Linux Audio

Check our new training course

Loading...
v3.1
 
  1/**
  2 * eCryptfs: Linux filesystem encryption layer
  3 *
  4 * Copyright (C) 2004-2008 International Business Machines Corp.
  5 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
  6 *		Tyler Hicks <tyhicks@ou.edu>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version
 10 * 2 as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful, but
 13 * WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 15 * General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 20 * 02111-1307, USA.
 21 */
 22#include <linux/sched.h>
 23#include <linux/slab.h>
 24#include <linux/user_namespace.h>
 25#include <linux/nsproxy.h>
 26#include "ecryptfs_kernel.h"
 27
 28static LIST_HEAD(ecryptfs_msg_ctx_free_list);
 29static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
 30static struct mutex ecryptfs_msg_ctx_lists_mux;
 31
 32static struct hlist_head *ecryptfs_daemon_hash;
 33struct mutex ecryptfs_daemon_hash_mux;
 34static int ecryptfs_hash_bits;
 35#define ecryptfs_uid_hash(uid) \
 36        hash_long((unsigned long)uid, ecryptfs_hash_bits)
 37
 38static u32 ecryptfs_msg_counter;
 39static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
 40
 41/**
 42 * ecryptfs_acquire_free_msg_ctx
 43 * @msg_ctx: The context that was acquired from the free list
 44 *
 45 * Acquires a context element from the free list and locks the mutex
 46 * on the context.  Sets the msg_ctx task to current.  Returns zero on
 47 * success; non-zero on error or upon failure to acquire a free
 48 * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
 49 * held.
 50 */
 51static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
 52{
 53	struct list_head *p;
 54	int rc;
 55
 56	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
 57		printk(KERN_WARNING "%s: The eCryptfs free "
 58		       "context list is empty.  It may be helpful to "
 59		       "specify the ecryptfs_message_buf_len "
 60		       "parameter to be greater than the current "
 61		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
 62		rc = -ENOMEM;
 63		goto out;
 64	}
 65	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
 66		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
 67		if (mutex_trylock(&(*msg_ctx)->mux)) {
 68			(*msg_ctx)->task = current;
 69			rc = 0;
 70			goto out;
 71		}
 72	}
 73	rc = -ENOMEM;
 74out:
 75	return rc;
 76}
 77
 78/**
 79 * ecryptfs_msg_ctx_free_to_alloc
 80 * @msg_ctx: The context to move from the free list to the alloc list
 81 *
 82 * Must be called with ecryptfs_msg_ctx_lists_mux held.
 83 */
 84static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
 85{
 86	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
 87	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
 88	msg_ctx->counter = ++ecryptfs_msg_counter;
 89}
 90
 91/**
 92 * ecryptfs_msg_ctx_alloc_to_free
 93 * @msg_ctx: The context to move from the alloc list to the free list
 94 *
 95 * Must be called with ecryptfs_msg_ctx_lists_mux held.
 96 */
 97void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
 98{
 99	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100	if (msg_ctx->msg)
101		kfree(msg_ctx->msg);
102	msg_ctx->msg = NULL;
103	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
104}
105
106/**
107 * ecryptfs_find_daemon_by_euid
108 * @euid: The effective user id which maps to the desired daemon id
109 * @user_ns: The namespace in which @euid applies
110 * @daemon: If return value is zero, points to the desired daemon pointer
111 *
112 * Must be called with ecryptfs_daemon_hash_mux held.
113 *
114 * Search the hash list for the given user id.
115 *
116 * Returns zero if the user id exists in the list; non-zero otherwise.
117 */
118int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
119				 struct user_namespace *user_ns)
120{
121	struct hlist_node *elem;
122	int rc;
123
124	hlist_for_each_entry(*daemon, elem,
125			     &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
126			     euid_chain) {
127		if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
128			rc = 0;
129			goto out;
130		}
131	}
132	rc = -EINVAL;
133out:
134	return rc;
135}
136
137/**
138 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
139 * @daemon: Pointer to set to newly allocated daemon struct
140 * @euid: Effective user id for the daemon
141 * @user_ns: The namespace in which @euid applies
142 * @pid: Process id for the daemon
143 *
144 * Must be called ceremoniously while in possession of
145 * ecryptfs_sacred_daemon_hash_mux
146 *
147 * Returns zero on success; non-zero otherwise
148 */
149int
150ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
151		      struct user_namespace *user_ns, struct pid *pid)
152{
153	int rc = 0;
154
155	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
156	if (!(*daemon)) {
157		rc = -ENOMEM;
158		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
159		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
160		goto out;
161	}
162	(*daemon)->euid = euid;
163	(*daemon)->user_ns = get_user_ns(user_ns);
164	(*daemon)->pid = get_pid(pid);
165	(*daemon)->task = current;
166	mutex_init(&(*daemon)->mux);
167	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
168	init_waitqueue_head(&(*daemon)->wait);
169	(*daemon)->num_queued_msg_ctx = 0;
170	hlist_add_head(&(*daemon)->euid_chain,
171		       &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
172out:
173	return rc;
174}
175
176/**
177 * ecryptfs_exorcise_daemon - Destroy the daemon struct
178 *
179 * Must be called ceremoniously while in possession of
180 * ecryptfs_daemon_hash_mux and the daemon's own mux.
181 */
182int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
183{
184	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
185	int rc = 0;
186
187	mutex_lock(&daemon->mux);
188	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
189	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
190		rc = -EBUSY;
191		printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
192		       "[0x%p], but it is in the midst of a read or a poll\n",
193		       __func__, daemon->pid);
194		mutex_unlock(&daemon->mux);
195		goto out;
196	}
197	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
198				 &daemon->msg_ctx_out_queue, daemon_out_list) {
199		list_del(&msg_ctx->daemon_out_list);
200		daemon->num_queued_msg_ctx--;
201		printk(KERN_WARNING "%s: Warning: dropping message that is in "
202		       "the out queue of a dying daemon\n", __func__);
203		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
204	}
205	hlist_del(&daemon->euid_chain);
206	if (daemon->task)
207		wake_up_process(daemon->task);
208	if (daemon->pid)
209		put_pid(daemon->pid);
210	if (daemon->user_ns)
211		put_user_ns(daemon->user_ns);
212	mutex_unlock(&daemon->mux);
213	kzfree(daemon);
214out:
215	return rc;
216}
217
218/**
219 * ecryptfs_process_quit
220 * @euid: The user ID owner of the message
221 * @user_ns: The namespace in which @euid applies
222 * @pid: The process ID for the userspace program that sent the
223 *       message
224 *
225 * Deletes the corresponding daemon for the given euid and pid, if
226 * it is the registered that is requesting the deletion. Returns zero
227 * after deleting the desired daemon; non-zero otherwise.
228 */
229int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
230			  struct pid *pid)
231{
232	struct ecryptfs_daemon *daemon;
233	int rc;
234
235	mutex_lock(&ecryptfs_daemon_hash_mux);
236	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
237	if (rc || !daemon) {
238		rc = -EINVAL;
239		printk(KERN_ERR "Received request from user [%d] to "
240		       "unregister unrecognized daemon [0x%p]\n", euid, pid);
241		goto out_unlock;
242	}
243	rc = ecryptfs_exorcise_daemon(daemon);
244out_unlock:
245	mutex_unlock(&ecryptfs_daemon_hash_mux);
246	return rc;
247}
248
249/**
250 * ecryptfs_process_reponse
251 * @msg: The ecryptfs message received; the caller should sanity check
252 *       msg->data_len and free the memory
253 * @pid: The process ID of the userspace application that sent the
254 *       message
255 * @seq: The sequence number of the message; must match the sequence
256 *       number for the existing message context waiting for this
257 *       response
258 *
259 * Processes a response message after sending an operation request to
260 * userspace. Some other process is awaiting this response. Before
261 * sending out its first communications, the other process allocated a
262 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
263 * response message contains this index so that we can copy over the
264 * response message into the msg_ctx that the process holds a
265 * reference to. The other process is going to wake up, check to see
266 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
267 * proceed to read off and process the response message. Returns zero
268 * upon delivery to desired context element; non-zero upon delivery
269 * failure or error.
270 *
271 * Returns zero on success; non-zero otherwise
272 */
273int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
274			      struct user_namespace *user_ns, struct pid *pid,
275			      u32 seq)
276{
277	struct ecryptfs_daemon *uninitialized_var(daemon);
278	struct ecryptfs_msg_ctx *msg_ctx;
279	size_t msg_size;
280	struct nsproxy *nsproxy;
281	struct user_namespace *tsk_user_ns;
282	uid_t ctx_euid;
283	int rc;
284
285	if (msg->index >= ecryptfs_message_buf_len) {
286		rc = -EINVAL;
287		printk(KERN_ERR "%s: Attempt to reference "
288		       "context buffer at index [%d]; maximum "
289		       "allowable is [%d]\n", __func__, msg->index,
290		       (ecryptfs_message_buf_len - 1));
291		goto out;
292	}
293	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
294	mutex_lock(&msg_ctx->mux);
295	mutex_lock(&ecryptfs_daemon_hash_mux);
296	rcu_read_lock();
297	nsproxy = task_nsproxy(msg_ctx->task);
298	if (nsproxy == NULL) {
299		rc = -EBADMSG;
300		printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
301		       "message.\n", __func__);
302		rcu_read_unlock();
303		mutex_unlock(&ecryptfs_daemon_hash_mux);
304		goto wake_up;
305	}
306	tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
307	ctx_euid = task_euid(msg_ctx->task);
308	rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
309	rcu_read_unlock();
310	mutex_unlock(&ecryptfs_daemon_hash_mux);
311	if (rc) {
312		rc = -EBADMSG;
313		printk(KERN_WARNING "%s: User [%d] received a "
314		       "message response from process [0x%p] but does "
315		       "not have a registered daemon\n", __func__,
316		       ctx_euid, pid);
317		goto wake_up;
318	}
319	if (ctx_euid != euid) {
320		rc = -EBADMSG;
321		printk(KERN_WARNING "%s: Received message from user "
322		       "[%d]; expected message from user [%d]\n", __func__,
323		       euid, ctx_euid);
324		goto unlock;
325	}
326	if (tsk_user_ns != user_ns) {
327		rc = -EBADMSG;
328		printk(KERN_WARNING "%s: Received message from user_ns "
329		       "[0x%p]; expected message from user_ns [0x%p]\n",
330		       __func__, user_ns, tsk_user_ns);
331		goto unlock;
332	}
333	if (daemon->pid != pid) {
334		rc = -EBADMSG;
335		printk(KERN_ERR "%s: User [%d] sent a message response "
336		       "from an unrecognized process [0x%p]\n",
337		       __func__, ctx_euid, pid);
338		goto unlock;
339	}
340	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
341		rc = -EINVAL;
342		printk(KERN_WARNING "%s: Desired context element is not "
343		       "pending a response\n", __func__);
344		goto unlock;
345	} else if (msg_ctx->counter != seq) {
346		rc = -EINVAL;
347		printk(KERN_WARNING "%s: Invalid message sequence; "
348		       "expected [%d]; received [%d]\n", __func__,
349		       msg_ctx->counter, seq);
350		goto unlock;
351	}
352	msg_size = (sizeof(*msg) + msg->data_len);
353	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
354	if (!msg_ctx->msg) {
355		rc = -ENOMEM;
356		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
357		       "GFP_KERNEL memory\n", __func__, msg_size);
358		goto unlock;
359	}
360	memcpy(msg_ctx->msg, msg, msg_size);
361	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
362	rc = 0;
363wake_up:
364	wake_up_process(msg_ctx->task);
 
365unlock:
366	mutex_unlock(&msg_ctx->mux);
367out:
368	return rc;
369}
370
371/**
372 * ecryptfs_send_message_locked
373 * @data: The data to send
374 * @data_len: The length of data
375 * @msg_ctx: The message context allocated for the send
376 *
377 * Must be called with ecryptfs_daemon_hash_mux held.
378 *
379 * Returns zero on success; non-zero otherwise
380 */
381static int
382ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
383			     struct ecryptfs_msg_ctx **msg_ctx)
384{
385	struct ecryptfs_daemon *daemon;
386	uid_t euid = current_euid();
387	int rc;
388
389	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
390	if (rc || !daemon) {
391		rc = -ENOTCONN;
392		printk(KERN_ERR "%s: User [%d] does not have a daemon "
393		       "registered\n", __func__, euid);
394		goto out;
395	}
396	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
397	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
398	if (rc) {
399		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
400		printk(KERN_WARNING "%s: Could not claim a free "
401		       "context element\n", __func__);
402		goto out;
403	}
404	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
405	mutex_unlock(&(*msg_ctx)->mux);
406	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
407	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
408				   daemon);
409	if (rc)
410		printk(KERN_ERR "%s: Error attempting to send message to "
411		       "userspace daemon; rc = [%d]\n", __func__, rc);
412out:
413	return rc;
414}
415
416/**
417 * ecryptfs_send_message
418 * @data: The data to send
419 * @data_len: The length of data
420 * @msg_ctx: The message context allocated for the send
421 *
422 * Grabs ecryptfs_daemon_hash_mux.
423 *
424 * Returns zero on success; non-zero otherwise
425 */
426int ecryptfs_send_message(char *data, int data_len,
427			  struct ecryptfs_msg_ctx **msg_ctx)
428{
429	int rc;
430
431	mutex_lock(&ecryptfs_daemon_hash_mux);
432	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
433					  msg_ctx);
434	mutex_unlock(&ecryptfs_daemon_hash_mux);
435	return rc;
436}
437
438/**
439 * ecryptfs_wait_for_response
440 * @msg_ctx: The context that was assigned when sending a message
441 * @msg: The incoming message from userspace; not set if rc != 0
442 *
443 * Sleeps until awaken by ecryptfs_receive_message or until the amount
444 * of time exceeds ecryptfs_message_wait_timeout.  If zero is
445 * returned, msg will point to a valid message from userspace; a
446 * non-zero value is returned upon failure to receive a message or an
447 * error occurs. Callee must free @msg on success.
448 */
449int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
450			       struct ecryptfs_message **msg)
451{
452	signed long timeout = ecryptfs_message_wait_timeout * HZ;
453	int rc = 0;
454
455sleep:
456	timeout = schedule_timeout_interruptible(timeout);
457	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
458	mutex_lock(&msg_ctx->mux);
459	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
460		if (timeout) {
461			mutex_unlock(&msg_ctx->mux);
462			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
463			goto sleep;
464		}
465		rc = -ENOMSG;
466	} else {
467		*msg = msg_ctx->msg;
468		msg_ctx->msg = NULL;
469	}
470	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
471	mutex_unlock(&msg_ctx->mux);
472	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
473	return rc;
474}
475
476int __init ecryptfs_init_messaging(void)
477{
478	int i;
479	int rc = 0;
480
481	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
482		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
483		printk(KERN_WARNING "%s: Specified number of users is "
484		       "too large, defaulting to [%d] users\n", __func__,
485		       ecryptfs_number_of_users);
486	}
487	mutex_init(&ecryptfs_daemon_hash_mux);
488	mutex_lock(&ecryptfs_daemon_hash_mux);
489	ecryptfs_hash_bits = 1;
490	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
491		ecryptfs_hash_bits++;
492	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
493					* (1 << ecryptfs_hash_bits)),
494				       GFP_KERNEL);
495	if (!ecryptfs_daemon_hash) {
496		rc = -ENOMEM;
497		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
498		mutex_unlock(&ecryptfs_daemon_hash_mux);
499		goto out;
500	}
501	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
502		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
503	mutex_unlock(&ecryptfs_daemon_hash_mux);
504	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
505					* ecryptfs_message_buf_len),
506				       GFP_KERNEL);
507	if (!ecryptfs_msg_ctx_arr) {
508		rc = -ENOMEM;
509		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
510		goto out;
511	}
512	mutex_init(&ecryptfs_msg_ctx_lists_mux);
513	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
514	ecryptfs_msg_counter = 0;
515	for (i = 0; i < ecryptfs_message_buf_len; i++) {
516		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
517		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
518		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
519		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
520		ecryptfs_msg_ctx_arr[i].index = i;
521		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
522		ecryptfs_msg_ctx_arr[i].counter = 0;
523		ecryptfs_msg_ctx_arr[i].task = NULL;
524		ecryptfs_msg_ctx_arr[i].msg = NULL;
525		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
526			      &ecryptfs_msg_ctx_free_list);
527		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
528	}
529	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
530	rc = ecryptfs_init_ecryptfs_miscdev();
531	if (rc)
532		ecryptfs_release_messaging();
533out:
534	return rc;
535}
536
537void ecryptfs_release_messaging(void)
538{
539	if (ecryptfs_msg_ctx_arr) {
540		int i;
541
542		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
543		for (i = 0; i < ecryptfs_message_buf_len; i++) {
544			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
545			if (ecryptfs_msg_ctx_arr[i].msg)
546				kfree(ecryptfs_msg_ctx_arr[i].msg);
547			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
548		}
549		kfree(ecryptfs_msg_ctx_arr);
550		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
551	}
552	if (ecryptfs_daemon_hash) {
553		struct hlist_node *elem;
554		struct ecryptfs_daemon *daemon;
 
555		int i;
556
557		mutex_lock(&ecryptfs_daemon_hash_mux);
558		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
559			int rc;
560
561			hlist_for_each_entry(daemon, elem,
562					     &ecryptfs_daemon_hash[i],
563					     euid_chain) {
564				rc = ecryptfs_exorcise_daemon(daemon);
565				if (rc)
566					printk(KERN_ERR "%s: Error whilst "
567					       "attempting to destroy daemon; "
568					       "rc = [%d]. Dazed and confused, "
569					       "but trying to continue.\n",
570					       __func__, rc);
571			}
572		}
573		kfree(ecryptfs_daemon_hash);
574		mutex_unlock(&ecryptfs_daemon_hash_mux);
575	}
576	ecryptfs_destroy_ecryptfs_miscdev();
577	return;
578}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/**
  3 * eCryptfs: Linux filesystem encryption layer
  4 *
  5 * Copyright (C) 2004-2008 International Business Machines Corp.
  6 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
  7 *		Tyler Hicks <tyhicks@ou.edu>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/sched.h>
 10#include <linux/slab.h>
 11#include <linux/user_namespace.h>
 12#include <linux/nsproxy.h>
 13#include "ecryptfs_kernel.h"
 14
 15static LIST_HEAD(ecryptfs_msg_ctx_free_list);
 16static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
 17static struct mutex ecryptfs_msg_ctx_lists_mux;
 18
 19static struct hlist_head *ecryptfs_daemon_hash;
 20struct mutex ecryptfs_daemon_hash_mux;
 21static int ecryptfs_hash_bits;
 22#define ecryptfs_current_euid_hash(uid) \
 23	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
 24
 25static u32 ecryptfs_msg_counter;
 26static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
 27
 28/**
 29 * ecryptfs_acquire_free_msg_ctx
 30 * @msg_ctx: The context that was acquired from the free list
 31 *
 32 * Acquires a context element from the free list and locks the mutex
 33 * on the context.  Sets the msg_ctx task to current.  Returns zero on
 34 * success; non-zero on error or upon failure to acquire a free
 35 * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
 36 * held.
 37 */
 38static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
 39{
 40	struct list_head *p;
 41	int rc;
 42
 43	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
 44		printk(KERN_WARNING "%s: The eCryptfs free "
 45		       "context list is empty.  It may be helpful to "
 46		       "specify the ecryptfs_message_buf_len "
 47		       "parameter to be greater than the current "
 48		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
 49		rc = -ENOMEM;
 50		goto out;
 51	}
 52	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
 53		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
 54		if (mutex_trylock(&(*msg_ctx)->mux)) {
 55			(*msg_ctx)->task = current;
 56			rc = 0;
 57			goto out;
 58		}
 59	}
 60	rc = -ENOMEM;
 61out:
 62	return rc;
 63}
 64
 65/**
 66 * ecryptfs_msg_ctx_free_to_alloc
 67 * @msg_ctx: The context to move from the free list to the alloc list
 68 *
 69 * Must be called with ecryptfs_msg_ctx_lists_mux held.
 70 */
 71static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
 72{
 73	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
 74	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
 75	msg_ctx->counter = ++ecryptfs_msg_counter;
 76}
 77
 78/**
 79 * ecryptfs_msg_ctx_alloc_to_free
 80 * @msg_ctx: The context to move from the alloc list to the free list
 81 *
 82 * Must be called with ecryptfs_msg_ctx_lists_mux held.
 83 */
 84void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
 85{
 86	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
 87	kfree(msg_ctx->msg);
 
 88	msg_ctx->msg = NULL;
 89	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
 90}
 91
 92/**
 93 * ecryptfs_find_daemon_by_euid
 
 
 94 * @daemon: If return value is zero, points to the desired daemon pointer
 95 *
 96 * Must be called with ecryptfs_daemon_hash_mux held.
 97 *
 98 * Search the hash list for the current effective user id.
 99 *
100 * Returns zero if the user id exists in the list; non-zero otherwise.
101 */
102int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
 
103{
 
104	int rc;
105
106	hlist_for_each_entry(*daemon,
107			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
108			    euid_chain) {
109		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
110			rc = 0;
111			goto out;
112		}
113	}
114	rc = -EINVAL;
115out:
116	return rc;
117}
118
119/**
120 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
121 * @daemon: Pointer to set to newly allocated daemon struct
122 * @file: File used when opening /dev/ecryptfs
 
 
123 *
124 * Must be called ceremoniously while in possession of
125 * ecryptfs_sacred_daemon_hash_mux
126 *
127 * Returns zero on success; non-zero otherwise
128 */
129int
130ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
 
131{
132	int rc = 0;
133
134	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
135	if (!(*daemon)) {
136		rc = -ENOMEM;
 
 
137		goto out;
138	}
139	(*daemon)->file = file;
 
 
 
140	mutex_init(&(*daemon)->mux);
141	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
142	init_waitqueue_head(&(*daemon)->wait);
143	(*daemon)->num_queued_msg_ctx = 0;
144	hlist_add_head(&(*daemon)->euid_chain,
145		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
146out:
147	return rc;
148}
149
150/**
151 * ecryptfs_exorcise_daemon - Destroy the daemon struct
152 *
153 * Must be called ceremoniously while in possession of
154 * ecryptfs_daemon_hash_mux and the daemon's own mux.
155 */
156int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
157{
158	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
159	int rc = 0;
160
161	mutex_lock(&daemon->mux);
162	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
163	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
164		rc = -EBUSY;
 
 
 
165		mutex_unlock(&daemon->mux);
166		goto out;
167	}
168	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
169				 &daemon->msg_ctx_out_queue, daemon_out_list) {
170		list_del(&msg_ctx->daemon_out_list);
171		daemon->num_queued_msg_ctx--;
172		printk(KERN_WARNING "%s: Warning: dropping message that is in "
173		       "the out queue of a dying daemon\n", __func__);
174		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
175	}
176	hlist_del(&daemon->euid_chain);
 
 
 
 
 
 
177	mutex_unlock(&daemon->mux);
178	kzfree(daemon);
179out:
180	return rc;
181}
182
183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184 * ecryptfs_process_reponse
185 * @msg: The ecryptfs message received; the caller should sanity check
186 *       msg->data_len and free the memory
 
 
187 * @seq: The sequence number of the message; must match the sequence
188 *       number for the existing message context waiting for this
189 *       response
190 *
191 * Processes a response message after sending an operation request to
192 * userspace. Some other process is awaiting this response. Before
193 * sending out its first communications, the other process allocated a
194 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
195 * response message contains this index so that we can copy over the
196 * response message into the msg_ctx that the process holds a
197 * reference to. The other process is going to wake up, check to see
198 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
199 * proceed to read off and process the response message. Returns zero
200 * upon delivery to desired context element; non-zero upon delivery
201 * failure or error.
202 *
203 * Returns zero on success; non-zero otherwise
204 */
205int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
206			      struct ecryptfs_message *msg, u32 seq)
 
207{
 
208	struct ecryptfs_msg_ctx *msg_ctx;
209	size_t msg_size;
 
 
 
210	int rc;
211
212	if (msg->index >= ecryptfs_message_buf_len) {
213		rc = -EINVAL;
214		printk(KERN_ERR "%s: Attempt to reference "
215		       "context buffer at index [%d]; maximum "
216		       "allowable is [%d]\n", __func__, msg->index,
217		       (ecryptfs_message_buf_len - 1));
218		goto out;
219	}
220	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
221	mutex_lock(&msg_ctx->mux);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
223		rc = -EINVAL;
224		printk(KERN_WARNING "%s: Desired context element is not "
225		       "pending a response\n", __func__);
226		goto unlock;
227	} else if (msg_ctx->counter != seq) {
228		rc = -EINVAL;
229		printk(KERN_WARNING "%s: Invalid message sequence; "
230		       "expected [%d]; received [%d]\n", __func__,
231		       msg_ctx->counter, seq);
232		goto unlock;
233	}
234	msg_size = (sizeof(*msg) + msg->data_len);
235	msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL);
236	if (!msg_ctx->msg) {
237		rc = -ENOMEM;
 
 
238		goto unlock;
239	}
 
240	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
 
 
241	wake_up_process(msg_ctx->task);
242	rc = 0;
243unlock:
244	mutex_unlock(&msg_ctx->mux);
245out:
246	return rc;
247}
248
249/**
250 * ecryptfs_send_message_locked
251 * @data: The data to send
252 * @data_len: The length of data
253 * @msg_ctx: The message context allocated for the send
254 *
255 * Must be called with ecryptfs_daemon_hash_mux held.
256 *
257 * Returns zero on success; non-zero otherwise
258 */
259static int
260ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
261			     struct ecryptfs_msg_ctx **msg_ctx)
262{
263	struct ecryptfs_daemon *daemon;
 
264	int rc;
265
266	rc = ecryptfs_find_daemon_by_euid(&daemon);
267	if (rc) {
268		rc = -ENOTCONN;
 
 
269		goto out;
270	}
271	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
272	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
273	if (rc) {
274		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
275		printk(KERN_WARNING "%s: Could not claim a free "
276		       "context element\n", __func__);
277		goto out;
278	}
279	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
280	mutex_unlock(&(*msg_ctx)->mux);
281	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
282	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
283				   daemon);
284	if (rc)
285		printk(KERN_ERR "%s: Error attempting to send message to "
286		       "userspace daemon; rc = [%d]\n", __func__, rc);
287out:
288	return rc;
289}
290
291/**
292 * ecryptfs_send_message
293 * @data: The data to send
294 * @data_len: The length of data
295 * @msg_ctx: The message context allocated for the send
296 *
297 * Grabs ecryptfs_daemon_hash_mux.
298 *
299 * Returns zero on success; non-zero otherwise
300 */
301int ecryptfs_send_message(char *data, int data_len,
302			  struct ecryptfs_msg_ctx **msg_ctx)
303{
304	int rc;
305
306	mutex_lock(&ecryptfs_daemon_hash_mux);
307	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
308					  msg_ctx);
309	mutex_unlock(&ecryptfs_daemon_hash_mux);
310	return rc;
311}
312
313/**
314 * ecryptfs_wait_for_response
315 * @msg_ctx: The context that was assigned when sending a message
316 * @msg: The incoming message from userspace; not set if rc != 0
317 *
318 * Sleeps until awaken by ecryptfs_receive_message or until the amount
319 * of time exceeds ecryptfs_message_wait_timeout.  If zero is
320 * returned, msg will point to a valid message from userspace; a
321 * non-zero value is returned upon failure to receive a message or an
322 * error occurs. Callee must free @msg on success.
323 */
324int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
325			       struct ecryptfs_message **msg)
326{
327	signed long timeout = ecryptfs_message_wait_timeout * HZ;
328	int rc = 0;
329
330sleep:
331	timeout = schedule_timeout_interruptible(timeout);
332	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
333	mutex_lock(&msg_ctx->mux);
334	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
335		if (timeout) {
336			mutex_unlock(&msg_ctx->mux);
337			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
338			goto sleep;
339		}
340		rc = -ENOMSG;
341	} else {
342		*msg = msg_ctx->msg;
343		msg_ctx->msg = NULL;
344	}
345	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
346	mutex_unlock(&msg_ctx->mux);
347	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
348	return rc;
349}
350
351int __init ecryptfs_init_messaging(void)
352{
353	int i;
354	int rc = 0;
355
356	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
357		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
358		printk(KERN_WARNING "%s: Specified number of users is "
359		       "too large, defaulting to [%d] users\n", __func__,
360		       ecryptfs_number_of_users);
361	}
362	mutex_init(&ecryptfs_daemon_hash_mux);
363	mutex_lock(&ecryptfs_daemon_hash_mux);
364	ecryptfs_hash_bits = 1;
365	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
366		ecryptfs_hash_bits++;
367	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
368					* (1 << ecryptfs_hash_bits)),
369				       GFP_KERNEL);
370	if (!ecryptfs_daemon_hash) {
371		rc = -ENOMEM;
 
372		mutex_unlock(&ecryptfs_daemon_hash_mux);
373		goto out;
374	}
375	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
376		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
377	mutex_unlock(&ecryptfs_daemon_hash_mux);
378	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
379					* ecryptfs_message_buf_len),
380				       GFP_KERNEL);
381	if (!ecryptfs_msg_ctx_arr) {
382		rc = -ENOMEM;
 
383		goto out;
384	}
385	mutex_init(&ecryptfs_msg_ctx_lists_mux);
386	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
387	ecryptfs_msg_counter = 0;
388	for (i = 0; i < ecryptfs_message_buf_len; i++) {
389		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
390		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
391		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
392		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
393		ecryptfs_msg_ctx_arr[i].index = i;
394		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
395		ecryptfs_msg_ctx_arr[i].counter = 0;
396		ecryptfs_msg_ctx_arr[i].task = NULL;
397		ecryptfs_msg_ctx_arr[i].msg = NULL;
398		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
399			      &ecryptfs_msg_ctx_free_list);
400		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
401	}
402	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
403	rc = ecryptfs_init_ecryptfs_miscdev();
404	if (rc)
405		ecryptfs_release_messaging();
406out:
407	return rc;
408}
409
410void ecryptfs_release_messaging(void)
411{
412	if (ecryptfs_msg_ctx_arr) {
413		int i;
414
415		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
416		for (i = 0; i < ecryptfs_message_buf_len; i++) {
417			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
418			kfree(ecryptfs_msg_ctx_arr[i].msg);
 
419			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
420		}
421		kfree(ecryptfs_msg_ctx_arr);
422		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
423	}
424	if (ecryptfs_daemon_hash) {
 
425		struct ecryptfs_daemon *daemon;
426		struct hlist_node *n;
427		int i;
428
429		mutex_lock(&ecryptfs_daemon_hash_mux);
430		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
431			int rc;
432
433			hlist_for_each_entry_safe(daemon, n,
434						  &ecryptfs_daemon_hash[i],
435						  euid_chain) {
436				rc = ecryptfs_exorcise_daemon(daemon);
437				if (rc)
438					printk(KERN_ERR "%s: Error whilst "
439					       "attempting to destroy daemon; "
440					       "rc = [%d]. Dazed and confused, "
441					       "but trying to continue.\n",
442					       __func__, rc);
443			}
444		}
445		kfree(ecryptfs_daemon_hash);
446		mutex_unlock(&ecryptfs_daemon_hash_mux);
447	}
448	ecryptfs_destroy_ecryptfs_miscdev();
449	return;
450}