Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  4 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  5 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  6 */
  7#include <linux/dma-direct.h>
  8#include <linux/dma-noncoherent.h>
  9#include <linux/dma-contiguous.h>
 10#include <linux/highmem.h>
 11
 12#include <asm/cache.h>
 13#include <asm/cpu-type.h>
 14#include <asm/dma-coherence.h>
 15#include <asm/io.h>
 16
 17/*
 18 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
 19 * fill random cachelines with stale data at any time, requiring an extra
 20 * flush post-DMA.
 21 *
 22 * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
 23 * terminology calls memory areas with hardware maintained coherency coherent.
 24 *
 25 * Note that the R14000 and R16000 should also be checked for in this condition.
 26 * However this function is only called on non-I/O-coherent systems and only the
 27 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
 28 * SGI IP32 aka O2.
 29 */
 30static inline bool cpu_needs_post_dma_flush(void)
 31{
 32	switch (boot_cpu_type()) {
 33	case CPU_R10000:
 34	case CPU_R12000:
 35	case CPU_BMIPS5000:
 36	case CPU_LOONGSON2EF:
 37		return true;
 38	default:
 39		/*
 40		 * Presence of MAARs suggests that the CPU supports
 41		 * speculatively prefetching data, and therefore requires
 42		 * the post-DMA flush/invalidate.
 43		 */
 44		return cpu_has_maar;
 45	}
 46}
 47
 48void arch_dma_prep_coherent(struct page *page, size_t size)
 49{
 50	dma_cache_wback_inv((unsigned long)page_address(page), size);
 51}
 52
 53void *arch_dma_set_uncached(void *addr, size_t size)
 54{
 55	return (void *)(__pa(addr) + UNCAC_BASE);
 56}
 57
 58static inline void dma_sync_virt(void *addr, size_t size,
 59		enum dma_data_direction dir)
 60{
 61	switch (dir) {
 62	case DMA_TO_DEVICE:
 63		dma_cache_wback((unsigned long)addr, size);
 64		break;
 65
 66	case DMA_FROM_DEVICE:
 67		dma_cache_inv((unsigned long)addr, size);
 68		break;
 69
 70	case DMA_BIDIRECTIONAL:
 71		dma_cache_wback_inv((unsigned long)addr, size);
 72		break;
 73
 74	default:
 75		BUG();
 76	}
 77}
 78
 79/*
 80 * A single sg entry may refer to multiple physically contiguous pages.  But
 81 * we still need to process highmem pages individually.  If highmem is not
 82 * configured then the bulk of this loop gets optimized out.
 83 */
 84static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
 85		enum dma_data_direction dir)
 86{
 87	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
 88	unsigned long offset = paddr & ~PAGE_MASK;
 89	size_t left = size;
 90
 91	do {
 92		size_t len = left;
 93
 94		if (PageHighMem(page)) {
 95			void *addr;
 96
 97			if (offset + len > PAGE_SIZE)
 98				len = PAGE_SIZE - offset;
 99
100			addr = kmap_atomic(page);
101			dma_sync_virt(addr + offset, len, dir);
102			kunmap_atomic(addr);
103		} else
104			dma_sync_virt(page_address(page) + offset, size, dir);
105		offset = 0;
106		page++;
107		left -= len;
108	} while (left);
109}
110
111void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
112		enum dma_data_direction dir)
113{
114	dma_sync_phys(paddr, size, dir);
115}
116
117#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
118void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
119		enum dma_data_direction dir)
120{
121	if (cpu_needs_post_dma_flush())
122		dma_sync_phys(paddr, size, dir);
123}
124#endif
125
126void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
127		enum dma_data_direction direction)
128{
129	BUG_ON(direction == DMA_NONE);
130
131	dma_sync_virt(vaddr, size, direction);
132}
133
134#ifdef CONFIG_DMA_PERDEV_COHERENT
135void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
136		const struct iommu_ops *iommu, bool coherent)
137{
138	dev->dma_coherent = coherent;
139}
140#endif