Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/errno.h>
22#include <linux/ptrace.h>
23#include <linux/smp.h>
24#include <linux/user.h>
25#include <linux/security.h>
26#include <linux/audit.h>
27#include <linux/seccomp.h>
28
29#include <asm/byteorder.h>
30#include <asm/cpu.h>
31#include <asm/dsp.h>
32#include <asm/fpu.h>
33#include <asm/mipsregs.h>
34#include <asm/mipsmtregs.h>
35#include <asm/pgtable.h>
36#include <asm/page.h>
37#include <asm/system.h>
38#include <asm/uaccess.h>
39#include <asm/bootinfo.h>
40#include <asm/reg.h>
41
42/*
43 * Called by kernel/ptrace.c when detaching..
44 *
45 * Make sure single step bits etc are not set.
46 */
47void ptrace_disable(struct task_struct *child)
48{
49 /* Don't load the watchpoint registers for the ex-child. */
50 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
51}
52
53/*
54 * Read a general register set. We always use the 64-bit format, even
55 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
56 * Registers are sign extended to fill the available space.
57 */
58int ptrace_getregs(struct task_struct *child, __s64 __user *data)
59{
60 struct pt_regs *regs;
61 int i;
62
63 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
64 return -EIO;
65
66 regs = task_pt_regs(child);
67
68 for (i = 0; i < 32; i++)
69 __put_user((long)regs->regs[i], data + i);
70 __put_user((long)regs->lo, data + EF_LO - EF_R0);
71 __put_user((long)regs->hi, data + EF_HI - EF_R0);
72 __put_user((long)regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
73 __put_user((long)regs->cp0_badvaddr, data + EF_CP0_BADVADDR - EF_R0);
74 __put_user((long)regs->cp0_status, data + EF_CP0_STATUS - EF_R0);
75 __put_user((long)regs->cp0_cause, data + EF_CP0_CAUSE - EF_R0);
76
77 return 0;
78}
79
80/*
81 * Write a general register set. As for PTRACE_GETREGS, we always use
82 * the 64-bit format. On a 32-bit kernel only the lower order half
83 * (according to endianness) will be used.
84 */
85int ptrace_setregs(struct task_struct *child, __s64 __user *data)
86{
87 struct pt_regs *regs;
88 int i;
89
90 if (!access_ok(VERIFY_READ, data, 38 * 8))
91 return -EIO;
92
93 regs = task_pt_regs(child);
94
95 for (i = 0; i < 32; i++)
96 __get_user(regs->regs[i], data + i);
97 __get_user(regs->lo, data + EF_LO - EF_R0);
98 __get_user(regs->hi, data + EF_HI - EF_R0);
99 __get_user(regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
100
101 /* badvaddr, status, and cause may not be written. */
102
103 return 0;
104}
105
106int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
107{
108 int i;
109 unsigned int tmp;
110
111 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
112 return -EIO;
113
114 if (tsk_used_math(child)) {
115 fpureg_t *fregs = get_fpu_regs(child);
116 for (i = 0; i < 32; i++)
117 __put_user(fregs[i], i + (__u64 __user *) data);
118 } else {
119 for (i = 0; i < 32; i++)
120 __put_user((__u64) -1, i + (__u64 __user *) data);
121 }
122
123 __put_user(child->thread.fpu.fcr31, data + 64);
124
125 preempt_disable();
126 if (cpu_has_fpu) {
127 unsigned int flags;
128
129 if (cpu_has_mipsmt) {
130 unsigned int vpflags = dvpe();
131 flags = read_c0_status();
132 __enable_fpu();
133 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
134 write_c0_status(flags);
135 evpe(vpflags);
136 } else {
137 flags = read_c0_status();
138 __enable_fpu();
139 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
140 write_c0_status(flags);
141 }
142 } else {
143 tmp = 0;
144 }
145 preempt_enable();
146 __put_user(tmp, data + 65);
147
148 return 0;
149}
150
151int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
152{
153 fpureg_t *fregs;
154 int i;
155
156 if (!access_ok(VERIFY_READ, data, 33 * 8))
157 return -EIO;
158
159 fregs = get_fpu_regs(child);
160
161 for (i = 0; i < 32; i++)
162 __get_user(fregs[i], i + (__u64 __user *) data);
163
164 __get_user(child->thread.fpu.fcr31, data + 64);
165
166 /* FIR may not be written. */
167
168 return 0;
169}
170
171int ptrace_get_watch_regs(struct task_struct *child,
172 struct pt_watch_regs __user *addr)
173{
174 enum pt_watch_style style;
175 int i;
176
177 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
178 return -EIO;
179 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
180 return -EIO;
181
182#ifdef CONFIG_32BIT
183 style = pt_watch_style_mips32;
184#define WATCH_STYLE mips32
185#else
186 style = pt_watch_style_mips64;
187#define WATCH_STYLE mips64
188#endif
189
190 __put_user(style, &addr->style);
191 __put_user(current_cpu_data.watch_reg_use_cnt,
192 &addr->WATCH_STYLE.num_valid);
193 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
194 __put_user(child->thread.watch.mips3264.watchlo[i],
195 &addr->WATCH_STYLE.watchlo[i]);
196 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
197 &addr->WATCH_STYLE.watchhi[i]);
198 __put_user(current_cpu_data.watch_reg_masks[i],
199 &addr->WATCH_STYLE.watch_masks[i]);
200 }
201 for (; i < 8; i++) {
202 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
203 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
204 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
205 }
206
207 return 0;
208}
209
210int ptrace_set_watch_regs(struct task_struct *child,
211 struct pt_watch_regs __user *addr)
212{
213 int i;
214 int watch_active = 0;
215 unsigned long lt[NUM_WATCH_REGS];
216 u16 ht[NUM_WATCH_REGS];
217
218 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
219 return -EIO;
220 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
221 return -EIO;
222 /* Check the values. */
223 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
224 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
225#ifdef CONFIG_32BIT
226 if (lt[i] & __UA_LIMIT)
227 return -EINVAL;
228#else
229 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
230 if (lt[i] & 0xffffffff80000000UL)
231 return -EINVAL;
232 } else {
233 if (lt[i] & __UA_LIMIT)
234 return -EINVAL;
235 }
236#endif
237 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
238 if (ht[i] & ~0xff8)
239 return -EINVAL;
240 }
241 /* Install them. */
242 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
243 if (lt[i] & 7)
244 watch_active = 1;
245 child->thread.watch.mips3264.watchlo[i] = lt[i];
246 /* Set the G bit. */
247 child->thread.watch.mips3264.watchhi[i] = ht[i];
248 }
249
250 if (watch_active)
251 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
252 else
253 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
254
255 return 0;
256}
257
258long arch_ptrace(struct task_struct *child, long request,
259 unsigned long addr, unsigned long data)
260{
261 int ret;
262 void __user *addrp = (void __user *) addr;
263 void __user *datavp = (void __user *) data;
264 unsigned long __user *datalp = (void __user *) data;
265
266 switch (request) {
267 /* when I and D space are separate, these will need to be fixed. */
268 case PTRACE_PEEKTEXT: /* read word at location addr. */
269 case PTRACE_PEEKDATA:
270 ret = generic_ptrace_peekdata(child, addr, data);
271 break;
272
273 /* Read the word at location addr in the USER area. */
274 case PTRACE_PEEKUSR: {
275 struct pt_regs *regs;
276 unsigned long tmp = 0;
277
278 regs = task_pt_regs(child);
279 ret = 0; /* Default return value. */
280
281 switch (addr) {
282 case 0 ... 31:
283 tmp = regs->regs[addr];
284 break;
285 case FPR_BASE ... FPR_BASE + 31:
286 if (tsk_used_math(child)) {
287 fpureg_t *fregs = get_fpu_regs(child);
288
289#ifdef CONFIG_32BIT
290 /*
291 * The odd registers are actually the high
292 * order bits of the values stored in the even
293 * registers - unless we're using r2k_switch.S.
294 */
295 if (addr & 1)
296 tmp = (unsigned long) (fregs[((addr & ~1) - 32)] >> 32);
297 else
298 tmp = (unsigned long) (fregs[(addr - 32)] & 0xffffffff);
299#endif
300#ifdef CONFIG_64BIT
301 tmp = fregs[addr - FPR_BASE];
302#endif
303 } else {
304 tmp = -1; /* FP not yet used */
305 }
306 break;
307 case PC:
308 tmp = regs->cp0_epc;
309 break;
310 case CAUSE:
311 tmp = regs->cp0_cause;
312 break;
313 case BADVADDR:
314 tmp = regs->cp0_badvaddr;
315 break;
316 case MMHI:
317 tmp = regs->hi;
318 break;
319 case MMLO:
320 tmp = regs->lo;
321 break;
322#ifdef CONFIG_CPU_HAS_SMARTMIPS
323 case ACX:
324 tmp = regs->acx;
325 break;
326#endif
327 case FPC_CSR:
328 tmp = child->thread.fpu.fcr31;
329 break;
330 case FPC_EIR: { /* implementation / version register */
331 unsigned int flags;
332#ifdef CONFIG_MIPS_MT_SMTC
333 unsigned long irqflags;
334 unsigned int mtflags;
335#endif /* CONFIG_MIPS_MT_SMTC */
336
337 preempt_disable();
338 if (!cpu_has_fpu) {
339 preempt_enable();
340 break;
341 }
342
343#ifdef CONFIG_MIPS_MT_SMTC
344 /* Read-modify-write of Status must be atomic */
345 local_irq_save(irqflags);
346 mtflags = dmt();
347#endif /* CONFIG_MIPS_MT_SMTC */
348 if (cpu_has_mipsmt) {
349 unsigned int vpflags = dvpe();
350 flags = read_c0_status();
351 __enable_fpu();
352 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
353 write_c0_status(flags);
354 evpe(vpflags);
355 } else {
356 flags = read_c0_status();
357 __enable_fpu();
358 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
359 write_c0_status(flags);
360 }
361#ifdef CONFIG_MIPS_MT_SMTC
362 emt(mtflags);
363 local_irq_restore(irqflags);
364#endif /* CONFIG_MIPS_MT_SMTC */
365 preempt_enable();
366 break;
367 }
368 case DSP_BASE ... DSP_BASE + 5: {
369 dspreg_t *dregs;
370
371 if (!cpu_has_dsp) {
372 tmp = 0;
373 ret = -EIO;
374 goto out;
375 }
376 dregs = __get_dsp_regs(child);
377 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
378 break;
379 }
380 case DSP_CONTROL:
381 if (!cpu_has_dsp) {
382 tmp = 0;
383 ret = -EIO;
384 goto out;
385 }
386 tmp = child->thread.dsp.dspcontrol;
387 break;
388 default:
389 tmp = 0;
390 ret = -EIO;
391 goto out;
392 }
393 ret = put_user(tmp, datalp);
394 break;
395 }
396
397 /* when I and D space are separate, this will have to be fixed. */
398 case PTRACE_POKETEXT: /* write the word at location addr. */
399 case PTRACE_POKEDATA:
400 ret = generic_ptrace_pokedata(child, addr, data);
401 break;
402
403 case PTRACE_POKEUSR: {
404 struct pt_regs *regs;
405 ret = 0;
406 regs = task_pt_regs(child);
407
408 switch (addr) {
409 case 0 ... 31:
410 regs->regs[addr] = data;
411 break;
412 case FPR_BASE ... FPR_BASE + 31: {
413 fpureg_t *fregs = get_fpu_regs(child);
414
415 if (!tsk_used_math(child)) {
416 /* FP not yet used */
417 memset(&child->thread.fpu, ~0,
418 sizeof(child->thread.fpu));
419 child->thread.fpu.fcr31 = 0;
420 }
421#ifdef CONFIG_32BIT
422 /*
423 * The odd registers are actually the high order bits
424 * of the values stored in the even registers - unless
425 * we're using r2k_switch.S.
426 */
427 if (addr & 1) {
428 fregs[(addr & ~1) - FPR_BASE] &= 0xffffffff;
429 fregs[(addr & ~1) - FPR_BASE] |= ((unsigned long long) data) << 32;
430 } else {
431 fregs[addr - FPR_BASE] &= ~0xffffffffLL;
432 fregs[addr - FPR_BASE] |= data;
433 }
434#endif
435#ifdef CONFIG_64BIT
436 fregs[addr - FPR_BASE] = data;
437#endif
438 break;
439 }
440 case PC:
441 regs->cp0_epc = data;
442 break;
443 case MMHI:
444 regs->hi = data;
445 break;
446 case MMLO:
447 regs->lo = data;
448 break;
449#ifdef CONFIG_CPU_HAS_SMARTMIPS
450 case ACX:
451 regs->acx = data;
452 break;
453#endif
454 case FPC_CSR:
455 child->thread.fpu.fcr31 = data;
456 break;
457 case DSP_BASE ... DSP_BASE + 5: {
458 dspreg_t *dregs;
459
460 if (!cpu_has_dsp) {
461 ret = -EIO;
462 break;
463 }
464
465 dregs = __get_dsp_regs(child);
466 dregs[addr - DSP_BASE] = data;
467 break;
468 }
469 case DSP_CONTROL:
470 if (!cpu_has_dsp) {
471 ret = -EIO;
472 break;
473 }
474 child->thread.dsp.dspcontrol = data;
475 break;
476 default:
477 /* The rest are not allowed. */
478 ret = -EIO;
479 break;
480 }
481 break;
482 }
483
484 case PTRACE_GETREGS:
485 ret = ptrace_getregs(child, datavp);
486 break;
487
488 case PTRACE_SETREGS:
489 ret = ptrace_setregs(child, datavp);
490 break;
491
492 case PTRACE_GETFPREGS:
493 ret = ptrace_getfpregs(child, datavp);
494 break;
495
496 case PTRACE_SETFPREGS:
497 ret = ptrace_setfpregs(child, datavp);
498 break;
499
500 case PTRACE_GET_THREAD_AREA:
501 ret = put_user(task_thread_info(child)->tp_value, datalp);
502 break;
503
504 case PTRACE_GET_WATCH_REGS:
505 ret = ptrace_get_watch_regs(child, addrp);
506 break;
507
508 case PTRACE_SET_WATCH_REGS:
509 ret = ptrace_set_watch_regs(child, addrp);
510 break;
511
512 default:
513 ret = ptrace_request(child, request, addr, data);
514 break;
515 }
516 out:
517 return ret;
518}
519
520static inline int audit_arch(void)
521{
522 int arch = EM_MIPS;
523#ifdef CONFIG_64BIT
524 arch |= __AUDIT_ARCH_64BIT;
525#endif
526#if defined(__LITTLE_ENDIAN)
527 arch |= __AUDIT_ARCH_LE;
528#endif
529 return arch;
530}
531
532/*
533 * Notification of system call entry/exit
534 * - triggered by current->work.syscall_trace
535 */
536asmlinkage void syscall_trace_enter(struct pt_regs *regs)
537{
538 /* do the secure computing check first */
539 secure_computing(regs->regs[2]);
540
541 if (!(current->ptrace & PT_PTRACED))
542 goto out;
543
544 if (!test_thread_flag(TIF_SYSCALL_TRACE))
545 goto out;
546
547 /* The 0x80 provides a way for the tracing parent to distinguish
548 between a syscall stop and SIGTRAP delivery */
549 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
550 0x80 : 0));
551
552 /*
553 * this isn't the same as continuing with a signal, but it will do
554 * for normal use. strace only continues with a signal if the
555 * stopping signal is not SIGTRAP. -brl
556 */
557 if (current->exit_code) {
558 send_sig(current->exit_code, current, 1);
559 current->exit_code = 0;
560 }
561
562out:
563 if (unlikely(current->audit_context))
564 audit_syscall_entry(audit_arch(), regs->regs[2],
565 regs->regs[4], regs->regs[5],
566 regs->regs[6], regs->regs[7]);
567}
568
569/*
570 * Notification of system call entry/exit
571 * - triggered by current->work.syscall_trace
572 */
573asmlinkage void syscall_trace_leave(struct pt_regs *regs)
574{
575 if (unlikely(current->audit_context))
576 audit_syscall_exit(AUDITSC_RESULT(regs->regs[7]),
577 -regs->regs[2]);
578
579 if (!(current->ptrace & PT_PTRACED))
580 return;
581
582 if (!test_thread_flag(TIF_SYSCALL_TRACE))
583 return;
584
585 /* The 0x80 provides a way for the tracing parent to distinguish
586 between a syscall stop and SIGTRAP delivery */
587 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
588 0x80 : 0));
589
590 /*
591 * this isn't the same as continuing with a signal, but it will do
592 * for normal use. strace only continues with a signal if the
593 * stopping signal is not SIGTRAP. -brl
594 */
595 if (current->exit_code) {
596 send_sig(current->exit_code, current, 1);
597 current->exit_code = 0;
598 }
599}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/sched/task_stack.h>
23#include <linux/mm.h>
24#include <linux/errno.h>
25#include <linux/ptrace.h>
26#include <linux/regset.h>
27#include <linux/smp.h>
28#include <linux/security.h>
29#include <linux/stddef.h>
30#include <linux/tracehook.h>
31#include <linux/audit.h>
32#include <linux/seccomp.h>
33#include <linux/ftrace.h>
34
35#include <asm/byteorder.h>
36#include <asm/cpu.h>
37#include <asm/cpu-info.h>
38#include <asm/dsp.h>
39#include <asm/fpu.h>
40#include <asm/mipsregs.h>
41#include <asm/mipsmtregs.h>
42#include <asm/page.h>
43#include <asm/processor.h>
44#include <asm/syscall.h>
45#include <linux/uaccess.h>
46#include <asm/bootinfo.h>
47#include <asm/reg.h>
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/syscalls.h>
51
52/*
53 * Called by kernel/ptrace.c when detaching..
54 *
55 * Make sure single step bits etc are not set.
56 */
57void ptrace_disable(struct task_struct *child)
58{
59 /* Don't load the watchpoint registers for the ex-child. */
60 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
61}
62
63/*
64 * Read a general register set. We always use the 64-bit format, even
65 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
66 * Registers are sign extended to fill the available space.
67 */
68int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
69{
70 struct pt_regs *regs;
71 int i;
72
73 if (!access_ok(data, 38 * 8))
74 return -EIO;
75
76 regs = task_pt_regs(child);
77
78 for (i = 0; i < 32; i++)
79 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
80 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
81 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
82 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
83 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
84 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
85 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
86
87 return 0;
88}
89
90/*
91 * Write a general register set. As for PTRACE_GETREGS, we always use
92 * the 64-bit format. On a 32-bit kernel only the lower order half
93 * (according to endianness) will be used.
94 */
95int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
96{
97 struct pt_regs *regs;
98 int i;
99
100 if (!access_ok(data, 38 * 8))
101 return -EIO;
102
103 regs = task_pt_regs(child);
104
105 for (i = 0; i < 32; i++)
106 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
107 __get_user(regs->lo, (__s64 __user *)&data->lo);
108 __get_user(regs->hi, (__s64 __user *)&data->hi);
109 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
110
111 /* badvaddr, status, and cause may not be written. */
112
113 /* System call number may have been changed */
114 mips_syscall_update_nr(child, regs);
115
116 return 0;
117}
118
119int ptrace_get_watch_regs(struct task_struct *child,
120 struct pt_watch_regs __user *addr)
121{
122 enum pt_watch_style style;
123 int i;
124
125 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
126 return -EIO;
127 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
128 return -EIO;
129
130#ifdef CONFIG_32BIT
131 style = pt_watch_style_mips32;
132#define WATCH_STYLE mips32
133#else
134 style = pt_watch_style_mips64;
135#define WATCH_STYLE mips64
136#endif
137
138 __put_user(style, &addr->style);
139 __put_user(boot_cpu_data.watch_reg_use_cnt,
140 &addr->WATCH_STYLE.num_valid);
141 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
142 __put_user(child->thread.watch.mips3264.watchlo[i],
143 &addr->WATCH_STYLE.watchlo[i]);
144 __put_user(child->thread.watch.mips3264.watchhi[i] &
145 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
146 &addr->WATCH_STYLE.watchhi[i]);
147 __put_user(boot_cpu_data.watch_reg_masks[i],
148 &addr->WATCH_STYLE.watch_masks[i]);
149 }
150 for (; i < 8; i++) {
151 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
152 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
153 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
154 }
155
156 return 0;
157}
158
159int ptrace_set_watch_regs(struct task_struct *child,
160 struct pt_watch_regs __user *addr)
161{
162 int i;
163 int watch_active = 0;
164 unsigned long lt[NUM_WATCH_REGS];
165 u16 ht[NUM_WATCH_REGS];
166
167 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
168 return -EIO;
169 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
170 return -EIO;
171 /* Check the values. */
172 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
173 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
174#ifdef CONFIG_32BIT
175 if (lt[i] & __UA_LIMIT)
176 return -EINVAL;
177#else
178 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
179 if (lt[i] & 0xffffffff80000000UL)
180 return -EINVAL;
181 } else {
182 if (lt[i] & __UA_LIMIT)
183 return -EINVAL;
184 }
185#endif
186 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
187 if (ht[i] & ~MIPS_WATCHHI_MASK)
188 return -EINVAL;
189 }
190 /* Install them. */
191 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
192 if (lt[i] & MIPS_WATCHLO_IRW)
193 watch_active = 1;
194 child->thread.watch.mips3264.watchlo[i] = lt[i];
195 /* Set the G bit. */
196 child->thread.watch.mips3264.watchhi[i] = ht[i];
197 }
198
199 if (watch_active)
200 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
201 else
202 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
203
204 return 0;
205}
206
207/* regset get/set implementations */
208
209#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
210
211static int gpr32_get(struct task_struct *target,
212 const struct user_regset *regset,
213 struct membuf to)
214{
215 struct pt_regs *regs = task_pt_regs(target);
216 u32 uregs[ELF_NGREG] = {};
217
218 mips_dump_regs32(uregs, regs);
219 return membuf_write(&to, uregs, sizeof(uregs));
220}
221
222static int gpr32_set(struct task_struct *target,
223 const struct user_regset *regset,
224 unsigned int pos, unsigned int count,
225 const void *kbuf, const void __user *ubuf)
226{
227 struct pt_regs *regs = task_pt_regs(target);
228 u32 uregs[ELF_NGREG];
229 unsigned start, num_regs, i;
230 int err;
231
232 start = pos / sizeof(u32);
233 num_regs = count / sizeof(u32);
234
235 if (start + num_regs > ELF_NGREG)
236 return -EIO;
237
238 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
239 sizeof(uregs));
240 if (err)
241 return err;
242
243 for (i = start; i < num_regs; i++) {
244 /*
245 * Cast all values to signed here so that if this is a 64-bit
246 * kernel, the supplied 32-bit values will be sign extended.
247 */
248 switch (i) {
249 case MIPS32_EF_R1 ... MIPS32_EF_R25:
250 /* k0/k1 are ignored. */
251 case MIPS32_EF_R28 ... MIPS32_EF_R31:
252 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
253 break;
254 case MIPS32_EF_LO:
255 regs->lo = (s32)uregs[i];
256 break;
257 case MIPS32_EF_HI:
258 regs->hi = (s32)uregs[i];
259 break;
260 case MIPS32_EF_CP0_EPC:
261 regs->cp0_epc = (s32)uregs[i];
262 break;
263 }
264 }
265
266 /* System call number may have been changed */
267 mips_syscall_update_nr(target, regs);
268
269 return 0;
270}
271
272#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
273
274#ifdef CONFIG_64BIT
275
276static int gpr64_get(struct task_struct *target,
277 const struct user_regset *regset,
278 struct membuf to)
279{
280 struct pt_regs *regs = task_pt_regs(target);
281 u64 uregs[ELF_NGREG] = {};
282
283 mips_dump_regs64(uregs, regs);
284 return membuf_write(&to, uregs, sizeof(uregs));
285}
286
287static int gpr64_set(struct task_struct *target,
288 const struct user_regset *regset,
289 unsigned int pos, unsigned int count,
290 const void *kbuf, const void __user *ubuf)
291{
292 struct pt_regs *regs = task_pt_regs(target);
293 u64 uregs[ELF_NGREG];
294 unsigned start, num_regs, i;
295 int err;
296
297 start = pos / sizeof(u64);
298 num_regs = count / sizeof(u64);
299
300 if (start + num_regs > ELF_NGREG)
301 return -EIO;
302
303 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
304 sizeof(uregs));
305 if (err)
306 return err;
307
308 for (i = start; i < num_regs; i++) {
309 switch (i) {
310 case MIPS64_EF_R1 ... MIPS64_EF_R25:
311 /* k0/k1 are ignored. */
312 case MIPS64_EF_R28 ... MIPS64_EF_R31:
313 regs->regs[i - MIPS64_EF_R0] = uregs[i];
314 break;
315 case MIPS64_EF_LO:
316 regs->lo = uregs[i];
317 break;
318 case MIPS64_EF_HI:
319 regs->hi = uregs[i];
320 break;
321 case MIPS64_EF_CP0_EPC:
322 regs->cp0_epc = uregs[i];
323 break;
324 }
325 }
326
327 /* System call number may have been changed */
328 mips_syscall_update_nr(target, regs);
329
330 return 0;
331}
332
333#endif /* CONFIG_64BIT */
334
335
336#ifdef CONFIG_MIPS_FP_SUPPORT
337
338/*
339 * Poke at FCSR according to its mask. Set the Cause bits even
340 * if a corresponding Enable bit is set. This will be noticed at
341 * the time the thread is switched to and SIGFPE thrown accordingly.
342 */
343static void ptrace_setfcr31(struct task_struct *child, u32 value)
344{
345 u32 fcr31;
346 u32 mask;
347
348 fcr31 = child->thread.fpu.fcr31;
349 mask = boot_cpu_data.fpu_msk31;
350 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
351}
352
353int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
354{
355 int i;
356
357 if (!access_ok(data, 33 * 8))
358 return -EIO;
359
360 if (tsk_used_math(child)) {
361 union fpureg *fregs = get_fpu_regs(child);
362 for (i = 0; i < 32; i++)
363 __put_user(get_fpr64(&fregs[i], 0),
364 i + (__u64 __user *)data);
365 } else {
366 for (i = 0; i < 32; i++)
367 __put_user((__u64) -1, i + (__u64 __user *) data);
368 }
369
370 __put_user(child->thread.fpu.fcr31, data + 64);
371 __put_user(boot_cpu_data.fpu_id, data + 65);
372
373 return 0;
374}
375
376int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
377{
378 union fpureg *fregs;
379 u64 fpr_val;
380 u32 value;
381 int i;
382
383 if (!access_ok(data, 33 * 8))
384 return -EIO;
385
386 init_fp_ctx(child);
387 fregs = get_fpu_regs(child);
388
389 for (i = 0; i < 32; i++) {
390 __get_user(fpr_val, i + (__u64 __user *)data);
391 set_fpr64(&fregs[i], 0, fpr_val);
392 }
393
394 __get_user(value, data + 64);
395 ptrace_setfcr31(child, value);
396
397 /* FIR may not be written. */
398
399 return 0;
400}
401
402/*
403 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
404 * !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
405 * correspond 1:1 to buffer slots. Only general registers are copied.
406 */
407static void fpr_get_fpa(struct task_struct *target,
408 struct membuf *to)
409{
410 membuf_write(to, &target->thread.fpu,
411 NUM_FPU_REGS * sizeof(elf_fpreg_t));
412}
413
414/*
415 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
416 * CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
417 * general register slots are copied to buffer slots. Only general
418 * registers are copied.
419 */
420static void fpr_get_msa(struct task_struct *target, struct membuf *to)
421{
422 unsigned int i;
423
424 BUILD_BUG_ON(sizeof(u64) != sizeof(elf_fpreg_t));
425 for (i = 0; i < NUM_FPU_REGS; i++)
426 membuf_store(to, get_fpr64(&target->thread.fpu.fpr[i], 0));
427}
428
429/*
430 * Copy the floating-point context to the supplied NT_PRFPREG buffer.
431 * Choose the appropriate helper for general registers, and then copy
432 * the FCSR and FIR registers separately.
433 */
434static int fpr_get(struct task_struct *target,
435 const struct user_regset *regset,
436 struct membuf to)
437{
438 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
439 fpr_get_fpa(target, &to);
440 else
441 fpr_get_msa(target, &to);
442
443 membuf_write(&to, &target->thread.fpu.fcr31, sizeof(u32));
444 membuf_write(&to, &boot_cpu_data.fpu_id, sizeof(u32));
445 return 0;
446}
447
448/*
449 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
450 * !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
451 * context's general register slots. Only general registers are copied.
452 */
453static int fpr_set_fpa(struct task_struct *target,
454 unsigned int *pos, unsigned int *count,
455 const void **kbuf, const void __user **ubuf)
456{
457 return user_regset_copyin(pos, count, kbuf, ubuf,
458 &target->thread.fpu,
459 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
460}
461
462/*
463 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
464 * CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
465 * bits only of FP context's general register slots. Only general
466 * registers are copied.
467 */
468static int fpr_set_msa(struct task_struct *target,
469 unsigned int *pos, unsigned int *count,
470 const void **kbuf, const void __user **ubuf)
471{
472 unsigned int i;
473 u64 fpr_val;
474 int err;
475
476 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
477 for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
478 err = user_regset_copyin(pos, count, kbuf, ubuf,
479 &fpr_val, i * sizeof(elf_fpreg_t),
480 (i + 1) * sizeof(elf_fpreg_t));
481 if (err)
482 return err;
483 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
484 }
485
486 return 0;
487}
488
489/*
490 * Copy the supplied NT_PRFPREG buffer to the floating-point context.
491 * Choose the appropriate helper for general registers, and then copy
492 * the FCSR register separately. Ignore the incoming FIR register
493 * contents though, as the register is read-only.
494 *
495 * We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
496 * which is supposed to have been guaranteed by the kernel before
497 * calling us, e.g. in `ptrace_regset'. We enforce that requirement,
498 * so that we can safely avoid preinitializing temporaries for
499 * partial register writes.
500 */
501static int fpr_set(struct task_struct *target,
502 const struct user_regset *regset,
503 unsigned int pos, unsigned int count,
504 const void *kbuf, const void __user *ubuf)
505{
506 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
507 const int fir_pos = fcr31_pos + sizeof(u32);
508 u32 fcr31;
509 int err;
510
511 BUG_ON(count % sizeof(elf_fpreg_t));
512
513 if (pos + count > sizeof(elf_fpregset_t))
514 return -EIO;
515
516 init_fp_ctx(target);
517
518 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
519 err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
520 else
521 err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
522 if (err)
523 return err;
524
525 if (count > 0) {
526 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
527 &fcr31,
528 fcr31_pos, fcr31_pos + sizeof(u32));
529 if (err)
530 return err;
531
532 ptrace_setfcr31(target, fcr31);
533 }
534
535 if (count > 0)
536 err = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
537 fir_pos,
538 fir_pos + sizeof(u32));
539
540 return err;
541}
542
543/* Copy the FP mode setting to the supplied NT_MIPS_FP_MODE buffer. */
544static int fp_mode_get(struct task_struct *target,
545 const struct user_regset *regset,
546 struct membuf to)
547{
548 return membuf_store(&to, (int)mips_get_process_fp_mode(target));
549}
550
551/*
552 * Copy the supplied NT_MIPS_FP_MODE buffer to the FP mode setting.
553 *
554 * We optimize for the case where `count % sizeof(int) == 0', which
555 * is supposed to have been guaranteed by the kernel before calling
556 * us, e.g. in `ptrace_regset'. We enforce that requirement, so
557 * that we can safely avoid preinitializing temporaries for partial
558 * mode writes.
559 */
560static int fp_mode_set(struct task_struct *target,
561 const struct user_regset *regset,
562 unsigned int pos, unsigned int count,
563 const void *kbuf, const void __user *ubuf)
564{
565 int fp_mode;
566 int err;
567
568 BUG_ON(count % sizeof(int));
569
570 if (pos + count > sizeof(fp_mode))
571 return -EIO;
572
573 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
574 sizeof(fp_mode));
575 if (err)
576 return err;
577
578 if (count > 0)
579 err = mips_set_process_fp_mode(target, fp_mode);
580
581 return err;
582}
583
584#endif /* CONFIG_MIPS_FP_SUPPORT */
585
586#ifdef CONFIG_CPU_HAS_MSA
587
588struct msa_control_regs {
589 unsigned int fir;
590 unsigned int fcsr;
591 unsigned int msair;
592 unsigned int msacsr;
593};
594
595static void copy_pad_fprs(struct task_struct *target,
596 const struct user_regset *regset,
597 struct membuf *to,
598 unsigned int live_sz)
599{
600 int i, j;
601 unsigned long long fill = ~0ull;
602 unsigned int cp_sz, pad_sz;
603
604 cp_sz = min(regset->size, live_sz);
605 pad_sz = regset->size - cp_sz;
606 WARN_ON(pad_sz % sizeof(fill));
607
608 for (i = 0; i < NUM_FPU_REGS; i++) {
609 membuf_write(to, &target->thread.fpu.fpr[i], cp_sz);
610 for (j = 0; j < (pad_sz / sizeof(fill)); j++)
611 membuf_store(to, fill);
612 }
613}
614
615static int msa_get(struct task_struct *target,
616 const struct user_regset *regset,
617 struct membuf to)
618{
619 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
620 const struct msa_control_regs ctrl_regs = {
621 .fir = boot_cpu_data.fpu_id,
622 .fcsr = target->thread.fpu.fcr31,
623 .msair = boot_cpu_data.msa_id,
624 .msacsr = target->thread.fpu.msacsr,
625 };
626
627 if (!tsk_used_math(target)) {
628 /* The task hasn't used FP or MSA, fill with 0xff */
629 copy_pad_fprs(target, regset, &to, 0);
630 } else if (!test_tsk_thread_flag(target, TIF_MSA_CTX_LIVE)) {
631 /* Copy scalar FP context, fill the rest with 0xff */
632 copy_pad_fprs(target, regset, &to, 8);
633 } else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
634 /* Trivially copy the vector registers */
635 membuf_write(&to, &target->thread.fpu.fpr, wr_size);
636 } else {
637 /* Copy as much context as possible, fill the rest with 0xff */
638 copy_pad_fprs(target, regset, &to,
639 sizeof(target->thread.fpu.fpr[0]));
640 }
641
642 return membuf_write(&to, &ctrl_regs, sizeof(ctrl_regs));
643}
644
645static int msa_set(struct task_struct *target,
646 const struct user_regset *regset,
647 unsigned int pos, unsigned int count,
648 const void *kbuf, const void __user *ubuf)
649{
650 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
651 struct msa_control_regs ctrl_regs;
652 unsigned int cp_sz;
653 int i, err, start;
654
655 init_fp_ctx(target);
656
657 if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
658 /* Trivially copy the vector registers */
659 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
660 &target->thread.fpu.fpr,
661 0, wr_size);
662 } else {
663 /* Copy as much context as possible */
664 cp_sz = min_t(unsigned int, regset->size,
665 sizeof(target->thread.fpu.fpr[0]));
666
667 i = start = err = 0;
668 for (; i < NUM_FPU_REGS; i++, start += regset->size) {
669 err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
670 &target->thread.fpu.fpr[i],
671 start, start + cp_sz);
672 }
673 }
674
675 if (!err)
676 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl_regs,
677 wr_size, wr_size + sizeof(ctrl_regs));
678 if (!err) {
679 target->thread.fpu.fcr31 = ctrl_regs.fcsr & ~FPU_CSR_ALL_X;
680 target->thread.fpu.msacsr = ctrl_regs.msacsr & ~MSA_CSR_CAUSEF;
681 }
682
683 return err;
684}
685
686#endif /* CONFIG_CPU_HAS_MSA */
687
688#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
689
690/*
691 * Copy the DSP context to the supplied 32-bit NT_MIPS_DSP buffer.
692 */
693static int dsp32_get(struct task_struct *target,
694 const struct user_regset *regset,
695 struct membuf to)
696{
697 u32 dspregs[NUM_DSP_REGS + 1];
698 unsigned int i;
699
700 BUG_ON(to.left % sizeof(u32));
701
702 if (!cpu_has_dsp)
703 return -EIO;
704
705 for (i = 0; i < NUM_DSP_REGS; i++)
706 dspregs[i] = target->thread.dsp.dspr[i];
707 dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol;
708 return membuf_write(&to, dspregs, sizeof(dspregs));
709}
710
711/*
712 * Copy the supplied 32-bit NT_MIPS_DSP buffer to the DSP context.
713 */
714static int dsp32_set(struct task_struct *target,
715 const struct user_regset *regset,
716 unsigned int pos, unsigned int count,
717 const void *kbuf, const void __user *ubuf)
718{
719 unsigned int start, num_regs, i;
720 u32 dspregs[NUM_DSP_REGS + 1];
721 int err;
722
723 BUG_ON(count % sizeof(u32));
724
725 if (!cpu_has_dsp)
726 return -EIO;
727
728 start = pos / sizeof(u32);
729 num_regs = count / sizeof(u32);
730
731 if (start + num_regs > NUM_DSP_REGS + 1)
732 return -EIO;
733
734 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
735 sizeof(dspregs));
736 if (err)
737 return err;
738
739 for (i = start; i < num_regs; i++)
740 switch (i) {
741 case 0 ... NUM_DSP_REGS - 1:
742 target->thread.dsp.dspr[i] = (s32)dspregs[i];
743 break;
744 case NUM_DSP_REGS:
745 target->thread.dsp.dspcontrol = (s32)dspregs[i];
746 break;
747 }
748
749 return 0;
750}
751
752#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
753
754#ifdef CONFIG_64BIT
755
756/*
757 * Copy the DSP context to the supplied 64-bit NT_MIPS_DSP buffer.
758 */
759static int dsp64_get(struct task_struct *target,
760 const struct user_regset *regset,
761 struct membuf to)
762{
763 u64 dspregs[NUM_DSP_REGS + 1];
764 unsigned int i;
765
766 BUG_ON(to.left % sizeof(u64));
767
768 if (!cpu_has_dsp)
769 return -EIO;
770
771 for (i = 0; i < NUM_DSP_REGS; i++)
772 dspregs[i] = target->thread.dsp.dspr[i];
773 dspregs[NUM_DSP_REGS] = target->thread.dsp.dspcontrol;
774 return membuf_write(&to, dspregs, sizeof(dspregs));
775}
776
777/*
778 * Copy the supplied 64-bit NT_MIPS_DSP buffer to the DSP context.
779 */
780static int dsp64_set(struct task_struct *target,
781 const struct user_regset *regset,
782 unsigned int pos, unsigned int count,
783 const void *kbuf, const void __user *ubuf)
784{
785 unsigned int start, num_regs, i;
786 u64 dspregs[NUM_DSP_REGS + 1];
787 int err;
788
789 BUG_ON(count % sizeof(u64));
790
791 if (!cpu_has_dsp)
792 return -EIO;
793
794 start = pos / sizeof(u64);
795 num_regs = count / sizeof(u64);
796
797 if (start + num_regs > NUM_DSP_REGS + 1)
798 return -EIO;
799
800 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
801 sizeof(dspregs));
802 if (err)
803 return err;
804
805 for (i = start; i < num_regs; i++)
806 switch (i) {
807 case 0 ... NUM_DSP_REGS - 1:
808 target->thread.dsp.dspr[i] = dspregs[i];
809 break;
810 case NUM_DSP_REGS:
811 target->thread.dsp.dspcontrol = dspregs[i];
812 break;
813 }
814
815 return 0;
816}
817
818#endif /* CONFIG_64BIT */
819
820/*
821 * Determine whether the DSP context is present.
822 */
823static int dsp_active(struct task_struct *target,
824 const struct user_regset *regset)
825{
826 return cpu_has_dsp ? NUM_DSP_REGS + 1 : -ENODEV;
827}
828
829enum mips_regset {
830 REGSET_GPR,
831 REGSET_DSP,
832#ifdef CONFIG_MIPS_FP_SUPPORT
833 REGSET_FPR,
834 REGSET_FP_MODE,
835#endif
836#ifdef CONFIG_CPU_HAS_MSA
837 REGSET_MSA,
838#endif
839};
840
841struct pt_regs_offset {
842 const char *name;
843 int offset;
844};
845
846#define REG_OFFSET_NAME(reg, r) { \
847 .name = #reg, \
848 .offset = offsetof(struct pt_regs, r) \
849}
850
851#define REG_OFFSET_END { \
852 .name = NULL, \
853 .offset = 0 \
854}
855
856static const struct pt_regs_offset regoffset_table[] = {
857 REG_OFFSET_NAME(r0, regs[0]),
858 REG_OFFSET_NAME(r1, regs[1]),
859 REG_OFFSET_NAME(r2, regs[2]),
860 REG_OFFSET_NAME(r3, regs[3]),
861 REG_OFFSET_NAME(r4, regs[4]),
862 REG_OFFSET_NAME(r5, regs[5]),
863 REG_OFFSET_NAME(r6, regs[6]),
864 REG_OFFSET_NAME(r7, regs[7]),
865 REG_OFFSET_NAME(r8, regs[8]),
866 REG_OFFSET_NAME(r9, regs[9]),
867 REG_OFFSET_NAME(r10, regs[10]),
868 REG_OFFSET_NAME(r11, regs[11]),
869 REG_OFFSET_NAME(r12, regs[12]),
870 REG_OFFSET_NAME(r13, regs[13]),
871 REG_OFFSET_NAME(r14, regs[14]),
872 REG_OFFSET_NAME(r15, regs[15]),
873 REG_OFFSET_NAME(r16, regs[16]),
874 REG_OFFSET_NAME(r17, regs[17]),
875 REG_OFFSET_NAME(r18, regs[18]),
876 REG_OFFSET_NAME(r19, regs[19]),
877 REG_OFFSET_NAME(r20, regs[20]),
878 REG_OFFSET_NAME(r21, regs[21]),
879 REG_OFFSET_NAME(r22, regs[22]),
880 REG_OFFSET_NAME(r23, regs[23]),
881 REG_OFFSET_NAME(r24, regs[24]),
882 REG_OFFSET_NAME(r25, regs[25]),
883 REG_OFFSET_NAME(r26, regs[26]),
884 REG_OFFSET_NAME(r27, regs[27]),
885 REG_OFFSET_NAME(r28, regs[28]),
886 REG_OFFSET_NAME(r29, regs[29]),
887 REG_OFFSET_NAME(r30, regs[30]),
888 REG_OFFSET_NAME(r31, regs[31]),
889 REG_OFFSET_NAME(c0_status, cp0_status),
890 REG_OFFSET_NAME(hi, hi),
891 REG_OFFSET_NAME(lo, lo),
892#ifdef CONFIG_CPU_HAS_SMARTMIPS
893 REG_OFFSET_NAME(acx, acx),
894#endif
895 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
896 REG_OFFSET_NAME(c0_cause, cp0_cause),
897 REG_OFFSET_NAME(c0_epc, cp0_epc),
898#ifdef CONFIG_CPU_CAVIUM_OCTEON
899 REG_OFFSET_NAME(mpl0, mpl[0]),
900 REG_OFFSET_NAME(mpl1, mpl[1]),
901 REG_OFFSET_NAME(mpl2, mpl[2]),
902 REG_OFFSET_NAME(mtp0, mtp[0]),
903 REG_OFFSET_NAME(mtp1, mtp[1]),
904 REG_OFFSET_NAME(mtp2, mtp[2]),
905#endif
906 REG_OFFSET_END,
907};
908
909/**
910 * regs_query_register_offset() - query register offset from its name
911 * @name: the name of a register
912 *
913 * regs_query_register_offset() returns the offset of a register in struct
914 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
915 */
916int regs_query_register_offset(const char *name)
917{
918 const struct pt_regs_offset *roff;
919 for (roff = regoffset_table; roff->name != NULL; roff++)
920 if (!strcmp(roff->name, name))
921 return roff->offset;
922 return -EINVAL;
923}
924
925#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
926
927static const struct user_regset mips_regsets[] = {
928 [REGSET_GPR] = {
929 .core_note_type = NT_PRSTATUS,
930 .n = ELF_NGREG,
931 .size = sizeof(unsigned int),
932 .align = sizeof(unsigned int),
933 .regset_get = gpr32_get,
934 .set = gpr32_set,
935 },
936 [REGSET_DSP] = {
937 .core_note_type = NT_MIPS_DSP,
938 .n = NUM_DSP_REGS + 1,
939 .size = sizeof(u32),
940 .align = sizeof(u32),
941 .regset_get = dsp32_get,
942 .set = dsp32_set,
943 .active = dsp_active,
944 },
945#ifdef CONFIG_MIPS_FP_SUPPORT
946 [REGSET_FPR] = {
947 .core_note_type = NT_PRFPREG,
948 .n = ELF_NFPREG,
949 .size = sizeof(elf_fpreg_t),
950 .align = sizeof(elf_fpreg_t),
951 .regset_get = fpr_get,
952 .set = fpr_set,
953 },
954 [REGSET_FP_MODE] = {
955 .core_note_type = NT_MIPS_FP_MODE,
956 .n = 1,
957 .size = sizeof(int),
958 .align = sizeof(int),
959 .regset_get = fp_mode_get,
960 .set = fp_mode_set,
961 },
962#endif
963#ifdef CONFIG_CPU_HAS_MSA
964 [REGSET_MSA] = {
965 .core_note_type = NT_MIPS_MSA,
966 .n = NUM_FPU_REGS + 1,
967 .size = 16,
968 .align = 16,
969 .regset_get = msa_get,
970 .set = msa_set,
971 },
972#endif
973};
974
975static const struct user_regset_view user_mips_view = {
976 .name = "mips",
977 .e_machine = ELF_ARCH,
978 .ei_osabi = ELF_OSABI,
979 .regsets = mips_regsets,
980 .n = ARRAY_SIZE(mips_regsets),
981};
982
983#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
984
985#ifdef CONFIG_64BIT
986
987static const struct user_regset mips64_regsets[] = {
988 [REGSET_GPR] = {
989 .core_note_type = NT_PRSTATUS,
990 .n = ELF_NGREG,
991 .size = sizeof(unsigned long),
992 .align = sizeof(unsigned long),
993 .regset_get = gpr64_get,
994 .set = gpr64_set,
995 },
996 [REGSET_DSP] = {
997 .core_note_type = NT_MIPS_DSP,
998 .n = NUM_DSP_REGS + 1,
999 .size = sizeof(u64),
1000 .align = sizeof(u64),
1001 .regset_get = dsp64_get,
1002 .set = dsp64_set,
1003 .active = dsp_active,
1004 },
1005#ifdef CONFIG_MIPS_FP_SUPPORT
1006 [REGSET_FP_MODE] = {
1007 .core_note_type = NT_MIPS_FP_MODE,
1008 .n = 1,
1009 .size = sizeof(int),
1010 .align = sizeof(int),
1011 .regset_get = fp_mode_get,
1012 .set = fp_mode_set,
1013 },
1014 [REGSET_FPR] = {
1015 .core_note_type = NT_PRFPREG,
1016 .n = ELF_NFPREG,
1017 .size = sizeof(elf_fpreg_t),
1018 .align = sizeof(elf_fpreg_t),
1019 .regset_get = fpr_get,
1020 .set = fpr_set,
1021 },
1022#endif
1023#ifdef CONFIG_CPU_HAS_MSA
1024 [REGSET_MSA] = {
1025 .core_note_type = NT_MIPS_MSA,
1026 .n = NUM_FPU_REGS + 1,
1027 .size = 16,
1028 .align = 16,
1029 .regset_get = msa_get,
1030 .set = msa_set,
1031 },
1032#endif
1033};
1034
1035static const struct user_regset_view user_mips64_view = {
1036 .name = "mips64",
1037 .e_machine = ELF_ARCH,
1038 .ei_osabi = ELF_OSABI,
1039 .regsets = mips64_regsets,
1040 .n = ARRAY_SIZE(mips64_regsets),
1041};
1042
1043#ifdef CONFIG_MIPS32_N32
1044
1045static const struct user_regset_view user_mipsn32_view = {
1046 .name = "mipsn32",
1047 .e_flags = EF_MIPS_ABI2,
1048 .e_machine = ELF_ARCH,
1049 .ei_osabi = ELF_OSABI,
1050 .regsets = mips64_regsets,
1051 .n = ARRAY_SIZE(mips64_regsets),
1052};
1053
1054#endif /* CONFIG_MIPS32_N32 */
1055
1056#endif /* CONFIG_64BIT */
1057
1058const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1059{
1060#ifdef CONFIG_32BIT
1061 return &user_mips_view;
1062#else
1063#ifdef CONFIG_MIPS32_O32
1064 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
1065 return &user_mips_view;
1066#endif
1067#ifdef CONFIG_MIPS32_N32
1068 if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
1069 return &user_mipsn32_view;
1070#endif
1071 return &user_mips64_view;
1072#endif
1073}
1074
1075long arch_ptrace(struct task_struct *child, long request,
1076 unsigned long addr, unsigned long data)
1077{
1078 int ret;
1079 void __user *addrp = (void __user *) addr;
1080 void __user *datavp = (void __user *) data;
1081 unsigned long __user *datalp = (void __user *) data;
1082
1083 switch (request) {
1084 /* when I and D space are separate, these will need to be fixed. */
1085 case PTRACE_PEEKTEXT: /* read word at location addr. */
1086 case PTRACE_PEEKDATA:
1087 ret = generic_ptrace_peekdata(child, addr, data);
1088 break;
1089
1090 /* Read the word at location addr in the USER area. */
1091 case PTRACE_PEEKUSR: {
1092 struct pt_regs *regs;
1093 unsigned long tmp = 0;
1094
1095 regs = task_pt_regs(child);
1096 ret = 0; /* Default return value. */
1097
1098 switch (addr) {
1099 case 0 ... 31:
1100 tmp = regs->regs[addr];
1101 break;
1102#ifdef CONFIG_MIPS_FP_SUPPORT
1103 case FPR_BASE ... FPR_BASE + 31: {
1104 union fpureg *fregs;
1105
1106 if (!tsk_used_math(child)) {
1107 /* FP not yet used */
1108 tmp = -1;
1109 break;
1110 }
1111 fregs = get_fpu_regs(child);
1112
1113#ifdef CONFIG_32BIT
1114 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1115 /*
1116 * The odd registers are actually the high
1117 * order bits of the values stored in the even
1118 * registers.
1119 */
1120 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1121 addr & 1);
1122 break;
1123 }
1124#endif
1125 tmp = get_fpr64(&fregs[addr - FPR_BASE], 0);
1126 break;
1127 }
1128 case FPC_CSR:
1129 tmp = child->thread.fpu.fcr31;
1130 break;
1131 case FPC_EIR:
1132 /* implementation / version register */
1133 tmp = boot_cpu_data.fpu_id;
1134 break;
1135#endif
1136 case PC:
1137 tmp = regs->cp0_epc;
1138 break;
1139 case CAUSE:
1140 tmp = regs->cp0_cause;
1141 break;
1142 case BADVADDR:
1143 tmp = regs->cp0_badvaddr;
1144 break;
1145 case MMHI:
1146 tmp = regs->hi;
1147 break;
1148 case MMLO:
1149 tmp = regs->lo;
1150 break;
1151#ifdef CONFIG_CPU_HAS_SMARTMIPS
1152 case ACX:
1153 tmp = regs->acx;
1154 break;
1155#endif
1156 case DSP_BASE ... DSP_BASE + 5: {
1157 dspreg_t *dregs;
1158
1159 if (!cpu_has_dsp) {
1160 tmp = 0;
1161 ret = -EIO;
1162 goto out;
1163 }
1164 dregs = __get_dsp_regs(child);
1165 tmp = dregs[addr - DSP_BASE];
1166 break;
1167 }
1168 case DSP_CONTROL:
1169 if (!cpu_has_dsp) {
1170 tmp = 0;
1171 ret = -EIO;
1172 goto out;
1173 }
1174 tmp = child->thread.dsp.dspcontrol;
1175 break;
1176 default:
1177 tmp = 0;
1178 ret = -EIO;
1179 goto out;
1180 }
1181 ret = put_user(tmp, datalp);
1182 break;
1183 }
1184
1185 /* when I and D space are separate, this will have to be fixed. */
1186 case PTRACE_POKETEXT: /* write the word at location addr. */
1187 case PTRACE_POKEDATA:
1188 ret = generic_ptrace_pokedata(child, addr, data);
1189 break;
1190
1191 case PTRACE_POKEUSR: {
1192 struct pt_regs *regs;
1193 ret = 0;
1194 regs = task_pt_regs(child);
1195
1196 switch (addr) {
1197 case 0 ... 31:
1198 regs->regs[addr] = data;
1199 /* System call number may have been changed */
1200 if (addr == 2)
1201 mips_syscall_update_nr(child, regs);
1202 else if (addr == 4 &&
1203 mips_syscall_is_indirect(child, regs))
1204 mips_syscall_update_nr(child, regs);
1205 break;
1206#ifdef CONFIG_MIPS_FP_SUPPORT
1207 case FPR_BASE ... FPR_BASE + 31: {
1208 union fpureg *fregs = get_fpu_regs(child);
1209
1210 init_fp_ctx(child);
1211#ifdef CONFIG_32BIT
1212 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1213 /*
1214 * The odd registers are actually the high
1215 * order bits of the values stored in the even
1216 * registers.
1217 */
1218 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1219 addr & 1, data);
1220 break;
1221 }
1222#endif
1223 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
1224 break;
1225 }
1226 case FPC_CSR:
1227 init_fp_ctx(child);
1228 ptrace_setfcr31(child, data);
1229 break;
1230#endif
1231 case PC:
1232 regs->cp0_epc = data;
1233 break;
1234 case MMHI:
1235 regs->hi = data;
1236 break;
1237 case MMLO:
1238 regs->lo = data;
1239 break;
1240#ifdef CONFIG_CPU_HAS_SMARTMIPS
1241 case ACX:
1242 regs->acx = data;
1243 break;
1244#endif
1245 case DSP_BASE ... DSP_BASE + 5: {
1246 dspreg_t *dregs;
1247
1248 if (!cpu_has_dsp) {
1249 ret = -EIO;
1250 break;
1251 }
1252
1253 dregs = __get_dsp_regs(child);
1254 dregs[addr - DSP_BASE] = data;
1255 break;
1256 }
1257 case DSP_CONTROL:
1258 if (!cpu_has_dsp) {
1259 ret = -EIO;
1260 break;
1261 }
1262 child->thread.dsp.dspcontrol = data;
1263 break;
1264 default:
1265 /* The rest are not allowed. */
1266 ret = -EIO;
1267 break;
1268 }
1269 break;
1270 }
1271
1272 case PTRACE_GETREGS:
1273 ret = ptrace_getregs(child, datavp);
1274 break;
1275
1276 case PTRACE_SETREGS:
1277 ret = ptrace_setregs(child, datavp);
1278 break;
1279
1280#ifdef CONFIG_MIPS_FP_SUPPORT
1281 case PTRACE_GETFPREGS:
1282 ret = ptrace_getfpregs(child, datavp);
1283 break;
1284
1285 case PTRACE_SETFPREGS:
1286 ret = ptrace_setfpregs(child, datavp);
1287 break;
1288#endif
1289 case PTRACE_GET_THREAD_AREA:
1290 ret = put_user(task_thread_info(child)->tp_value, datalp);
1291 break;
1292
1293 case PTRACE_GET_WATCH_REGS:
1294 ret = ptrace_get_watch_regs(child, addrp);
1295 break;
1296
1297 case PTRACE_SET_WATCH_REGS:
1298 ret = ptrace_set_watch_regs(child, addrp);
1299 break;
1300
1301 default:
1302 ret = ptrace_request(child, request, addr, data);
1303 break;
1304 }
1305 out:
1306 return ret;
1307}
1308
1309/*
1310 * Notification of system call entry/exit
1311 * - triggered by current->work.syscall_trace
1312 */
1313asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
1314{
1315 user_exit();
1316
1317 current_thread_info()->syscall = syscall;
1318
1319 if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1320 if (tracehook_report_syscall_entry(regs))
1321 return -1;
1322 syscall = current_thread_info()->syscall;
1323 }
1324
1325#ifdef CONFIG_SECCOMP
1326 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
1327 int ret, i;
1328 struct seccomp_data sd;
1329 unsigned long args[6];
1330
1331 sd.nr = syscall;
1332 sd.arch = syscall_get_arch(current);
1333 syscall_get_arguments(current, regs, args);
1334 for (i = 0; i < 6; i++)
1335 sd.args[i] = args[i];
1336 sd.instruction_pointer = KSTK_EIP(current);
1337
1338 ret = __secure_computing(&sd);
1339 if (ret == -1)
1340 return ret;
1341 syscall = current_thread_info()->syscall;
1342 }
1343#endif
1344
1345 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1346 trace_sys_enter(regs, regs->regs[2]);
1347
1348 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
1349 regs->regs[6], regs->regs[7]);
1350
1351 /*
1352 * Negative syscall numbers are mistaken for rejected syscalls, but
1353 * won't have had the return value set appropriately, so we do so now.
1354 */
1355 if (syscall < 0)
1356 syscall_set_return_value(current, regs, -ENOSYS, 0);
1357 return syscall;
1358}
1359
1360/*
1361 * Notification of system call entry/exit
1362 * - triggered by current->work.syscall_trace
1363 */
1364asmlinkage void syscall_trace_leave(struct pt_regs *regs)
1365{
1366 /*
1367 * We may come here right after calling schedule_user()
1368 * or do_notify_resume(), in which case we can be in RCU
1369 * user mode.
1370 */
1371 user_exit();
1372
1373 audit_syscall_exit(regs);
1374
1375 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1376 trace_sys_exit(regs, regs_return_value(regs));
1377
1378 if (test_thread_flag(TIF_SYSCALL_TRACE))
1379 tracehook_report_syscall_exit(regs, 0);
1380
1381 user_enter();
1382}