
1871	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1872		qup->in_blk_sz, qup->in_fifo_sz,
1873		qup->out_blk_sz, qup->out_fifo_sz);
1874
1875	i2c_set_adapdata(&qup->adap, qup);
1876	qup->adap.dev.parent = qup->dev;
1877	qup->adap.dev.of_node = pdev->dev.of_node;
1878	qup->is_last = true;
1879
1880	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1881
1882	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1883	pm_runtime_use_autosuspend(qup->dev);
1884	pm_runtime_set_active(qup->dev);
1885	pm_runtime_enable(qup->dev);
1886
1887	ret = i2c_add_adapter(&qup->adap);
1888	if (ret)
1889		goto fail_runtime;
1890
1891	return 0;
1892
1893fail_runtime:
1894	pm_runtime_disable(qup->dev);
1895	pm_runtime_set_suspended(qup->dev);
1896fail:
1897	qup_i2c_disable_clocks(qup);
1898fail_dma:
1899	if (qup->btx.dma)
1900		dma_release_channel(qup->btx.dma);
1901	if (qup->brx.dma)
1902		dma_release_channel(qup->brx.dma);
1903	return ret;
1904}
1905
1906static int qup_i2c_remove(struct platform_device *pdev)
1907{
1908	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1909
1910	if (qup->is_dma) {
1911		dma_release_channel(qup->btx.dma);
1912		dma_release_channel(qup->brx.dma);
1913	}
1914
1915	disable_irq(qup->irq);
1916	qup_i2c_disable_clocks(qup);
1917	i2c_del_adapter(&qup->adap);
1918	pm_runtime_disable(qup->dev);
1919	pm_runtime_set_suspended(qup->dev);
1920	return 0;
1921}
1922
1923#ifdef CONFIG_PM
1924static int qup_i2c_pm_suspend_runtime(struct device *device)
1925{
1926	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1927
1928	dev_dbg(device, "pm_runtime: suspending...\n");
1929	qup_i2c_disable_clocks(qup);
1930	return 0;
1931}
1932
1933static int qup_i2c_pm_resume_runtime(struct device *device)
1934{
1935	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1936
1937	dev_dbg(device, "pm_runtime: resuming...\n");
1938	qup_i2c_enable_clocks(qup);
1939	return 0;
1940}
1941#endif
1942
1943#ifdef CONFIG_PM_SLEEP
1944static int qup_i2c_suspend(struct device *device)
1945{
1946	if (!pm_runtime_suspended(device))
1947		return qup_i2c_pm_suspend_runtime(device);
1948	return 0;
1949}
1950
1951static int qup_i2c_resume(struct device *device)
1952{
1953	qup_i2c_pm_resume_runtime(device);
1954	pm_runtime_mark_last_busy(device);
1955	pm_request_autosuspend(device);
1956	return 0;
1957}
1958#endif
1959
1960static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1961	SET_SYSTEM_SLEEP_PM_OPS(
1962		qup_i2c_suspend,
1963		qup_i2c_resume)
1964	SET_RUNTIME_PM_OPS(
1965		qup_i2c_pm_suspend_runtime,
1966		qup_i2c_pm_resume_runtime,
1967		NULL)
1968};
1969
1970static const struct of_device_id qup_i2c_dt_match[] = {
1971	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1972	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1973	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1974	{}
1975};
1976MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1977
1978static struct platform_driver qup_i2c_driver = {
1979	.probe  = qup_i2c_probe,
1980	.remove = qup_i2c_remove,
1981	.driver = {
1982		.name = "i2c_qup",
1983		.pm = &qup_i2c_qup_pm_ops,
1984		.of_match_table = qup_i2c_dt_match,
1985		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1986	},
1987};
1988
1989module_platform_driver(qup_i2c_driver);
1990
1991MODULE_LICENSE("GPL v2");
1992MODULE_ALIAS("platform:i2c_qup");