Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
 
  1/*
  2 * Squashfs - a compressed read only filesystem for Linux
  3 *
  4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
  5 * Phillip Lougher <phillip@squashfs.org.uk>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; either version 2,
 10 * or (at your option) any later version.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 20 *
 21 * cache.c
 22 */
 23
 24/*
 25 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 26 * recently accessed data Squashfs uses two small metadata and fragment caches.
 27 *
 28 * This file implements a generic cache implementation used for both caches,
 29 * plus functions layered ontop of the generic cache implementation to
 30 * access the metadata and fragment caches.
 31 *
 32 * To avoid out of memory and fragmentation issues with vmalloc the cache
 33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
 34 *
 35 * It should be noted that the cache is not used for file datablocks, these
 36 * are decompressed and cached in the page-cache in the normal way.  The
 37 * cache is only used to temporarily cache fragment and metadata blocks
 38 * which have been read as as a result of a metadata (i.e. inode or
 39 * directory) or fragment access.  Because metadata and fragments are packed
 40 * together into blocks (to gain greater compression) the read of a particular
 41 * piece of metadata or fragment will retrieve other metadata/fragments which
 42 * have been packed with it, these because of locality-of-reference may be read
 43 * in the near future. Temporarily caching them ensures they are available for
 44 * near future access without requiring an additional read and decompress.
 45 */
 46
 47#include <linux/fs.h>
 48#include <linux/vfs.h>
 49#include <linux/slab.h>
 50#include <linux/vmalloc.h>
 51#include <linux/sched.h>
 52#include <linux/spinlock.h>
 53#include <linux/wait.h>
 54#include <linux/pagemap.h>
 55
 56#include "squashfs_fs.h"
 57#include "squashfs_fs_sb.h"
 58#include "squashfs.h"
 
 59
 60/*
 61 * Look-up block in cache, and increment usage count.  If not in cache, read
 62 * and decompress it from disk.
 63 */
 64struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 65	struct squashfs_cache *cache, u64 block, int length)
 66{
 67	int i, n;
 68	struct squashfs_cache_entry *entry;
 69
 70	spin_lock(&cache->lock);
 71
 72	while (1) {
 73		for (i = 0; i < cache->entries; i++)
 74			if (cache->entry[i].block == block)
 
 75				break;
 
 
 
 76
 77		if (i == cache->entries) {
 78			/*
 79			 * Block not in cache, if all cache entries are used
 80			 * go to sleep waiting for one to become available.
 81			 */
 82			if (cache->unused == 0) {
 83				cache->num_waiters++;
 84				spin_unlock(&cache->lock);
 85				wait_event(cache->wait_queue, cache->unused);
 86				spin_lock(&cache->lock);
 87				cache->num_waiters--;
 88				continue;
 89			}
 90
 91			/*
 92			 * At least one unused cache entry.  A simple
 93			 * round-robin strategy is used to choose the entry to
 94			 * be evicted from the cache.
 95			 */
 96			i = cache->next_blk;
 97			for (n = 0; n < cache->entries; n++) {
 98				if (cache->entry[i].refcount == 0)
 99					break;
100				i = (i + 1) % cache->entries;
101			}
102
103			cache->next_blk = (i + 1) % cache->entries;
104			entry = &cache->entry[i];
105
106			/*
107			 * Initialise chosen cache entry, and fill it in from
108			 * disk.
109			 */
110			cache->unused--;
111			entry->block = block;
112			entry->refcount = 1;
113			entry->pending = 1;
114			entry->num_waiters = 0;
115			entry->error = 0;
116			spin_unlock(&cache->lock);
117
118			entry->length = squashfs_read_data(sb, entry->data,
119				block, length, &entry->next_index,
120				cache->block_size, cache->pages);
121
122			spin_lock(&cache->lock);
123
124			if (entry->length < 0)
125				entry->error = entry->length;
126
127			entry->pending = 0;
128
129			/*
130			 * While filling this entry one or more other processes
131			 * have looked it up in the cache, and have slept
132			 * waiting for it to become available.
133			 */
134			if (entry->num_waiters) {
135				spin_unlock(&cache->lock);
136				wake_up_all(&entry->wait_queue);
137			} else
138				spin_unlock(&cache->lock);
139
140			goto out;
141		}
142
143		/*
144		 * Block already in cache.  Increment refcount so it doesn't
145		 * get reused until we're finished with it, if it was
146		 * previously unused there's one less cache entry available
147		 * for reuse.
148		 */
149		entry = &cache->entry[i];
150		if (entry->refcount == 0)
151			cache->unused--;
152		entry->refcount++;
153
154		/*
155		 * If the entry is currently being filled in by another process
156		 * go to sleep waiting for it to become available.
157		 */
158		if (entry->pending) {
159			entry->num_waiters++;
160			spin_unlock(&cache->lock);
161			wait_event(entry->wait_queue, !entry->pending);
162		} else
163			spin_unlock(&cache->lock);
164
165		goto out;
166	}
167
168out:
169	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
170		cache->name, i, entry->block, entry->refcount, entry->error);
171
172	if (entry->error)
173		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
174							block);
175	return entry;
176}
177
178
179/*
180 * Release cache entry, once usage count is zero it can be reused.
181 */
182void squashfs_cache_put(struct squashfs_cache_entry *entry)
183{
184	struct squashfs_cache *cache = entry->cache;
185
186	spin_lock(&cache->lock);
187	entry->refcount--;
188	if (entry->refcount == 0) {
189		cache->unused++;
190		/*
191		 * If there's any processes waiting for a block to become
192		 * available, wake one up.
193		 */
194		if (cache->num_waiters) {
195			spin_unlock(&cache->lock);
196			wake_up(&cache->wait_queue);
197			return;
198		}
199	}
200	spin_unlock(&cache->lock);
201}
202
203/*
204 * Delete cache reclaiming all kmalloced buffers.
205 */
206void squashfs_cache_delete(struct squashfs_cache *cache)
207{
208	int i, j;
209
210	if (cache == NULL)
211		return;
212
213	for (i = 0; i < cache->entries; i++) {
214		if (cache->entry[i].data) {
215			for (j = 0; j < cache->pages; j++)
216				kfree(cache->entry[i].data[j]);
217			kfree(cache->entry[i].data);
218		}
 
219	}
220
221	kfree(cache->entry);
222	kfree(cache);
223}
224
225
226/*
227 * Initialise cache allocating the specified number of entries, each of
228 * size block_size.  To avoid vmalloc fragmentation issues each entry
229 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
230 */
231struct squashfs_cache *squashfs_cache_init(char *name, int entries,
232	int block_size)
233{
234	int i, j;
235	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
236
237	if (cache == NULL) {
238		ERROR("Failed to allocate %s cache\n", name);
239		return NULL;
240	}
241
242	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
243	if (cache->entry == NULL) {
244		ERROR("Failed to allocate %s cache\n", name);
245		goto cleanup;
246	}
247
 
248	cache->next_blk = 0;
249	cache->unused = entries;
250	cache->entries = entries;
251	cache->block_size = block_size;
252	cache->pages = block_size >> PAGE_CACHE_SHIFT;
253	cache->pages = cache->pages ? cache->pages : 1;
254	cache->name = name;
255	cache->num_waiters = 0;
256	spin_lock_init(&cache->lock);
257	init_waitqueue_head(&cache->wait_queue);
258
259	for (i = 0; i < entries; i++) {
260		struct squashfs_cache_entry *entry = &cache->entry[i];
261
262		init_waitqueue_head(&cache->entry[i].wait_queue);
263		entry->cache = cache;
264		entry->block = SQUASHFS_INVALID_BLK;
265		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
266		if (entry->data == NULL) {
267			ERROR("Failed to allocate %s cache entry\n", name);
268			goto cleanup;
269		}
270
271		for (j = 0; j < cache->pages; j++) {
272			entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
273			if (entry->data[j] == NULL) {
274				ERROR("Failed to allocate %s buffer\n", name);
275				goto cleanup;
276			}
277		}
 
 
 
 
 
 
 
278	}
279
280	return cache;
281
282cleanup:
283	squashfs_cache_delete(cache);
284	return NULL;
285}
286
287
288/*
289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
290 * into the cache entry.  If there's not length bytes then copy the number of
291 * bytes available.  In all cases return the number of bytes copied.
292 */
293int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294		int offset, int length)
295{
296	int remaining = length;
297
298	if (length == 0)
299		return 0;
300	else if (buffer == NULL)
301		return min(length, entry->length - offset);
302
303	while (offset < entry->length) {
304		void *buff = entry->data[offset / PAGE_CACHE_SIZE]
305				+ (offset % PAGE_CACHE_SIZE);
306		int bytes = min_t(int, entry->length - offset,
307				PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
308
309		if (bytes >= remaining) {
310			memcpy(buffer, buff, remaining);
311			remaining = 0;
312			break;
313		}
314
315		memcpy(buffer, buff, bytes);
316		buffer += bytes;
317		remaining -= bytes;
318		offset += bytes;
319	}
320
321	return length - remaining;
322}
323
324
325/*
326 * Read length bytes from metadata position <block, offset> (block is the
327 * start of the compressed block on disk, and offset is the offset into
328 * the block once decompressed).  Data is packed into consecutive blocks,
329 * and length bytes may require reading more than one block.
330 */
331int squashfs_read_metadata(struct super_block *sb, void *buffer,
332		u64 *block, int *offset, int length)
333{
334	struct squashfs_sb_info *msblk = sb->s_fs_info;
335	int bytes, copied = length;
336	struct squashfs_cache_entry *entry;
337
338	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
339
 
 
 
340	while (length) {
341		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
342		if (entry->error)
343			return entry->error;
344		else if (*offset >= entry->length)
345			return -EIO;
 
 
 
346
347		bytes = squashfs_copy_data(buffer, entry, *offset, length);
348		if (buffer)
349			buffer += bytes;
350		length -= bytes;
351		*offset += bytes;
352
353		if (*offset == entry->length) {
354			*block = entry->next_index;
355			*offset = 0;
356		}
357
358		squashfs_cache_put(entry);
359	}
360
361	return copied;
 
 
 
 
362}
363
364
365/*
366 * Look-up in the fragmment cache the fragment located at <start_block> in the
367 * filesystem.  If necessary read and decompress it from disk.
368 */
369struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
370				u64 start_block, int length)
371{
372	struct squashfs_sb_info *msblk = sb->s_fs_info;
373
374	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
375		length);
376}
377
378
379/*
380 * Read and decompress the datablock located at <start_block> in the
381 * filesystem.  The cache is used here to avoid duplicating locking and
382 * read/decompress code.
383 */
384struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
385				u64 start_block, int length)
386{
387	struct squashfs_sb_info *msblk = sb->s_fs_info;
388
389	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
390}
391
392
393/*
394 * Read a filesystem table (uncompressed sequence of bytes) from disk
395 */
396void *squashfs_read_table(struct super_block *sb, u64 block, int length)
397{
398	int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
399	int i, res;
400	void *table, *buffer, **data;
 
401
402	table = buffer = kmalloc(length, GFP_KERNEL);
403	if (table == NULL)
404		return ERR_PTR(-ENOMEM);
405
406	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
407	if (data == NULL) {
408		res = -ENOMEM;
409		goto failed;
410	}
411
412	for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
 
 
 
 
 
 
413		data[i] = buffer;
414
415	res = squashfs_read_data(sb, data, block, length |
416		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages);
417
418	kfree(data);
 
419
420	if (res < 0)
421		goto failed;
422
423	return table;
424
 
 
425failed:
426	kfree(table);
427	return ERR_PTR(res);
428}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Squashfs - a compressed read only filesystem for Linux
  4 *
  5 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
  6 * Phillip Lougher <phillip@squashfs.org.uk>
  7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 * cache.c
  9 */
 10
 11/*
 12 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 13 * recently accessed data Squashfs uses two small metadata and fragment caches.
 14 *
 15 * This file implements a generic cache implementation used for both caches,
 16 * plus functions layered ontop of the generic cache implementation to
 17 * access the metadata and fragment caches.
 18 *
 19 * To avoid out of memory and fragmentation issues with vmalloc the cache
 20 * uses sequences of kmalloced PAGE_SIZE buffers.
 21 *
 22 * It should be noted that the cache is not used for file datablocks, these
 23 * are decompressed and cached in the page-cache in the normal way.  The
 24 * cache is only used to temporarily cache fragment and metadata blocks
 25 * which have been read as as a result of a metadata (i.e. inode or
 26 * directory) or fragment access.  Because metadata and fragments are packed
 27 * together into blocks (to gain greater compression) the read of a particular
 28 * piece of metadata or fragment will retrieve other metadata/fragments which
 29 * have been packed with it, these because of locality-of-reference may be read
 30 * in the near future. Temporarily caching them ensures they are available for
 31 * near future access without requiring an additional read and decompress.
 32 */
 33
 34#include <linux/fs.h>
 35#include <linux/vfs.h>
 36#include <linux/slab.h>
 37#include <linux/vmalloc.h>
 38#include <linux/sched.h>
 39#include <linux/spinlock.h>
 40#include <linux/wait.h>
 41#include <linux/pagemap.h>
 42
 43#include "squashfs_fs.h"
 44#include "squashfs_fs_sb.h"
 45#include "squashfs.h"
 46#include "page_actor.h"
 47
 48/*
 49 * Look-up block in cache, and increment usage count.  If not in cache, read
 50 * and decompress it from disk.
 51 */
 52struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 53	struct squashfs_cache *cache, u64 block, int length)
 54{
 55	int i, n;
 56	struct squashfs_cache_entry *entry;
 57
 58	spin_lock(&cache->lock);
 59
 60	while (1) {
 61		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
 62			if (cache->entry[i].block == block) {
 63				cache->curr_blk = i;
 64				break;
 65			}
 66			i = (i + 1) % cache->entries;
 67		}
 68
 69		if (n == cache->entries) {
 70			/*
 71			 * Block not in cache, if all cache entries are used
 72			 * go to sleep waiting for one to become available.
 73			 */
 74			if (cache->unused == 0) {
 75				cache->num_waiters++;
 76				spin_unlock(&cache->lock);
 77				wait_event(cache->wait_queue, cache->unused);
 78				spin_lock(&cache->lock);
 79				cache->num_waiters--;
 80				continue;
 81			}
 82
 83			/*
 84			 * At least one unused cache entry.  A simple
 85			 * round-robin strategy is used to choose the entry to
 86			 * be evicted from the cache.
 87			 */
 88			i = cache->next_blk;
 89			for (n = 0; n < cache->entries; n++) {
 90				if (cache->entry[i].refcount == 0)
 91					break;
 92				i = (i + 1) % cache->entries;
 93			}
 94
 95			cache->next_blk = (i + 1) % cache->entries;
 96			entry = &cache->entry[i];
 97
 98			/*
 99			 * Initialise chosen cache entry, and fill it in from
100			 * disk.
101			 */
102			cache->unused--;
103			entry->block = block;
104			entry->refcount = 1;
105			entry->pending = 1;
106			entry->num_waiters = 0;
107			entry->error = 0;
108			spin_unlock(&cache->lock);
109
110			entry->length = squashfs_read_data(sb, block, length,
111				&entry->next_index, entry->actor);
 
112
113			spin_lock(&cache->lock);
114
115			if (entry->length < 0)
116				entry->error = entry->length;
117
118			entry->pending = 0;
119
120			/*
121			 * While filling this entry one or more other processes
122			 * have looked it up in the cache, and have slept
123			 * waiting for it to become available.
124			 */
125			if (entry->num_waiters) {
126				spin_unlock(&cache->lock);
127				wake_up_all(&entry->wait_queue);
128			} else
129				spin_unlock(&cache->lock);
130
131			goto out;
132		}
133
134		/*
135		 * Block already in cache.  Increment refcount so it doesn't
136		 * get reused until we're finished with it, if it was
137		 * previously unused there's one less cache entry available
138		 * for reuse.
139		 */
140		entry = &cache->entry[i];
141		if (entry->refcount == 0)
142			cache->unused--;
143		entry->refcount++;
144
145		/*
146		 * If the entry is currently being filled in by another process
147		 * go to sleep waiting for it to become available.
148		 */
149		if (entry->pending) {
150			entry->num_waiters++;
151			spin_unlock(&cache->lock);
152			wait_event(entry->wait_queue, !entry->pending);
153		} else
154			spin_unlock(&cache->lock);
155
156		goto out;
157	}
158
159out:
160	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
161		cache->name, i, entry->block, entry->refcount, entry->error);
162
163	if (entry->error)
164		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
165							block);
166	return entry;
167}
168
169
170/*
171 * Release cache entry, once usage count is zero it can be reused.
172 */
173void squashfs_cache_put(struct squashfs_cache_entry *entry)
174{
175	struct squashfs_cache *cache = entry->cache;
176
177	spin_lock(&cache->lock);
178	entry->refcount--;
179	if (entry->refcount == 0) {
180		cache->unused++;
181		/*
182		 * If there's any processes waiting for a block to become
183		 * available, wake one up.
184		 */
185		if (cache->num_waiters) {
186			spin_unlock(&cache->lock);
187			wake_up(&cache->wait_queue);
188			return;
189		}
190	}
191	spin_unlock(&cache->lock);
192}
193
194/*
195 * Delete cache reclaiming all kmalloced buffers.
196 */
197void squashfs_cache_delete(struct squashfs_cache *cache)
198{
199	int i, j;
200
201	if (cache == NULL)
202		return;
203
204	for (i = 0; i < cache->entries; i++) {
205		if (cache->entry[i].data) {
206			for (j = 0; j < cache->pages; j++)
207				kfree(cache->entry[i].data[j]);
208			kfree(cache->entry[i].data);
209		}
210		kfree(cache->entry[i].actor);
211	}
212
213	kfree(cache->entry);
214	kfree(cache);
215}
216
217
218/*
219 * Initialise cache allocating the specified number of entries, each of
220 * size block_size.  To avoid vmalloc fragmentation issues each entry
221 * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
222 */
223struct squashfs_cache *squashfs_cache_init(char *name, int entries,
224	int block_size)
225{
226	int i, j;
227	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
228
229	if (cache == NULL) {
230		ERROR("Failed to allocate %s cache\n", name);
231		return NULL;
232	}
233
234	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
235	if (cache->entry == NULL) {
236		ERROR("Failed to allocate %s cache\n", name);
237		goto cleanup;
238	}
239
240	cache->curr_blk = 0;
241	cache->next_blk = 0;
242	cache->unused = entries;
243	cache->entries = entries;
244	cache->block_size = block_size;
245	cache->pages = block_size >> PAGE_SHIFT;
246	cache->pages = cache->pages ? cache->pages : 1;
247	cache->name = name;
248	cache->num_waiters = 0;
249	spin_lock_init(&cache->lock);
250	init_waitqueue_head(&cache->wait_queue);
251
252	for (i = 0; i < entries; i++) {
253		struct squashfs_cache_entry *entry = &cache->entry[i];
254
255		init_waitqueue_head(&cache->entry[i].wait_queue);
256		entry->cache = cache;
257		entry->block = SQUASHFS_INVALID_BLK;
258		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
259		if (entry->data == NULL) {
260			ERROR("Failed to allocate %s cache entry\n", name);
261			goto cleanup;
262		}
263
264		for (j = 0; j < cache->pages; j++) {
265			entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
266			if (entry->data[j] == NULL) {
267				ERROR("Failed to allocate %s buffer\n", name);
268				goto cleanup;
269			}
270		}
271
272		entry->actor = squashfs_page_actor_init(entry->data,
273						cache->pages, 0);
274		if (entry->actor == NULL) {
275			ERROR("Failed to allocate %s cache entry\n", name);
276			goto cleanup;
277		}
278	}
279
280	return cache;
281
282cleanup:
283	squashfs_cache_delete(cache);
284	return NULL;
285}
286
287
288/*
289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
290 * into the cache entry.  If there's not length bytes then copy the number of
291 * bytes available.  In all cases return the number of bytes copied.
292 */
293int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294		int offset, int length)
295{
296	int remaining = length;
297
298	if (length == 0)
299		return 0;
300	else if (buffer == NULL)
301		return min(length, entry->length - offset);
302
303	while (offset < entry->length) {
304		void *buff = entry->data[offset / PAGE_SIZE]
305				+ (offset % PAGE_SIZE);
306		int bytes = min_t(int, entry->length - offset,
307				PAGE_SIZE - (offset % PAGE_SIZE));
308
309		if (bytes >= remaining) {
310			memcpy(buffer, buff, remaining);
311			remaining = 0;
312			break;
313		}
314
315		memcpy(buffer, buff, bytes);
316		buffer += bytes;
317		remaining -= bytes;
318		offset += bytes;
319	}
320
321	return length - remaining;
322}
323
324
325/*
326 * Read length bytes from metadata position <block, offset> (block is the
327 * start of the compressed block on disk, and offset is the offset into
328 * the block once decompressed).  Data is packed into consecutive blocks,
329 * and length bytes may require reading more than one block.
330 */
331int squashfs_read_metadata(struct super_block *sb, void *buffer,
332		u64 *block, int *offset, int length)
333{
334	struct squashfs_sb_info *msblk = sb->s_fs_info;
335	int bytes, res = length;
336	struct squashfs_cache_entry *entry;
337
338	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
339
340	if (unlikely(length < 0))
341		return -EIO;
342
343	while (length) {
344		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
345		if (entry->error) {
346			res = entry->error;
347			goto error;
348		} else if (*offset >= entry->length) {
349			res = -EIO;
350			goto error;
351		}
352
353		bytes = squashfs_copy_data(buffer, entry, *offset, length);
354		if (buffer)
355			buffer += bytes;
356		length -= bytes;
357		*offset += bytes;
358
359		if (*offset == entry->length) {
360			*block = entry->next_index;
361			*offset = 0;
362		}
363
364		squashfs_cache_put(entry);
365	}
366
367	return res;
368
369error:
370	squashfs_cache_put(entry);
371	return res;
372}
373
374
375/*
376 * Look-up in the fragmment cache the fragment located at <start_block> in the
377 * filesystem.  If necessary read and decompress it from disk.
378 */
379struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380				u64 start_block, int length)
381{
382	struct squashfs_sb_info *msblk = sb->s_fs_info;
383
384	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
385		length);
386}
387
388
389/*
390 * Read and decompress the datablock located at <start_block> in the
391 * filesystem.  The cache is used here to avoid duplicating locking and
392 * read/decompress code.
393 */
394struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395				u64 start_block, int length)
396{
397	struct squashfs_sb_info *msblk = sb->s_fs_info;
398
399	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
400}
401
402
403/*
404 * Read a filesystem table (uncompressed sequence of bytes) from disk
405 */
406void *squashfs_read_table(struct super_block *sb, u64 block, int length)
407{
408	int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
409	int i, res;
410	void *table, *buffer, **data;
411	struct squashfs_page_actor *actor;
412
413	table = buffer = kmalloc(length, GFP_KERNEL);
414	if (table == NULL)
415		return ERR_PTR(-ENOMEM);
416
417	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
418	if (data == NULL) {
419		res = -ENOMEM;
420		goto failed;
421	}
422
423	actor = squashfs_page_actor_init(data, pages, length);
424	if (actor == NULL) {
425		res = -ENOMEM;
426		goto failed2;
427	}
428
429	for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
430		data[i] = buffer;
431
432	res = squashfs_read_data(sb, block, length |
433		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
434
435	kfree(data);
436	kfree(actor);
437
438	if (res < 0)
439		goto failed;
440
441	return table;
442
443failed2:
444	kfree(data);
445failed:
446	kfree(table);
447	return ERR_PTR(res);
448}