Loading...
1/* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/seq_file.h>
18#include <linux/err.h>
19#include <keys/keyring-type.h>
20#include <linux/uaccess.h>
21#include "internal.h"
22
23#define rcu_dereference_locked_keyring(keyring) \
24 (rcu_dereference_protected( \
25 (keyring)->payload.subscriptions, \
26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27
28#define KEY_LINK_FIXQUOTA 1UL
29
30/*
31 * When plumbing the depths of the key tree, this sets a hard limit
32 * set on how deep we're willing to go.
33 */
34#define KEYRING_SEARCH_MAX_DEPTH 6
35
36/*
37 * We keep all named keyrings in a hash to speed looking them up.
38 */
39#define KEYRING_NAME_HASH_SIZE (1 << 5)
40
41static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
42static DEFINE_RWLOCK(keyring_name_lock);
43
44static inline unsigned keyring_hash(const char *desc)
45{
46 unsigned bucket = 0;
47
48 for (; *desc; desc++)
49 bucket += (unsigned char)*desc;
50
51 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
52}
53
54/*
55 * The keyring key type definition. Keyrings are simply keys of this type and
56 * can be treated as ordinary keys in addition to having their own special
57 * operations.
58 */
59static int keyring_instantiate(struct key *keyring,
60 const void *data, size_t datalen);
61static int keyring_match(const struct key *keyring, const void *criterion);
62static void keyring_revoke(struct key *keyring);
63static void keyring_destroy(struct key *keyring);
64static void keyring_describe(const struct key *keyring, struct seq_file *m);
65static long keyring_read(const struct key *keyring,
66 char __user *buffer, size_t buflen);
67
68struct key_type key_type_keyring = {
69 .name = "keyring",
70 .def_datalen = sizeof(struct keyring_list),
71 .instantiate = keyring_instantiate,
72 .match = keyring_match,
73 .revoke = keyring_revoke,
74 .destroy = keyring_destroy,
75 .describe = keyring_describe,
76 .read = keyring_read,
77};
78EXPORT_SYMBOL(key_type_keyring);
79
80/*
81 * Semaphore to serialise link/link calls to prevent two link calls in parallel
82 * introducing a cycle.
83 */
84static DECLARE_RWSEM(keyring_serialise_link_sem);
85
86/*
87 * Publish the name of a keyring so that it can be found by name (if it has
88 * one).
89 */
90static void keyring_publish_name(struct key *keyring)
91{
92 int bucket;
93
94 if (keyring->description) {
95 bucket = keyring_hash(keyring->description);
96
97 write_lock(&keyring_name_lock);
98
99 if (!keyring_name_hash[bucket].next)
100 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
101
102 list_add_tail(&keyring->type_data.link,
103 &keyring_name_hash[bucket]);
104
105 write_unlock(&keyring_name_lock);
106 }
107}
108
109/*
110 * Initialise a keyring.
111 *
112 * Returns 0 on success, -EINVAL if given any data.
113 */
114static int keyring_instantiate(struct key *keyring,
115 const void *data, size_t datalen)
116{
117 int ret;
118
119 ret = -EINVAL;
120 if (datalen == 0) {
121 /* make the keyring available by name if it has one */
122 keyring_publish_name(keyring);
123 ret = 0;
124 }
125
126 return ret;
127}
128
129/*
130 * Match keyrings on their name
131 */
132static int keyring_match(const struct key *keyring, const void *description)
133{
134 return keyring->description &&
135 strcmp(keyring->description, description) == 0;
136}
137
138/*
139 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
140 * and dispose of its data.
141 */
142static void keyring_destroy(struct key *keyring)
143{
144 struct keyring_list *klist;
145 int loop;
146
147 if (keyring->description) {
148 write_lock(&keyring_name_lock);
149
150 if (keyring->type_data.link.next != NULL &&
151 !list_empty(&keyring->type_data.link))
152 list_del(&keyring->type_data.link);
153
154 write_unlock(&keyring_name_lock);
155 }
156
157 klist = rcu_dereference_check(keyring->payload.subscriptions,
158 atomic_read(&keyring->usage) == 0);
159 if (klist) {
160 for (loop = klist->nkeys - 1; loop >= 0; loop--)
161 key_put(klist->keys[loop]);
162 kfree(klist);
163 }
164}
165
166/*
167 * Describe a keyring for /proc.
168 */
169static void keyring_describe(const struct key *keyring, struct seq_file *m)
170{
171 struct keyring_list *klist;
172
173 if (keyring->description)
174 seq_puts(m, keyring->description);
175 else
176 seq_puts(m, "[anon]");
177
178 if (key_is_instantiated(keyring)) {
179 rcu_read_lock();
180 klist = rcu_dereference(keyring->payload.subscriptions);
181 if (klist)
182 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
183 else
184 seq_puts(m, ": empty");
185 rcu_read_unlock();
186 }
187}
188
189/*
190 * Read a list of key IDs from the keyring's contents in binary form
191 *
192 * The keyring's semaphore is read-locked by the caller.
193 */
194static long keyring_read(const struct key *keyring,
195 char __user *buffer, size_t buflen)
196{
197 struct keyring_list *klist;
198 struct key *key;
199 size_t qty, tmp;
200 int loop, ret;
201
202 ret = 0;
203 klist = rcu_dereference_locked_keyring(keyring);
204 if (klist) {
205 /* calculate how much data we could return */
206 qty = klist->nkeys * sizeof(key_serial_t);
207
208 if (buffer && buflen > 0) {
209 if (buflen > qty)
210 buflen = qty;
211
212 /* copy the IDs of the subscribed keys into the
213 * buffer */
214 ret = -EFAULT;
215
216 for (loop = 0; loop < klist->nkeys; loop++) {
217 key = klist->keys[loop];
218
219 tmp = sizeof(key_serial_t);
220 if (tmp > buflen)
221 tmp = buflen;
222
223 if (copy_to_user(buffer,
224 &key->serial,
225 tmp) != 0)
226 goto error;
227
228 buflen -= tmp;
229 if (buflen == 0)
230 break;
231 buffer += tmp;
232 }
233 }
234
235 ret = qty;
236 }
237
238error:
239 return ret;
240}
241
242/*
243 * Allocate a keyring and link into the destination keyring.
244 */
245struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
246 const struct cred *cred, unsigned long flags,
247 struct key *dest)
248{
249 struct key *keyring;
250 int ret;
251
252 keyring = key_alloc(&key_type_keyring, description,
253 uid, gid, cred,
254 (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
255 flags);
256
257 if (!IS_ERR(keyring)) {
258 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
259 if (ret < 0) {
260 key_put(keyring);
261 keyring = ERR_PTR(ret);
262 }
263 }
264
265 return keyring;
266}
267
268/**
269 * keyring_search_aux - Search a keyring tree for a key matching some criteria
270 * @keyring_ref: A pointer to the keyring with possession indicator.
271 * @cred: The credentials to use for permissions checks.
272 * @type: The type of key to search for.
273 * @description: Parameter for @match.
274 * @match: Function to rule on whether or not a key is the one required.
275 * @no_state_check: Don't check if a matching key is bad
276 *
277 * Search the supplied keyring tree for a key that matches the criteria given.
278 * The root keyring and any linked keyrings must grant Search permission to the
279 * caller to be searchable and keys can only be found if they too grant Search
280 * to the caller. The possession flag on the root keyring pointer controls use
281 * of the possessor bits in permissions checking of the entire tree. In
282 * addition, the LSM gets to forbid keyring searches and key matches.
283 *
284 * The search is performed as a breadth-then-depth search up to the prescribed
285 * limit (KEYRING_SEARCH_MAX_DEPTH).
286 *
287 * Keys are matched to the type provided and are then filtered by the match
288 * function, which is given the description to use in any way it sees fit. The
289 * match function may use any attributes of a key that it wishes to to
290 * determine the match. Normally the match function from the key type would be
291 * used.
292 *
293 * RCU is used to prevent the keyring key lists from disappearing without the
294 * need to take lots of locks.
295 *
296 * Returns a pointer to the found key and increments the key usage count if
297 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
298 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
299 * specified keyring wasn't a keyring.
300 *
301 * In the case of a successful return, the possession attribute from
302 * @keyring_ref is propagated to the returned key reference.
303 */
304key_ref_t keyring_search_aux(key_ref_t keyring_ref,
305 const struct cred *cred,
306 struct key_type *type,
307 const void *description,
308 key_match_func_t match,
309 bool no_state_check)
310{
311 struct {
312 struct keyring_list *keylist;
313 int kix;
314 } stack[KEYRING_SEARCH_MAX_DEPTH];
315
316 struct keyring_list *keylist;
317 struct timespec now;
318 unsigned long possessed, kflags;
319 struct key *keyring, *key;
320 key_ref_t key_ref;
321 long err;
322 int sp, kix;
323
324 keyring = key_ref_to_ptr(keyring_ref);
325 possessed = is_key_possessed(keyring_ref);
326 key_check(keyring);
327
328 /* top keyring must have search permission to begin the search */
329 err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
330 if (err < 0) {
331 key_ref = ERR_PTR(err);
332 goto error;
333 }
334
335 key_ref = ERR_PTR(-ENOTDIR);
336 if (keyring->type != &key_type_keyring)
337 goto error;
338
339 rcu_read_lock();
340
341 now = current_kernel_time();
342 err = -EAGAIN;
343 sp = 0;
344
345 /* firstly we should check to see if this top-level keyring is what we
346 * are looking for */
347 key_ref = ERR_PTR(-EAGAIN);
348 kflags = keyring->flags;
349 if (keyring->type == type && match(keyring, description)) {
350 key = keyring;
351 if (no_state_check)
352 goto found;
353
354 /* check it isn't negative and hasn't expired or been
355 * revoked */
356 if (kflags & (1 << KEY_FLAG_REVOKED))
357 goto error_2;
358 if (key->expiry && now.tv_sec >= key->expiry)
359 goto error_2;
360 key_ref = ERR_PTR(key->type_data.reject_error);
361 if (kflags & (1 << KEY_FLAG_NEGATIVE))
362 goto error_2;
363 goto found;
364 }
365
366 /* otherwise, the top keyring must not be revoked, expired, or
367 * negatively instantiated if we are to search it */
368 key_ref = ERR_PTR(-EAGAIN);
369 if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) ||
370 (keyring->expiry && now.tv_sec >= keyring->expiry))
371 goto error_2;
372
373 /* start processing a new keyring */
374descend:
375 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
376 goto not_this_keyring;
377
378 keylist = rcu_dereference(keyring->payload.subscriptions);
379 if (!keylist)
380 goto not_this_keyring;
381
382 /* iterate through the keys in this keyring first */
383 for (kix = 0; kix < keylist->nkeys; kix++) {
384 key = keylist->keys[kix];
385 kflags = key->flags;
386
387 /* ignore keys not of this type */
388 if (key->type != type)
389 continue;
390
391 /* skip revoked keys and expired keys */
392 if (!no_state_check) {
393 if (kflags & (1 << KEY_FLAG_REVOKED))
394 continue;
395
396 if (key->expiry && now.tv_sec >= key->expiry)
397 continue;
398 }
399
400 /* keys that don't match */
401 if (!match(key, description))
402 continue;
403
404 /* key must have search permissions */
405 if (key_task_permission(make_key_ref(key, possessed),
406 cred, KEY_SEARCH) < 0)
407 continue;
408
409 if (no_state_check)
410 goto found;
411
412 /* we set a different error code if we pass a negative key */
413 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
414 err = key->type_data.reject_error;
415 continue;
416 }
417
418 goto found;
419 }
420
421 /* search through the keyrings nested in this one */
422 kix = 0;
423ascend:
424 for (; kix < keylist->nkeys; kix++) {
425 key = keylist->keys[kix];
426 if (key->type != &key_type_keyring)
427 continue;
428
429 /* recursively search nested keyrings
430 * - only search keyrings for which we have search permission
431 */
432 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
433 continue;
434
435 if (key_task_permission(make_key_ref(key, possessed),
436 cred, KEY_SEARCH) < 0)
437 continue;
438
439 /* stack the current position */
440 stack[sp].keylist = keylist;
441 stack[sp].kix = kix;
442 sp++;
443
444 /* begin again with the new keyring */
445 keyring = key;
446 goto descend;
447 }
448
449 /* the keyring we're looking at was disqualified or didn't contain a
450 * matching key */
451not_this_keyring:
452 if (sp > 0) {
453 /* resume the processing of a keyring higher up in the tree */
454 sp--;
455 keylist = stack[sp].keylist;
456 kix = stack[sp].kix + 1;
457 goto ascend;
458 }
459
460 key_ref = ERR_PTR(err);
461 goto error_2;
462
463 /* we found a viable match */
464found:
465 atomic_inc(&key->usage);
466 key_check(key);
467 key_ref = make_key_ref(key, possessed);
468error_2:
469 rcu_read_unlock();
470error:
471 return key_ref;
472}
473
474/**
475 * keyring_search - Search the supplied keyring tree for a matching key
476 * @keyring: The root of the keyring tree to be searched.
477 * @type: The type of keyring we want to find.
478 * @description: The name of the keyring we want to find.
479 *
480 * As keyring_search_aux() above, but using the current task's credentials and
481 * type's default matching function.
482 */
483key_ref_t keyring_search(key_ref_t keyring,
484 struct key_type *type,
485 const char *description)
486{
487 if (!type->match)
488 return ERR_PTR(-ENOKEY);
489
490 return keyring_search_aux(keyring, current->cred,
491 type, description, type->match, false);
492}
493EXPORT_SYMBOL(keyring_search);
494
495/*
496 * Search the given keyring only (no recursion).
497 *
498 * The caller must guarantee that the keyring is a keyring and that the
499 * permission is granted to search the keyring as no check is made here.
500 *
501 * RCU is used to make it unnecessary to lock the keyring key list here.
502 *
503 * Returns a pointer to the found key with usage count incremented if
504 * successful and returns -ENOKEY if not found. Revoked keys and keys not
505 * providing the requested permission are skipped over.
506 *
507 * If successful, the possession indicator is propagated from the keyring ref
508 * to the returned key reference.
509 */
510key_ref_t __keyring_search_one(key_ref_t keyring_ref,
511 const struct key_type *ktype,
512 const char *description,
513 key_perm_t perm)
514{
515 struct keyring_list *klist;
516 unsigned long possessed;
517 struct key *keyring, *key;
518 int loop;
519
520 keyring = key_ref_to_ptr(keyring_ref);
521 possessed = is_key_possessed(keyring_ref);
522
523 rcu_read_lock();
524
525 klist = rcu_dereference(keyring->payload.subscriptions);
526 if (klist) {
527 for (loop = 0; loop < klist->nkeys; loop++) {
528 key = klist->keys[loop];
529
530 if (key->type == ktype &&
531 (!key->type->match ||
532 key->type->match(key, description)) &&
533 key_permission(make_key_ref(key, possessed),
534 perm) == 0 &&
535 !test_bit(KEY_FLAG_REVOKED, &key->flags)
536 )
537 goto found;
538 }
539 }
540
541 rcu_read_unlock();
542 return ERR_PTR(-ENOKEY);
543
544found:
545 atomic_inc(&key->usage);
546 rcu_read_unlock();
547 return make_key_ref(key, possessed);
548}
549
550/*
551 * Find a keyring with the specified name.
552 *
553 * All named keyrings in the current user namespace are searched, provided they
554 * grant Search permission directly to the caller (unless this check is
555 * skipped). Keyrings whose usage points have reached zero or who have been
556 * revoked are skipped.
557 *
558 * Returns a pointer to the keyring with the keyring's refcount having being
559 * incremented on success. -ENOKEY is returned if a key could not be found.
560 */
561struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
562{
563 struct key *keyring;
564 int bucket;
565
566 if (!name)
567 return ERR_PTR(-EINVAL);
568
569 bucket = keyring_hash(name);
570
571 read_lock(&keyring_name_lock);
572
573 if (keyring_name_hash[bucket].next) {
574 /* search this hash bucket for a keyring with a matching name
575 * that's readable and that hasn't been revoked */
576 list_for_each_entry(keyring,
577 &keyring_name_hash[bucket],
578 type_data.link
579 ) {
580 if (keyring->user->user_ns != current_user_ns())
581 continue;
582
583 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
584 continue;
585
586 if (strcmp(keyring->description, name) != 0)
587 continue;
588
589 if (!skip_perm_check &&
590 key_permission(make_key_ref(keyring, 0),
591 KEY_SEARCH) < 0)
592 continue;
593
594 /* we've got a match but we might end up racing with
595 * key_cleanup() if the keyring is currently 'dead'
596 * (ie. it has a zero usage count) */
597 if (!atomic_inc_not_zero(&keyring->usage))
598 continue;
599 goto out;
600 }
601 }
602
603 keyring = ERR_PTR(-ENOKEY);
604out:
605 read_unlock(&keyring_name_lock);
606 return keyring;
607}
608
609/*
610 * See if a cycle will will be created by inserting acyclic tree B in acyclic
611 * tree A at the topmost level (ie: as a direct child of A).
612 *
613 * Since we are adding B to A at the top level, checking for cycles should just
614 * be a matter of seeing if node A is somewhere in tree B.
615 */
616static int keyring_detect_cycle(struct key *A, struct key *B)
617{
618 struct {
619 struct keyring_list *keylist;
620 int kix;
621 } stack[KEYRING_SEARCH_MAX_DEPTH];
622
623 struct keyring_list *keylist;
624 struct key *subtree, *key;
625 int sp, kix, ret;
626
627 rcu_read_lock();
628
629 ret = -EDEADLK;
630 if (A == B)
631 goto cycle_detected;
632
633 subtree = B;
634 sp = 0;
635
636 /* start processing a new keyring */
637descend:
638 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
639 goto not_this_keyring;
640
641 keylist = rcu_dereference(subtree->payload.subscriptions);
642 if (!keylist)
643 goto not_this_keyring;
644 kix = 0;
645
646ascend:
647 /* iterate through the remaining keys in this keyring */
648 for (; kix < keylist->nkeys; kix++) {
649 key = keylist->keys[kix];
650
651 if (key == A)
652 goto cycle_detected;
653
654 /* recursively check nested keyrings */
655 if (key->type == &key_type_keyring) {
656 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
657 goto too_deep;
658
659 /* stack the current position */
660 stack[sp].keylist = keylist;
661 stack[sp].kix = kix;
662 sp++;
663
664 /* begin again with the new keyring */
665 subtree = key;
666 goto descend;
667 }
668 }
669
670 /* the keyring we're looking at was disqualified or didn't contain a
671 * matching key */
672not_this_keyring:
673 if (sp > 0) {
674 /* resume the checking of a keyring higher up in the tree */
675 sp--;
676 keylist = stack[sp].keylist;
677 kix = stack[sp].kix + 1;
678 goto ascend;
679 }
680
681 ret = 0; /* no cycles detected */
682
683error:
684 rcu_read_unlock();
685 return ret;
686
687too_deep:
688 ret = -ELOOP;
689 goto error;
690
691cycle_detected:
692 ret = -EDEADLK;
693 goto error;
694}
695
696/*
697 * Dispose of a keyring list after the RCU grace period, freeing the unlinked
698 * key
699 */
700static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
701{
702 struct keyring_list *klist =
703 container_of(rcu, struct keyring_list, rcu);
704
705 if (klist->delkey != USHRT_MAX)
706 key_put(klist->keys[klist->delkey]);
707 kfree(klist);
708}
709
710/*
711 * Preallocate memory so that a key can be linked into to a keyring.
712 */
713int __key_link_begin(struct key *keyring, const struct key_type *type,
714 const char *description, unsigned long *_prealloc)
715 __acquires(&keyring->sem)
716{
717 struct keyring_list *klist, *nklist;
718 unsigned long prealloc;
719 unsigned max;
720 size_t size;
721 int loop, ret;
722
723 kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
724
725 if (keyring->type != &key_type_keyring)
726 return -ENOTDIR;
727
728 down_write(&keyring->sem);
729
730 ret = -EKEYREVOKED;
731 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
732 goto error_krsem;
733
734 /* serialise link/link calls to prevent parallel calls causing a cycle
735 * when linking two keyring in opposite orders */
736 if (type == &key_type_keyring)
737 down_write(&keyring_serialise_link_sem);
738
739 klist = rcu_dereference_locked_keyring(keyring);
740
741 /* see if there's a matching key we can displace */
742 if (klist && klist->nkeys > 0) {
743 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
744 if (klist->keys[loop]->type == type &&
745 strcmp(klist->keys[loop]->description,
746 description) == 0
747 ) {
748 /* found a match - we'll replace this one with
749 * the new key */
750 size = sizeof(struct key *) * klist->maxkeys;
751 size += sizeof(*klist);
752 BUG_ON(size > PAGE_SIZE);
753
754 ret = -ENOMEM;
755 nklist = kmemdup(klist, size, GFP_KERNEL);
756 if (!nklist)
757 goto error_sem;
758
759 /* note replacement slot */
760 klist->delkey = nklist->delkey = loop;
761 prealloc = (unsigned long)nklist;
762 goto done;
763 }
764 }
765 }
766
767 /* check that we aren't going to overrun the user's quota */
768 ret = key_payload_reserve(keyring,
769 keyring->datalen + KEYQUOTA_LINK_BYTES);
770 if (ret < 0)
771 goto error_sem;
772
773 if (klist && klist->nkeys < klist->maxkeys) {
774 /* there's sufficient slack space to append directly */
775 nklist = NULL;
776 prealloc = KEY_LINK_FIXQUOTA;
777 } else {
778 /* grow the key list */
779 max = 4;
780 if (klist)
781 max += klist->maxkeys;
782
783 ret = -ENFILE;
784 if (max > USHRT_MAX - 1)
785 goto error_quota;
786 size = sizeof(*klist) + sizeof(struct key *) * max;
787 if (size > PAGE_SIZE)
788 goto error_quota;
789
790 ret = -ENOMEM;
791 nklist = kmalloc(size, GFP_KERNEL);
792 if (!nklist)
793 goto error_quota;
794
795 nklist->maxkeys = max;
796 if (klist) {
797 memcpy(nklist->keys, klist->keys,
798 sizeof(struct key *) * klist->nkeys);
799 nklist->delkey = klist->nkeys;
800 nklist->nkeys = klist->nkeys + 1;
801 klist->delkey = USHRT_MAX;
802 } else {
803 nklist->nkeys = 1;
804 nklist->delkey = 0;
805 }
806
807 /* add the key into the new space */
808 nklist->keys[nklist->delkey] = NULL;
809 }
810
811 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
812done:
813 *_prealloc = prealloc;
814 kleave(" = 0");
815 return 0;
816
817error_quota:
818 /* undo the quota changes */
819 key_payload_reserve(keyring,
820 keyring->datalen - KEYQUOTA_LINK_BYTES);
821error_sem:
822 if (type == &key_type_keyring)
823 up_write(&keyring_serialise_link_sem);
824error_krsem:
825 up_write(&keyring->sem);
826 kleave(" = %d", ret);
827 return ret;
828}
829
830/*
831 * Check already instantiated keys aren't going to be a problem.
832 *
833 * The caller must have called __key_link_begin(). Don't need to call this for
834 * keys that were created since __key_link_begin() was called.
835 */
836int __key_link_check_live_key(struct key *keyring, struct key *key)
837{
838 if (key->type == &key_type_keyring)
839 /* check that we aren't going to create a cycle by linking one
840 * keyring to another */
841 return keyring_detect_cycle(keyring, key);
842 return 0;
843}
844
845/*
846 * Link a key into to a keyring.
847 *
848 * Must be called with __key_link_begin() having being called. Discards any
849 * already extant link to matching key if there is one, so that each keyring
850 * holds at most one link to any given key of a particular type+description
851 * combination.
852 */
853void __key_link(struct key *keyring, struct key *key,
854 unsigned long *_prealloc)
855{
856 struct keyring_list *klist, *nklist;
857
858 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
859 *_prealloc = 0;
860
861 kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
862
863 klist = rcu_dereference_protected(keyring->payload.subscriptions,
864 rwsem_is_locked(&keyring->sem));
865
866 atomic_inc(&key->usage);
867
868 /* there's a matching key we can displace or an empty slot in a newly
869 * allocated list we can fill */
870 if (nklist) {
871 kdebug("replace %hu/%hu/%hu",
872 nklist->delkey, nklist->nkeys, nklist->maxkeys);
873
874 nklist->keys[nklist->delkey] = key;
875
876 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
877
878 /* dispose of the old keyring list and, if there was one, the
879 * displaced key */
880 if (klist) {
881 kdebug("dispose %hu/%hu/%hu",
882 klist->delkey, klist->nkeys, klist->maxkeys);
883 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
884 }
885 } else {
886 /* there's sufficient slack space to append directly */
887 klist->keys[klist->nkeys] = key;
888 smp_wmb();
889 klist->nkeys++;
890 }
891}
892
893/*
894 * Finish linking a key into to a keyring.
895 *
896 * Must be called with __key_link_begin() having being called.
897 */
898void __key_link_end(struct key *keyring, struct key_type *type,
899 unsigned long prealloc)
900 __releases(&keyring->sem)
901{
902 BUG_ON(type == NULL);
903 BUG_ON(type->name == NULL);
904 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
905
906 if (type == &key_type_keyring)
907 up_write(&keyring_serialise_link_sem);
908
909 if (prealloc) {
910 if (prealloc & KEY_LINK_FIXQUOTA)
911 key_payload_reserve(keyring,
912 keyring->datalen -
913 KEYQUOTA_LINK_BYTES);
914 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
915 }
916 up_write(&keyring->sem);
917}
918
919/**
920 * key_link - Link a key to a keyring
921 * @keyring: The keyring to make the link in.
922 * @key: The key to link to.
923 *
924 * Make a link in a keyring to a key, such that the keyring holds a reference
925 * on that key and the key can potentially be found by searching that keyring.
926 *
927 * This function will write-lock the keyring's semaphore and will consume some
928 * of the user's key data quota to hold the link.
929 *
930 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
931 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
932 * full, -EDQUOT if there is insufficient key data quota remaining to add
933 * another link or -ENOMEM if there's insufficient memory.
934 *
935 * It is assumed that the caller has checked that it is permitted for a link to
936 * be made (the keyring should have Write permission and the key Link
937 * permission).
938 */
939int key_link(struct key *keyring, struct key *key)
940{
941 unsigned long prealloc;
942 int ret;
943
944 key_check(keyring);
945 key_check(key);
946
947 ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
948 if (ret == 0) {
949 ret = __key_link_check_live_key(keyring, key);
950 if (ret == 0)
951 __key_link(keyring, key, &prealloc);
952 __key_link_end(keyring, key->type, prealloc);
953 }
954
955 return ret;
956}
957EXPORT_SYMBOL(key_link);
958
959/**
960 * key_unlink - Unlink the first link to a key from a keyring.
961 * @keyring: The keyring to remove the link from.
962 * @key: The key the link is to.
963 *
964 * Remove a link from a keyring to a key.
965 *
966 * This function will write-lock the keyring's semaphore.
967 *
968 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
969 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
970 * memory.
971 *
972 * It is assumed that the caller has checked that it is permitted for a link to
973 * be removed (the keyring should have Write permission; no permissions are
974 * required on the key).
975 */
976int key_unlink(struct key *keyring, struct key *key)
977{
978 struct keyring_list *klist, *nklist;
979 int loop, ret;
980
981 key_check(keyring);
982 key_check(key);
983
984 ret = -ENOTDIR;
985 if (keyring->type != &key_type_keyring)
986 goto error;
987
988 down_write(&keyring->sem);
989
990 klist = rcu_dereference_locked_keyring(keyring);
991 if (klist) {
992 /* search the keyring for the key */
993 for (loop = 0; loop < klist->nkeys; loop++)
994 if (klist->keys[loop] == key)
995 goto key_is_present;
996 }
997
998 up_write(&keyring->sem);
999 ret = -ENOENT;
1000 goto error;
1001
1002key_is_present:
1003 /* we need to copy the key list for RCU purposes */
1004 nklist = kmalloc(sizeof(*klist) +
1005 sizeof(struct key *) * klist->maxkeys,
1006 GFP_KERNEL);
1007 if (!nklist)
1008 goto nomem;
1009 nklist->maxkeys = klist->maxkeys;
1010 nklist->nkeys = klist->nkeys - 1;
1011
1012 if (loop > 0)
1013 memcpy(&nklist->keys[0],
1014 &klist->keys[0],
1015 loop * sizeof(struct key *));
1016
1017 if (loop < nklist->nkeys)
1018 memcpy(&nklist->keys[loop],
1019 &klist->keys[loop + 1],
1020 (nklist->nkeys - loop) * sizeof(struct key *));
1021
1022 /* adjust the user's quota */
1023 key_payload_reserve(keyring,
1024 keyring->datalen - KEYQUOTA_LINK_BYTES);
1025
1026 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1027
1028 up_write(&keyring->sem);
1029
1030 /* schedule for later cleanup */
1031 klist->delkey = loop;
1032 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1033
1034 ret = 0;
1035
1036error:
1037 return ret;
1038nomem:
1039 ret = -ENOMEM;
1040 up_write(&keyring->sem);
1041 goto error;
1042}
1043EXPORT_SYMBOL(key_unlink);
1044
1045/*
1046 * Dispose of a keyring list after the RCU grace period, releasing the keys it
1047 * links to.
1048 */
1049static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1050{
1051 struct keyring_list *klist;
1052 int loop;
1053
1054 klist = container_of(rcu, struct keyring_list, rcu);
1055
1056 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1057 key_put(klist->keys[loop]);
1058
1059 kfree(klist);
1060}
1061
1062/**
1063 * keyring_clear - Clear a keyring
1064 * @keyring: The keyring to clear.
1065 *
1066 * Clear the contents of the specified keyring.
1067 *
1068 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1069 */
1070int keyring_clear(struct key *keyring)
1071{
1072 struct keyring_list *klist;
1073 int ret;
1074
1075 ret = -ENOTDIR;
1076 if (keyring->type == &key_type_keyring) {
1077 /* detach the pointer block with the locks held */
1078 down_write(&keyring->sem);
1079
1080 klist = rcu_dereference_locked_keyring(keyring);
1081 if (klist) {
1082 /* adjust the quota */
1083 key_payload_reserve(keyring,
1084 sizeof(struct keyring_list));
1085
1086 rcu_assign_pointer(keyring->payload.subscriptions,
1087 NULL);
1088 }
1089
1090 up_write(&keyring->sem);
1091
1092 /* free the keys after the locks have been dropped */
1093 if (klist)
1094 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1095
1096 ret = 0;
1097 }
1098
1099 return ret;
1100}
1101EXPORT_SYMBOL(keyring_clear);
1102
1103/*
1104 * Dispose of the links from a revoked keyring.
1105 *
1106 * This is called with the key sem write-locked.
1107 */
1108static void keyring_revoke(struct key *keyring)
1109{
1110 struct keyring_list *klist;
1111
1112 klist = rcu_dereference_locked_keyring(keyring);
1113
1114 /* adjust the quota */
1115 key_payload_reserve(keyring, 0);
1116
1117 if (klist) {
1118 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1119 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1120 }
1121}
1122
1123/*
1124 * Determine whether a key is dead.
1125 */
1126static bool key_is_dead(struct key *key, time_t limit)
1127{
1128 return test_bit(KEY_FLAG_DEAD, &key->flags) ||
1129 (key->expiry > 0 && key->expiry <= limit);
1130}
1131
1132/*
1133 * Collect garbage from the contents of a keyring, replacing the old list with
1134 * a new one with the pointers all shuffled down.
1135 *
1136 * Dead keys are classed as oned that are flagged as being dead or are revoked,
1137 * expired or negative keys that were revoked or expired before the specified
1138 * limit.
1139 */
1140void keyring_gc(struct key *keyring, time_t limit)
1141{
1142 struct keyring_list *klist, *new;
1143 struct key *key;
1144 int loop, keep, max;
1145
1146 kenter("{%x,%s}", key_serial(keyring), keyring->description);
1147
1148 down_write(&keyring->sem);
1149
1150 klist = rcu_dereference_locked_keyring(keyring);
1151 if (!klist)
1152 goto no_klist;
1153
1154 /* work out how many subscriptions we're keeping */
1155 keep = 0;
1156 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1157 if (!key_is_dead(klist->keys[loop], limit))
1158 keep++;
1159
1160 if (keep == klist->nkeys)
1161 goto just_return;
1162
1163 /* allocate a new keyring payload */
1164 max = roundup(keep, 4);
1165 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1166 GFP_KERNEL);
1167 if (!new)
1168 goto nomem;
1169 new->maxkeys = max;
1170 new->nkeys = 0;
1171 new->delkey = 0;
1172
1173 /* install the live keys
1174 * - must take care as expired keys may be updated back to life
1175 */
1176 keep = 0;
1177 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1178 key = klist->keys[loop];
1179 if (!key_is_dead(key, limit)) {
1180 if (keep >= max)
1181 goto discard_new;
1182 new->keys[keep++] = key_get(key);
1183 }
1184 }
1185 new->nkeys = keep;
1186
1187 /* adjust the quota */
1188 key_payload_reserve(keyring,
1189 sizeof(struct keyring_list) +
1190 KEYQUOTA_LINK_BYTES * keep);
1191
1192 if (keep == 0) {
1193 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1194 kfree(new);
1195 } else {
1196 rcu_assign_pointer(keyring->payload.subscriptions, new);
1197 }
1198
1199 up_write(&keyring->sem);
1200
1201 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1202 kleave(" [yes]");
1203 return;
1204
1205discard_new:
1206 new->nkeys = keep;
1207 keyring_clear_rcu_disposal(&new->rcu);
1208 up_write(&keyring->sem);
1209 kleave(" [discard]");
1210 return;
1211
1212just_return:
1213 up_write(&keyring->sem);
1214 kleave(" [no dead]");
1215 return;
1216
1217no_klist:
1218 up_write(&keyring->sem);
1219 kleave(" [no_klist]");
1220 return;
1221
1222nomem:
1223 up_write(&keyring->sem);
1224 kleave(" [oom]");
1225}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Keyring handling
3 *
4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/export.h>
9#include <linux/init.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/security.h>
13#include <linux/seq_file.h>
14#include <linux/err.h>
15#include <linux/user_namespace.h>
16#include <linux/nsproxy.h>
17#include <keys/keyring-type.h>
18#include <keys/user-type.h>
19#include <linux/assoc_array_priv.h>
20#include <linux/uaccess.h>
21#include <net/net_namespace.h>
22#include "internal.h"
23
24/*
25 * When plumbing the depths of the key tree, this sets a hard limit
26 * set on how deep we're willing to go.
27 */
28#define KEYRING_SEARCH_MAX_DEPTH 6
29
30/*
31 * We mark pointers we pass to the associative array with bit 1 set if
32 * they're keyrings and clear otherwise.
33 */
34#define KEYRING_PTR_SUBTYPE 0x2UL
35
36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37{
38 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39}
40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41{
42 void *object = assoc_array_ptr_to_leaf(x);
43 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44}
45static inline void *keyring_key_to_ptr(struct key *key)
46{
47 if (key->type == &key_type_keyring)
48 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 return key;
50}
51
52static DEFINE_RWLOCK(keyring_name_lock);
53
54/*
55 * Clean up the bits of user_namespace that belong to us.
56 */
57void key_free_user_ns(struct user_namespace *ns)
58{
59 write_lock(&keyring_name_lock);
60 list_del_init(&ns->keyring_name_list);
61 write_unlock(&keyring_name_lock);
62
63 key_put(ns->user_keyring_register);
64#ifdef CONFIG_PERSISTENT_KEYRINGS
65 key_put(ns->persistent_keyring_register);
66#endif
67}
68
69/*
70 * The keyring key type definition. Keyrings are simply keys of this type and
71 * can be treated as ordinary keys in addition to having their own special
72 * operations.
73 */
74static int keyring_preparse(struct key_preparsed_payload *prep);
75static void keyring_free_preparse(struct key_preparsed_payload *prep);
76static int keyring_instantiate(struct key *keyring,
77 struct key_preparsed_payload *prep);
78static void keyring_revoke(struct key *keyring);
79static void keyring_destroy(struct key *keyring);
80static void keyring_describe(const struct key *keyring, struct seq_file *m);
81static long keyring_read(const struct key *keyring,
82 char __user *buffer, size_t buflen);
83
84struct key_type key_type_keyring = {
85 .name = "keyring",
86 .def_datalen = 0,
87 .preparse = keyring_preparse,
88 .free_preparse = keyring_free_preparse,
89 .instantiate = keyring_instantiate,
90 .revoke = keyring_revoke,
91 .destroy = keyring_destroy,
92 .describe = keyring_describe,
93 .read = keyring_read,
94};
95EXPORT_SYMBOL(key_type_keyring);
96
97/*
98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
99 * introducing a cycle.
100 */
101static DEFINE_MUTEX(keyring_serialise_link_lock);
102
103/*
104 * Publish the name of a keyring so that it can be found by name (if it has
105 * one and it doesn't begin with a dot).
106 */
107static void keyring_publish_name(struct key *keyring)
108{
109 struct user_namespace *ns = current_user_ns();
110
111 if (keyring->description &&
112 keyring->description[0] &&
113 keyring->description[0] != '.') {
114 write_lock(&keyring_name_lock);
115 list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 write_unlock(&keyring_name_lock);
117 }
118}
119
120/*
121 * Preparse a keyring payload
122 */
123static int keyring_preparse(struct key_preparsed_payload *prep)
124{
125 return prep->datalen != 0 ? -EINVAL : 0;
126}
127
128/*
129 * Free a preparse of a user defined key payload
130 */
131static void keyring_free_preparse(struct key_preparsed_payload *prep)
132{
133}
134
135/*
136 * Initialise a keyring.
137 *
138 * Returns 0 on success, -EINVAL if given any data.
139 */
140static int keyring_instantiate(struct key *keyring,
141 struct key_preparsed_payload *prep)
142{
143 assoc_array_init(&keyring->keys);
144 /* make the keyring available by name if it has one */
145 keyring_publish_name(keyring);
146 return 0;
147}
148
149/*
150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
151 * fold the carry back too, but that requires inline asm.
152 */
153static u64 mult_64x32_and_fold(u64 x, u32 y)
154{
155 u64 hi = (u64)(u32)(x >> 32) * y;
156 u64 lo = (u64)(u32)(x) * y;
157 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158}
159
160/*
161 * Hash a key type and description.
162 */
163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164{
165 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 const char *description = index_key->description;
168 unsigned long hash, type;
169 u32 piece;
170 u64 acc;
171 int n, desc_len = index_key->desc_len;
172
173 type = (unsigned long)index_key->type;
174 acc = mult_64x32_and_fold(type, desc_len + 13);
175 acc = mult_64x32_and_fold(acc, 9207);
176 piece = (unsigned long)index_key->domain_tag;
177 acc = mult_64x32_and_fold(acc, piece);
178 acc = mult_64x32_and_fold(acc, 9207);
179
180 for (;;) {
181 n = desc_len;
182 if (n <= 0)
183 break;
184 if (n > 4)
185 n = 4;
186 piece = 0;
187 memcpy(&piece, description, n);
188 description += n;
189 desc_len -= n;
190 acc = mult_64x32_and_fold(acc, piece);
191 acc = mult_64x32_and_fold(acc, 9207);
192 }
193
194 /* Fold the hash down to 32 bits if need be. */
195 hash = acc;
196 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 hash ^= acc >> 32;
198
199 /* Squidge all the keyrings into a separate part of the tree to
200 * ordinary keys by making sure the lowest level segment in the hash is
201 * zero for keyrings and non-zero otherwise.
202 */
203 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 hash = (hash + (hash << level_shift)) & ~fan_mask;
207 index_key->hash = hash;
208}
209
210/*
211 * Finalise an index key to include a part of the description actually in the
212 * index key, to set the domain tag and to calculate the hash.
213 */
214void key_set_index_key(struct keyring_index_key *index_key)
215{
216 static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218
219 memcpy(index_key->desc, index_key->description, n);
220
221 if (!index_key->domain_tag) {
222 if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 else
225 index_key->domain_tag = &default_domain_tag;
226 }
227
228 hash_key_type_and_desc(index_key);
229}
230
231/**
232 * key_put_tag - Release a ref on a tag.
233 * @tag: The tag to release.
234 *
235 * This releases a reference the given tag and returns true if that ref was the
236 * last one.
237 */
238bool key_put_tag(struct key_tag *tag)
239{
240 if (refcount_dec_and_test(&tag->usage)) {
241 kfree_rcu(tag, rcu);
242 return true;
243 }
244
245 return false;
246}
247
248/**
249 * key_remove_domain - Kill off a key domain and gc its keys
250 * @domain_tag: The domain tag to release.
251 *
252 * This marks a domain tag as being dead and releases a ref on it. If that
253 * wasn't the last reference, the garbage collector is poked to try and delete
254 * all keys that were in the domain.
255 */
256void key_remove_domain(struct key_tag *domain_tag)
257{
258 domain_tag->removed = true;
259 if (!key_put_tag(domain_tag))
260 key_schedule_gc_links();
261}
262
263/*
264 * Build the next index key chunk.
265 *
266 * We return it one word-sized chunk at a time.
267 */
268static unsigned long keyring_get_key_chunk(const void *data, int level)
269{
270 const struct keyring_index_key *index_key = data;
271 unsigned long chunk = 0;
272 const u8 *d;
273 int desc_len = index_key->desc_len, n = sizeof(chunk);
274
275 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 switch (level) {
277 case 0:
278 return index_key->hash;
279 case 1:
280 return index_key->x;
281 case 2:
282 return (unsigned long)index_key->type;
283 case 3:
284 return (unsigned long)index_key->domain_tag;
285 default:
286 level -= 4;
287 if (desc_len <= sizeof(index_key->desc))
288 return 0;
289
290 d = index_key->description + sizeof(index_key->desc);
291 d += level * sizeof(long);
292 desc_len -= sizeof(index_key->desc);
293 if (desc_len > n)
294 desc_len = n;
295 do {
296 chunk <<= 8;
297 chunk |= *d++;
298 } while (--desc_len > 0);
299 return chunk;
300 }
301}
302
303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304{
305 const struct key *key = keyring_ptr_to_key(object);
306 return keyring_get_key_chunk(&key->index_key, level);
307}
308
309static bool keyring_compare_object(const void *object, const void *data)
310{
311 const struct keyring_index_key *index_key = data;
312 const struct key *key = keyring_ptr_to_key(object);
313
314 return key->index_key.type == index_key->type &&
315 key->index_key.domain_tag == index_key->domain_tag &&
316 key->index_key.desc_len == index_key->desc_len &&
317 memcmp(key->index_key.description, index_key->description,
318 index_key->desc_len) == 0;
319}
320
321/*
322 * Compare the index keys of a pair of objects and determine the bit position
323 * at which they differ - if they differ.
324 */
325static int keyring_diff_objects(const void *object, const void *data)
326{
327 const struct key *key_a = keyring_ptr_to_key(object);
328 const struct keyring_index_key *a = &key_a->index_key;
329 const struct keyring_index_key *b = data;
330 unsigned long seg_a, seg_b;
331 int level, i;
332
333 level = 0;
334 seg_a = a->hash;
335 seg_b = b->hash;
336 if ((seg_a ^ seg_b) != 0)
337 goto differ;
338 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339
340 /* The number of bits contributed by the hash is controlled by a
341 * constant in the assoc_array headers. Everything else thereafter we
342 * can deal with as being machine word-size dependent.
343 */
344 seg_a = a->x;
345 seg_b = b->x;
346 if ((seg_a ^ seg_b) != 0)
347 goto differ;
348 level += sizeof(unsigned long);
349
350 /* The next bit may not work on big endian */
351 seg_a = (unsigned long)a->type;
352 seg_b = (unsigned long)b->type;
353 if ((seg_a ^ seg_b) != 0)
354 goto differ;
355 level += sizeof(unsigned long);
356
357 seg_a = (unsigned long)a->domain_tag;
358 seg_b = (unsigned long)b->domain_tag;
359 if ((seg_a ^ seg_b) != 0)
360 goto differ;
361 level += sizeof(unsigned long);
362
363 i = sizeof(a->desc);
364 if (a->desc_len <= i)
365 goto same;
366
367 for (; i < a->desc_len; i++) {
368 seg_a = *(unsigned char *)(a->description + i);
369 seg_b = *(unsigned char *)(b->description + i);
370 if ((seg_a ^ seg_b) != 0)
371 goto differ_plus_i;
372 }
373
374same:
375 return -1;
376
377differ_plus_i:
378 level += i;
379differ:
380 i = level * 8 + __ffs(seg_a ^ seg_b);
381 return i;
382}
383
384/*
385 * Free an object after stripping the keyring flag off of the pointer.
386 */
387static void keyring_free_object(void *object)
388{
389 key_put(keyring_ptr_to_key(object));
390}
391
392/*
393 * Operations for keyring management by the index-tree routines.
394 */
395static const struct assoc_array_ops keyring_assoc_array_ops = {
396 .get_key_chunk = keyring_get_key_chunk,
397 .get_object_key_chunk = keyring_get_object_key_chunk,
398 .compare_object = keyring_compare_object,
399 .diff_objects = keyring_diff_objects,
400 .free_object = keyring_free_object,
401};
402
403/*
404 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
405 * and dispose of its data.
406 *
407 * The garbage collector detects the final key_put(), removes the keyring from
408 * the serial number tree and then does RCU synchronisation before coming here,
409 * so we shouldn't need to worry about code poking around here with the RCU
410 * readlock held by this time.
411 */
412static void keyring_destroy(struct key *keyring)
413{
414 if (keyring->description) {
415 write_lock(&keyring_name_lock);
416
417 if (keyring->name_link.next != NULL &&
418 !list_empty(&keyring->name_link))
419 list_del(&keyring->name_link);
420
421 write_unlock(&keyring_name_lock);
422 }
423
424 if (keyring->restrict_link) {
425 struct key_restriction *keyres = keyring->restrict_link;
426
427 key_put(keyres->key);
428 kfree(keyres);
429 }
430
431 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432}
433
434/*
435 * Describe a keyring for /proc.
436 */
437static void keyring_describe(const struct key *keyring, struct seq_file *m)
438{
439 if (keyring->description)
440 seq_puts(m, keyring->description);
441 else
442 seq_puts(m, "[anon]");
443
444 if (key_is_positive(keyring)) {
445 if (keyring->keys.nr_leaves_on_tree != 0)
446 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 else
448 seq_puts(m, ": empty");
449 }
450}
451
452struct keyring_read_iterator_context {
453 size_t buflen;
454 size_t count;
455 key_serial_t __user *buffer;
456};
457
458static int keyring_read_iterator(const void *object, void *data)
459{
460 struct keyring_read_iterator_context *ctx = data;
461 const struct key *key = keyring_ptr_to_key(object);
462 int ret;
463
464 kenter("{%s,%d},,{%zu/%zu}",
465 key->type->name, key->serial, ctx->count, ctx->buflen);
466
467 if (ctx->count >= ctx->buflen)
468 return 1;
469
470 ret = put_user(key->serial, ctx->buffer);
471 if (ret < 0)
472 return ret;
473 ctx->buffer++;
474 ctx->count += sizeof(key->serial);
475 return 0;
476}
477
478/*
479 * Read a list of key IDs from the keyring's contents in binary form
480 *
481 * The keyring's semaphore is read-locked by the caller. This prevents someone
482 * from modifying it under us - which could cause us to read key IDs multiple
483 * times.
484 */
485static long keyring_read(const struct key *keyring,
486 char __user *buffer, size_t buflen)
487{
488 struct keyring_read_iterator_context ctx;
489 long ret;
490
491 kenter("{%d},,%zu", key_serial(keyring), buflen);
492
493 if (buflen & (sizeof(key_serial_t) - 1))
494 return -EINVAL;
495
496 /* Copy as many key IDs as fit into the buffer */
497 if (buffer && buflen) {
498 ctx.buffer = (key_serial_t __user *)buffer;
499 ctx.buflen = buflen;
500 ctx.count = 0;
501 ret = assoc_array_iterate(&keyring->keys,
502 keyring_read_iterator, &ctx);
503 if (ret < 0) {
504 kleave(" = %ld [iterate]", ret);
505 return ret;
506 }
507 }
508
509 /* Return the size of the buffer needed */
510 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
511 if (ret <= buflen)
512 kleave("= %ld [ok]", ret);
513 else
514 kleave("= %ld [buffer too small]", ret);
515 return ret;
516}
517
518/*
519 * Allocate a keyring and link into the destination keyring.
520 */
521struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
522 const struct cred *cred, key_perm_t perm,
523 unsigned long flags,
524 struct key_restriction *restrict_link,
525 struct key *dest)
526{
527 struct key *keyring;
528 int ret;
529
530 keyring = key_alloc(&key_type_keyring, description,
531 uid, gid, cred, perm, flags, restrict_link);
532 if (!IS_ERR(keyring)) {
533 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
534 if (ret < 0) {
535 key_put(keyring);
536 keyring = ERR_PTR(ret);
537 }
538 }
539
540 return keyring;
541}
542EXPORT_SYMBOL(keyring_alloc);
543
544/**
545 * restrict_link_reject - Give -EPERM to restrict link
546 * @keyring: The keyring being added to.
547 * @type: The type of key being added.
548 * @payload: The payload of the key intended to be added.
549 * @restriction_key: Keys providing additional data for evaluating restriction.
550 *
551 * Reject the addition of any links to a keyring. It can be overridden by
552 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
553 * adding a key to a keyring.
554 *
555 * This is meant to be stored in a key_restriction structure which is passed
556 * in the restrict_link parameter to keyring_alloc().
557 */
558int restrict_link_reject(struct key *keyring,
559 const struct key_type *type,
560 const union key_payload *payload,
561 struct key *restriction_key)
562{
563 return -EPERM;
564}
565
566/*
567 * By default, we keys found by getting an exact match on their descriptions.
568 */
569bool key_default_cmp(const struct key *key,
570 const struct key_match_data *match_data)
571{
572 return strcmp(key->description, match_data->raw_data) == 0;
573}
574
575/*
576 * Iteration function to consider each key found.
577 */
578static int keyring_search_iterator(const void *object, void *iterator_data)
579{
580 struct keyring_search_context *ctx = iterator_data;
581 const struct key *key = keyring_ptr_to_key(object);
582 unsigned long kflags = READ_ONCE(key->flags);
583 short state = READ_ONCE(key->state);
584
585 kenter("{%d}", key->serial);
586
587 /* ignore keys not of this type */
588 if (key->type != ctx->index_key.type) {
589 kleave(" = 0 [!type]");
590 return 0;
591 }
592
593 /* skip invalidated, revoked and expired keys */
594 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
595 time64_t expiry = READ_ONCE(key->expiry);
596
597 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
598 (1 << KEY_FLAG_REVOKED))) {
599 ctx->result = ERR_PTR(-EKEYREVOKED);
600 kleave(" = %d [invrev]", ctx->skipped_ret);
601 goto skipped;
602 }
603
604 if (expiry && ctx->now >= expiry) {
605 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
606 ctx->result = ERR_PTR(-EKEYEXPIRED);
607 kleave(" = %d [expire]", ctx->skipped_ret);
608 goto skipped;
609 }
610 }
611
612 /* keys that don't match */
613 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
614 kleave(" = 0 [!match]");
615 return 0;
616 }
617
618 /* key must have search permissions */
619 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
620 key_task_permission(make_key_ref(key, ctx->possessed),
621 ctx->cred, KEY_NEED_SEARCH) < 0) {
622 ctx->result = ERR_PTR(-EACCES);
623 kleave(" = %d [!perm]", ctx->skipped_ret);
624 goto skipped;
625 }
626
627 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
628 /* we set a different error code if we pass a negative key */
629 if (state < 0) {
630 ctx->result = ERR_PTR(state);
631 kleave(" = %d [neg]", ctx->skipped_ret);
632 goto skipped;
633 }
634 }
635
636 /* Found */
637 ctx->result = make_key_ref(key, ctx->possessed);
638 kleave(" = 1 [found]");
639 return 1;
640
641skipped:
642 return ctx->skipped_ret;
643}
644
645/*
646 * Search inside a keyring for a key. We can search by walking to it
647 * directly based on its index-key or we can iterate over the entire
648 * tree looking for it, based on the match function.
649 */
650static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
651{
652 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
653 const void *object;
654
655 object = assoc_array_find(&keyring->keys,
656 &keyring_assoc_array_ops,
657 &ctx->index_key);
658 return object ? ctx->iterator(object, ctx) : 0;
659 }
660 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
661}
662
663/*
664 * Search a tree of keyrings that point to other keyrings up to the maximum
665 * depth.
666 */
667static bool search_nested_keyrings(struct key *keyring,
668 struct keyring_search_context *ctx)
669{
670 struct {
671 struct key *keyring;
672 struct assoc_array_node *node;
673 int slot;
674 } stack[KEYRING_SEARCH_MAX_DEPTH];
675
676 struct assoc_array_shortcut *shortcut;
677 struct assoc_array_node *node;
678 struct assoc_array_ptr *ptr;
679 struct key *key;
680 int sp = 0, slot;
681
682 kenter("{%d},{%s,%s}",
683 keyring->serial,
684 ctx->index_key.type->name,
685 ctx->index_key.description);
686
687#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
688 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
689 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
690
691 if (ctx->index_key.description)
692 key_set_index_key(&ctx->index_key);
693
694 /* Check to see if this top-level keyring is what we are looking for
695 * and whether it is valid or not.
696 */
697 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
698 keyring_compare_object(keyring, &ctx->index_key)) {
699 ctx->skipped_ret = 2;
700 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
701 case 1:
702 goto found;
703 case 2:
704 return false;
705 default:
706 break;
707 }
708 }
709
710 ctx->skipped_ret = 0;
711
712 /* Start processing a new keyring */
713descend_to_keyring:
714 kdebug("descend to %d", keyring->serial);
715 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
716 (1 << KEY_FLAG_REVOKED)))
717 goto not_this_keyring;
718
719 /* Search through the keys in this keyring before its searching its
720 * subtrees.
721 */
722 if (search_keyring(keyring, ctx))
723 goto found;
724
725 /* Then manually iterate through the keyrings nested in this one.
726 *
727 * Start from the root node of the index tree. Because of the way the
728 * hash function has been set up, keyrings cluster on the leftmost
729 * branch of the root node (root slot 0) or in the root node itself.
730 * Non-keyrings avoid the leftmost branch of the root entirely (root
731 * slots 1-15).
732 */
733 if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
734 goto not_this_keyring;
735
736 ptr = READ_ONCE(keyring->keys.root);
737 if (!ptr)
738 goto not_this_keyring;
739
740 if (assoc_array_ptr_is_shortcut(ptr)) {
741 /* If the root is a shortcut, either the keyring only contains
742 * keyring pointers (everything clusters behind root slot 0) or
743 * doesn't contain any keyring pointers.
744 */
745 shortcut = assoc_array_ptr_to_shortcut(ptr);
746 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
747 goto not_this_keyring;
748
749 ptr = READ_ONCE(shortcut->next_node);
750 node = assoc_array_ptr_to_node(ptr);
751 goto begin_node;
752 }
753
754 node = assoc_array_ptr_to_node(ptr);
755 ptr = node->slots[0];
756 if (!assoc_array_ptr_is_meta(ptr))
757 goto begin_node;
758
759descend_to_node:
760 /* Descend to a more distal node in this keyring's content tree and go
761 * through that.
762 */
763 kdebug("descend");
764 if (assoc_array_ptr_is_shortcut(ptr)) {
765 shortcut = assoc_array_ptr_to_shortcut(ptr);
766 ptr = READ_ONCE(shortcut->next_node);
767 BUG_ON(!assoc_array_ptr_is_node(ptr));
768 }
769 node = assoc_array_ptr_to_node(ptr);
770
771begin_node:
772 kdebug("begin_node");
773 slot = 0;
774ascend_to_node:
775 /* Go through the slots in a node */
776 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
777 ptr = READ_ONCE(node->slots[slot]);
778
779 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
780 goto descend_to_node;
781
782 if (!keyring_ptr_is_keyring(ptr))
783 continue;
784
785 key = keyring_ptr_to_key(ptr);
786
787 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
788 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
789 ctx->result = ERR_PTR(-ELOOP);
790 return false;
791 }
792 goto not_this_keyring;
793 }
794
795 /* Search a nested keyring */
796 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
797 key_task_permission(make_key_ref(key, ctx->possessed),
798 ctx->cred, KEY_NEED_SEARCH) < 0)
799 continue;
800
801 /* stack the current position */
802 stack[sp].keyring = keyring;
803 stack[sp].node = node;
804 stack[sp].slot = slot;
805 sp++;
806
807 /* begin again with the new keyring */
808 keyring = key;
809 goto descend_to_keyring;
810 }
811
812 /* We've dealt with all the slots in the current node, so now we need
813 * to ascend to the parent and continue processing there.
814 */
815 ptr = READ_ONCE(node->back_pointer);
816 slot = node->parent_slot;
817
818 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
819 shortcut = assoc_array_ptr_to_shortcut(ptr);
820 ptr = READ_ONCE(shortcut->back_pointer);
821 slot = shortcut->parent_slot;
822 }
823 if (!ptr)
824 goto not_this_keyring;
825 node = assoc_array_ptr_to_node(ptr);
826 slot++;
827
828 /* If we've ascended to the root (zero backpointer), we must have just
829 * finished processing the leftmost branch rather than the root slots -
830 * so there can't be any more keyrings for us to find.
831 */
832 if (node->back_pointer) {
833 kdebug("ascend %d", slot);
834 goto ascend_to_node;
835 }
836
837 /* The keyring we're looking at was disqualified or didn't contain a
838 * matching key.
839 */
840not_this_keyring:
841 kdebug("not_this_keyring %d", sp);
842 if (sp <= 0) {
843 kleave(" = false");
844 return false;
845 }
846
847 /* Resume the processing of a keyring higher up in the tree */
848 sp--;
849 keyring = stack[sp].keyring;
850 node = stack[sp].node;
851 slot = stack[sp].slot + 1;
852 kdebug("ascend to %d [%d]", keyring->serial, slot);
853 goto ascend_to_node;
854
855 /* We found a viable match */
856found:
857 key = key_ref_to_ptr(ctx->result);
858 key_check(key);
859 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
860 key->last_used_at = ctx->now;
861 keyring->last_used_at = ctx->now;
862 while (sp > 0)
863 stack[--sp].keyring->last_used_at = ctx->now;
864 }
865 kleave(" = true");
866 return true;
867}
868
869/**
870 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
871 * @keyring_ref: A pointer to the keyring with possession indicator.
872 * @ctx: The keyring search context.
873 *
874 * Search the supplied keyring tree for a key that matches the criteria given.
875 * The root keyring and any linked keyrings must grant Search permission to the
876 * caller to be searchable and keys can only be found if they too grant Search
877 * to the caller. The possession flag on the root keyring pointer controls use
878 * of the possessor bits in permissions checking of the entire tree. In
879 * addition, the LSM gets to forbid keyring searches and key matches.
880 *
881 * The search is performed as a breadth-then-depth search up to the prescribed
882 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to
883 * prevent keyrings from being destroyed or rearranged whilst they are being
884 * searched.
885 *
886 * Keys are matched to the type provided and are then filtered by the match
887 * function, which is given the description to use in any way it sees fit. The
888 * match function may use any attributes of a key that it wishes to to
889 * determine the match. Normally the match function from the key type would be
890 * used.
891 *
892 * RCU can be used to prevent the keyring key lists from disappearing without
893 * the need to take lots of locks.
894 *
895 * Returns a pointer to the found key and increments the key usage count if
896 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
897 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
898 * specified keyring wasn't a keyring.
899 *
900 * In the case of a successful return, the possession attribute from
901 * @keyring_ref is propagated to the returned key reference.
902 */
903key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
904 struct keyring_search_context *ctx)
905{
906 struct key *keyring;
907 long err;
908
909 ctx->iterator = keyring_search_iterator;
910 ctx->possessed = is_key_possessed(keyring_ref);
911 ctx->result = ERR_PTR(-EAGAIN);
912
913 keyring = key_ref_to_ptr(keyring_ref);
914 key_check(keyring);
915
916 if (keyring->type != &key_type_keyring)
917 return ERR_PTR(-ENOTDIR);
918
919 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
920 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
921 if (err < 0)
922 return ERR_PTR(err);
923 }
924
925 ctx->now = ktime_get_real_seconds();
926 if (search_nested_keyrings(keyring, ctx))
927 __key_get(key_ref_to_ptr(ctx->result));
928 return ctx->result;
929}
930
931/**
932 * keyring_search - Search the supplied keyring tree for a matching key
933 * @keyring: The root of the keyring tree to be searched.
934 * @type: The type of keyring we want to find.
935 * @description: The name of the keyring we want to find.
936 * @recurse: True to search the children of @keyring also
937 *
938 * As keyring_search_rcu() above, but using the current task's credentials and
939 * type's default matching function and preferred search method.
940 */
941key_ref_t keyring_search(key_ref_t keyring,
942 struct key_type *type,
943 const char *description,
944 bool recurse)
945{
946 struct keyring_search_context ctx = {
947 .index_key.type = type,
948 .index_key.description = description,
949 .index_key.desc_len = strlen(description),
950 .cred = current_cred(),
951 .match_data.cmp = key_default_cmp,
952 .match_data.raw_data = description,
953 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
954 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
955 };
956 key_ref_t key;
957 int ret;
958
959 if (recurse)
960 ctx.flags |= KEYRING_SEARCH_RECURSE;
961 if (type->match_preparse) {
962 ret = type->match_preparse(&ctx.match_data);
963 if (ret < 0)
964 return ERR_PTR(ret);
965 }
966
967 rcu_read_lock();
968 key = keyring_search_rcu(keyring, &ctx);
969 rcu_read_unlock();
970
971 if (type->match_free)
972 type->match_free(&ctx.match_data);
973 return key;
974}
975EXPORT_SYMBOL(keyring_search);
976
977static struct key_restriction *keyring_restriction_alloc(
978 key_restrict_link_func_t check)
979{
980 struct key_restriction *keyres =
981 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
982
983 if (!keyres)
984 return ERR_PTR(-ENOMEM);
985
986 keyres->check = check;
987
988 return keyres;
989}
990
991/*
992 * Semaphore to serialise restriction setup to prevent reference count
993 * cycles through restriction key pointers.
994 */
995static DECLARE_RWSEM(keyring_serialise_restrict_sem);
996
997/*
998 * Check for restriction cycles that would prevent keyring garbage collection.
999 * keyring_serialise_restrict_sem must be held.
1000 */
1001static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1002 struct key_restriction *keyres)
1003{
1004 while (keyres && keyres->key &&
1005 keyres->key->type == &key_type_keyring) {
1006 if (keyres->key == dest_keyring)
1007 return true;
1008
1009 keyres = keyres->key->restrict_link;
1010 }
1011
1012 return false;
1013}
1014
1015/**
1016 * keyring_restrict - Look up and apply a restriction to a keyring
1017 * @keyring_ref: The keyring to be restricted
1018 * @type: The key type that will provide the restriction checker.
1019 * @restriction: The restriction options to apply to the keyring
1020 *
1021 * Look up a keyring and apply a restriction to it. The restriction is managed
1022 * by the specific key type, but can be configured by the options specified in
1023 * the restriction string.
1024 */
1025int keyring_restrict(key_ref_t keyring_ref, const char *type,
1026 const char *restriction)
1027{
1028 struct key *keyring;
1029 struct key_type *restrict_type = NULL;
1030 struct key_restriction *restrict_link;
1031 int ret = 0;
1032
1033 keyring = key_ref_to_ptr(keyring_ref);
1034 key_check(keyring);
1035
1036 if (keyring->type != &key_type_keyring)
1037 return -ENOTDIR;
1038
1039 if (!type) {
1040 restrict_link = keyring_restriction_alloc(restrict_link_reject);
1041 } else {
1042 restrict_type = key_type_lookup(type);
1043
1044 if (IS_ERR(restrict_type))
1045 return PTR_ERR(restrict_type);
1046
1047 if (!restrict_type->lookup_restriction) {
1048 ret = -ENOENT;
1049 goto error;
1050 }
1051
1052 restrict_link = restrict_type->lookup_restriction(restriction);
1053 }
1054
1055 if (IS_ERR(restrict_link)) {
1056 ret = PTR_ERR(restrict_link);
1057 goto error;
1058 }
1059
1060 down_write(&keyring->sem);
1061 down_write(&keyring_serialise_restrict_sem);
1062
1063 if (keyring->restrict_link)
1064 ret = -EEXIST;
1065 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1066 ret = -EDEADLK;
1067 else
1068 keyring->restrict_link = restrict_link;
1069
1070 up_write(&keyring_serialise_restrict_sem);
1071 up_write(&keyring->sem);
1072
1073 if (ret < 0) {
1074 key_put(restrict_link->key);
1075 kfree(restrict_link);
1076 }
1077
1078error:
1079 if (restrict_type)
1080 key_type_put(restrict_type);
1081
1082 return ret;
1083}
1084EXPORT_SYMBOL(keyring_restrict);
1085
1086/*
1087 * Search the given keyring for a key that might be updated.
1088 *
1089 * The caller must guarantee that the keyring is a keyring and that the
1090 * permission is granted to modify the keyring as no check is made here. The
1091 * caller must also hold a lock on the keyring semaphore.
1092 *
1093 * Returns a pointer to the found key with usage count incremented if
1094 * successful and returns NULL if not found. Revoked and invalidated keys are
1095 * skipped over.
1096 *
1097 * If successful, the possession indicator is propagated from the keyring ref
1098 * to the returned key reference.
1099 */
1100key_ref_t find_key_to_update(key_ref_t keyring_ref,
1101 const struct keyring_index_key *index_key)
1102{
1103 struct key *keyring, *key;
1104 const void *object;
1105
1106 keyring = key_ref_to_ptr(keyring_ref);
1107
1108 kenter("{%d},{%s,%s}",
1109 keyring->serial, index_key->type->name, index_key->description);
1110
1111 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1112 index_key);
1113
1114 if (object)
1115 goto found;
1116
1117 kleave(" = NULL");
1118 return NULL;
1119
1120found:
1121 key = keyring_ptr_to_key(object);
1122 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1123 (1 << KEY_FLAG_REVOKED))) {
1124 kleave(" = NULL [x]");
1125 return NULL;
1126 }
1127 __key_get(key);
1128 kleave(" = {%d}", key->serial);
1129 return make_key_ref(key, is_key_possessed(keyring_ref));
1130}
1131
1132/*
1133 * Find a keyring with the specified name.
1134 *
1135 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1136 * user in the current user namespace are considered. If @uid_keyring is %true,
1137 * the keyring additionally must have been allocated as a user or user session
1138 * keyring; otherwise, it must grant Search permission directly to the caller.
1139 *
1140 * Returns a pointer to the keyring with the keyring's refcount having being
1141 * incremented on success. -ENOKEY is returned if a key could not be found.
1142 */
1143struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1144{
1145 struct user_namespace *ns = current_user_ns();
1146 struct key *keyring;
1147
1148 if (!name)
1149 return ERR_PTR(-EINVAL);
1150
1151 read_lock(&keyring_name_lock);
1152
1153 /* Search this hash bucket for a keyring with a matching name that
1154 * grants Search permission and that hasn't been revoked
1155 */
1156 list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1157 if (!kuid_has_mapping(ns, keyring->user->uid))
1158 continue;
1159
1160 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1161 continue;
1162
1163 if (strcmp(keyring->description, name) != 0)
1164 continue;
1165
1166 if (uid_keyring) {
1167 if (!test_bit(KEY_FLAG_UID_KEYRING,
1168 &keyring->flags))
1169 continue;
1170 } else {
1171 if (key_permission(make_key_ref(keyring, 0),
1172 KEY_NEED_SEARCH) < 0)
1173 continue;
1174 }
1175
1176 /* we've got a match but we might end up racing with
1177 * key_cleanup() if the keyring is currently 'dead'
1178 * (ie. it has a zero usage count) */
1179 if (!refcount_inc_not_zero(&keyring->usage))
1180 continue;
1181 keyring->last_used_at = ktime_get_real_seconds();
1182 goto out;
1183 }
1184
1185 keyring = ERR_PTR(-ENOKEY);
1186out:
1187 read_unlock(&keyring_name_lock);
1188 return keyring;
1189}
1190
1191static int keyring_detect_cycle_iterator(const void *object,
1192 void *iterator_data)
1193{
1194 struct keyring_search_context *ctx = iterator_data;
1195 const struct key *key = keyring_ptr_to_key(object);
1196
1197 kenter("{%d}", key->serial);
1198
1199 /* We might get a keyring with matching index-key that is nonetheless a
1200 * different keyring. */
1201 if (key != ctx->match_data.raw_data)
1202 return 0;
1203
1204 ctx->result = ERR_PTR(-EDEADLK);
1205 return 1;
1206}
1207
1208/*
1209 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1210 * tree A at the topmost level (ie: as a direct child of A).
1211 *
1212 * Since we are adding B to A at the top level, checking for cycles should just
1213 * be a matter of seeing if node A is somewhere in tree B.
1214 */
1215static int keyring_detect_cycle(struct key *A, struct key *B)
1216{
1217 struct keyring_search_context ctx = {
1218 .index_key = A->index_key,
1219 .match_data.raw_data = A,
1220 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1221 .iterator = keyring_detect_cycle_iterator,
1222 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1223 KEYRING_SEARCH_NO_UPDATE_TIME |
1224 KEYRING_SEARCH_NO_CHECK_PERM |
1225 KEYRING_SEARCH_DETECT_TOO_DEEP |
1226 KEYRING_SEARCH_RECURSE),
1227 };
1228
1229 rcu_read_lock();
1230 search_nested_keyrings(B, &ctx);
1231 rcu_read_unlock();
1232 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1233}
1234
1235/*
1236 * Lock keyring for link.
1237 */
1238int __key_link_lock(struct key *keyring,
1239 const struct keyring_index_key *index_key)
1240 __acquires(&keyring->sem)
1241 __acquires(&keyring_serialise_link_lock)
1242{
1243 if (keyring->type != &key_type_keyring)
1244 return -ENOTDIR;
1245
1246 down_write(&keyring->sem);
1247
1248 /* Serialise link/link calls to prevent parallel calls causing a cycle
1249 * when linking two keyring in opposite orders.
1250 */
1251 if (index_key->type == &key_type_keyring)
1252 mutex_lock(&keyring_serialise_link_lock);
1253
1254 return 0;
1255}
1256
1257/*
1258 * Lock keyrings for move (link/unlink combination).
1259 */
1260int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1261 const struct keyring_index_key *index_key)
1262 __acquires(&l_keyring->sem)
1263 __acquires(&u_keyring->sem)
1264 __acquires(&keyring_serialise_link_lock)
1265{
1266 if (l_keyring->type != &key_type_keyring ||
1267 u_keyring->type != &key_type_keyring)
1268 return -ENOTDIR;
1269
1270 /* We have to be very careful here to take the keyring locks in the
1271 * right order, lest we open ourselves to deadlocking against another
1272 * move operation.
1273 */
1274 if (l_keyring < u_keyring) {
1275 down_write(&l_keyring->sem);
1276 down_write_nested(&u_keyring->sem, 1);
1277 } else {
1278 down_write(&u_keyring->sem);
1279 down_write_nested(&l_keyring->sem, 1);
1280 }
1281
1282 /* Serialise link/link calls to prevent parallel calls causing a cycle
1283 * when linking two keyring in opposite orders.
1284 */
1285 if (index_key->type == &key_type_keyring)
1286 mutex_lock(&keyring_serialise_link_lock);
1287
1288 return 0;
1289}
1290
1291/*
1292 * Preallocate memory so that a key can be linked into to a keyring.
1293 */
1294int __key_link_begin(struct key *keyring,
1295 const struct keyring_index_key *index_key,
1296 struct assoc_array_edit **_edit)
1297{
1298 struct assoc_array_edit *edit;
1299 int ret;
1300
1301 kenter("%d,%s,%s,",
1302 keyring->serial, index_key->type->name, index_key->description);
1303
1304 BUG_ON(index_key->desc_len == 0);
1305 BUG_ON(*_edit != NULL);
1306
1307 *_edit = NULL;
1308
1309 ret = -EKEYREVOKED;
1310 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1311 goto error;
1312
1313 /* Create an edit script that will insert/replace the key in the
1314 * keyring tree.
1315 */
1316 edit = assoc_array_insert(&keyring->keys,
1317 &keyring_assoc_array_ops,
1318 index_key,
1319 NULL);
1320 if (IS_ERR(edit)) {
1321 ret = PTR_ERR(edit);
1322 goto error;
1323 }
1324
1325 /* If we're not replacing a link in-place then we're going to need some
1326 * extra quota.
1327 */
1328 if (!edit->dead_leaf) {
1329 ret = key_payload_reserve(keyring,
1330 keyring->datalen + KEYQUOTA_LINK_BYTES);
1331 if (ret < 0)
1332 goto error_cancel;
1333 }
1334
1335 *_edit = edit;
1336 kleave(" = 0");
1337 return 0;
1338
1339error_cancel:
1340 assoc_array_cancel_edit(edit);
1341error:
1342 kleave(" = %d", ret);
1343 return ret;
1344}
1345
1346/*
1347 * Check already instantiated keys aren't going to be a problem.
1348 *
1349 * The caller must have called __key_link_begin(). Don't need to call this for
1350 * keys that were created since __key_link_begin() was called.
1351 */
1352int __key_link_check_live_key(struct key *keyring, struct key *key)
1353{
1354 if (key->type == &key_type_keyring)
1355 /* check that we aren't going to create a cycle by linking one
1356 * keyring to another */
1357 return keyring_detect_cycle(keyring, key);
1358 return 0;
1359}
1360
1361/*
1362 * Link a key into to a keyring.
1363 *
1364 * Must be called with __key_link_begin() having being called. Discards any
1365 * already extant link to matching key if there is one, so that each keyring
1366 * holds at most one link to any given key of a particular type+description
1367 * combination.
1368 */
1369void __key_link(struct key *key, struct assoc_array_edit **_edit)
1370{
1371 __key_get(key);
1372 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1373 assoc_array_apply_edit(*_edit);
1374 *_edit = NULL;
1375}
1376
1377/*
1378 * Finish linking a key into to a keyring.
1379 *
1380 * Must be called with __key_link_begin() having being called.
1381 */
1382void __key_link_end(struct key *keyring,
1383 const struct keyring_index_key *index_key,
1384 struct assoc_array_edit *edit)
1385 __releases(&keyring->sem)
1386 __releases(&keyring_serialise_link_lock)
1387{
1388 BUG_ON(index_key->type == NULL);
1389 kenter("%d,%s,", keyring->serial, index_key->type->name);
1390
1391 if (edit) {
1392 if (!edit->dead_leaf) {
1393 key_payload_reserve(keyring,
1394 keyring->datalen - KEYQUOTA_LINK_BYTES);
1395 }
1396 assoc_array_cancel_edit(edit);
1397 }
1398 up_write(&keyring->sem);
1399
1400 if (index_key->type == &key_type_keyring)
1401 mutex_unlock(&keyring_serialise_link_lock);
1402}
1403
1404/*
1405 * Check addition of keys to restricted keyrings.
1406 */
1407static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408{
1409 if (!keyring->restrict_link || !keyring->restrict_link->check)
1410 return 0;
1411 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412 keyring->restrict_link->key);
1413}
1414
1415/**
1416 * key_link - Link a key to a keyring
1417 * @keyring: The keyring to make the link in.
1418 * @key: The key to link to.
1419 *
1420 * Make a link in a keyring to a key, such that the keyring holds a reference
1421 * on that key and the key can potentially be found by searching that keyring.
1422 *
1423 * This function will write-lock the keyring's semaphore and will consume some
1424 * of the user's key data quota to hold the link.
1425 *
1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
1429 * another link or -ENOMEM if there's insufficient memory.
1430 *
1431 * It is assumed that the caller has checked that it is permitted for a link to
1432 * be made (the keyring should have Write permission and the key Link
1433 * permission).
1434 */
1435int key_link(struct key *keyring, struct key *key)
1436{
1437 struct assoc_array_edit *edit = NULL;
1438 int ret;
1439
1440 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441
1442 key_check(keyring);
1443 key_check(key);
1444
1445 ret = __key_link_lock(keyring, &key->index_key);
1446 if (ret < 0)
1447 goto error;
1448
1449 ret = __key_link_begin(keyring, &key->index_key, &edit);
1450 if (ret < 0)
1451 goto error_end;
1452
1453 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454 ret = __key_link_check_restriction(keyring, key);
1455 if (ret == 0)
1456 ret = __key_link_check_live_key(keyring, key);
1457 if (ret == 0)
1458 __key_link(key, &edit);
1459
1460error_end:
1461 __key_link_end(keyring, &key->index_key, edit);
1462error:
1463 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464 return ret;
1465}
1466EXPORT_SYMBOL(key_link);
1467
1468/*
1469 * Lock a keyring for unlink.
1470 */
1471static int __key_unlink_lock(struct key *keyring)
1472 __acquires(&keyring->sem)
1473{
1474 if (keyring->type != &key_type_keyring)
1475 return -ENOTDIR;
1476
1477 down_write(&keyring->sem);
1478 return 0;
1479}
1480
1481/*
1482 * Begin the process of unlinking a key from a keyring.
1483 */
1484static int __key_unlink_begin(struct key *keyring, struct key *key,
1485 struct assoc_array_edit **_edit)
1486{
1487 struct assoc_array_edit *edit;
1488
1489 BUG_ON(*_edit != NULL);
1490
1491 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492 &key->index_key);
1493 if (IS_ERR(edit))
1494 return PTR_ERR(edit);
1495
1496 if (!edit)
1497 return -ENOENT;
1498
1499 *_edit = edit;
1500 return 0;
1501}
1502
1503/*
1504 * Apply an unlink change.
1505 */
1506static void __key_unlink(struct key *keyring, struct key *key,
1507 struct assoc_array_edit **_edit)
1508{
1509 assoc_array_apply_edit(*_edit);
1510 *_edit = NULL;
1511 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1512}
1513
1514/*
1515 * Finish unlinking a key from to a keyring.
1516 */
1517static void __key_unlink_end(struct key *keyring,
1518 struct key *key,
1519 struct assoc_array_edit *edit)
1520 __releases(&keyring->sem)
1521{
1522 if (edit)
1523 assoc_array_cancel_edit(edit);
1524 up_write(&keyring->sem);
1525}
1526
1527/**
1528 * key_unlink - Unlink the first link to a key from a keyring.
1529 * @keyring: The keyring to remove the link from.
1530 * @key: The key the link is to.
1531 *
1532 * Remove a link from a keyring to a key.
1533 *
1534 * This function will write-lock the keyring's semaphore.
1535 *
1536 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1537 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1538 * memory.
1539 *
1540 * It is assumed that the caller has checked that it is permitted for a link to
1541 * be removed (the keyring should have Write permission; no permissions are
1542 * required on the key).
1543 */
1544int key_unlink(struct key *keyring, struct key *key)
1545{
1546 struct assoc_array_edit *edit = NULL;
1547 int ret;
1548
1549 key_check(keyring);
1550 key_check(key);
1551
1552 ret = __key_unlink_lock(keyring);
1553 if (ret < 0)
1554 return ret;
1555
1556 ret = __key_unlink_begin(keyring, key, &edit);
1557 if (ret == 0)
1558 __key_unlink(keyring, key, &edit);
1559 __key_unlink_end(keyring, key, edit);
1560 return ret;
1561}
1562EXPORT_SYMBOL(key_unlink);
1563
1564/**
1565 * key_move - Move a key from one keyring to another
1566 * @key: The key to move
1567 * @from_keyring: The keyring to remove the link from.
1568 * @to_keyring: The keyring to make the link in.
1569 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1570 *
1571 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1572 * on that key and the key can potentially be found by searching that keyring
1573 * whilst simultaneously removing a link to the key from @from_keyring.
1574 *
1575 * This function will write-lock both keyring's semaphores and will consume
1576 * some of the user's key data quota to hold the link on @to_keyring.
1577 *
1578 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1579 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1580 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1581 * to add another link or -ENOMEM if there's insufficient memory. If
1582 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1583 * matching key in @to_keyring.
1584 *
1585 * It is assumed that the caller has checked that it is permitted for a link to
1586 * be made (the keyring should have Write permission and the key Link
1587 * permission).
1588 */
1589int key_move(struct key *key,
1590 struct key *from_keyring,
1591 struct key *to_keyring,
1592 unsigned int flags)
1593{
1594 struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1595 int ret;
1596
1597 kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1598
1599 if (from_keyring == to_keyring)
1600 return 0;
1601
1602 key_check(key);
1603 key_check(from_keyring);
1604 key_check(to_keyring);
1605
1606 ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1607 if (ret < 0)
1608 goto out;
1609 ret = __key_unlink_begin(from_keyring, key, &from_edit);
1610 if (ret < 0)
1611 goto error;
1612 ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1613 if (ret < 0)
1614 goto error;
1615
1616 ret = -EEXIST;
1617 if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1618 goto error;
1619
1620 ret = __key_link_check_restriction(to_keyring, key);
1621 if (ret < 0)
1622 goto error;
1623 ret = __key_link_check_live_key(to_keyring, key);
1624 if (ret < 0)
1625 goto error;
1626
1627 __key_unlink(from_keyring, key, &from_edit);
1628 __key_link(key, &to_edit);
1629error:
1630 __key_link_end(to_keyring, &key->index_key, to_edit);
1631 __key_unlink_end(from_keyring, key, from_edit);
1632out:
1633 kleave(" = %d", ret);
1634 return ret;
1635}
1636EXPORT_SYMBOL(key_move);
1637
1638/**
1639 * keyring_clear - Clear a keyring
1640 * @keyring: The keyring to clear.
1641 *
1642 * Clear the contents of the specified keyring.
1643 *
1644 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1645 */
1646int keyring_clear(struct key *keyring)
1647{
1648 struct assoc_array_edit *edit;
1649 int ret;
1650
1651 if (keyring->type != &key_type_keyring)
1652 return -ENOTDIR;
1653
1654 down_write(&keyring->sem);
1655
1656 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1657 if (IS_ERR(edit)) {
1658 ret = PTR_ERR(edit);
1659 } else {
1660 if (edit)
1661 assoc_array_apply_edit(edit);
1662 key_payload_reserve(keyring, 0);
1663 ret = 0;
1664 }
1665
1666 up_write(&keyring->sem);
1667 return ret;
1668}
1669EXPORT_SYMBOL(keyring_clear);
1670
1671/*
1672 * Dispose of the links from a revoked keyring.
1673 *
1674 * This is called with the key sem write-locked.
1675 */
1676static void keyring_revoke(struct key *keyring)
1677{
1678 struct assoc_array_edit *edit;
1679
1680 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1681 if (!IS_ERR(edit)) {
1682 if (edit)
1683 assoc_array_apply_edit(edit);
1684 key_payload_reserve(keyring, 0);
1685 }
1686}
1687
1688static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1689{
1690 struct key *key = keyring_ptr_to_key(object);
1691 time64_t *limit = iterator_data;
1692
1693 if (key_is_dead(key, *limit))
1694 return false;
1695 key_get(key);
1696 return true;
1697}
1698
1699static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1700{
1701 const struct key *key = keyring_ptr_to_key(object);
1702 time64_t *limit = iterator_data;
1703
1704 key_check(key);
1705 return key_is_dead(key, *limit);
1706}
1707
1708/*
1709 * Garbage collect pointers from a keyring.
1710 *
1711 * Not called with any locks held. The keyring's key struct will not be
1712 * deallocated under us as only our caller may deallocate it.
1713 */
1714void keyring_gc(struct key *keyring, time64_t limit)
1715{
1716 int result;
1717
1718 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1719
1720 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1721 (1 << KEY_FLAG_REVOKED)))
1722 goto dont_gc;
1723
1724 /* scan the keyring looking for dead keys */
1725 rcu_read_lock();
1726 result = assoc_array_iterate(&keyring->keys,
1727 keyring_gc_check_iterator, &limit);
1728 rcu_read_unlock();
1729 if (result == true)
1730 goto do_gc;
1731
1732dont_gc:
1733 kleave(" [no gc]");
1734 return;
1735
1736do_gc:
1737 down_write(&keyring->sem);
1738 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1739 keyring_gc_select_iterator, &limit);
1740 up_write(&keyring->sem);
1741 kleave(" [gc]");
1742}
1743
1744/*
1745 * Garbage collect restriction pointers from a keyring.
1746 *
1747 * Keyring restrictions are associated with a key type, and must be cleaned
1748 * up if the key type is unregistered. The restriction is altered to always
1749 * reject additional keys so a keyring cannot be opened up by unregistering
1750 * a key type.
1751 *
1752 * Not called with any keyring locks held. The keyring's key struct will not
1753 * be deallocated under us as only our caller may deallocate it.
1754 *
1755 * The caller is required to hold key_types_sem and dead_type->sem. This is
1756 * fulfilled by key_gc_keytype() holding the locks on behalf of
1757 * key_garbage_collector(), which it invokes on a workqueue.
1758 */
1759void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1760{
1761 struct key_restriction *keyres;
1762
1763 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1764
1765 /*
1766 * keyring->restrict_link is only assigned at key allocation time
1767 * or with the key type locked, so the only values that could be
1768 * concurrently assigned to keyring->restrict_link are for key
1769 * types other than dead_type. Given this, it's ok to check
1770 * the key type before acquiring keyring->sem.
1771 */
1772 if (!dead_type || !keyring->restrict_link ||
1773 keyring->restrict_link->keytype != dead_type) {
1774 kleave(" [no restriction gc]");
1775 return;
1776 }
1777
1778 /* Lock the keyring to ensure that a link is not in progress */
1779 down_write(&keyring->sem);
1780
1781 keyres = keyring->restrict_link;
1782
1783 keyres->check = restrict_link_reject;
1784
1785 key_put(keyres->key);
1786 keyres->key = NULL;
1787 keyres->keytype = NULL;
1788
1789 up_write(&keyring->sem);
1790
1791 kleave(" [restriction gc]");
1792}