Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/fs/pnode.c
  3 *
  4 * (C) Copyright IBM Corporation 2005.
  5 *	Released under GPL v2.
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
  7 *
  8 */
  9#include <linux/mnt_namespace.h>
 10#include <linux/mount.h>
 11#include <linux/fs.h>
 
 
 12#include "internal.h"
 13#include "pnode.h"
 14
 15/* return the next shared peer mount of @p */
 16static inline struct vfsmount *next_peer(struct vfsmount *p)
 17{
 18	return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
 19}
 20
 21static inline struct vfsmount *first_slave(struct vfsmount *p)
 22{
 23	return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
 24}
 25
 26static inline struct vfsmount *next_slave(struct vfsmount *p)
 27{
 28	return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
 29}
 30
 31/*
 32 * Return true if path is reachable from root
 33 *
 34 * namespace_sem is held, and mnt is attached
 35 */
 36static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
 37			 const struct path *root)
 38{
 39	while (mnt != root->mnt && mnt->mnt_parent != mnt) {
 40		dentry = mnt->mnt_mountpoint;
 41		mnt = mnt->mnt_parent;
 42	}
 43	return mnt == root->mnt && is_subdir(dentry, root->dentry);
 44}
 45
 46static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
 47					    struct mnt_namespace *ns,
 48					    const struct path *root)
 49{
 50	struct vfsmount *m = mnt;
 51
 52	do {
 53		/* Check the namespace first for optimization */
 54		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
 55			return m;
 56
 57		m = next_peer(m);
 58	} while (m != mnt);
 59
 60	return NULL;
 61}
 62
 63/*
 64 * Get ID of closest dominating peer group having a representative
 65 * under the given root.
 66 *
 67 * Caller must hold namespace_sem
 68 */
 69int get_dominating_id(struct vfsmount *mnt, const struct path *root)
 70{
 71	struct vfsmount *m;
 72
 73	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 74		struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 75		if (d)
 76			return d->mnt_group_id;
 77	}
 78
 79	return 0;
 80}
 81
 82static int do_make_slave(struct vfsmount *mnt)
 83{
 84	struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
 85	struct vfsmount *slave_mnt;
 86
 87	/*
 88	 * slave 'mnt' to a peer mount that has the
 89	 * same root dentry. If none is available then
 90	 * slave it to anything that is available.
 91	 */
 92	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
 93	       peer_mnt->mnt_root != mnt->mnt_root) ;
 94
 95	if (peer_mnt == mnt) {
 96		peer_mnt = next_peer(mnt);
 97		if (peer_mnt == mnt)
 98			peer_mnt = NULL;
 99	}
100	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
101		mnt_release_group_id(mnt);
102
103	list_del_init(&mnt->mnt_share);
104	mnt->mnt_group_id = 0;
105
106	if (peer_mnt)
107		master = peer_mnt;
108
109	if (master) {
110		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111			slave_mnt->mnt_master = master;
112		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114		INIT_LIST_HEAD(&mnt->mnt_slave_list);
115	} else {
116		struct list_head *p = &mnt->mnt_slave_list;
117		while (!list_empty(p)) {
118                        slave_mnt = list_first_entry(p,
119					struct vfsmount, mnt_slave);
120			list_del_init(&slave_mnt->mnt_slave);
121			slave_mnt->mnt_master = NULL;
 
 
 
 
 
122		}
123	}
 
 
 
 
 
 
 
 
124	mnt->mnt_master = master;
125	CLEAR_MNT_SHARED(mnt);
126	return 0;
127}
128
129/*
130 * vfsmount lock must be held for write
131 */
132void change_mnt_propagation(struct vfsmount *mnt, int type)
133{
134	if (type == MS_SHARED) {
135		set_mnt_shared(mnt);
136		return;
137	}
138	do_make_slave(mnt);
139	if (type != MS_SLAVE) {
140		list_del_init(&mnt->mnt_slave);
141		mnt->mnt_master = NULL;
142		if (type == MS_UNBINDABLE)
143			mnt->mnt_flags |= MNT_UNBINDABLE;
144		else
145			mnt->mnt_flags &= ~MNT_UNBINDABLE;
146	}
147}
148
149/*
150 * get the next mount in the propagation tree.
151 * @m: the mount seen last
152 * @origin: the original mount from where the tree walk initiated
153 *
154 * Note that peer groups form contiguous segments of slave lists.
155 * We rely on that in get_source() to be able to find out if
156 * vfsmount found while iterating with propagation_next() is
157 * a peer of one we'd found earlier.
158 */
159static struct vfsmount *propagation_next(struct vfsmount *m,
160					 struct vfsmount *origin)
161{
162	/* are there any slaves of this mount? */
163	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
164		return first_slave(m);
165
166	while (1) {
167		struct vfsmount *next;
168		struct vfsmount *master = m->mnt_master;
169
170		if (master == origin->mnt_master) {
171			next = next_peer(m);
172			return ((next == origin) ? NULL : next);
173		} else if (m->mnt_slave.next != &master->mnt_slave_list)
174			return next_slave(m);
175
176		/* back at master */
177		m = master;
178	}
179}
180
181/*
182 * return the source mount to be used for cloning
183 *
184 * @dest 	the current destination mount
185 * @last_dest  	the last seen destination mount
186 * @last_src  	the last seen source mount
187 * @type	return CL_SLAVE if the new mount has to be
188 * 		cloned as a slave.
189 */
190static struct vfsmount *get_source(struct vfsmount *dest,
191					struct vfsmount *last_dest,
192					struct vfsmount *last_src,
193					int *type)
194{
195	struct vfsmount *p_last_src = NULL;
196	struct vfsmount *p_last_dest = NULL;
197
198	while (last_dest != dest->mnt_master) {
199		p_last_dest = last_dest;
200		p_last_src = last_src;
201		last_dest = last_dest->mnt_master;
202		last_src = last_src->mnt_master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203	}
 
204
205	if (p_last_dest) {
206		do {
207			p_last_dest = next_peer(p_last_dest);
208		} while (IS_MNT_NEW(p_last_dest));
209		/* is that a peer of the earlier? */
210		if (dest == p_last_dest) {
211			*type = CL_MAKE_SHARED;
212			return p_last_src;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214	}
215	/* slave of the earlier, then */
216	*type = CL_SLAVE;
217	/* beginning of peer group among the slaves? */
218	if (IS_MNT_SHARED(dest))
219		*type |= CL_MAKE_SHARED;
220	return last_src;
221}
222
223/*
224 * mount 'source_mnt' under the destination 'dest_mnt' at
225 * dentry 'dest_dentry'. And propagate that mount to
226 * all the peer and slave mounts of 'dest_mnt'.
227 * Link all the new mounts into a propagation tree headed at
228 * source_mnt. Also link all the new mounts using ->mnt_list
229 * headed at source_mnt's ->mnt_list
230 *
231 * @dest_mnt: destination mount.
232 * @dest_dentry: destination dentry.
233 * @source_mnt: source mount.
234 * @tree_list : list of heads of trees to be attached.
235 */
236int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
237		    struct vfsmount *source_mnt, struct list_head *tree_list)
238{
239	struct vfsmount *m, *child;
240	int ret = 0;
241	struct vfsmount *prev_dest_mnt = dest_mnt;
242	struct vfsmount *prev_src_mnt  = source_mnt;
243	LIST_HEAD(tmp_list);
244	LIST_HEAD(umount_list);
245
246	for (m = propagation_next(dest_mnt, dest_mnt); m;
247			m = propagation_next(m, dest_mnt)) {
248		int type;
249		struct vfsmount *source;
250
251		if (IS_MNT_NEW(m))
252			continue;
253
254		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
255
256		if (!(child = copy_tree(source, source->mnt_root, type))) {
257			ret = -ENOMEM;
258			list_splice(tree_list, tmp_list.prev);
 
 
 
 
 
 
 
 
259			goto out;
260		}
261
262		if (is_subdir(dest_dentry, m->mnt_root)) {
263			mnt_set_mountpoint(m, dest_dentry, child);
264			list_add_tail(&child->mnt_hash, tree_list);
265		} else {
266			/*
267			 * This can happen if the parent mount was bind mounted
268			 * on some subdirectory of a shared/slave mount.
269			 */
270			list_add_tail(&child->mnt_hash, &tmp_list);
271		}
272		prev_dest_mnt = m;
273		prev_src_mnt  = child;
274	}
275out:
276	br_write_lock(vfsmount_lock);
277	while (!list_empty(&tmp_list)) {
278		child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
279		umount_tree(child, 0, &umount_list);
 
280	}
281	br_write_unlock(vfsmount_lock);
282	release_mounts(&umount_list);
283	return ret;
284}
285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286/*
287 * return true if the refcount is greater than count
288 */
289static inline int do_refcount_check(struct vfsmount *mnt, int count)
290{
291	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
292	return (mycount > count);
293}
294
295/*
296 * check if the mount 'mnt' can be unmounted successfully.
297 * @mnt: the mount to be checked for unmount
298 * NOTE: unmounting 'mnt' would naturally propagate to all
299 * other mounts its parent propagates to.
300 * Check if any of these mounts that **do not have submounts**
301 * have more references than 'refcnt'. If so return busy.
302 *
303 * vfsmount lock must be held for write
304 */
305int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
306{
307	struct vfsmount *m, *child;
308	struct vfsmount *parent = mnt->mnt_parent;
309	int ret = 0;
310
311	if (mnt == parent)
312		return do_refcount_check(mnt, refcnt);
313
314	/*
315	 * quickly check if the current mount can be unmounted.
316	 * If not, we don't have to go checking for all other
317	 * mounts
318	 */
319	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
320		return 1;
321
322	for (m = propagation_next(parent, parent); m;
323	     		m = propagation_next(m, parent)) {
324		child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
325		if (child && list_empty(&child->mnt_mounts) &&
326		    (ret = do_refcount_check(child, 1)))
327			break;
 
 
 
 
 
 
 
 
 
 
 
 
328	}
329	return ret;
330}
331
332/*
333 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
334 * parent propagates to.
 
335 */
336static void __propagate_umount(struct vfsmount *mnt)
337{
338	struct vfsmount *parent = mnt->mnt_parent;
339	struct vfsmount *m;
340
341	BUG_ON(parent == mnt);
342
343	for (m = propagation_next(parent, parent); m;
344			m = propagation_next(m, parent)) {
 
 
 
 
 
345
346		struct vfsmount *child = __lookup_mnt(m,
347					mnt->mnt_mountpoint, 0);
348		/*
349		 * umount the child only if the child has no
350		 * other children
351		 */
352		if (child && list_empty(&child->mnt_mounts))
353			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354	}
355}
356
357/*
358 * collect all mounts that receive propagation from the mount in @list,
359 * and return these additional mounts in the same list.
360 * @list: the list of mounts to be unmounted.
361 *
362 * vfsmount lock must be held for write
363 */
364int propagate_umount(struct list_head *list)
365{
366	struct vfsmount *mnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
368	list_for_each_entry(mnt, list, mnt_hash)
369		__propagate_umount(mnt);
370	return 0;
371}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/pnode.c
  4 *
  5 * (C) Copyright IBM Corporation 2005.
 
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
 
  7 */
  8#include <linux/mnt_namespace.h>
  9#include <linux/mount.h>
 10#include <linux/fs.h>
 11#include <linux/nsproxy.h>
 12#include <uapi/linux/mount.h>
 13#include "internal.h"
 14#include "pnode.h"
 15
 16/* return the next shared peer mount of @p */
 17static inline struct mount *next_peer(struct mount *p)
 18{
 19	return list_entry(p->mnt_share.next, struct mount, mnt_share);
 20}
 21
 22static inline struct mount *first_slave(struct mount *p)
 23{
 24	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
 25}
 26
 27static inline struct mount *last_slave(struct mount *p)
 28{
 29	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
 30}
 31
 32static inline struct mount *next_slave(struct mount *p)
 
 
 
 
 
 
 33{
 34	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
 
 
 
 
 35}
 36
 37static struct mount *get_peer_under_root(struct mount *mnt,
 38					 struct mnt_namespace *ns,
 39					 const struct path *root)
 40{
 41	struct mount *m = mnt;
 42
 43	do {
 44		/* Check the namespace first for optimization */
 45		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
 46			return m;
 47
 48		m = next_peer(m);
 49	} while (m != mnt);
 50
 51	return NULL;
 52}
 53
 54/*
 55 * Get ID of closest dominating peer group having a representative
 56 * under the given root.
 57 *
 58 * Caller must hold namespace_sem
 59 */
 60int get_dominating_id(struct mount *mnt, const struct path *root)
 61{
 62	struct mount *m;
 63
 64	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 65		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 66		if (d)
 67			return d->mnt_group_id;
 68	}
 69
 70	return 0;
 71}
 72
 73static int do_make_slave(struct mount *mnt)
 74{
 75	struct mount *master, *slave_mnt;
 
 
 
 
 
 
 
 
 
 76
 77	if (list_empty(&mnt->mnt_share)) {
 78		if (IS_MNT_SHARED(mnt)) {
 79			mnt_release_group_id(mnt);
 80			CLEAR_MNT_SHARED(mnt);
 81		}
 82		master = mnt->mnt_master;
 83		if (!master) {
 84			struct list_head *p = &mnt->mnt_slave_list;
 85			while (!list_empty(p)) {
 86				slave_mnt = list_first_entry(p,
 87						struct mount, mnt_slave);
 88				list_del_init(&slave_mnt->mnt_slave);
 89				slave_mnt->mnt_master = NULL;
 90			}
 91			return 0;
 92		}
 
 
 
 
 93	} else {
 94		struct mount *m;
 95		/*
 96		 * slave 'mnt' to a peer mount that has the
 97		 * same root dentry. If none is available then
 98		 * slave it to anything that is available.
 99		 */
100		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102				master = m;
103				break;
104			}
105		}
106		list_del_init(&mnt->mnt_share);
107		mnt->mnt_group_id = 0;
108		CLEAR_MNT_SHARED(mnt);
109	}
110	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111		slave_mnt->mnt_master = master;
112	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115	mnt->mnt_master = master;
 
116	return 0;
117}
118
119/*
120 * vfsmount lock must be held for write
121 */
122void change_mnt_propagation(struct mount *mnt, int type)
123{
124	if (type == MS_SHARED) {
125		set_mnt_shared(mnt);
126		return;
127	}
128	do_make_slave(mnt);
129	if (type != MS_SLAVE) {
130		list_del_init(&mnt->mnt_slave);
131		mnt->mnt_master = NULL;
132		if (type == MS_UNBINDABLE)
133			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134		else
135			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136	}
137}
138
139/*
140 * get the next mount in the propagation tree.
141 * @m: the mount seen last
142 * @origin: the original mount from where the tree walk initiated
143 *
144 * Note that peer groups form contiguous segments of slave lists.
145 * We rely on that in get_source() to be able to find out if
146 * vfsmount found while iterating with propagation_next() is
147 * a peer of one we'd found earlier.
148 */
149static struct mount *propagation_next(struct mount *m,
150					 struct mount *origin)
151{
152	/* are there any slaves of this mount? */
153	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154		return first_slave(m);
155
156	while (1) {
157		struct mount *master = m->mnt_master;
 
158
159		if (master == origin->mnt_master) {
160			struct mount *next = next_peer(m);
161			return (next == origin) ? NULL : next;
162		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163			return next_slave(m);
164
165		/* back at master */
166		m = master;
167	}
168}
169
170static struct mount *skip_propagation_subtree(struct mount *m,
171						struct mount *origin)
172{
173	/*
174	 * Advance m such that propagation_next will not return
175	 * the slaves of m.
176	 */
177	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178		m = last_slave(m);
179
180	return m;
181}
182
183static struct mount *next_group(struct mount *m, struct mount *origin)
184{
185	while (1) {
186		while (1) {
187			struct mount *next;
188			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189				return first_slave(m);
190			next = next_peer(m);
191			if (m->mnt_group_id == origin->mnt_group_id) {
192				if (next == origin)
193					return NULL;
194			} else if (m->mnt_slave.next != &next->mnt_slave)
195				break;
196			m = next;
197		}
198		/* m is the last peer */
199		while (1) {
200			struct mount *master = m->mnt_master;
201			if (m->mnt_slave.next != &master->mnt_slave_list)
202				return next_slave(m);
203			m = next_peer(master);
204			if (master->mnt_group_id == origin->mnt_group_id)
205				break;
206			if (master->mnt_slave.next == &m->mnt_slave)
207				break;
208			m = master;
209		}
210		if (m == origin)
211			return NULL;
212	}
213}
214
215/* all accesses are serialized by namespace_sem */
216static struct mount *last_dest, *first_source, *last_source, *dest_master;
217static struct mountpoint *mp;
218static struct hlist_head *list;
219
220static inline bool peers(struct mount *m1, struct mount *m2)
221{
222	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
223}
224
225static int propagate_one(struct mount *m)
226{
227	struct mount *child;
228	int type;
229	/* skip ones added by this propagate_mnt() */
230	if (IS_MNT_NEW(m))
231		return 0;
232	/* skip if mountpoint isn't covered by it */
233	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
234		return 0;
235	if (peers(m, last_dest)) {
236		type = CL_MAKE_SHARED;
237	} else {
238		struct mount *n, *p;
239		bool done;
240		for (n = m; ; n = p) {
241			p = n->mnt_master;
242			if (p == dest_master || IS_MNT_MARKED(p))
243				break;
244		}
245		do {
246			struct mount *parent = last_source->mnt_parent;
247			if (last_source == first_source)
248				break;
249			done = parent->mnt_master == p;
250			if (done && peers(n, parent))
251				break;
252			last_source = last_source->mnt_master;
253		} while (!done);
254
255		type = CL_SLAVE;
256		/* beginning of peer group among the slaves? */
257		if (IS_MNT_SHARED(m))
258			type |= CL_MAKE_SHARED;
259	}
260		
261	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
262	if (IS_ERR(child))
263		return PTR_ERR(child);
264	mnt_set_mountpoint(m, mp, child);
265	last_dest = m;
266	last_source = child;
267	if (m->mnt_master != dest_master) {
268		read_seqlock_excl(&mount_lock);
269		SET_MNT_MARK(m->mnt_master);
270		read_sequnlock_excl(&mount_lock);
271	}
272	hlist_add_head(&child->mnt_hash, list);
273	return count_mounts(m->mnt_ns, child);
 
 
 
 
274}
275
276/*
277 * mount 'source_mnt' under the destination 'dest_mnt' at
278 * dentry 'dest_dentry'. And propagate that mount to
279 * all the peer and slave mounts of 'dest_mnt'.
280 * Link all the new mounts into a propagation tree headed at
281 * source_mnt. Also link all the new mounts using ->mnt_list
282 * headed at source_mnt's ->mnt_list
283 *
284 * @dest_mnt: destination mount.
285 * @dest_dentry: destination dentry.
286 * @source_mnt: source mount.
287 * @tree_list : list of heads of trees to be attached.
288 */
289int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
290		    struct mount *source_mnt, struct hlist_head *tree_list)
291{
292	struct mount *m, *n;
293	int ret = 0;
 
 
 
 
 
 
 
 
 
294
295	/*
296	 * we don't want to bother passing tons of arguments to
297	 * propagate_one(); everything is serialized by namespace_sem,
298	 * so globals will do just fine.
299	 */
300	last_dest = dest_mnt;
301	first_source = source_mnt;
302	last_source = source_mnt;
303	mp = dest_mp;
304	list = tree_list;
305	dest_master = dest_mnt->mnt_master;
306
307	/* all peers of dest_mnt, except dest_mnt itself */
308	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
309		ret = propagate_one(n);
310		if (ret)
311			goto out;
312	}
313
314	/* all slave groups */
315	for (m = next_group(dest_mnt, dest_mnt); m;
316			m = next_group(m, dest_mnt)) {
317		/* everything in that slave group */
318		n = m;
319		do {
320			ret = propagate_one(n);
321			if (ret)
322				goto out;
323			n = next_peer(n);
324		} while (n != m);
 
325	}
326out:
327	read_seqlock_excl(&mount_lock);
328	hlist_for_each_entry(n, tree_list, mnt_hash) {
329		m = n->mnt_parent;
330		if (m->mnt_master != dest_mnt->mnt_master)
331			CLEAR_MNT_MARK(m->mnt_master);
332	}
333	read_sequnlock_excl(&mount_lock);
 
334	return ret;
335}
336
337static struct mount *find_topper(struct mount *mnt)
338{
339	/* If there is exactly one mount covering mnt completely return it. */
340	struct mount *child;
341
342	if (!list_is_singular(&mnt->mnt_mounts))
343		return NULL;
344
345	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
346	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
347		return NULL;
348
349	return child;
350}
351
352/*
353 * return true if the refcount is greater than count
354 */
355static inline int do_refcount_check(struct mount *mnt, int count)
356{
357	return mnt_get_count(mnt) > count;
 
358}
359
360/*
361 * check if the mount 'mnt' can be unmounted successfully.
362 * @mnt: the mount to be checked for unmount
363 * NOTE: unmounting 'mnt' would naturally propagate to all
364 * other mounts its parent propagates to.
365 * Check if any of these mounts that **do not have submounts**
366 * have more references than 'refcnt'. If so return busy.
367 *
368 * vfsmount lock must be held for write
369 */
370int propagate_mount_busy(struct mount *mnt, int refcnt)
371{
372	struct mount *m, *child, *topper;
373	struct mount *parent = mnt->mnt_parent;
 
374
375	if (mnt == parent)
376		return do_refcount_check(mnt, refcnt);
377
378	/*
379	 * quickly check if the current mount can be unmounted.
380	 * If not, we don't have to go checking for all other
381	 * mounts
382	 */
383	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
384		return 1;
385
386	for (m = propagation_next(parent, parent); m;
387	     		m = propagation_next(m, parent)) {
388		int count = 1;
389		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
390		if (!child)
391			continue;
392
393		/* Is there exactly one mount on the child that covers
394		 * it completely whose reference should be ignored?
395		 */
396		topper = find_topper(child);
397		if (topper)
398			count += 1;
399		else if (!list_empty(&child->mnt_mounts))
400			continue;
401
402		if (do_refcount_check(child, count))
403			return 1;
404	}
405	return 0;
406}
407
408/*
409 * Clear MNT_LOCKED when it can be shown to be safe.
410 *
411 * mount_lock lock must be held for write
412 */
413void propagate_mount_unlock(struct mount *mnt)
414{
415	struct mount *parent = mnt->mnt_parent;
416	struct mount *m, *child;
417
418	BUG_ON(parent == mnt);
419
420	for (m = propagation_next(parent, parent); m;
421			m = propagation_next(m, parent)) {
422		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
423		if (child)
424			child->mnt.mnt_flags &= ~MNT_LOCKED;
425	}
426}
427
428static void umount_one(struct mount *mnt, struct list_head *to_umount)
429{
430	CLEAR_MNT_MARK(mnt);
431	mnt->mnt.mnt_flags |= MNT_UMOUNT;
432	list_del_init(&mnt->mnt_child);
433	list_del_init(&mnt->mnt_umounting);
434	list_move_tail(&mnt->mnt_list, to_umount);
435}
436
437/*
438 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
439 * parent propagates to.
440 */
441static bool __propagate_umount(struct mount *mnt,
442			       struct list_head *to_umount,
443			       struct list_head *to_restore)
444{
445	bool progress = false;
446	struct mount *child;
447
448	/*
449	 * The state of the parent won't change if this mount is
450	 * already unmounted or marked as without children.
451	 */
452	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
453		goto out;
454
455	/* Verify topper is the only grandchild that has not been
456	 * speculatively unmounted.
457	 */
458	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
459		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
460			continue;
461		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
462			continue;
463		/* Found a mounted child */
464		goto children;
465	}
466
467	/* Mark mounts that can be unmounted if not locked */
468	SET_MNT_MARK(mnt);
469	progress = true;
470
471	/* If a mount is without children and not locked umount it. */
472	if (!IS_MNT_LOCKED(mnt)) {
473		umount_one(mnt, to_umount);
474	} else {
475children:
476		list_move_tail(&mnt->mnt_umounting, to_restore);
477	}
478out:
479	return progress;
480}
481
482static void umount_list(struct list_head *to_umount,
483			struct list_head *to_restore)
484{
485	struct mount *mnt, *child, *tmp;
486	list_for_each_entry(mnt, to_umount, mnt_list) {
487		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
488			/* topper? */
489			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
490				list_move_tail(&child->mnt_umounting, to_restore);
491			else
492				umount_one(child, to_umount);
493		}
494	}
495}
496
497static void restore_mounts(struct list_head *to_restore)
498{
499	/* Restore mounts to a clean working state */
500	while (!list_empty(to_restore)) {
501		struct mount *mnt, *parent;
502		struct mountpoint *mp;
503
504		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
505		CLEAR_MNT_MARK(mnt);
506		list_del_init(&mnt->mnt_umounting);
507
508		/* Should this mount be reparented? */
509		mp = mnt->mnt_mp;
510		parent = mnt->mnt_parent;
511		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
512			mp = parent->mnt_mp;
513			parent = parent->mnt_parent;
514		}
515		if (parent != mnt->mnt_parent)
516			mnt_change_mountpoint(parent, mp, mnt);
517	}
518}
519
520static void cleanup_umount_visitations(struct list_head *visited)
521{
522	while (!list_empty(visited)) {
523		struct mount *mnt =
524			list_first_entry(visited, struct mount, mnt_umounting);
525		list_del_init(&mnt->mnt_umounting);
526	}
527}
528
529/*
530 * collect all mounts that receive propagation from the mount in @list,
531 * and return these additional mounts in the same list.
532 * @list: the list of mounts to be unmounted.
533 *
534 * vfsmount lock must be held for write
535 */
536int propagate_umount(struct list_head *list)
537{
538	struct mount *mnt;
539	LIST_HEAD(to_restore);
540	LIST_HEAD(to_umount);
541	LIST_HEAD(visited);
542
543	/* Find candidates for unmounting */
544	list_for_each_entry_reverse(mnt, list, mnt_list) {
545		struct mount *parent = mnt->mnt_parent;
546		struct mount *m;
547
548		/*
549		 * If this mount has already been visited it is known that it's
550		 * entire peer group and all of their slaves in the propagation
551		 * tree for the mountpoint has already been visited and there is
552		 * no need to visit them again.
553		 */
554		if (!list_empty(&mnt->mnt_umounting))
555			continue;
556
557		list_add_tail(&mnt->mnt_umounting, &visited);
558		for (m = propagation_next(parent, parent); m;
559		     m = propagation_next(m, parent)) {
560			struct mount *child = __lookup_mnt(&m->mnt,
561							   mnt->mnt_mountpoint);
562			if (!child)
563				continue;
564
565			if (!list_empty(&child->mnt_umounting)) {
566				/*
567				 * If the child has already been visited it is
568				 * know that it's entire peer group and all of
569				 * their slaves in the propgation tree for the
570				 * mountpoint has already been visited and there
571				 * is no need to visit this subtree again.
572				 */
573				m = skip_propagation_subtree(m, parent);
574				continue;
575			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
576				/*
577				 * We have come accross an partially unmounted
578				 * mount in list that has not been visited yet.
579				 * Remember it has been visited and continue
580				 * about our merry way.
581				 */
582				list_add_tail(&child->mnt_umounting, &visited);
583				continue;
584			}
585
586			/* Check the child and parents while progress is made */
587			while (__propagate_umount(child,
588						  &to_umount, &to_restore)) {
589				/* Is the parent a umount candidate? */
590				child = child->mnt_parent;
591				if (list_empty(&child->mnt_umounting))
592					break;
593			}
594		}
595	}
596
597	umount_list(&to_umount, &to_restore);
598	restore_mounts(&to_restore);
599	cleanup_umount_visitations(&visited);
600	list_splice_tail(&to_umount, list);
601
 
 
602	return 0;
603}