Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 
 
 
 
 
 
 
 25
 
 
 26#include <asm/x86_init.h>
 27#include <asm/reboot.h>
 
 28
 29static int kvmclock = 1;
 30static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 31static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 
 
 32
 33static int parse_no_kvmclock(char *arg)
 34{
 35	kvmclock = 0;
 36	return 0;
 37}
 38early_param("no-kvmclock", parse_no_kvmclock);
 39
 40/* The hypervisor will put information about time periodically here */
 41static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
 42static struct pvclock_wall_clock wall_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44/*
 45 * The wallclock is the time of day when we booted. Since then, some time may
 46 * have elapsed since the hypervisor wrote the data. So we try to account for
 47 * that with system time
 48 */
 49static unsigned long kvm_get_wallclock(void)
 50{
 51	struct pvclock_vcpu_time_info *vcpu_time;
 52	struct timespec ts;
 53	int low, high;
 54
 55	low = (int)__pa_symbol(&wall_clock);
 56	high = ((u64)__pa_symbol(&wall_clock) >> 32);
 57
 58	native_write_msr(msr_kvm_wall_clock, low, high);
 59
 60	vcpu_time = &get_cpu_var(hv_clock);
 61	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
 62	put_cpu_var(hv_clock);
 63
 64	return ts.tv_sec;
 65}
 66
 67static int kvm_set_wallclock(unsigned long now)
 68{
 69	return -1;
 70}
 71
 72static cycle_t kvm_clock_read(void)
 73{
 74	struct pvclock_vcpu_time_info *src;
 75	cycle_t ret;
 76
 77	src = &get_cpu_var(hv_clock);
 78	ret = pvclock_clocksource_read(src);
 79	put_cpu_var(hv_clock);
 80	return ret;
 81}
 82
 83static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
 84{
 85	return kvm_clock_read();
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/*
 89 * If we don't do that, there is the possibility that the guest
 90 * will calibrate under heavy load - thus, getting a lower lpj -
 91 * and execute the delays themselves without load. This is wrong,
 92 * because no delay loop can finish beforehand.
 93 * Any heuristics is subject to fail, because ultimately, a large
 94 * poll of guests can be running and trouble each other. So we preset
 95 * lpj here
 96 */
 97static unsigned long kvm_get_tsc_khz(void)
 98{
 99	struct pvclock_vcpu_time_info *src;
100	src = &per_cpu(hv_clock, 0);
101	return pvclock_tsc_khz(src);
102}
103
104static void kvm_get_preset_lpj(void)
105{
106	unsigned long khz;
107	u64 lpj;
108
109	khz = kvm_get_tsc_khz();
110
111	lpj = ((u64)khz * 1000);
112	do_div(lpj, HZ);
113	preset_lpj = lpj;
114}
115
116static struct clocksource kvm_clock = {
117	.name = "kvm-clock",
118	.read = kvm_clock_get_cycles,
119	.rating = 400,
120	.mask = CLOCKSOURCE_MASK(64),
121	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122};
 
123
124int kvm_register_clock(char *txt)
125{
126	int cpu = smp_processor_id();
127	int low, high, ret;
128
129	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
130	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
131	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
132	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
133	       cpu, high, low, txt);
134
135	return ret;
 
 
 
 
 
 
 
 
 
 
 
136}
137
138#ifdef CONFIG_X86_LOCAL_APIC
139static void __cpuinit kvm_setup_secondary_clock(void)
140{
141	/*
142	 * Now that the first cpu already had this clocksource initialized,
143	 * we shouldn't fail.
144	 */
145	WARN_ON(kvm_register_clock("secondary cpu clock"));
146	/* ok, done with our trickery, call native */
147	setup_secondary_APIC_clock();
148}
149#endif
150
151/*
152 * After the clock is registered, the host will keep writing to the
153 * registered memory location. If the guest happens to shutdown, this memory
154 * won't be valid. In cases like kexec, in which you install a new kernel, this
155 * means a random memory location will be kept being written. So before any
156 * kind of shutdown from our side, we unregister the clock by writting anything
157 * that does not have the 'enable' bit set in the msr
158 */
159#ifdef CONFIG_KEXEC
160static void kvm_crash_shutdown(struct pt_regs *regs)
161{
162	native_write_msr(msr_kvm_system_time, 0, 0);
163	kvm_disable_steal_time();
164	native_machine_crash_shutdown(regs);
165}
166#endif
167
168static void kvm_shutdown(void)
169{
170	native_write_msr(msr_kvm_system_time, 0, 0);
171	kvm_disable_steal_time();
172	native_machine_shutdown();
173}
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175void __init kvmclock_init(void)
176{
177	if (!kvm_para_available())
 
 
178		return;
179
180	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
181		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
182		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
183	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 
 
 
 
 
184		return;
 
185
186	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
187		msr_kvm_system_time, msr_kvm_wall_clock);
188
189	if (kvm_register_clock("boot clock"))
190		return;
191	pv_time_ops.sched_clock = kvm_clock_read;
 
 
 
 
 
 
 
192	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 
193	x86_platform.get_wallclock = kvm_get_wallclock;
194	x86_platform.set_wallclock = kvm_set_wallclock;
195#ifdef CONFIG_X86_LOCAL_APIC
196	x86_cpuinit.setup_percpu_clockev =
197		kvm_setup_secondary_clock;
198#endif
 
 
199	machine_ops.shutdown  = kvm_shutdown;
200#ifdef CONFIG_KEXEC
201	machine_ops.crash_shutdown  = kvm_crash_shutdown;
202#endif
203	kvm_get_preset_lpj();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
205	pv_info.paravirt_enabled = 1;
206	pv_info.name = "KVM";
207
208	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
209		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
210}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*  KVM paravirtual clock driver. A clocksource implementation
  3    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4*/
  5
  6#include <linux/clocksource.h>
  7#include <linux/kvm_para.h>
  8#include <asm/pvclock.h>
  9#include <asm/msr.h>
 10#include <asm/apic.h>
 11#include <linux/percpu.h>
 12#include <linux/hardirq.h>
 13#include <linux/cpuhotplug.h>
 14#include <linux/sched.h>
 15#include <linux/sched/clock.h>
 16#include <linux/mm.h>
 17#include <linux/slab.h>
 18#include <linux/set_memory.h>
 19
 20#include <asm/hypervisor.h>
 21#include <asm/mem_encrypt.h>
 22#include <asm/x86_init.h>
 23#include <asm/reboot.h>
 24#include <asm/kvmclock.h>
 25
 26static int kvmclock __initdata = 1;
 27static int kvmclock_vsyscall __initdata = 1;
 28static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
 29static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
 30static u64 kvm_sched_clock_offset __ro_after_init;
 31
 32static int __init parse_no_kvmclock(char *arg)
 33{
 34	kvmclock = 0;
 35	return 0;
 36}
 37early_param("no-kvmclock", parse_no_kvmclock);
 38
 39static int __init parse_no_kvmclock_vsyscall(char *arg)
 40{
 41	kvmclock_vsyscall = 0;
 42	return 0;
 43}
 44early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 45
 46/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
 47#define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
 48#define HVC_BOOT_ARRAY_SIZE \
 49	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
 50
 51static struct pvclock_vsyscall_time_info
 52			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
 53static struct pvclock_wall_clock wall_clock __bss_decrypted;
 54static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
 55static struct pvclock_vsyscall_time_info *hvclock_mem;
 56
 57static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
 58{
 59	return &this_cpu_read(hv_clock_per_cpu)->pvti;
 60}
 61
 62static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
 63{
 64	return this_cpu_read(hv_clock_per_cpu);
 65}
 66
 67/*
 68 * The wallclock is the time of day when we booted. Since then, some time may
 69 * have elapsed since the hypervisor wrote the data. So we try to account for
 70 * that with system time
 71 */
 72static void kvm_get_wallclock(struct timespec64 *now)
 73{
 74	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
 75	preempt_disable();
 76	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
 77	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 78}
 79
 80static int kvm_set_wallclock(const struct timespec64 *now)
 81{
 82	return -ENODEV;
 83}
 84
 85static u64 kvm_clock_read(void)
 86{
 87	u64 ret;
 
 88
 89	preempt_disable_notrace();
 90	ret = pvclock_clocksource_read(this_cpu_pvti());
 91	preempt_enable_notrace();
 92	return ret;
 93}
 94
 95static u64 kvm_clock_get_cycles(struct clocksource *cs)
 96{
 97	return kvm_clock_read();
 98}
 99
100static u64 kvm_sched_clock_read(void)
101{
102	return kvm_clock_read() - kvm_sched_clock_offset;
103}
104
105static inline void kvm_sched_clock_init(bool stable)
106{
107	if (!stable)
108		clear_sched_clock_stable();
109	kvm_sched_clock_offset = kvm_clock_read();
110	pv_ops.time.sched_clock = kvm_sched_clock_read;
111
112	pr_info("kvm-clock: using sched offset of %llu cycles",
113		kvm_sched_clock_offset);
114
115	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
116		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
117}
118
119/*
120 * If we don't do that, there is the possibility that the guest
121 * will calibrate under heavy load - thus, getting a lower lpj -
122 * and execute the delays themselves without load. This is wrong,
123 * because no delay loop can finish beforehand.
124 * Any heuristics is subject to fail, because ultimately, a large
125 * poll of guests can be running and trouble each other. So we preset
126 * lpj here
127 */
128static unsigned long kvm_get_tsc_khz(void)
129{
130	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
131	return pvclock_tsc_khz(this_cpu_pvti());
 
132}
133
134static void __init kvm_get_preset_lpj(void)
135{
136	unsigned long khz;
137	u64 lpj;
138
139	khz = kvm_get_tsc_khz();
140
141	lpj = ((u64)khz * 1000);
142	do_div(lpj, HZ);
143	preset_lpj = lpj;
144}
145
146bool kvm_check_and_clear_guest_paused(void)
147{
148	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
149	bool ret = false;
150
151	if (!src)
152		return ret;
153
154	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
155		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
156		pvclock_touch_watchdogs();
157		ret = true;
158	}
159	return ret;
160}
161
162static int kvm_cs_enable(struct clocksource *cs)
163{
164	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
165	return 0;
166}
167
168struct clocksource kvm_clock = {
169	.name	= "kvm-clock",
170	.read	= kvm_clock_get_cycles,
171	.rating	= 400,
172	.mask	= CLOCKSOURCE_MASK(64),
173	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
174	.enable	= kvm_cs_enable,
175};
176EXPORT_SYMBOL_GPL(kvm_clock);
177
178static void kvm_register_clock(char *txt)
179{
180	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
181	u64 pa;
182
183	if (!src)
184		return;
 
 
 
185
186	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
187	wrmsrl(msr_kvm_system_time, pa);
188	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
189}
190
191static void kvm_save_sched_clock_state(void)
192{
193}
194
195static void kvm_restore_sched_clock_state(void)
196{
197	kvm_register_clock("primary cpu clock, resume");
198}
199
200#ifdef CONFIG_X86_LOCAL_APIC
201static void kvm_setup_secondary_clock(void)
202{
203	kvm_register_clock("secondary cpu clock");
 
 
 
 
 
 
204}
205#endif
206
207/*
208 * After the clock is registered, the host will keep writing to the
209 * registered memory location. If the guest happens to shutdown, this memory
210 * won't be valid. In cases like kexec, in which you install a new kernel, this
211 * means a random memory location will be kept being written. So before any
212 * kind of shutdown from our side, we unregister the clock by writing anything
213 * that does not have the 'enable' bit set in the msr
214 */
215#ifdef CONFIG_KEXEC_CORE
216static void kvm_crash_shutdown(struct pt_regs *regs)
217{
218	native_write_msr(msr_kvm_system_time, 0, 0);
219	kvm_disable_steal_time();
220	native_machine_crash_shutdown(regs);
221}
222#endif
223
224static void kvm_shutdown(void)
225{
226	native_write_msr(msr_kvm_system_time, 0, 0);
227	kvm_disable_steal_time();
228	native_machine_shutdown();
229}
230
231static void __init kvmclock_init_mem(void)
232{
233	unsigned long ncpus;
234	unsigned int order;
235	struct page *p;
236	int r;
237
238	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
239		return;
240
241	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
242	order = get_order(ncpus * sizeof(*hvclock_mem));
243
244	p = alloc_pages(GFP_KERNEL, order);
245	if (!p) {
246		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
247		return;
248	}
249
250	hvclock_mem = page_address(p);
251
252	/*
253	 * hvclock is shared between the guest and the hypervisor, must
254	 * be mapped decrypted.
255	 */
256	if (sev_active()) {
257		r = set_memory_decrypted((unsigned long) hvclock_mem,
258					 1UL << order);
259		if (r) {
260			__free_pages(p, order);
261			hvclock_mem = NULL;
262			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
263			return;
264		}
265	}
266
267	memset(hvclock_mem, 0, PAGE_SIZE << order);
268}
269
270static int __init kvm_setup_vsyscall_timeinfo(void)
271{
272#ifdef CONFIG_X86_64
273	u8 flags;
274
275	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
276		return 0;
277
278	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
279	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
280		return 0;
281
282	kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
283#endif
284
285	kvmclock_init_mem();
286
287	return 0;
288}
289early_initcall(kvm_setup_vsyscall_timeinfo);
290
291static int kvmclock_setup_percpu(unsigned int cpu)
292{
293	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
294
295	/*
296	 * The per cpu area setup replicates CPU0 data to all cpu
297	 * pointers. So carefully check. CPU0 has been set up in init
298	 * already.
299	 */
300	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
301		return 0;
302
303	/* Use the static page for the first CPUs, allocate otherwise */
304	if (cpu < HVC_BOOT_ARRAY_SIZE)
305		p = &hv_clock_boot[cpu];
306	else if (hvclock_mem)
307		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
308	else
309		return -ENOMEM;
310
311	per_cpu(hv_clock_per_cpu, cpu) = p;
312	return p ? 0 : -ENOMEM;
313}
314
315void __init kvmclock_init(void)
316{
317	u8 flags;
318
319	if (!kvm_para_available() || !kvmclock)
320		return;
321
322	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
323		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
324		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
325	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
326		return;
327	}
328
329	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
330			      kvmclock_setup_percpu, NULL) < 0) {
331		return;
332	}
333
334	pr_info("kvm-clock: Using msrs %x and %x",
335		msr_kvm_system_time, msr_kvm_wall_clock);
336
337	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
338	kvm_register_clock("primary cpu clock");
339	pvclock_set_pvti_cpu0_va(hv_clock_boot);
340
341	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
342		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
343
344	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
345	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
346
347	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
348	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
349	x86_platform.get_wallclock = kvm_get_wallclock;
350	x86_platform.set_wallclock = kvm_set_wallclock;
351#ifdef CONFIG_X86_LOCAL_APIC
352	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
 
353#endif
354	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
355	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
356	machine_ops.shutdown  = kvm_shutdown;
357#ifdef CONFIG_KEXEC_CORE
358	machine_ops.crash_shutdown  = kvm_crash_shutdown;
359#endif
360	kvm_get_preset_lpj();
361
362	/*
363	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
364	 * with P/T states and does not stop in deep C-states.
365	 *
366	 * Invariant TSC exposed by host means kvmclock is not necessary:
367	 * can use TSC as clocksource.
368	 *
369	 */
370	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
371	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
372	    !check_tsc_unstable())
373		kvm_clock.rating = 299;
374
375	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 
376	pv_info.name = "KVM";
 
 
 
377}