Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  4 */
  5
  6#include <linux/types.h>
  7#include <linux/kprobes.h>
  8#include <linux/slab.h>
  9#include <linux/module.h>
 10#include <linux/kdebug.h>
 11#include <linux/sched.h>
 12#include <linux/uaccess.h>
 13#include <asm/cacheflush.h>
 14#include <asm/current.h>
 15#include <asm/disasm.h>
 16
 17#define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
 18		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
 19
 20DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 21DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 22
 23int __kprobes arch_prepare_kprobe(struct kprobe *p)
 24{
 25	/* Attempt to probe at unaligned address */
 26	if ((unsigned long)p->addr & 0x01)
 27		return -EINVAL;
 28
 29	/* Address should not be in exception handling code */
 30
 31	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
 32	p->opcode = *p->addr;
 33
 34	return 0;
 35}
 36
 37void __kprobes arch_arm_kprobe(struct kprobe *p)
 38{
 39	*p->addr = UNIMP_S_INSTRUCTION;
 40
 41	flush_icache_range((unsigned long)p->addr,
 42			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 43}
 44
 45void __kprobes arch_disarm_kprobe(struct kprobe *p)
 46{
 47	*p->addr = p->opcode;
 48
 49	flush_icache_range((unsigned long)p->addr,
 50			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 51}
 52
 53void __kprobes arch_remove_kprobe(struct kprobe *p)
 54{
 55	arch_disarm_kprobe(p);
 56
 57	/* Can we remove the kprobe in the middle of kprobe handling? */
 58	if (p->ainsn.t1_addr) {
 59		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
 60
 61		flush_icache_range((unsigned long)p->ainsn.t1_addr,
 62				   (unsigned long)p->ainsn.t1_addr +
 63				   sizeof(kprobe_opcode_t));
 64
 65		p->ainsn.t1_addr = NULL;
 66	}
 67
 68	if (p->ainsn.t2_addr) {
 69		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
 70
 71		flush_icache_range((unsigned long)p->ainsn.t2_addr,
 72				   (unsigned long)p->ainsn.t2_addr +
 73				   sizeof(kprobe_opcode_t));
 74
 75		p->ainsn.t2_addr = NULL;
 76	}
 77}
 78
 79static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 80{
 81	kcb->prev_kprobe.kp = kprobe_running();
 82	kcb->prev_kprobe.status = kcb->kprobe_status;
 83}
 84
 85static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 86{
 87	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 88	kcb->kprobe_status = kcb->prev_kprobe.status;
 89}
 90
 91static inline void __kprobes set_current_kprobe(struct kprobe *p)
 92{
 93	__this_cpu_write(current_kprobe, p);
 94}
 95
 96static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
 97				       struct pt_regs *regs)
 98{
 99	/* Remove the trap instructions inserted for single step and
100	 * restore the original instructions
101	 */
102	if (p->ainsn.t1_addr) {
103		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105		flush_icache_range((unsigned long)p->ainsn.t1_addr,
106				   (unsigned long)p->ainsn.t1_addr +
107				   sizeof(kprobe_opcode_t));
108
109		p->ainsn.t1_addr = NULL;
110	}
111
112	if (p->ainsn.t2_addr) {
113		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115		flush_icache_range((unsigned long)p->ainsn.t2_addr,
116				   (unsigned long)p->ainsn.t2_addr +
117				   sizeof(kprobe_opcode_t));
118
119		p->ainsn.t2_addr = NULL;
120	}
121
122	return;
123}
124
125static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126{
127	unsigned long next_pc;
128	unsigned long tgt_if_br = 0;
129	int is_branch;
130	unsigned long bta;
131
132	/* Copy the opcode back to the kprobe location and execute the
133	 * instruction. Because of this we will not be able to get into the
134	 * same kprobe until this kprobe is done
135	 */
136	*(p->addr) = p->opcode;
137
138	flush_icache_range((unsigned long)p->addr,
139			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141	/* Now we insert the trap at the next location after this instruction to
142	 * single step. If it is a branch we insert the trap at possible branch
143	 * targets
144	 */
145
146	bta = regs->bta;
147
148	if (regs->status32 & 0x40) {
149		/* We are in a delay slot with the branch taken */
150
151		next_pc = bta & ~0x01;
152
153		if (!p->ainsn.is_short) {
154			if (bta & 0x01)
155				regs->blink += 2;
156			else {
157				/* Branch not taken */
158				next_pc += 2;
159
160				/* next pc is taken from bta after executing the
161				 * delay slot instruction
162				 */
163				regs->bta += 2;
164			}
165		}
166
167		is_branch = 0;
168	} else
169		is_branch =
170		    disasm_next_pc((unsigned long)p->addr, regs,
171			(struct callee_regs *) current->thread.callee_reg,
172			&next_pc, &tgt_if_br);
173
174	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178	flush_icache_range((unsigned long)p->ainsn.t1_addr,
179			   (unsigned long)p->ainsn.t1_addr +
180			   sizeof(kprobe_opcode_t));
181
182	if (is_branch) {
183		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187		flush_icache_range((unsigned long)p->ainsn.t2_addr,
188				   (unsigned long)p->ainsn.t2_addr +
189				   sizeof(kprobe_opcode_t));
190	}
191}
192
193int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
194{
195	struct kprobe *p;
196	struct kprobe_ctlblk *kcb;
197
198	preempt_disable();
199
200	kcb = get_kprobe_ctlblk();
201	p = get_kprobe((unsigned long *)addr);
202
203	if (p) {
204		/*
205		 * We have reentered the kprobe_handler, since another kprobe
206		 * was hit while within the handler, we save the original
207		 * kprobes and single step on the instruction of the new probe
208		 * without calling any user handlers to avoid recursive
209		 * kprobes.
210		 */
211		if (kprobe_running()) {
212			save_previous_kprobe(kcb);
213			set_current_kprobe(p);
214			kprobes_inc_nmissed_count(p);
215			setup_singlestep(p, regs);
216			kcb->kprobe_status = KPROBE_REENTER;
217			return 1;
218		}
219
220		set_current_kprobe(p);
221		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
222
223		/* If we have no pre-handler or it returned 0, we continue with
224		 * normal processing. If we have a pre-handler and it returned
225		 * non-zero - which means user handler setup registers to exit
226		 * to another instruction, we must skip the single stepping.
227		 */
228		if (!p->pre_handler || !p->pre_handler(p, regs)) {
229			setup_singlestep(p, regs);
230			kcb->kprobe_status = KPROBE_HIT_SS;
231		} else {
232			reset_current_kprobe();
233			preempt_enable_no_resched();
234		}
235
236		return 1;
237	}
238
239	/* no_kprobe: */
240	preempt_enable_no_resched();
241	return 0;
242}
243
244static int __kprobes arc_post_kprobe_handler(unsigned long addr,
245					 struct pt_regs *regs)
246{
247	struct kprobe *cur = kprobe_running();
248	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
249
250	if (!cur)
251		return 0;
252
253	resume_execution(cur, addr, regs);
254
255	/* Rearm the kprobe */
256	arch_arm_kprobe(cur);
257
258	/*
259	 * When we return from trap instruction we go to the next instruction
260	 * We restored the actual instruction in resume_exectuiont and we to
261	 * return to the same address and execute it
262	 */
263	regs->ret = addr;
264
265	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
266		kcb->kprobe_status = KPROBE_HIT_SSDONE;
267		cur->post_handler(cur, regs, 0);
268	}
269
270	if (kcb->kprobe_status == KPROBE_REENTER) {
271		restore_previous_kprobe(kcb);
272		goto out;
273	}
274
275	reset_current_kprobe();
276
277out:
278	preempt_enable_no_resched();
279	return 1;
280}
281
282/*
283 * Fault can be for the instruction being single stepped or for the
284 * pre/post handlers in the module.
285 * This is applicable for applications like user probes, where we have the
286 * probe in user space and the handlers in the kernel
287 */
288
289int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
290{
291	struct kprobe *cur = kprobe_running();
292	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
293
294	switch (kcb->kprobe_status) {
295	case KPROBE_HIT_SS:
296	case KPROBE_REENTER:
297		/*
298		 * We are here because the instruction being single stepped
299		 * caused the fault. We reset the current kprobe and allow the
300		 * exception handler as if it is regular exception. In our
301		 * case it doesn't matter because the system will be halted
302		 */
303		resume_execution(cur, (unsigned long)cur->addr, regs);
304
305		if (kcb->kprobe_status == KPROBE_REENTER)
306			restore_previous_kprobe(kcb);
307		else
308			reset_current_kprobe();
309
310		preempt_enable_no_resched();
311		break;
312
313	case KPROBE_HIT_ACTIVE:
314	case KPROBE_HIT_SSDONE:
315		/*
316		 * We are here because the instructions in the pre/post handler
317		 * caused the fault.
318		 */
319
320		/* We increment the nmissed count for accounting,
321		 * we can also use npre/npostfault count for accounting
322		 * these specific fault cases.
323		 */
324		kprobes_inc_nmissed_count(cur);
325
326		/*
327		 * We come here because instructions in the pre/post
328		 * handler caused the page_fault, this could happen
329		 * if handler tries to access user space by
330		 * copy_from_user(), get_user() etc. Let the
331		 * user-specified handler try to fix it first.
332		 */
333		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
334			return 1;
335
336		/*
337		 * In case the user-specified fault handler returned zero,
338		 * try to fix up.
339		 */
340		if (fixup_exception(regs))
341			return 1;
342
343		/*
344		 * fixup_exception() could not handle it,
345		 * Let do_page_fault() fix it.
346		 */
347		break;
348
349	default:
350		break;
351	}
352	return 0;
353}
354
355int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
356				       unsigned long val, void *data)
357{
358	struct die_args *args = data;
359	unsigned long addr = args->err;
360	int ret = NOTIFY_DONE;
361
362	switch (val) {
363	case DIE_IERR:
364		if (arc_kprobe_handler(addr, args->regs))
365			return NOTIFY_STOP;
366		break;
367
368	case DIE_TRAP:
369		if (arc_post_kprobe_handler(addr, args->regs))
370			return NOTIFY_STOP;
371		break;
372
373	default:
374		break;
375	}
376
377	return ret;
378}
379
380static void __used kretprobe_trampoline_holder(void)
381{
382	__asm__ __volatile__(".global kretprobe_trampoline\n"
383			     "kretprobe_trampoline:\n" "nop\n");
384}
385
386void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
387				      struct pt_regs *regs)
388{
389
390	ri->ret_addr = (kprobe_opcode_t *) regs->blink;
391
392	/* Replace the return addr with trampoline addr */
393	regs->blink = (unsigned long)&kretprobe_trampoline;
394}
395
396static int __kprobes trampoline_probe_handler(struct kprobe *p,
397					      struct pt_regs *regs)
398{
399	struct kretprobe_instance *ri = NULL;
400	struct hlist_head *head, empty_rp;
401	struct hlist_node *tmp;
402	unsigned long flags, orig_ret_address = 0;
403	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
404
405	INIT_HLIST_HEAD(&empty_rp);
406	kretprobe_hash_lock(current, &head, &flags);
407
408	/*
409	 * It is possible to have multiple instances associated with a given
410	 * task either because an multiple functions in the call path
411	 * have a return probe installed on them, and/or more than one return
412	 * return probe was registered for a target function.
413	 *
414	 * We can handle this because:
415	 *     - instances are always inserted at the head of the list
416	 *     - when multiple return probes are registered for the same
417	 *       function, the first instance's ret_addr will point to the
418	 *       real return address, and all the rest will point to
419	 *       kretprobe_trampoline
420	 */
421	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		if (ri->rp && ri->rp->handler)
427			ri->rp->handler(ri, regs);
428
429		orig_ret_address = (unsigned long)ri->ret_addr;
430		recycle_rp_inst(ri, &empty_rp);
431
432		if (orig_ret_address != trampoline_address) {
433			/*
434			 * This is the real return address. Any other
435			 * instances associated with this task are for
436			 * other calls deeper on the call stack
437			 */
438			break;
439		}
440	}
441
442	kretprobe_assert(ri, orig_ret_address, trampoline_address);
443	regs->ret = orig_ret_address;
444
445	kretprobe_hash_unlock(current, &flags);
446
447	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
448		hlist_del(&ri->hlist);
449		kfree(ri);
450	}
451
452	/* By returning a non zero value, we are telling the kprobe handler
453	 * that we don't want the post_handler to run
454	 */
455	return 1;
456}
457
458static struct kprobe trampoline_p = {
459	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
460	.pre_handler = trampoline_probe_handler
461};
462
463int __init arch_init_kprobes(void)
464{
465	/* Registering the trampoline code for the kret probe */
466	return register_kprobe(&trampoline_p);
467}
468
469int __kprobes arch_trampoline_kprobe(struct kprobe *p)
470{
471	if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
472		return 1;
473
474	return 0;
475}
476
477void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
478{
479	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
480}