Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * arch/arm64/kernel/topology.c
  3 *
  4 * Copyright (C) 2011,2013,2014 Linaro Limited.
  5 *
  6 * Based on the arm32 version written by Vincent Guittot in turn based on
  7 * arch/sh/kernel/topology.c
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13
 14#include <linux/acpi.h>
 15#include <linux/arch_topology.h>
 16#include <linux/cacheinfo.h>
 17#include <linux/cpufreq.h>
 18#include <linux/init.h>
 19#include <linux/percpu.h>
 20
 21#include <asm/cpu.h>
 22#include <asm/cputype.h>
 23#include <asm/topology.h>
 24
 25void store_cpu_topology(unsigned int cpuid)
 26{
 27	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
 28	u64 mpidr;
 29
 30	if (cpuid_topo->package_id != -1)
 31		goto topology_populated;
 32
 33	mpidr = read_cpuid_mpidr();
 34
 35	/* Uniprocessor systems can rely on default topology values */
 36	if (mpidr & MPIDR_UP_BITMASK)
 37		return;
 38
 39	/* Create cpu topology mapping based on MPIDR. */
 40	if (mpidr & MPIDR_MT_BITMASK) {
 41		/* Multiprocessor system : Multi-threads per core */
 42		cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 43		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 44		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
 45					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
 46	} else {
 47		/* Multiprocessor system : Single-thread per core */
 48		cpuid_topo->thread_id  = -1;
 49		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 50		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
 51					 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
 52					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
 53	}
 54
 55	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
 56		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
 57		 cpuid_topo->thread_id, mpidr);
 58
 59topology_populated:
 60	update_siblings_masks(cpuid);
 61}
 62
 63#ifdef CONFIG_ACPI
 64static bool __init acpi_cpu_is_threaded(int cpu)
 65{
 66	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
 67
 68	/*
 69	 * if the PPTT doesn't have thread information, assume a homogeneous
 70	 * machine and return the current CPU's thread state.
 71	 */
 72	if (is_threaded < 0)
 73		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
 74
 75	return !!is_threaded;
 76}
 77
 78/*
 79 * Propagate the topology information of the processor_topology_node tree to the
 80 * cpu_topology array.
 81 */
 82int __init parse_acpi_topology(void)
 83{
 84	int cpu, topology_id;
 85
 86	if (acpi_disabled)
 87		return 0;
 88
 89	for_each_possible_cpu(cpu) {
 90		int i, cache_id;
 91
 92		topology_id = find_acpi_cpu_topology(cpu, 0);
 93		if (topology_id < 0)
 94			return topology_id;
 95
 96		if (acpi_cpu_is_threaded(cpu)) {
 97			cpu_topology[cpu].thread_id = topology_id;
 98			topology_id = find_acpi_cpu_topology(cpu, 1);
 99			cpu_topology[cpu].core_id   = topology_id;
100		} else {
101			cpu_topology[cpu].thread_id  = -1;
102			cpu_topology[cpu].core_id    = topology_id;
103		}
104		topology_id = find_acpi_cpu_topology_package(cpu);
105		cpu_topology[cpu].package_id = topology_id;
106
107		i = acpi_find_last_cache_level(cpu);
108
109		if (i > 0) {
110			/*
111			 * this is the only part of cpu_topology that has
112			 * a direct relationship with the cache topology
113			 */
114			cache_id = find_acpi_cpu_cache_topology(cpu, i);
115			if (cache_id > 0)
116				cpu_topology[cpu].llc_id = cache_id;
117		}
118	}
119
120	return 0;
121}
122#endif
123
124#ifdef CONFIG_ARM64_AMU_EXTN
125
126#undef pr_fmt
127#define pr_fmt(fmt) "AMU: " fmt
128
129static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
130static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
131static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
132static cpumask_var_t amu_fie_cpus;
133
134/* Initialize counter reference per-cpu variables for the current CPU */
135void init_cpu_freq_invariance_counters(void)
136{
137	this_cpu_write(arch_core_cycles_prev,
138		       read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
139	this_cpu_write(arch_const_cycles_prev,
140		       read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
141}
142
143static int validate_cpu_freq_invariance_counters(int cpu)
144{
145	u64 max_freq_hz, ratio;
146
147	if (!cpu_has_amu_feat(cpu)) {
148		pr_debug("CPU%d: counters are not supported.\n", cpu);
149		return -EINVAL;
150	}
151
152	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
153		     !per_cpu(arch_core_cycles_prev, cpu))) {
154		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
155		return -EINVAL;
156	}
157
158	/* Convert maximum frequency from KHz to Hz and validate */
159	max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
160	if (unlikely(!max_freq_hz)) {
161		pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
162		return -EINVAL;
163	}
164
165	/*
166	 * Pre-compute the fixed ratio between the frequency of the constant
167	 * counter and the maximum frequency of the CPU.
168	 *
169	 *			      const_freq
170	 * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALEĀ²
171	 *			   cpuinfo_max_freq
172	 *
173	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ²
174	 * in order to ensure a good resolution for arch_max_freq_scale for
175	 * very low arch timer frequencies (down to the KHz range which should
176	 * be unlikely).
177	 */
178	ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
179	ratio = div64_u64(ratio, max_freq_hz);
180	if (!ratio) {
181		WARN_ONCE(1, "System timer frequency too low.\n");
182		return -EINVAL;
183	}
184
185	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
186
187	return 0;
188}
189
190static inline bool
191enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
192{
193	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
194
195	if (!policy) {
196		pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
197		return false;
198	}
199
200	if (cpumask_subset(policy->related_cpus, valid_cpus))
201		cpumask_or(amu_fie_cpus, policy->related_cpus,
202			   amu_fie_cpus);
203
204	cpufreq_cpu_put(policy);
205
206	return true;
207}
208
209static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
210#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
211
212static int __init init_amu_fie(void)
213{
214	cpumask_var_t valid_cpus;
215	bool have_policy = false;
216	int ret = 0;
217	int cpu;
218
219	if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
220		return -ENOMEM;
221
222	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
223		ret = -ENOMEM;
224		goto free_valid_mask;
225	}
226
227	for_each_present_cpu(cpu) {
228		if (validate_cpu_freq_invariance_counters(cpu))
229			continue;
230		cpumask_set_cpu(cpu, valid_cpus);
231		have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
232	}
233
234	/*
235	 * If we are not restricted by cpufreq policies, we only enable
236	 * the use of the AMU feature for FIE if all CPUs support AMU.
237	 * Otherwise, enable_policy_freq_counters has already enabled
238	 * policy cpus.
239	 */
240	if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
241		cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
242
243	if (!cpumask_empty(amu_fie_cpus)) {
244		pr_info("CPUs[%*pbl]: counters will be used for FIE.",
245			cpumask_pr_args(amu_fie_cpus));
246		static_branch_enable(&amu_fie_key);
247	}
248
249free_valid_mask:
250	free_cpumask_var(valid_cpus);
251
252	return ret;
253}
254late_initcall_sync(init_amu_fie);
255
256bool arch_freq_counters_available(struct cpumask *cpus)
257{
258	return amu_freq_invariant() &&
259	       cpumask_subset(cpus, amu_fie_cpus);
260}
261
262void topology_scale_freq_tick(void)
263{
264	u64 prev_core_cnt, prev_const_cnt;
265	u64 core_cnt, const_cnt, scale;
266	int cpu = smp_processor_id();
267
268	if (!amu_freq_invariant())
269		return;
270
271	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
272		return;
273
274	const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
275	core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
276	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
277	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
278
279	if (unlikely(core_cnt <= prev_core_cnt ||
280		     const_cnt <= prev_const_cnt))
281		goto store_and_exit;
282
283	/*
284	 *	    /\core    arch_max_freq_scale
285	 * scale =  ------- * --------------------
286	 *	    /\const   SCHED_CAPACITY_SCALE
287	 *
288	 * See validate_cpu_freq_invariance_counters() for details on
289	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
290	 */
291	scale = core_cnt - prev_core_cnt;
292	scale *= this_cpu_read(arch_max_freq_scale);
293	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
294			  const_cnt - prev_const_cnt);
295
296	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
297	this_cpu_write(freq_scale, (unsigned long)scale);
298
299store_and_exit:
300	this_cpu_write(arch_core_cycles_prev, core_cnt);
301	this_cpu_write(arch_const_cycles_prev, const_cnt);
302}
303#endif /* CONFIG_ARM64_AMU_EXTN */