Loading...
1/*---------------------------------------------------------------------------+
2 | fpu_entry.c |
3 | |
4 | The entry functions for wm-FPU-emu |
5 | |
6 | Copyright (C) 1992,1993,1994,1996,1997 |
7 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
8 | E-mail billm@suburbia.net |
9 | |
10 | See the files "README" and "COPYING" for further copyright and warranty |
11 | information. |
12 | |
13 +---------------------------------------------------------------------------*/
14
15/*---------------------------------------------------------------------------+
16 | Note: |
17 | The file contains code which accesses user memory. |
18 | Emulator static data may change when user memory is accessed, due to |
19 | other processes using the emulator while swapping is in progress. |
20 +---------------------------------------------------------------------------*/
21
22/*---------------------------------------------------------------------------+
23 | math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
24 | entry points for wm-FPU-emu. |
25 +---------------------------------------------------------------------------*/
26
27#include <linux/signal.h>
28#include <linux/regset.h>
29
30#include <asm/uaccess.h>
31#include <asm/desc.h>
32#include <asm/user.h>
33#include <asm/i387.h>
34
35#include "fpu_system.h"
36#include "fpu_emu.h"
37#include "exception.h"
38#include "control_w.h"
39#include "status_w.h"
40
41#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
42
43#ifndef NO_UNDOC_CODE /* Un-documented FPU op-codes supported by default. */
44
45/* WARNING: These codes are not documented by Intel in their 80486 manual
46 and may not work on FPU clones or later Intel FPUs. */
47
48/* Changes to support the un-doc codes provided by Linus Torvalds. */
49
50#define _d9_d8_ fstp_i /* unofficial code (19) */
51#define _dc_d0_ fcom_st /* unofficial code (14) */
52#define _dc_d8_ fcompst /* unofficial code (1c) */
53#define _dd_c8_ fxch_i /* unofficial code (0d) */
54#define _de_d0_ fcompst /* unofficial code (16) */
55#define _df_c0_ ffreep /* unofficial code (07) ffree + pop */
56#define _df_c8_ fxch_i /* unofficial code (0f) */
57#define _df_d0_ fstp_i /* unofficial code (17) */
58#define _df_d8_ fstp_i /* unofficial code (1f) */
59
60static FUNC const st_instr_table[64] = {
61 fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, _df_c0_,
62 fmul__, fxch_i, __BAD__, __BAD__, fmul_i, _dd_c8_, fmulp_, _df_c8_,
63 fcom_st, fp_nop, __BAD__, __BAD__, _dc_d0_, fst_i_, _de_d0_, _df_d0_,
64 fcompst, _d9_d8_, __BAD__, __BAD__, _dc_d8_, fstp_i, fcompp, _df_d8_,
65 fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
66 fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__,
67 fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__,
68 fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
69};
70
71#else /* Support only documented FPU op-codes */
72
73static FUNC const st_instr_table[64] = {
74 fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, __BAD__,
75 fmul__, fxch_i, __BAD__, __BAD__, fmul_i, __BAD__, fmulp_, __BAD__,
76 fcom_st, fp_nop, __BAD__, __BAD__, __BAD__, fst_i_, __BAD__, __BAD__,
77 fcompst, __BAD__, __BAD__, __BAD__, __BAD__, fstp_i, fcompp, __BAD__,
78 fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
79 fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__,
80 fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__,
81 fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
82};
83
84#endif /* NO_UNDOC_CODE */
85
86#define _NONE_ 0 /* Take no special action */
87#define _REG0_ 1 /* Need to check for not empty st(0) */
88#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
89#define _REGi_ 0 /* Uses st(rm) */
90#define _PUSH_ 3 /* Need to check for space to push onto stack */
91#define _null_ 4 /* Function illegal or not implemented */
92#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
93#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
94#define _REGIc 0 /* Compare st(0) and st(rm) */
95#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
96
97#ifndef NO_UNDOC_CODE
98
99/* Un-documented FPU op-codes supported by default. (see above) */
100
101static u_char const type_table[64] = {
102 _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _REGi_,
103 _REGI_, _REGIn, _null_, _null_, _REGIi, _REGI_, _REGIp, _REGI_,
104 _REGIc, _NONE_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,
105 _REGIc, _REG0_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,
106 _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
107 _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,
108 _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
109 _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
110};
111
112#else /* Support only documented FPU op-codes */
113
114static u_char const type_table[64] = {
115 _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_,
116 _REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
117 _REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_,
118 _REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_,
119 _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
120 _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,
121 _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
122 _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
123};
124
125#endif /* NO_UNDOC_CODE */
126
127#ifdef RE_ENTRANT_CHECKING
128u_char emulating = 0;
129#endif /* RE_ENTRANT_CHECKING */
130
131static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip,
132 overrides * override);
133
134void math_emulate(struct math_emu_info *info)
135{
136 u_char FPU_modrm, byte1;
137 unsigned short code;
138 fpu_addr_modes addr_modes;
139 int unmasked;
140 FPU_REG loaded_data;
141 FPU_REG *st0_ptr;
142 u_char loaded_tag, st0_tag;
143 void __user *data_address;
144 struct address data_sel_off;
145 struct address entry_sel_off;
146 unsigned long code_base = 0;
147 unsigned long code_limit = 0; /* Initialized to stop compiler warnings */
148 struct desc_struct code_descriptor;
149
150 if (!used_math()) {
151 if (init_fpu(current)) {
152 do_group_exit(SIGKILL);
153 return;
154 }
155 }
156
157#ifdef RE_ENTRANT_CHECKING
158 if (emulating) {
159 printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
160 }
161 RE_ENTRANT_CHECK_ON;
162#endif /* RE_ENTRANT_CHECKING */
163
164 FPU_info = info;
165
166 FPU_ORIG_EIP = FPU_EIP;
167
168 if ((FPU_EFLAGS & 0x00020000) != 0) {
169 /* Virtual 8086 mode */
170 addr_modes.default_mode = VM86;
171 FPU_EIP += code_base = FPU_CS << 4;
172 code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */
173 } else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) {
174 addr_modes.default_mode = 0;
175 } else if (FPU_CS == __KERNEL_CS) {
176 printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP);
177 panic("Math emulation needed in kernel");
178 } else {
179
180 if ((FPU_CS & 4) != 4) { /* Must be in the LDT */
181 /* Can only handle segmented addressing via the LDT
182 for now, and it must be 16 bit */
183 printk("FPU emulator: Unsupported addressing mode\n");
184 math_abort(FPU_info, SIGILL);
185 }
186
187 code_descriptor = LDT_DESCRIPTOR(FPU_CS);
188 if (SEG_D_SIZE(code_descriptor)) {
189 /* The above test may be wrong, the book is not clear */
190 /* Segmented 32 bit protected mode */
191 addr_modes.default_mode = SEG32;
192 } else {
193 /* 16 bit protected mode */
194 addr_modes.default_mode = PM16;
195 }
196 FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor);
197 code_limit = code_base
198 + (SEG_LIMIT(code_descriptor) +
199 1) * SEG_GRANULARITY(code_descriptor)
200 - 1;
201 if (code_limit < code_base)
202 code_limit = 0xffffffff;
203 }
204
205 FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF);
206
207 if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
208 &addr_modes.override)) {
209 RE_ENTRANT_CHECK_OFF;
210 printk
211 ("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"
212 "FPU emulator: self-modifying code! (emulation impossible)\n",
213 byte1);
214 RE_ENTRANT_CHECK_ON;
215 EXCEPTION(EX_INTERNAL | 0x126);
216 math_abort(FPU_info, SIGILL);
217 }
218
219 do_another_FPU_instruction:
220
221 no_ip_update = 0;
222
223 FPU_EIP++; /* We have fetched the prefix and first code bytes. */
224
225 if (addr_modes.default_mode) {
226 /* This checks for the minimum instruction bytes.
227 We also need to check any extra (address mode) code access. */
228 if (FPU_EIP > code_limit)
229 math_abort(FPU_info, SIGSEGV);
230 }
231
232 if ((byte1 & 0xf8) != 0xd8) {
233 if (byte1 == FWAIT_OPCODE) {
234 if (partial_status & SW_Summary)
235 goto do_the_FPU_interrupt;
236 else
237 goto FPU_fwait_done;
238 }
239#ifdef PARANOID
240 EXCEPTION(EX_INTERNAL | 0x128);
241 math_abort(FPU_info, SIGILL);
242#endif /* PARANOID */
243 }
244
245 RE_ENTRANT_CHECK_OFF;
246 FPU_code_access_ok(1);
247 FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP);
248 RE_ENTRANT_CHECK_ON;
249 FPU_EIP++;
250
251 if (partial_status & SW_Summary) {
252 /* Ignore the error for now if the current instruction is a no-wait
253 control instruction */
254 /* The 80486 manual contradicts itself on this topic,
255 but a real 80486 uses the following instructions:
256 fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
257 */
258 code = (FPU_modrm << 8) | byte1;
259 if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
260 (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
261 fnstsw */
262 ((code & 0xc000) != 0xc000))))) {
263 /*
264 * We need to simulate the action of the kernel to FPU
265 * interrupts here.
266 */
267 do_the_FPU_interrupt:
268
269 FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */
270
271 RE_ENTRANT_CHECK_OFF;
272 current->thread.trap_no = 16;
273 current->thread.error_code = 0;
274 send_sig(SIGFPE, current, 1);
275 return;
276 }
277 }
278
279 entry_sel_off.offset = FPU_ORIG_EIP;
280 entry_sel_off.selector = FPU_CS;
281 entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
282 entry_sel_off.empty = 0;
283
284 FPU_rm = FPU_modrm & 7;
285
286 if (FPU_modrm < 0300) {
287 /* All of these instructions use the mod/rm byte to get a data address */
288
289 if ((addr_modes.default_mode & SIXTEEN)
290 ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX))
291 data_address =
292 FPU_get_address_16(FPU_modrm, &FPU_EIP,
293 &data_sel_off, addr_modes);
294 else
295 data_address =
296 FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,
297 addr_modes);
298
299 if (addr_modes.default_mode) {
300 if (FPU_EIP - 1 > code_limit)
301 math_abort(FPU_info, SIGSEGV);
302 }
303
304 if (!(byte1 & 1)) {
305 unsigned short status1 = partial_status;
306
307 st0_ptr = &st(0);
308 st0_tag = FPU_gettag0();
309
310 /* Stack underflow has priority */
311 if (NOT_EMPTY_ST0) {
312 if (addr_modes.default_mode & PROTECTED) {
313 /* This table works for 16 and 32 bit protected mode */
314 if (access_limit <
315 data_sizes_16[(byte1 >> 1) & 3])
316 math_abort(FPU_info, SIGSEGV);
317 }
318
319 unmasked = 0; /* Do this here to stop compiler warnings. */
320 switch ((byte1 >> 1) & 3) {
321 case 0:
322 unmasked =
323 FPU_load_single((float __user *)
324 data_address,
325 &loaded_data);
326 loaded_tag = unmasked & 0xff;
327 unmasked &= ~0xff;
328 break;
329 case 1:
330 loaded_tag =
331 FPU_load_int32((long __user *)
332 data_address,
333 &loaded_data);
334 break;
335 case 2:
336 unmasked =
337 FPU_load_double((double __user *)
338 data_address,
339 &loaded_data);
340 loaded_tag = unmasked & 0xff;
341 unmasked &= ~0xff;
342 break;
343 case 3:
344 default: /* Used here to suppress gcc warnings. */
345 loaded_tag =
346 FPU_load_int16((short __user *)
347 data_address,
348 &loaded_data);
349 break;
350 }
351
352 /* No more access to user memory, it is safe
353 to use static data now */
354
355 /* NaN operands have the next priority. */
356 /* We have to delay looking at st(0) until after
357 loading the data, because that data might contain an SNaN */
358 if (((st0_tag == TAG_Special) && isNaN(st0_ptr))
359 || ((loaded_tag == TAG_Special)
360 && isNaN(&loaded_data))) {
361 /* Restore the status word; we might have loaded a
362 denormal. */
363 partial_status = status1;
364 if ((FPU_modrm & 0x30) == 0x10) {
365 /* fcom or fcomp */
366 EXCEPTION(EX_Invalid);
367 setcc(SW_C3 | SW_C2 | SW_C0);
368 if ((FPU_modrm & 0x08)
369 && (control_word &
370 CW_Invalid))
371 FPU_pop(); /* fcomp, masked, so we pop. */
372 } else {
373 if (loaded_tag == TAG_Special)
374 loaded_tag =
375 FPU_Special
376 (&loaded_data);
377#ifdef PECULIAR_486
378 /* This is not really needed, but gives behaviour
379 identical to an 80486 */
380 if ((FPU_modrm & 0x28) == 0x20)
381 /* fdiv or fsub */
382 real_2op_NaN
383 (&loaded_data,
384 loaded_tag, 0,
385 &loaded_data);
386 else
387#endif /* PECULIAR_486 */
388 /* fadd, fdivr, fmul, or fsubr */
389 real_2op_NaN
390 (&loaded_data,
391 loaded_tag, 0,
392 st0_ptr);
393 }
394 goto reg_mem_instr_done;
395 }
396
397 if (unmasked && !((FPU_modrm & 0x30) == 0x10)) {
398 /* Is not a comparison instruction. */
399 if ((FPU_modrm & 0x38) == 0x38) {
400 /* fdivr */
401 if ((st0_tag == TAG_Zero) &&
402 ((loaded_tag == TAG_Valid)
403 || (loaded_tag ==
404 TAG_Special
405 &&
406 isdenormal
407 (&loaded_data)))) {
408 if (FPU_divide_by_zero
409 (0,
410 getsign
411 (&loaded_data))
412 < 0) {
413 /* We use the fact here that the unmasked
414 exception in the loaded data was for a
415 denormal operand */
416 /* Restore the state of the denormal op bit */
417 partial_status
418 &=
419 ~SW_Denorm_Op;
420 partial_status
421 |=
422 status1 &
423 SW_Denorm_Op;
424 } else
425 setsign(st0_ptr,
426 getsign
427 (&loaded_data));
428 }
429 }
430 goto reg_mem_instr_done;
431 }
432
433 switch ((FPU_modrm >> 3) & 7) {
434 case 0: /* fadd */
435 clear_C1();
436 FPU_add(&loaded_data, loaded_tag, 0,
437 control_word);
438 break;
439 case 1: /* fmul */
440 clear_C1();
441 FPU_mul(&loaded_data, loaded_tag, 0,
442 control_word);
443 break;
444 case 2: /* fcom */
445 FPU_compare_st_data(&loaded_data,
446 loaded_tag);
447 break;
448 case 3: /* fcomp */
449 if (!FPU_compare_st_data
450 (&loaded_data, loaded_tag)
451 && !unmasked)
452 FPU_pop();
453 break;
454 case 4: /* fsub */
455 clear_C1();
456 FPU_sub(LOADED | loaded_tag,
457 (int)&loaded_data,
458 control_word);
459 break;
460 case 5: /* fsubr */
461 clear_C1();
462 FPU_sub(REV | LOADED | loaded_tag,
463 (int)&loaded_data,
464 control_word);
465 break;
466 case 6: /* fdiv */
467 clear_C1();
468 FPU_div(LOADED | loaded_tag,
469 (int)&loaded_data,
470 control_word);
471 break;
472 case 7: /* fdivr */
473 clear_C1();
474 if (st0_tag == TAG_Zero)
475 partial_status = status1; /* Undo any denorm tag,
476 zero-divide has priority. */
477 FPU_div(REV | LOADED | loaded_tag,
478 (int)&loaded_data,
479 control_word);
480 break;
481 }
482 } else {
483 if ((FPU_modrm & 0x30) == 0x10) {
484 /* The instruction is fcom or fcomp */
485 EXCEPTION(EX_StackUnder);
486 setcc(SW_C3 | SW_C2 | SW_C0);
487 if ((FPU_modrm & 0x08)
488 && (control_word & CW_Invalid))
489 FPU_pop(); /* fcomp */
490 } else
491 FPU_stack_underflow();
492 }
493 reg_mem_instr_done:
494 operand_address = data_sel_off;
495 } else {
496 if (!(no_ip_update =
497 FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6))
498 >> 1, addr_modes, data_address))) {
499 operand_address = data_sel_off;
500 }
501 }
502
503 } else {
504 /* None of these instructions access user memory */
505 u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
506
507#ifdef PECULIAR_486
508 /* This is supposed to be undefined, but a real 80486 seems
509 to do this: */
510 operand_address.offset = 0;
511 operand_address.selector = FPU_DS;
512#endif /* PECULIAR_486 */
513
514 st0_ptr = &st(0);
515 st0_tag = FPU_gettag0();
516 switch (type_table[(int)instr_index]) {
517 case _NONE_: /* also _REGIc: _REGIn */
518 break;
519 case _REG0_:
520 if (!NOT_EMPTY_ST0) {
521 FPU_stack_underflow();
522 goto FPU_instruction_done;
523 }
524 break;
525 case _REGIi:
526 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
527 FPU_stack_underflow_i(FPU_rm);
528 goto FPU_instruction_done;
529 }
530 break;
531 case _REGIp:
532 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
533 FPU_stack_underflow_pop(FPU_rm);
534 goto FPU_instruction_done;
535 }
536 break;
537 case _REGI_:
538 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
539 FPU_stack_underflow();
540 goto FPU_instruction_done;
541 }
542 break;
543 case _PUSH_: /* Only used by the fld st(i) instruction */
544 break;
545 case _null_:
546 FPU_illegal();
547 goto FPU_instruction_done;
548 default:
549 EXCEPTION(EX_INTERNAL | 0x111);
550 goto FPU_instruction_done;
551 }
552 (*st_instr_table[(int)instr_index]) ();
553
554 FPU_instruction_done:
555 ;
556 }
557
558 if (!no_ip_update)
559 instruction_address = entry_sel_off;
560
561 FPU_fwait_done:
562
563#ifdef DEBUG
564 RE_ENTRANT_CHECK_OFF;
565 FPU_printall();
566 RE_ENTRANT_CHECK_ON;
567#endif /* DEBUG */
568
569 if (FPU_lookahead && !need_resched()) {
570 FPU_ORIG_EIP = FPU_EIP - code_base;
571 if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
572 &addr_modes.override))
573 goto do_another_FPU_instruction;
574 }
575
576 if (addr_modes.default_mode)
577 FPU_EIP -= code_base;
578
579 RE_ENTRANT_CHECK_OFF;
580}
581
582/* Support for prefix bytes is not yet complete. To properly handle
583 all prefix bytes, further changes are needed in the emulator code
584 which accesses user address space. Access to separate segments is
585 important for msdos emulation. */
586static int valid_prefix(u_char *Byte, u_char __user **fpu_eip,
587 overrides * override)
588{
589 u_char byte;
590 u_char __user *ip = *fpu_eip;
591
592 *override = (overrides) {
593 0, 0, PREFIX_DEFAULT}; /* defaults */
594
595 RE_ENTRANT_CHECK_OFF;
596 FPU_code_access_ok(1);
597 FPU_get_user(byte, ip);
598 RE_ENTRANT_CHECK_ON;
599
600 while (1) {
601 switch (byte) {
602 case ADDR_SIZE_PREFIX:
603 override->address_size = ADDR_SIZE_PREFIX;
604 goto do_next_byte;
605
606 case OP_SIZE_PREFIX:
607 override->operand_size = OP_SIZE_PREFIX;
608 goto do_next_byte;
609
610 case PREFIX_CS:
611 override->segment = PREFIX_CS_;
612 goto do_next_byte;
613 case PREFIX_ES:
614 override->segment = PREFIX_ES_;
615 goto do_next_byte;
616 case PREFIX_SS:
617 override->segment = PREFIX_SS_;
618 goto do_next_byte;
619 case PREFIX_FS:
620 override->segment = PREFIX_FS_;
621 goto do_next_byte;
622 case PREFIX_GS:
623 override->segment = PREFIX_GS_;
624 goto do_next_byte;
625 case PREFIX_DS:
626 override->segment = PREFIX_DS_;
627 goto do_next_byte;
628
629/* lock is not a valid prefix for FPU instructions,
630 let the cpu handle it to generate a SIGILL. */
631/* case PREFIX_LOCK: */
632
633 /* rep.. prefixes have no meaning for FPU instructions */
634 case PREFIX_REPE:
635 case PREFIX_REPNE:
636
637 do_next_byte:
638 ip++;
639 RE_ENTRANT_CHECK_OFF;
640 FPU_code_access_ok(1);
641 FPU_get_user(byte, ip);
642 RE_ENTRANT_CHECK_ON;
643 break;
644 case FWAIT_OPCODE:
645 *Byte = byte;
646 return 1;
647 default:
648 if ((byte & 0xf8) == 0xd8) {
649 *Byte = byte;
650 *fpu_eip = ip;
651 return 1;
652 } else {
653 /* Not a valid sequence of prefix bytes followed by
654 an FPU instruction. */
655 *Byte = byte; /* Needed for error message. */
656 return 0;
657 }
658 }
659 }
660}
661
662void math_abort(struct math_emu_info *info, unsigned int signal)
663{
664 FPU_EIP = FPU_ORIG_EIP;
665 current->thread.trap_no = 16;
666 current->thread.error_code = 0;
667 send_sig(signal, current, 1);
668 RE_ENTRANT_CHECK_OFF;
669 __asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4));
670#ifdef PARANOID
671 printk("ERROR: wm-FPU-emu math_abort failed!\n");
672#endif /* PARANOID */
673}
674
675#define S387 ((struct i387_soft_struct *)s387)
676#define sstatus_word() \
677 ((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top))
678
679int fpregs_soft_set(struct task_struct *target,
680 const struct user_regset *regset,
681 unsigned int pos, unsigned int count,
682 const void *kbuf, const void __user *ubuf)
683{
684 struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
685 void *space = s387->st_space;
686 int ret;
687 int offset, other, i, tags, regnr, tag, newtop;
688
689 RE_ENTRANT_CHECK_OFF;
690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0,
691 offsetof(struct i387_soft_struct, st_space));
692 RE_ENTRANT_CHECK_ON;
693
694 if (ret)
695 return ret;
696
697 S387->ftop = (S387->swd >> SW_Top_Shift) & 7;
698 offset = (S387->ftop & 7) * 10;
699 other = 80 - offset;
700
701 RE_ENTRANT_CHECK_OFF;
702
703 /* Copy all registers in stack order. */
704 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
705 space + offset, 0, other);
706 if (!ret && offset)
707 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
708 space, 0, offset);
709
710 RE_ENTRANT_CHECK_ON;
711
712 /* The tags may need to be corrected now. */
713 tags = S387->twd;
714 newtop = S387->ftop;
715 for (i = 0; i < 8; i++) {
716 regnr = (i + newtop) & 7;
717 if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) {
718 /* The loaded data over-rides all other cases. */
719 tag =
720 FPU_tagof((FPU_REG *) ((u_char *) S387->st_space +
721 10 * regnr));
722 tags &= ~(3 << (regnr * 2));
723 tags |= (tag & 3) << (regnr * 2);
724 }
725 }
726 S387->twd = tags;
727
728 return ret;
729}
730
731int fpregs_soft_get(struct task_struct *target,
732 const struct user_regset *regset,
733 unsigned int pos, unsigned int count,
734 void *kbuf, void __user *ubuf)
735{
736 struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
737 const void *space = s387->st_space;
738 int ret;
739 int offset = (S387->ftop & 7) * 10, other = 80 - offset;
740
741 RE_ENTRANT_CHECK_OFF;
742
743#ifdef PECULIAR_486
744 S387->cwd &= ~0xe080;
745 /* An 80486 sets nearly all of the reserved bits to 1. */
746 S387->cwd |= 0xffff0040;
747 S387->swd = sstatus_word() | 0xffff0000;
748 S387->twd |= 0xffff0000;
749 S387->fcs &= ~0xf8000000;
750 S387->fos |= 0xffff0000;
751#endif /* PECULIAR_486 */
752
753 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, s387, 0,
754 offsetof(struct i387_soft_struct, st_space));
755
756 /* Copy all registers in stack order. */
757 if (!ret)
758 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
759 space + offset, 0, other);
760 if (!ret)
761 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
762 space, 0, offset);
763
764 RE_ENTRANT_CHECK_ON;
765
766 return ret;
767}
1// SPDX-License-Identifier: GPL-2.0
2/*---------------------------------------------------------------------------+
3 | fpu_entry.c |
4 | |
5 | The entry functions for wm-FPU-emu |
6 | |
7 | Copyright (C) 1992,1993,1994,1996,1997 |
8 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
9 | E-mail billm@suburbia.net |
10 | |
11 | See the files "README" and "COPYING" for further copyright and warranty |
12 | information. |
13 | |
14 +---------------------------------------------------------------------------*/
15
16/*---------------------------------------------------------------------------+
17 | Note: |
18 | The file contains code which accesses user memory. |
19 | Emulator static data may change when user memory is accessed, due to |
20 | other processes using the emulator while swapping is in progress. |
21 +---------------------------------------------------------------------------*/
22
23/*---------------------------------------------------------------------------+
24 | math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
25 | entry points for wm-FPU-emu. |
26 +---------------------------------------------------------------------------*/
27
28#include <linux/signal.h>
29#include <linux/regset.h>
30
31#include <linux/uaccess.h>
32#include <asm/traps.h>
33#include <asm/user.h>
34#include <asm/fpu/internal.h>
35
36#include "fpu_system.h"
37#include "fpu_emu.h"
38#include "exception.h"
39#include "control_w.h"
40#include "status_w.h"
41
42#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
43
44/* fcmovCC and f(u)comi(p) are enabled if CPUID(1).EDX(15) "cmov" is set */
45
46/* WARNING: "u" entries are not documented by Intel in their 80486 manual
47 and may not work on FPU clones or later Intel FPUs.
48 Changes to support them provided by Linus Torvalds. */
49
50static FUNC const st_instr_table[64] = {
51/* Opcode: d8 d9 da db */
52/* dc dd de df */
53/* c0..7 */ fadd__, fld_i_, fcmovb, fcmovnb,
54/* c0..7 */ fadd_i, ffree_, faddp_, ffreep,/*u*/
55/* c8..f */ fmul__, fxch_i, fcmove, fcmovne,
56/* c8..f */ fmul_i, fxch_i,/*u*/ fmulp_, fxch_i,/*u*/
57/* d0..7 */ fcom_st, fp_nop, fcmovbe, fcmovnbe,
58/* d0..7 */ fcom_st,/*u*/ fst_i_, fcompst,/*u*/ fstp_i,/*u*/
59/* d8..f */ fcompst, fstp_i,/*u*/ fcmovu, fcmovnu,
60/* d8..f */ fcompst,/*u*/ fstp_i, fcompp, fstp_i,/*u*/
61/* e0..7 */ fsub__, FPU_etc, __BAD__, finit_,
62/* e0..7 */ fsubri, fucom_, fsubrp, fstsw_,
63/* e8..f */ fsubr_, fconst, fucompp, fucomi_,
64/* e8..f */ fsub_i, fucomp, fsubp_, fucomip,
65/* f0..7 */ fdiv__, FPU_triga, __BAD__, fcomi_,
66/* f0..7 */ fdivri, __BAD__, fdivrp, fcomip,
67/* f8..f */ fdivr_, FPU_trigb, __BAD__, __BAD__,
68/* f8..f */ fdiv_i, __BAD__, fdivp_, __BAD__,
69};
70
71#define _NONE_ 0 /* Take no special action */
72#define _REG0_ 1 /* Need to check for not empty st(0) */
73#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
74#define _REGi_ 0 /* Uses st(rm) */
75#define _PUSH_ 3 /* Need to check for space to push onto stack */
76#define _null_ 4 /* Function illegal or not implemented */
77#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
78#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
79#define _REGIc 0 /* Compare st(0) and st(rm) */
80#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
81
82static u_char const type_table[64] = {
83/* Opcode: d8 d9 da db dc dd de df */
84/* c0..7 */ _REGI_, _NONE_, _REGIn, _REGIn, _REGIi, _REGi_, _REGIp, _REGi_,
85/* c8..f */ _REGI_, _REGIn, _REGIn, _REGIn, _REGIi, _REGI_, _REGIp, _REGI_,
86/* d0..7 */ _REGIc, _NONE_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
87/* d8..f */ _REGIc, _REG0_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
88/* e0..7 */ _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
89/* e8..f */ _REGI_, _NONE_, _REGIc, _REGIc, _REGIi, _REGIc, _REGIp, _REGIc,
90/* f0..7 */ _REGI_, _NONE_, _null_, _REGIc, _REGIi, _null_, _REGIp, _REGIc,
91/* f8..f */ _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
92};
93
94#ifdef RE_ENTRANT_CHECKING
95u_char emulating = 0;
96#endif /* RE_ENTRANT_CHECKING */
97
98static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip,
99 overrides * override);
100
101void math_emulate(struct math_emu_info *info)
102{
103 u_char FPU_modrm, byte1;
104 unsigned short code;
105 fpu_addr_modes addr_modes;
106 int unmasked;
107 FPU_REG loaded_data;
108 FPU_REG *st0_ptr;
109 u_char loaded_tag, st0_tag;
110 void __user *data_address;
111 struct address data_sel_off;
112 struct address entry_sel_off;
113 unsigned long code_base = 0;
114 unsigned long code_limit = 0; /* Initialized to stop compiler warnings */
115 struct desc_struct code_descriptor;
116
117#ifdef RE_ENTRANT_CHECKING
118 if (emulating) {
119 printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
120 }
121 RE_ENTRANT_CHECK_ON;
122#endif /* RE_ENTRANT_CHECKING */
123
124 FPU_info = info;
125
126 FPU_ORIG_EIP = FPU_EIP;
127
128 if ((FPU_EFLAGS & 0x00020000) != 0) {
129 /* Virtual 8086 mode */
130 addr_modes.default_mode = VM86;
131 FPU_EIP += code_base = FPU_CS << 4;
132 code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */
133 } else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) {
134 addr_modes.default_mode = 0;
135 } else if (FPU_CS == __KERNEL_CS) {
136 printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP);
137 panic("Math emulation needed in kernel");
138 } else {
139
140 if ((FPU_CS & 4) != 4) { /* Must be in the LDT */
141 /* Can only handle segmented addressing via the LDT
142 for now, and it must be 16 bit */
143 printk("FPU emulator: Unsupported addressing mode\n");
144 math_abort(FPU_info, SIGILL);
145 }
146
147 code_descriptor = FPU_get_ldt_descriptor(FPU_CS);
148 if (code_descriptor.d) {
149 /* The above test may be wrong, the book is not clear */
150 /* Segmented 32 bit protected mode */
151 addr_modes.default_mode = SEG32;
152 } else {
153 /* 16 bit protected mode */
154 addr_modes.default_mode = PM16;
155 }
156 FPU_EIP += code_base = seg_get_base(&code_descriptor);
157 code_limit = seg_get_limit(&code_descriptor) + 1;
158 code_limit *= seg_get_granularity(&code_descriptor);
159 code_limit += code_base - 1;
160 if (code_limit < code_base)
161 code_limit = 0xffffffff;
162 }
163
164 FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF);
165
166 if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
167 &addr_modes.override)) {
168 RE_ENTRANT_CHECK_OFF;
169 printk
170 ("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"
171 "FPU emulator: self-modifying code! (emulation impossible)\n",
172 byte1);
173 RE_ENTRANT_CHECK_ON;
174 EXCEPTION(EX_INTERNAL | 0x126);
175 math_abort(FPU_info, SIGILL);
176 }
177
178 do_another_FPU_instruction:
179
180 no_ip_update = 0;
181
182 FPU_EIP++; /* We have fetched the prefix and first code bytes. */
183
184 if (addr_modes.default_mode) {
185 /* This checks for the minimum instruction bytes.
186 We also need to check any extra (address mode) code access. */
187 if (FPU_EIP > code_limit)
188 math_abort(FPU_info, SIGSEGV);
189 }
190
191 if ((byte1 & 0xf8) != 0xd8) {
192 if (byte1 == FWAIT_OPCODE) {
193 if (partial_status & SW_Summary)
194 goto do_the_FPU_interrupt;
195 else
196 goto FPU_fwait_done;
197 }
198#ifdef PARANOID
199 EXCEPTION(EX_INTERNAL | 0x128);
200 math_abort(FPU_info, SIGILL);
201#endif /* PARANOID */
202 }
203
204 RE_ENTRANT_CHECK_OFF;
205 FPU_code_access_ok(1);
206 FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP);
207 RE_ENTRANT_CHECK_ON;
208 FPU_EIP++;
209
210 if (partial_status & SW_Summary) {
211 /* Ignore the error for now if the current instruction is a no-wait
212 control instruction */
213 /* The 80486 manual contradicts itself on this topic,
214 but a real 80486 uses the following instructions:
215 fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
216 */
217 code = (FPU_modrm << 8) | byte1;
218 if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
219 (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
220 fnstsw */
221 ((code & 0xc000) != 0xc000))))) {
222 /*
223 * We need to simulate the action of the kernel to FPU
224 * interrupts here.
225 */
226 do_the_FPU_interrupt:
227
228 FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */
229
230 RE_ENTRANT_CHECK_OFF;
231 current->thread.trap_nr = X86_TRAP_MF;
232 current->thread.error_code = 0;
233 send_sig(SIGFPE, current, 1);
234 return;
235 }
236 }
237
238 entry_sel_off.offset = FPU_ORIG_EIP;
239 entry_sel_off.selector = FPU_CS;
240 entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
241 entry_sel_off.empty = 0;
242
243 FPU_rm = FPU_modrm & 7;
244
245 if (FPU_modrm < 0300) {
246 /* All of these instructions use the mod/rm byte to get a data address */
247
248 if ((addr_modes.default_mode & SIXTEEN)
249 ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX))
250 data_address =
251 FPU_get_address_16(FPU_modrm, &FPU_EIP,
252 &data_sel_off, addr_modes);
253 else
254 data_address =
255 FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,
256 addr_modes);
257
258 if (addr_modes.default_mode) {
259 if (FPU_EIP - 1 > code_limit)
260 math_abort(FPU_info, SIGSEGV);
261 }
262
263 if (!(byte1 & 1)) {
264 unsigned short status1 = partial_status;
265
266 st0_ptr = &st(0);
267 st0_tag = FPU_gettag0();
268
269 /* Stack underflow has priority */
270 if (NOT_EMPTY_ST0) {
271 if (addr_modes.default_mode & PROTECTED) {
272 /* This table works for 16 and 32 bit protected mode */
273 if (access_limit <
274 data_sizes_16[(byte1 >> 1) & 3])
275 math_abort(FPU_info, SIGSEGV);
276 }
277
278 unmasked = 0; /* Do this here to stop compiler warnings. */
279 switch ((byte1 >> 1) & 3) {
280 case 0:
281 unmasked =
282 FPU_load_single((float __user *)
283 data_address,
284 &loaded_data);
285 loaded_tag = unmasked & 0xff;
286 unmasked &= ~0xff;
287 break;
288 case 1:
289 loaded_tag =
290 FPU_load_int32((long __user *)
291 data_address,
292 &loaded_data);
293 break;
294 case 2:
295 unmasked =
296 FPU_load_double((double __user *)
297 data_address,
298 &loaded_data);
299 loaded_tag = unmasked & 0xff;
300 unmasked &= ~0xff;
301 break;
302 case 3:
303 default: /* Used here to suppress gcc warnings. */
304 loaded_tag =
305 FPU_load_int16((short __user *)
306 data_address,
307 &loaded_data);
308 break;
309 }
310
311 /* No more access to user memory, it is safe
312 to use static data now */
313
314 /* NaN operands have the next priority. */
315 /* We have to delay looking at st(0) until after
316 loading the data, because that data might contain an SNaN */
317 if (((st0_tag == TAG_Special) && isNaN(st0_ptr))
318 || ((loaded_tag == TAG_Special)
319 && isNaN(&loaded_data))) {
320 /* Restore the status word; we might have loaded a
321 denormal. */
322 partial_status = status1;
323 if ((FPU_modrm & 0x30) == 0x10) {
324 /* fcom or fcomp */
325 EXCEPTION(EX_Invalid);
326 setcc(SW_C3 | SW_C2 | SW_C0);
327 if ((FPU_modrm & 0x08)
328 && (control_word &
329 CW_Invalid))
330 FPU_pop(); /* fcomp, masked, so we pop. */
331 } else {
332 if (loaded_tag == TAG_Special)
333 loaded_tag =
334 FPU_Special
335 (&loaded_data);
336#ifdef PECULIAR_486
337 /* This is not really needed, but gives behaviour
338 identical to an 80486 */
339 if ((FPU_modrm & 0x28) == 0x20)
340 /* fdiv or fsub */
341 real_2op_NaN
342 (&loaded_data,
343 loaded_tag, 0,
344 &loaded_data);
345 else
346#endif /* PECULIAR_486 */
347 /* fadd, fdivr, fmul, or fsubr */
348 real_2op_NaN
349 (&loaded_data,
350 loaded_tag, 0,
351 st0_ptr);
352 }
353 goto reg_mem_instr_done;
354 }
355
356 if (unmasked && !((FPU_modrm & 0x30) == 0x10)) {
357 /* Is not a comparison instruction. */
358 if ((FPU_modrm & 0x38) == 0x38) {
359 /* fdivr */
360 if ((st0_tag == TAG_Zero) &&
361 ((loaded_tag == TAG_Valid)
362 || (loaded_tag ==
363 TAG_Special
364 &&
365 isdenormal
366 (&loaded_data)))) {
367 if (FPU_divide_by_zero
368 (0,
369 getsign
370 (&loaded_data))
371 < 0) {
372 /* We use the fact here that the unmasked
373 exception in the loaded data was for a
374 denormal operand */
375 /* Restore the state of the denormal op bit */
376 partial_status
377 &=
378 ~SW_Denorm_Op;
379 partial_status
380 |=
381 status1 &
382 SW_Denorm_Op;
383 } else
384 setsign(st0_ptr,
385 getsign
386 (&loaded_data));
387 }
388 }
389 goto reg_mem_instr_done;
390 }
391
392 switch ((FPU_modrm >> 3) & 7) {
393 case 0: /* fadd */
394 clear_C1();
395 FPU_add(&loaded_data, loaded_tag, 0,
396 control_word);
397 break;
398 case 1: /* fmul */
399 clear_C1();
400 FPU_mul(&loaded_data, loaded_tag, 0,
401 control_word);
402 break;
403 case 2: /* fcom */
404 FPU_compare_st_data(&loaded_data,
405 loaded_tag);
406 break;
407 case 3: /* fcomp */
408 if (!FPU_compare_st_data
409 (&loaded_data, loaded_tag)
410 && !unmasked)
411 FPU_pop();
412 break;
413 case 4: /* fsub */
414 clear_C1();
415 FPU_sub(LOADED | loaded_tag,
416 (int)&loaded_data,
417 control_word);
418 break;
419 case 5: /* fsubr */
420 clear_C1();
421 FPU_sub(REV | LOADED | loaded_tag,
422 (int)&loaded_data,
423 control_word);
424 break;
425 case 6: /* fdiv */
426 clear_C1();
427 FPU_div(LOADED | loaded_tag,
428 (int)&loaded_data,
429 control_word);
430 break;
431 case 7: /* fdivr */
432 clear_C1();
433 if (st0_tag == TAG_Zero)
434 partial_status = status1; /* Undo any denorm tag,
435 zero-divide has priority. */
436 FPU_div(REV | LOADED | loaded_tag,
437 (int)&loaded_data,
438 control_word);
439 break;
440 }
441 } else {
442 if ((FPU_modrm & 0x30) == 0x10) {
443 /* The instruction is fcom or fcomp */
444 EXCEPTION(EX_StackUnder);
445 setcc(SW_C3 | SW_C2 | SW_C0);
446 if ((FPU_modrm & 0x08)
447 && (control_word & CW_Invalid))
448 FPU_pop(); /* fcomp */
449 } else
450 FPU_stack_underflow();
451 }
452 reg_mem_instr_done:
453 operand_address = data_sel_off;
454 } else {
455 if (!(no_ip_update =
456 FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6))
457 >> 1, addr_modes, data_address))) {
458 operand_address = data_sel_off;
459 }
460 }
461
462 } else {
463 /* None of these instructions access user memory */
464 u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
465
466#ifdef PECULIAR_486
467 /* This is supposed to be undefined, but a real 80486 seems
468 to do this: */
469 operand_address.offset = 0;
470 operand_address.selector = FPU_DS;
471#endif /* PECULIAR_486 */
472
473 st0_ptr = &st(0);
474 st0_tag = FPU_gettag0();
475 switch (type_table[(int)instr_index]) {
476 case _NONE_: /* also _REGIc: _REGIn */
477 break;
478 case _REG0_:
479 if (!NOT_EMPTY_ST0) {
480 FPU_stack_underflow();
481 goto FPU_instruction_done;
482 }
483 break;
484 case _REGIi:
485 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
486 FPU_stack_underflow_i(FPU_rm);
487 goto FPU_instruction_done;
488 }
489 break;
490 case _REGIp:
491 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
492 FPU_stack_underflow_pop(FPU_rm);
493 goto FPU_instruction_done;
494 }
495 break;
496 case _REGI_:
497 if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
498 FPU_stack_underflow();
499 goto FPU_instruction_done;
500 }
501 break;
502 case _PUSH_: /* Only used by the fld st(i) instruction */
503 break;
504 case _null_:
505 FPU_illegal();
506 goto FPU_instruction_done;
507 default:
508 EXCEPTION(EX_INTERNAL | 0x111);
509 goto FPU_instruction_done;
510 }
511 (*st_instr_table[(int)instr_index]) ();
512
513 FPU_instruction_done:
514 ;
515 }
516
517 if (!no_ip_update)
518 instruction_address = entry_sel_off;
519
520 FPU_fwait_done:
521
522#ifdef DEBUG
523 RE_ENTRANT_CHECK_OFF;
524 FPU_printall();
525 RE_ENTRANT_CHECK_ON;
526#endif /* DEBUG */
527
528 if (FPU_lookahead && !need_resched()) {
529 FPU_ORIG_EIP = FPU_EIP - code_base;
530 if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
531 &addr_modes.override))
532 goto do_another_FPU_instruction;
533 }
534
535 if (addr_modes.default_mode)
536 FPU_EIP -= code_base;
537
538 RE_ENTRANT_CHECK_OFF;
539}
540
541/* Support for prefix bytes is not yet complete. To properly handle
542 all prefix bytes, further changes are needed in the emulator code
543 which accesses user address space. Access to separate segments is
544 important for msdos emulation. */
545static int valid_prefix(u_char *Byte, u_char __user **fpu_eip,
546 overrides * override)
547{
548 u_char byte;
549 u_char __user *ip = *fpu_eip;
550
551 *override = (overrides) {
552 0, 0, PREFIX_DEFAULT}; /* defaults */
553
554 RE_ENTRANT_CHECK_OFF;
555 FPU_code_access_ok(1);
556 FPU_get_user(byte, ip);
557 RE_ENTRANT_CHECK_ON;
558
559 while (1) {
560 switch (byte) {
561 case ADDR_SIZE_PREFIX:
562 override->address_size = ADDR_SIZE_PREFIX;
563 goto do_next_byte;
564
565 case OP_SIZE_PREFIX:
566 override->operand_size = OP_SIZE_PREFIX;
567 goto do_next_byte;
568
569 case PREFIX_CS:
570 override->segment = PREFIX_CS_;
571 goto do_next_byte;
572 case PREFIX_ES:
573 override->segment = PREFIX_ES_;
574 goto do_next_byte;
575 case PREFIX_SS:
576 override->segment = PREFIX_SS_;
577 goto do_next_byte;
578 case PREFIX_FS:
579 override->segment = PREFIX_FS_;
580 goto do_next_byte;
581 case PREFIX_GS:
582 override->segment = PREFIX_GS_;
583 goto do_next_byte;
584 case PREFIX_DS:
585 override->segment = PREFIX_DS_;
586 goto do_next_byte;
587
588/* lock is not a valid prefix for FPU instructions,
589 let the cpu handle it to generate a SIGILL. */
590/* case PREFIX_LOCK: */
591
592 /* rep.. prefixes have no meaning for FPU instructions */
593 case PREFIX_REPE:
594 case PREFIX_REPNE:
595
596 do_next_byte:
597 ip++;
598 RE_ENTRANT_CHECK_OFF;
599 FPU_code_access_ok(1);
600 FPU_get_user(byte, ip);
601 RE_ENTRANT_CHECK_ON;
602 break;
603 case FWAIT_OPCODE:
604 *Byte = byte;
605 return 1;
606 default:
607 if ((byte & 0xf8) == 0xd8) {
608 *Byte = byte;
609 *fpu_eip = ip;
610 return 1;
611 } else {
612 /* Not a valid sequence of prefix bytes followed by
613 an FPU instruction. */
614 *Byte = byte; /* Needed for error message. */
615 return 0;
616 }
617 }
618 }
619}
620
621void math_abort(struct math_emu_info *info, unsigned int signal)
622{
623 FPU_EIP = FPU_ORIG_EIP;
624 current->thread.trap_nr = X86_TRAP_MF;
625 current->thread.error_code = 0;
626 send_sig(signal, current, 1);
627 RE_ENTRANT_CHECK_OFF;
628 __asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4));
629#ifdef PARANOID
630 printk("ERROR: wm-FPU-emu math_abort failed!\n");
631#endif /* PARANOID */
632}
633
634#define S387 ((struct swregs_state *)s387)
635#define sstatus_word() \
636 ((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top))
637
638int fpregs_soft_set(struct task_struct *target,
639 const struct user_regset *regset,
640 unsigned int pos, unsigned int count,
641 const void *kbuf, const void __user *ubuf)
642{
643 struct swregs_state *s387 = &target->thread.fpu.state.soft;
644 void *space = s387->st_space;
645 int ret;
646 int offset, other, i, tags, regnr, tag, newtop;
647
648 RE_ENTRANT_CHECK_OFF;
649 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0,
650 offsetof(struct swregs_state, st_space));
651 RE_ENTRANT_CHECK_ON;
652
653 if (ret)
654 return ret;
655
656 S387->ftop = (S387->swd >> SW_Top_Shift) & 7;
657 offset = (S387->ftop & 7) * 10;
658 other = 80 - offset;
659
660 RE_ENTRANT_CHECK_OFF;
661
662 /* Copy all registers in stack order. */
663 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
664 space + offset, 0, other);
665 if (!ret && offset)
666 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
667 space, 0, offset);
668
669 RE_ENTRANT_CHECK_ON;
670
671 /* The tags may need to be corrected now. */
672 tags = S387->twd;
673 newtop = S387->ftop;
674 for (i = 0; i < 8; i++) {
675 regnr = (i + newtop) & 7;
676 if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) {
677 /* The loaded data over-rides all other cases. */
678 tag =
679 FPU_tagof((FPU_REG *) ((u_char *) S387->st_space +
680 10 * regnr));
681 tags &= ~(3 << (regnr * 2));
682 tags |= (tag & 3) << (regnr * 2);
683 }
684 }
685 S387->twd = tags;
686
687 return ret;
688}
689
690int fpregs_soft_get(struct task_struct *target,
691 const struct user_regset *regset,
692 struct membuf to)
693{
694 struct swregs_state *s387 = &target->thread.fpu.state.soft;
695 const void *space = s387->st_space;
696 int offset = (S387->ftop & 7) * 10, other = 80 - offset;
697
698 RE_ENTRANT_CHECK_OFF;
699
700#ifdef PECULIAR_486
701 S387->cwd &= ~0xe080;
702 /* An 80486 sets nearly all of the reserved bits to 1. */
703 S387->cwd |= 0xffff0040;
704 S387->swd = sstatus_word() | 0xffff0000;
705 S387->twd |= 0xffff0000;
706 S387->fcs &= ~0xf8000000;
707 S387->fos |= 0xffff0000;
708#endif /* PECULIAR_486 */
709
710 membuf_write(&to, s387, offsetof(struct swregs_state, st_space));
711 membuf_write(&to, space + offset, other);
712 membuf_write(&to, space, offset);
713
714 RE_ENTRANT_CHECK_ON;
715
716 return 0;
717}