Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2016 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#ifndef __I915_UTILS_H
 26#define __I915_UTILS_H
 27
 28#include <linux/list.h>
 29#include <linux/overflow.h>
 30#include <linux/sched.h>
 31#include <linux/types.h>
 32#include <linux/workqueue.h>
 33
 34struct drm_i915_private;
 35struct timer_list;
 36
 37#define FDO_BUG_URL "https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs"
 38
 39#undef WARN_ON
 40/* Many gcc seem to no see through this and fall over :( */
 41#if 0
 42#define WARN_ON(x) ({ \
 43	bool __i915_warn_cond = (x); \
 44	if (__builtin_constant_p(__i915_warn_cond)) \
 45		BUILD_BUG_ON(__i915_warn_cond); \
 46	WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
 47#else
 48#define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
 49#endif
 50
 51#undef WARN_ON_ONCE
 52#define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
 53
 54#define MISSING_CASE(x) WARN(1, "Missing case (%s == %ld)\n", \
 55			     __stringify(x), (long)(x))
 56
 57void __printf(3, 4)
 58__i915_printk(struct drm_i915_private *dev_priv, const char *level,
 59	      const char *fmt, ...);
 60
 61#define i915_report_error(dev_priv, fmt, ...)				   \
 62	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
 63
 64#if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
 65
 66int __i915_inject_probe_error(struct drm_i915_private *i915, int err,
 67			      const char *func, int line);
 68#define i915_inject_probe_error(_i915, _err) \
 69	__i915_inject_probe_error((_i915), (_err), __func__, __LINE__)
 70bool i915_error_injected(void);
 71
 72#else
 73
 74#define i915_inject_probe_error(i915, e) ({ BUILD_BUG_ON_INVALID(i915); 0; })
 75#define i915_error_injected() false
 76
 77#endif
 78
 79#define i915_inject_probe_failure(i915) i915_inject_probe_error((i915), -ENODEV)
 80
 81#define i915_probe_error(i915, fmt, ...)				   \
 82	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
 83		      fmt, ##__VA_ARGS__)
 84
 85#if defined(GCC_VERSION) && GCC_VERSION >= 70000
 86#define add_overflows_t(T, A, B) \
 87	__builtin_add_overflow_p((A), (B), (T)0)
 88#else
 89#define add_overflows_t(T, A, B) ({ \
 90	typeof(A) a = (A); \
 91	typeof(B) b = (B); \
 92	(T)(a + b) < a; \
 93})
 94#endif
 95
 96#define add_overflows(A, B) \
 97	add_overflows_t(typeof((A) + (B)), (A), (B))
 98
 99#define range_overflows(start, size, max) ({ \
100	typeof(start) start__ = (start); \
101	typeof(size) size__ = (size); \
102	typeof(max) max__ = (max); \
103	(void)(&start__ == &size__); \
104	(void)(&start__ == &max__); \
105	start__ >= max__ || size__ > max__ - start__; \
106})
107
108#define range_overflows_t(type, start, size, max) \
109	range_overflows((type)(start), (type)(size), (type)(max))
110
111#define range_overflows_end(start, size, max) ({ \
112	typeof(start) start__ = (start); \
113	typeof(size) size__ = (size); \
114	typeof(max) max__ = (max); \
115	(void)(&start__ == &size__); \
116	(void)(&start__ == &max__); \
117	start__ > max__ || size__ > max__ - start__; \
118})
119
120#define range_overflows_end_t(type, start, size, max) \
121	range_overflows_end((type)(start), (type)(size), (type)(max))
122
123/* Note we don't consider signbits :| */
124#define overflows_type(x, T) \
125	(sizeof(x) > sizeof(T) && (x) >> BITS_PER_TYPE(T))
126
127static inline bool
128__check_struct_size(size_t base, size_t arr, size_t count, size_t *size)
129{
130	size_t sz;
131
132	if (check_mul_overflow(count, arr, &sz))
133		return false;
134
135	if (check_add_overflow(sz, base, &sz))
136		return false;
137
138	*size = sz;
139	return true;
140}
141
142/**
143 * check_struct_size() - Calculate size of structure with trailing array.
144 * @p: Pointer to the structure.
145 * @member: Name of the array member.
146 * @n: Number of elements in the array.
147 * @sz: Total size of structure and array
148 *
149 * Calculates size of memory needed for structure @p followed by an
150 * array of @n @member elements, like struct_size() but reports
151 * whether it overflowed, and the resultant size in @sz
152 *
153 * Return: false if the calculation overflowed.
154 */
155#define check_struct_size(p, member, n, sz) \
156	likely(__check_struct_size(sizeof(*(p)), \
157				   sizeof(*(p)->member) + __must_be_array((p)->member), \
158				   n, sz))
159
160#define ptr_mask_bits(ptr, n) ({					\
161	unsigned long __v = (unsigned long)(ptr);			\
162	(typeof(ptr))(__v & -BIT(n));					\
163})
164
165#define ptr_unmask_bits(ptr, n) ((unsigned long)(ptr) & (BIT(n) - 1))
166
167#define ptr_unpack_bits(ptr, bits, n) ({				\
168	unsigned long __v = (unsigned long)(ptr);			\
169	*(bits) = __v & (BIT(n) - 1);					\
170	(typeof(ptr))(__v & -BIT(n));					\
171})
172
173#define ptr_pack_bits(ptr, bits, n) ({					\
174	unsigned long __bits = (bits);					\
175	GEM_BUG_ON(__bits & -BIT(n));					\
176	((typeof(ptr))((unsigned long)(ptr) | __bits));			\
177})
178
179#define ptr_dec(ptr) ({							\
180	unsigned long __v = (unsigned long)(ptr);			\
181	(typeof(ptr))(__v - 1);						\
182})
183
184#define ptr_inc(ptr) ({							\
185	unsigned long __v = (unsigned long)(ptr);			\
186	(typeof(ptr))(__v + 1);						\
187})
188
189#define page_mask_bits(ptr) ptr_mask_bits(ptr, PAGE_SHIFT)
190#define page_unmask_bits(ptr) ptr_unmask_bits(ptr, PAGE_SHIFT)
191#define page_pack_bits(ptr, bits) ptr_pack_bits(ptr, bits, PAGE_SHIFT)
192#define page_unpack_bits(ptr, bits) ptr_unpack_bits(ptr, bits, PAGE_SHIFT)
193
194#define struct_member(T, member) (((T *)0)->member)
195
196#define ptr_offset(ptr, member) offsetof(typeof(*(ptr)), member)
197
198#define fetch_and_zero(ptr) ({						\
199	typeof(*ptr) __T = *(ptr);					\
200	*(ptr) = (typeof(*ptr))0;					\
201	__T;								\
202})
203
204/*
205 * container_of_user: Extract the superclass from a pointer to a member.
206 *
207 * Exactly like container_of() with the exception that it plays nicely
208 * with sparse for __user @ptr.
209 */
210#define container_of_user(ptr, type, member) ({				\
211	void __user *__mptr = (void __user *)(ptr);			\
212	BUILD_BUG_ON_MSG(!__same_type(*(ptr), struct_member(type, member)) && \
213			 !__same_type(*(ptr), void),			\
214			 "pointer type mismatch in container_of()");	\
215	((type __user *)(__mptr - offsetof(type, member))); })
216
217/*
218 * check_user_mbz: Check that a user value exists and is zero
219 *
220 * Frequently in our uABI we reserve space for future extensions, and
221 * two ensure that userspace is prepared we enforce that space must
222 * be zero. (Then any future extension can safely assume a default value
223 * of 0.)
224 *
225 * check_user_mbz() combines checking that the user pointer is accessible
226 * and that the contained value is zero.
227 *
228 * Returns: -EFAULT if not accessible, -EINVAL if !zero, or 0 on success.
229 */
230#define check_user_mbz(U) ({						\
231	typeof(*(U)) mbz__;						\
232	get_user(mbz__, (U)) ? -EFAULT : mbz__ ? -EINVAL : 0;		\
233})
234
235static inline u64 ptr_to_u64(const void *ptr)
236{
237	return (uintptr_t)ptr;
238}
239
240#define u64_to_ptr(T, x) ({						\
241	typecheck(u64, x);						\
242	(T *)(uintptr_t)(x);						\
243})
244
245#define __mask_next_bit(mask) ({					\
246	int __idx = ffs(mask) - 1;					\
247	mask &= ~BIT(__idx);						\
248	__idx;								\
249})
250
251static inline bool is_power_of_2_u64(u64 n)
252{
253	return (n != 0 && ((n & (n - 1)) == 0));
254}
255
256static inline void __list_del_many(struct list_head *head,
257				   struct list_head *first)
258{
259	first->prev = head;
260	WRITE_ONCE(head->next, first);
261}
262
263static inline int list_is_last_rcu(const struct list_head *list,
264				   const struct list_head *head)
265{
266	return READ_ONCE(list->next) == head;
267}
268
269static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
270{
271	unsigned long j = msecs_to_jiffies(m);
272
273	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
274}
275
276/*
277 * If you need to wait X milliseconds between events A and B, but event B
278 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
279 * when event A happened, then just before event B you call this function and
280 * pass the timestamp as the first argument, and X as the second argument.
281 */
282static inline void
283wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
284{
285	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
286
287	/*
288	 * Don't re-read the value of "jiffies" every time since it may change
289	 * behind our back and break the math.
290	 */
291	tmp_jiffies = jiffies;
292	target_jiffies = timestamp_jiffies +
293			 msecs_to_jiffies_timeout(to_wait_ms);
294
295	if (time_after(target_jiffies, tmp_jiffies)) {
296		remaining_jiffies = target_jiffies - tmp_jiffies;
297		while (remaining_jiffies)
298			remaining_jiffies =
299			    schedule_timeout_uninterruptible(remaining_jiffies);
300	}
301}
302
303/**
304 * __wait_for - magic wait macro
305 *
306 * Macro to help avoid open coding check/wait/timeout patterns. Note that it's
307 * important that we check the condition again after having timed out, since the
308 * timeout could be due to preemption or similar and we've never had a chance to
309 * check the condition before the timeout.
310 */
311#define __wait_for(OP, COND, US, Wmin, Wmax) ({ \
312	const ktime_t end__ = ktime_add_ns(ktime_get_raw(), 1000ll * (US)); \
313	long wait__ = (Wmin); /* recommended min for usleep is 10 us */	\
314	int ret__;							\
315	might_sleep();							\
316	for (;;) {							\
317		const bool expired__ = ktime_after(ktime_get_raw(), end__); \
318		OP;							\
319		/* Guarantee COND check prior to timeout */		\
320		barrier();						\
321		if (COND) {						\
322			ret__ = 0;					\
323			break;						\
324		}							\
325		if (expired__) {					\
326			ret__ = -ETIMEDOUT;				\
327			break;						\
328		}							\
329		usleep_range(wait__, wait__ * 2);			\
330		if (wait__ < (Wmax))					\
331			wait__ <<= 1;					\
332	}								\
333	ret__;								\
334})
335
336#define _wait_for(COND, US, Wmin, Wmax)	__wait_for(, (COND), (US), (Wmin), \
337						   (Wmax))
338#define wait_for(COND, MS)		_wait_for((COND), (MS) * 1000, 10, 1000)
339
340/* If CONFIG_PREEMPT_COUNT is disabled, in_atomic() always reports false. */
341#if defined(CONFIG_DRM_I915_DEBUG) && defined(CONFIG_PREEMPT_COUNT)
342# define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) WARN_ON_ONCE((ATOMIC) && !in_atomic())
343#else
344# define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) do { } while (0)
345#endif
346
347#define _wait_for_atomic(COND, US, ATOMIC) \
348({ \
349	int cpu, ret, timeout = (US) * 1000; \
350	u64 base; \
351	_WAIT_FOR_ATOMIC_CHECK(ATOMIC); \
352	if (!(ATOMIC)) { \
353		preempt_disable(); \
354		cpu = smp_processor_id(); \
355	} \
356	base = local_clock(); \
357	for (;;) { \
358		u64 now = local_clock(); \
359		if (!(ATOMIC)) \
360			preempt_enable(); \
361		/* Guarantee COND check prior to timeout */ \
362		barrier(); \
363		if (COND) { \
364			ret = 0; \
365			break; \
366		} \
367		if (now - base >= timeout) { \
368			ret = -ETIMEDOUT; \
369			break; \
370		} \
371		cpu_relax(); \
372		if (!(ATOMIC)) { \
373			preempt_disable(); \
374			if (unlikely(cpu != smp_processor_id())) { \
375				timeout -= now - base; \
376				cpu = smp_processor_id(); \
377				base = local_clock(); \
378			} \
379		} \
380	} \
381	ret; \
382})
383
384#define wait_for_us(COND, US) \
385({ \
386	int ret__; \
387	BUILD_BUG_ON(!__builtin_constant_p(US)); \
388	if ((US) > 10) \
389		ret__ = _wait_for((COND), (US), 10, 10); \
390	else \
391		ret__ = _wait_for_atomic((COND), (US), 0); \
392	ret__; \
393})
394
395#define wait_for_atomic_us(COND, US) \
396({ \
397	BUILD_BUG_ON(!__builtin_constant_p(US)); \
398	BUILD_BUG_ON((US) > 50000); \
399	_wait_for_atomic((COND), (US), 1); \
400})
401
402#define wait_for_atomic(COND, MS) wait_for_atomic_us((COND), (MS) * 1000)
403
404#define KHz(x) (1000 * (x))
405#define MHz(x) KHz(1000 * (x))
406
407#define KBps(x) (1000 * (x))
408#define MBps(x) KBps(1000 * (x))
409#define GBps(x) ((u64)1000 * MBps((x)))
410
411static inline const char *yesno(bool v)
412{
413	return v ? "yes" : "no";
414}
415
416static inline const char *onoff(bool v)
417{
418	return v ? "on" : "off";
419}
420
421static inline const char *enableddisabled(bool v)
422{
423	return v ? "enabled" : "disabled";
424}
425
426void add_taint_for_CI(struct drm_i915_private *i915, unsigned int taint);
427static inline void __add_taint_for_CI(unsigned int taint)
428{
429	/*
430	 * The system is "ok", just about surviving for the user, but
431	 * CI results are now unreliable as the HW is very suspect.
432	 * CI checks the taint state after every test and will reboot
433	 * the machine if the kernel is tainted.
434	 */
435	add_taint(taint, LOCKDEP_STILL_OK);
436}
437
438void cancel_timer(struct timer_list *t);
439void set_timer_ms(struct timer_list *t, unsigned long timeout);
440
441static inline bool timer_expired(const struct timer_list *t)
442{
443	return READ_ONCE(t->expires) && !timer_pending(t);
444}
445
446/*
447 * This is a lookalike for IS_ENABLED() that takes a kconfig value,
448 * e.g. CONFIG_DRM_I915_SPIN_REQUEST, and evaluates whether it is non-zero
449 * i.e. whether the configuration is active. Wrapping up the config inside
450 * a boolean context prevents clang and smatch from complaining about potential
451 * issues in confusing logical-&& with bitwise-& for constants.
452 *
453 * Sadly IS_ENABLED() itself does not work with kconfig values.
454 *
455 * Returns 0 if @config is 0, 1 if set to any value.
456 */
457#define IS_ACTIVE(config) ((config) != 0)
458
459#endif /* !__I915_UTILS_H */