Loading...
Note: File does not exist in v3.1.
1/*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14#include <linux/acpi.h>
15#include <linux/arch_topology.h>
16#include <linux/cacheinfo.h>
17#include <linux/cpufreq.h>
18#include <linux/init.h>
19#include <linux/percpu.h>
20
21#include <asm/cpu.h>
22#include <asm/cputype.h>
23#include <asm/topology.h>
24
25void store_cpu_topology(unsigned int cpuid)
26{
27 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 u64 mpidr;
29
30 if (cpuid_topo->package_id != -1)
31 goto topology_populated;
32
33 mpidr = read_cpuid_mpidr();
34
35 /* Uniprocessor systems can rely on default topology values */
36 if (mpidr & MPIDR_UP_BITMASK)
37 return;
38
39 /* Create cpu topology mapping based on MPIDR. */
40 if (mpidr & MPIDR_MT_BITMASK) {
41 /* Multiprocessor system : Multi-threads per core */
42 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
43 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
44 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
45 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
46 } else {
47 /* Multiprocessor system : Single-thread per core */
48 cpuid_topo->thread_id = -1;
49 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
50 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
51 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
52 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
53 }
54
55 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
56 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
57 cpuid_topo->thread_id, mpidr);
58
59topology_populated:
60 update_siblings_masks(cpuid);
61}
62
63#ifdef CONFIG_ACPI
64static bool __init acpi_cpu_is_threaded(int cpu)
65{
66 int is_threaded = acpi_pptt_cpu_is_thread(cpu);
67
68 /*
69 * if the PPTT doesn't have thread information, assume a homogeneous
70 * machine and return the current CPU's thread state.
71 */
72 if (is_threaded < 0)
73 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
74
75 return !!is_threaded;
76}
77
78/*
79 * Propagate the topology information of the processor_topology_node tree to the
80 * cpu_topology array.
81 */
82int __init parse_acpi_topology(void)
83{
84 int cpu, topology_id;
85
86 if (acpi_disabled)
87 return 0;
88
89 for_each_possible_cpu(cpu) {
90 int i, cache_id;
91
92 topology_id = find_acpi_cpu_topology(cpu, 0);
93 if (topology_id < 0)
94 return topology_id;
95
96 if (acpi_cpu_is_threaded(cpu)) {
97 cpu_topology[cpu].thread_id = topology_id;
98 topology_id = find_acpi_cpu_topology(cpu, 1);
99 cpu_topology[cpu].core_id = topology_id;
100 } else {
101 cpu_topology[cpu].thread_id = -1;
102 cpu_topology[cpu].core_id = topology_id;
103 }
104 topology_id = find_acpi_cpu_topology_package(cpu);
105 cpu_topology[cpu].package_id = topology_id;
106
107 i = acpi_find_last_cache_level(cpu);
108
109 if (i > 0) {
110 /*
111 * this is the only part of cpu_topology that has
112 * a direct relationship with the cache topology
113 */
114 cache_id = find_acpi_cpu_cache_topology(cpu, i);
115 if (cache_id > 0)
116 cpu_topology[cpu].llc_id = cache_id;
117 }
118 }
119
120 return 0;
121}
122#endif
123
124#ifdef CONFIG_ARM64_AMU_EXTN
125
126#undef pr_fmt
127#define pr_fmt(fmt) "AMU: " fmt
128
129static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
130static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
131static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
132static cpumask_var_t amu_fie_cpus;
133
134/* Initialize counter reference per-cpu variables for the current CPU */
135void init_cpu_freq_invariance_counters(void)
136{
137 this_cpu_write(arch_core_cycles_prev,
138 read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
139 this_cpu_write(arch_const_cycles_prev,
140 read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
141}
142
143static int validate_cpu_freq_invariance_counters(int cpu)
144{
145 u64 max_freq_hz, ratio;
146
147 if (!cpu_has_amu_feat(cpu)) {
148 pr_debug("CPU%d: counters are not supported.\n", cpu);
149 return -EINVAL;
150 }
151
152 if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
153 !per_cpu(arch_core_cycles_prev, cpu))) {
154 pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
155 return -EINVAL;
156 }
157
158 /* Convert maximum frequency from KHz to Hz and validate */
159 max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
160 if (unlikely(!max_freq_hz)) {
161 pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
162 return -EINVAL;
163 }
164
165 /*
166 * Pre-compute the fixed ratio between the frequency of the constant
167 * counter and the maximum frequency of the CPU.
168 *
169 * const_freq
170 * arch_max_freq_scale = ---------------- * SCHED_CAPACITY_SCALEĀ²
171 * cpuinfo_max_freq
172 *
173 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ²
174 * in order to ensure a good resolution for arch_max_freq_scale for
175 * very low arch timer frequencies (down to the KHz range which should
176 * be unlikely).
177 */
178 ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
179 ratio = div64_u64(ratio, max_freq_hz);
180 if (!ratio) {
181 WARN_ONCE(1, "System timer frequency too low.\n");
182 return -EINVAL;
183 }
184
185 per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
186
187 return 0;
188}
189
190static inline bool
191enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
192{
193 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
194
195 if (!policy) {
196 pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
197 return false;
198 }
199
200 if (cpumask_subset(policy->related_cpus, valid_cpus))
201 cpumask_or(amu_fie_cpus, policy->related_cpus,
202 amu_fie_cpus);
203
204 cpufreq_cpu_put(policy);
205
206 return true;
207}
208
209static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
210#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
211
212static int __init init_amu_fie(void)
213{
214 cpumask_var_t valid_cpus;
215 bool have_policy = false;
216 int ret = 0;
217 int cpu;
218
219 if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
220 return -ENOMEM;
221
222 if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
223 ret = -ENOMEM;
224 goto free_valid_mask;
225 }
226
227 for_each_present_cpu(cpu) {
228 if (validate_cpu_freq_invariance_counters(cpu))
229 continue;
230 cpumask_set_cpu(cpu, valid_cpus);
231 have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
232 }
233
234 /*
235 * If we are not restricted by cpufreq policies, we only enable
236 * the use of the AMU feature for FIE if all CPUs support AMU.
237 * Otherwise, enable_policy_freq_counters has already enabled
238 * policy cpus.
239 */
240 if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
241 cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
242
243 if (!cpumask_empty(amu_fie_cpus)) {
244 pr_info("CPUs[%*pbl]: counters will be used for FIE.",
245 cpumask_pr_args(amu_fie_cpus));
246 static_branch_enable(&amu_fie_key);
247 }
248
249free_valid_mask:
250 free_cpumask_var(valid_cpus);
251
252 return ret;
253}
254late_initcall_sync(init_amu_fie);
255
256bool arch_freq_counters_available(struct cpumask *cpus)
257{
258 return amu_freq_invariant() &&
259 cpumask_subset(cpus, amu_fie_cpus);
260}
261
262void topology_scale_freq_tick(void)
263{
264 u64 prev_core_cnt, prev_const_cnt;
265 u64 core_cnt, const_cnt, scale;
266 int cpu = smp_processor_id();
267
268 if (!amu_freq_invariant())
269 return;
270
271 if (!cpumask_test_cpu(cpu, amu_fie_cpus))
272 return;
273
274 const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
275 core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
276 prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
277 prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
278
279 if (unlikely(core_cnt <= prev_core_cnt ||
280 const_cnt <= prev_const_cnt))
281 goto store_and_exit;
282
283 /*
284 * /\core arch_max_freq_scale
285 * scale = ------- * --------------------
286 * /\const SCHED_CAPACITY_SCALE
287 *
288 * See validate_cpu_freq_invariance_counters() for details on
289 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
290 */
291 scale = core_cnt - prev_core_cnt;
292 scale *= this_cpu_read(arch_max_freq_scale);
293 scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
294 const_cnt - prev_const_cnt);
295
296 scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
297 this_cpu_write(freq_scale, (unsigned long)scale);
298
299store_and_exit:
300 this_cpu_write(arch_core_cycles_prev, core_cnt);
301 this_cpu_write(arch_const_cycles_prev, const_cnt);
302}
303#endif /* CONFIG_ARM64_AMU_EXTN */