Linux Audio

Check our new training course

Loading...
v3.1
 
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *   		Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
 
 
  26#include <linux/fs.h>
  27#include <linux/mount.h>
  28#include <linux/pagemap.h>
  29#include <linux/random.h>
  30#include <linux/compiler.h>
  31#include <linux/key.h>
  32#include <linux/namei.h>
  33#include <linux/crypto.h>
  34#include <linux/file.h>
  35#include <linux/scatterlist.h>
  36#include <linux/slab.h>
  37#include <asm/unaligned.h>
 
 
  38#include "ecryptfs_kernel.h"
  39
  40static int
  41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  42			     struct page *dst_page, int dst_offset,
  43			     struct page *src_page, int src_offset, int size,
  44			     unsigned char *iv);
  45static int
  46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  47			     struct page *dst_page, int dst_offset,
  48			     struct page *src_page, int src_offset, int size,
  49			     unsigned char *iv);
  50
  51/**
  52 * ecryptfs_to_hex
  53 * @dst: Buffer to take hex character representation of contents of
  54 *       src; must be at least of size (src_size * 2)
  55 * @src: Buffer to be converted to a hex string respresentation
  56 * @src_size: number of bytes to convert
  57 */
  58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  59{
  60	int x;
  61
  62	for (x = 0; x < src_size; x++)
  63		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  64}
  65
  66/**
  67 * ecryptfs_from_hex
  68 * @dst: Buffer to take the bytes from src hex; must be at least of
  69 *       size (src_size / 2)
  70 * @src: Buffer to be converted from a hex string respresentation to raw value
  71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  72 */
  73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  74{
  75	int x;
  76	char tmp[3] = { 0, };
  77
  78	for (x = 0; x < dst_size; x++) {
  79		tmp[0] = src[x * 2];
  80		tmp[1] = src[x * 2 + 1];
  81		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  82	}
  83}
  84
 
 
 
 
 
 
 
 
 
 
 
 
  85/**
  86 * ecryptfs_calculate_md5 - calculates the md5 of @src
  87 * @dst: Pointer to 16 bytes of allocated memory
  88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  89 * @src: Data to be md5'd
  90 * @len: Length of @src
  91 *
  92 * Uses the allocated crypto context that crypt_stat references to
  93 * generate the MD5 sum of the contents of src.
  94 */
  95static int ecryptfs_calculate_md5(char *dst,
  96				  struct ecryptfs_crypt_stat *crypt_stat,
  97				  char *src, int len)
  98{
  99	struct scatterlist sg;
 100	struct hash_desc desc = {
 101		.tfm = crypt_stat->hash_tfm,
 102		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 103	};
 104	int rc = 0;
 105
 106	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 107	sg_init_one(&sg, (u8 *)src, len);
 108	if (!desc.tfm) {
 109		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 110					     CRYPTO_ALG_ASYNC);
 111		if (IS_ERR(desc.tfm)) {
 112			rc = PTR_ERR(desc.tfm);
 113			ecryptfs_printk(KERN_ERR, "Error attempting to "
 114					"allocate crypto context; rc = [%d]\n",
 115					rc);
 116			goto out;
 117		}
 118		crypt_stat->hash_tfm = desc.tfm;
 119	}
 120	rc = crypto_hash_init(&desc);
 121	if (rc) {
 122		printk(KERN_ERR
 123		       "%s: Error initializing crypto hash; rc = [%d]\n",
 124		       __func__, rc);
 125		goto out;
 126	}
 127	rc = crypto_hash_update(&desc, &sg, len);
 128	if (rc) {
 129		printk(KERN_ERR
 130		       "%s: Error updating crypto hash; rc = [%d]\n",
 131		       __func__, rc);
 132		goto out;
 133	}
 134	rc = crypto_hash_final(&desc, dst);
 135	if (rc) {
 136		printk(KERN_ERR
 137		       "%s: Error finalizing crypto hash; rc = [%d]\n",
 138		       __func__, rc);
 139		goto out;
 140	}
 141out:
 142	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 143	return rc;
 144}
 145
 146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 147						  char *cipher_name,
 148						  char *chaining_modifier)
 149{
 150	int cipher_name_len = strlen(cipher_name);
 151	int chaining_modifier_len = strlen(chaining_modifier);
 152	int algified_name_len;
 153	int rc;
 154
 155	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 156	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 157	if (!(*algified_name)) {
 158		rc = -ENOMEM;
 159		goto out;
 160	}
 161	snprintf((*algified_name), algified_name_len, "%s(%s)",
 162		 chaining_modifier, cipher_name);
 163	rc = 0;
 164out:
 165	return rc;
 166}
 167
 168/**
 169 * ecryptfs_derive_iv
 170 * @iv: destination for the derived iv vale
 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 172 * @offset: Offset of the extent whose IV we are to derive
 173 *
 174 * Generate the initialization vector from the given root IV and page
 175 * offset.
 176 *
 177 * Returns zero on success; non-zero on error.
 178 */
 179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 180		       loff_t offset)
 181{
 182	int rc = 0;
 183	char dst[MD5_DIGEST_SIZE];
 184	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 185
 186	if (unlikely(ecryptfs_verbosity > 0)) {
 187		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 188		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 189	}
 190	/* TODO: It is probably secure to just cast the least
 191	 * significant bits of the root IV into an unsigned long and
 192	 * add the offset to that rather than go through all this
 193	 * hashing business. -Halcrow */
 194	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 195	memset((src + crypt_stat->iv_bytes), 0, 16);
 196	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 197	if (unlikely(ecryptfs_verbosity > 0)) {
 198		ecryptfs_printk(KERN_DEBUG, "source:\n");
 199		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 200	}
 201	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 202				    (crypt_stat->iv_bytes + 16));
 203	if (rc) {
 204		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 205				"MD5 while generating IV for a page\n");
 206		goto out;
 207	}
 208	memcpy(iv, dst, crypt_stat->iv_bytes);
 209	if (unlikely(ecryptfs_verbosity > 0)) {
 210		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 211		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 212	}
 213out:
 214	return rc;
 215}
 216
 217/**
 218 * ecryptfs_init_crypt_stat
 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 220 *
 221 * Initialize the crypt_stat structure.
 222 */
 223void
 224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 225{
 
 
 
 
 
 
 
 
 
 
 
 
 226	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 227	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 228	mutex_init(&crypt_stat->keysig_list_mutex);
 229	mutex_init(&crypt_stat->cs_mutex);
 230	mutex_init(&crypt_stat->cs_tfm_mutex);
 231	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 232	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 
 
 233}
 234
 235/**
 236 * ecryptfs_destroy_crypt_stat
 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 238 *
 239 * Releases all memory associated with a crypt_stat struct.
 240 */
 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 242{
 243	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 244
 245	if (crypt_stat->tfm)
 246		crypto_free_blkcipher(crypt_stat->tfm);
 247	if (crypt_stat->hash_tfm)
 248		crypto_free_hash(crypt_stat->hash_tfm);
 249	list_for_each_entry_safe(key_sig, key_sig_tmp,
 250				 &crypt_stat->keysig_list, crypt_stat_list) {
 251		list_del(&key_sig->crypt_stat_list);
 252		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 253	}
 254	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 255}
 256
 257void ecryptfs_destroy_mount_crypt_stat(
 258	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 259{
 260	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 261
 262	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 263		return;
 264	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 265	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 266				 &mount_crypt_stat->global_auth_tok_list,
 267				 mount_crypt_stat_list) {
 268		list_del(&auth_tok->mount_crypt_stat_list);
 269		if (auth_tok->global_auth_tok_key
 270		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 271			key_put(auth_tok->global_auth_tok_key);
 272		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 273	}
 274	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 275	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 276}
 277
 278/**
 279 * virt_to_scatterlist
 280 * @addr: Virtual address
 281 * @size: Size of data; should be an even multiple of the block size
 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 283 *      the number of scatterlist structs required in array
 284 * @sg_size: Max array size
 285 *
 286 * Fills in a scatterlist array with page references for a passed
 287 * virtual address.
 288 *
 289 * Returns the number of scatterlist structs in array used
 290 */
 291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 292			int sg_size)
 293{
 294	int i = 0;
 295	struct page *pg;
 296	int offset;
 297	int remainder_of_page;
 298
 299	sg_init_table(sg, sg_size);
 300
 301	while (size > 0 && i < sg_size) {
 302		pg = virt_to_page(addr);
 303		offset = offset_in_page(addr);
 304		if (sg)
 305			sg_set_page(&sg[i], pg, 0, offset);
 306		remainder_of_page = PAGE_CACHE_SIZE - offset;
 307		if (size >= remainder_of_page) {
 308			if (sg)
 309				sg[i].length = remainder_of_page;
 310			addr += remainder_of_page;
 311			size -= remainder_of_page;
 312		} else {
 313			if (sg)
 314				sg[i].length = size;
 315			addr += size;
 316			size = 0;
 317		}
 318		i++;
 319	}
 320	if (size > 0)
 321		return -ENOMEM;
 322	return i;
 323}
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325/**
 326 * encrypt_scatterlist
 327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 328 * @dest_sg: Destination of encrypted data
 329 * @src_sg: Data to be encrypted
 330 * @size: Length of data to be encrypted
 331 * @iv: iv to use during encryption
 332 *
 333 * Returns the number of bytes encrypted; negative value on error
 334 */
 335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 336			       struct scatterlist *dest_sg,
 337			       struct scatterlist *src_sg, int size,
 338			       unsigned char *iv)
 339{
 340	struct blkcipher_desc desc = {
 341		.tfm = crypt_stat->tfm,
 342		.info = iv,
 343		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 344	};
 345	int rc = 0;
 346
 347	BUG_ON(!crypt_stat || !crypt_stat->tfm
 348	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 349	if (unlikely(ecryptfs_verbosity > 0)) {
 350		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 351				crypt_stat->key_size);
 352		ecryptfs_dump_hex(crypt_stat->key,
 353				  crypt_stat->key_size);
 354	}
 355	/* Consider doing this once, when the file is opened */
 
 
 356	mutex_lock(&crypt_stat->cs_tfm_mutex);
 357	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 358		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 359					     crypt_stat->key_size);
 360		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 361	}
 362	if (rc) {
 363		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 364				rc);
 365		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 366		rc = -EINVAL;
 367		goto out;
 368	}
 369	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
 370	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 
 
 
 
 
 
 
 
 
 
 372out:
 
 373	return rc;
 374}
 375
 376/**
 377 * ecryptfs_lower_offset_for_extent
 378 *
 379 * Convert an eCryptfs page index into a lower byte offset
 380 */
 381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
 382					     struct ecryptfs_crypt_stat *crypt_stat)
 383{
 384	(*offset) = ecryptfs_lower_header_size(crypt_stat)
 385		    + (crypt_stat->extent_size * extent_num);
 386}
 387
 388/**
 389 * ecryptfs_encrypt_extent
 390 * @enc_extent_page: Allocated page into which to encrypt the data in
 391 *                   @page
 392 * @crypt_stat: crypt_stat containing cryptographic context for the
 393 *              encryption operation
 394 * @page: Page containing plaintext data extent to encrypt
 
 395 * @extent_offset: Page extent offset for use in generating IV
 
 396 *
 397 * Encrypts one extent of data.
 398 *
 399 * Return zero on success; non-zero otherwise
 400 */
 401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
 402				   struct ecryptfs_crypt_stat *crypt_stat,
 403				   struct page *page,
 404				   unsigned long extent_offset)
 405{
 
 406	loff_t extent_base;
 407	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 
 
 408	int rc;
 409
 410	extent_base = (((loff_t)page->index)
 411		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 412	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 413				(extent_base + extent_offset));
 414	if (rc) {
 415		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 416			"extent [0x%.16llx]; rc = [%d]\n",
 417			(unsigned long long)(extent_base + extent_offset), rc);
 418		goto out;
 419	}
 420	if (unlikely(ecryptfs_verbosity > 0)) {
 421		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
 422				"with iv:\n");
 423		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 424		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 425				"encryption:\n");
 426		ecryptfs_dump_hex((char *)
 427				  (page_address(page)
 428				   + (extent_offset * crypt_stat->extent_size)),
 429				  8);
 430	}
 431	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
 432					  page, (extent_offset
 433						 * crypt_stat->extent_size),
 434					  crypt_stat->extent_size, extent_iv);
 435	if (rc < 0) {
 436		printk(KERN_ERR "%s: Error attempting to encrypt page with "
 437		       "page->index = [%ld], extent_offset = [%ld]; "
 438		       "rc = [%d]\n", __func__, page->index, extent_offset,
 439		       rc);
 440		goto out;
 441	}
 442	rc = 0;
 443	if (unlikely(ecryptfs_verbosity > 0)) {
 444		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
 445			"rc = [%d]\n",
 446			(unsigned long long)(extent_base + extent_offset), rc);
 447		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 448				"encryption:\n");
 449		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
 450	}
 451out:
 452	return rc;
 453}
 454
 455/**
 456 * ecryptfs_encrypt_page
 457 * @page: Page mapped from the eCryptfs inode for the file; contains
 458 *        decrypted content that needs to be encrypted (to a temporary
 459 *        page; not in place) and written out to the lower file
 460 *
 461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 462 * that eCryptfs pages may straddle the lower pages -- for instance,
 463 * if the file was created on a machine with an 8K page size
 464 * (resulting in an 8K header), and then the file is copied onto a
 465 * host with a 32K page size, then when reading page 0 of the eCryptfs
 466 * file, 24K of page 0 of the lower file will be read and decrypted,
 467 * and then 8K of page 1 of the lower file will be read and decrypted.
 468 *
 469 * Returns zero on success; negative on error
 470 */
 471int ecryptfs_encrypt_page(struct page *page)
 472{
 473	struct inode *ecryptfs_inode;
 474	struct ecryptfs_crypt_stat *crypt_stat;
 475	char *enc_extent_virt;
 476	struct page *enc_extent_page = NULL;
 477	loff_t extent_offset;
 
 478	int rc = 0;
 479
 480	ecryptfs_inode = page->mapping->host;
 481	crypt_stat =
 482		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 483	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 484	enc_extent_page = alloc_page(GFP_USER);
 485	if (!enc_extent_page) {
 486		rc = -ENOMEM;
 487		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 488				"encrypted extent\n");
 489		goto out;
 490	}
 491	enc_extent_virt = kmap(enc_extent_page);
 492	for (extent_offset = 0;
 493	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 494	     extent_offset++) {
 495		loff_t offset;
 496
 497		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
 498					     extent_offset);
 499		if (rc) {
 500			printk(KERN_ERR "%s: Error encrypting extent; "
 501			       "rc = [%d]\n", __func__, rc);
 502			goto out;
 503		}
 504		ecryptfs_lower_offset_for_extent(
 505			&offset, ((((loff_t)page->index)
 506				   * (PAGE_CACHE_SIZE
 507				      / crypt_stat->extent_size))
 508				  + extent_offset), crypt_stat);
 509		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
 510					  offset, crypt_stat->extent_size);
 511		if (rc < 0) {
 512			ecryptfs_printk(KERN_ERR, "Error attempting "
 513					"to write lower page; rc = [%d]"
 514					"\n", rc);
 515			goto out;
 516		}
 517	}
 518	rc = 0;
 519out:
 520	if (enc_extent_page) {
 521		kunmap(enc_extent_page);
 522		__free_page(enc_extent_page);
 523	}
 524	return rc;
 525}
 526
 527static int ecryptfs_decrypt_extent(struct page *page,
 528				   struct ecryptfs_crypt_stat *crypt_stat,
 529				   struct page *enc_extent_page,
 530				   unsigned long extent_offset)
 531{
 532	loff_t extent_base;
 533	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 534	int rc;
 535
 536	extent_base = (((loff_t)page->index)
 537		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 538	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 539				(extent_base + extent_offset));
 540	if (rc) {
 541		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 542			"extent [0x%.16llx]; rc = [%d]\n",
 543			(unsigned long long)(extent_base + extent_offset), rc);
 544		goto out;
 545	}
 546	if (unlikely(ecryptfs_verbosity > 0)) {
 547		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
 548				"with iv:\n");
 549		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 550		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 551				"decryption:\n");
 552		ecryptfs_dump_hex((char *)
 553				  (page_address(enc_extent_page)
 554				   + (extent_offset * crypt_stat->extent_size)),
 555				  8);
 556	}
 557	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
 558					  (extent_offset
 559					   * crypt_stat->extent_size),
 560					  enc_extent_page, 0,
 561					  crypt_stat->extent_size, extent_iv);
 562	if (rc < 0) {
 563		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
 564		       "page->index = [%ld], extent_offset = [%ld]; "
 565		       "rc = [%d]\n", __func__, page->index, extent_offset,
 566		       rc);
 567		goto out;
 568	}
 569	rc = 0;
 570	if (unlikely(ecryptfs_verbosity > 0)) {
 571		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
 572			"rc = [%d]\n",
 573			(unsigned long long)(extent_base + extent_offset), rc);
 574		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 575				"decryption:\n");
 576		ecryptfs_dump_hex((char *)(page_address(page)
 577					   + (extent_offset
 578					      * crypt_stat->extent_size)), 8);
 579	}
 580out:
 
 
 
 581	return rc;
 582}
 583
 584/**
 585 * ecryptfs_decrypt_page
 586 * @page: Page mapped from the eCryptfs inode for the file; data read
 587 *        and decrypted from the lower file will be written into this
 588 *        page
 589 *
 590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 591 * that eCryptfs pages may straddle the lower pages -- for instance,
 592 * if the file was created on a machine with an 8K page size
 593 * (resulting in an 8K header), and then the file is copied onto a
 594 * host with a 32K page size, then when reading page 0 of the eCryptfs
 595 * file, 24K of page 0 of the lower file will be read and decrypted,
 596 * and then 8K of page 1 of the lower file will be read and decrypted.
 597 *
 598 * Returns zero on success; negative on error
 599 */
 600int ecryptfs_decrypt_page(struct page *page)
 601{
 602	struct inode *ecryptfs_inode;
 603	struct ecryptfs_crypt_stat *crypt_stat;
 604	char *enc_extent_virt;
 605	struct page *enc_extent_page = NULL;
 606	unsigned long extent_offset;
 
 607	int rc = 0;
 608
 609	ecryptfs_inode = page->mapping->host;
 610	crypt_stat =
 611		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 612	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 613	enc_extent_page = alloc_page(GFP_USER);
 614	if (!enc_extent_page) {
 615		rc = -ENOMEM;
 616		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 617				"encrypted extent\n");
 
 
 
 
 
 618		goto out;
 619	}
 620	enc_extent_virt = kmap(enc_extent_page);
 621	for (extent_offset = 0;
 622	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 623	     extent_offset++) {
 624		loff_t offset;
 625
 626		ecryptfs_lower_offset_for_extent(
 627			&offset, ((page->index * (PAGE_CACHE_SIZE
 628						  / crypt_stat->extent_size))
 629				  + extent_offset), crypt_stat);
 630		rc = ecryptfs_read_lower(enc_extent_virt, offset,
 631					 crypt_stat->extent_size,
 632					 ecryptfs_inode);
 633		if (rc < 0) {
 634			ecryptfs_printk(KERN_ERR, "Error attempting "
 635					"to read lower page; rc = [%d]"
 636					"\n", rc);
 637			goto out;
 638		}
 639		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
 640					     extent_offset);
 641		if (rc) {
 642			printk(KERN_ERR "%s: Error encrypting extent; "
 643			       "rc = [%d]\n", __func__, rc);
 644			goto out;
 645		}
 646	}
 647out:
 648	if (enc_extent_page) {
 649		kunmap(enc_extent_page);
 650		__free_page(enc_extent_page);
 651	}
 652	return rc;
 653}
 654
 655/**
 656 * decrypt_scatterlist
 657 * @crypt_stat: Cryptographic context
 658 * @dest_sg: The destination scatterlist to decrypt into
 659 * @src_sg: The source scatterlist to decrypt from
 660 * @size: The number of bytes to decrypt
 661 * @iv: The initialization vector to use for the decryption
 662 *
 663 * Returns the number of bytes decrypted; negative value on error
 664 */
 665static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 666			       struct scatterlist *dest_sg,
 667			       struct scatterlist *src_sg, int size,
 668			       unsigned char *iv)
 669{
 670	struct blkcipher_desc desc = {
 671		.tfm = crypt_stat->tfm,
 672		.info = iv,
 673		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 674	};
 675	int rc = 0;
 676
 677	/* Consider doing this once, when the file is opened */
 678	mutex_lock(&crypt_stat->cs_tfm_mutex);
 679	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 680				     crypt_stat->key_size);
 681	if (rc) {
 682		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 683				rc);
 684		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 685		rc = -EINVAL;
 686		goto out;
 687	}
 688	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
 689	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
 690	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 691	if (rc) {
 692		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
 693				rc);
 694		goto out;
 695	}
 696	rc = size;
 697out:
 698	return rc;
 699}
 700
 701/**
 702 * ecryptfs_encrypt_page_offset
 703 * @crypt_stat: The cryptographic context
 704 * @dst_page: The page to encrypt into
 705 * @dst_offset: The offset in the page to encrypt into
 706 * @src_page: The page to encrypt from
 707 * @src_offset: The offset in the page to encrypt from
 708 * @size: The number of bytes to encrypt
 709 * @iv: The initialization vector to use for the encryption
 710 *
 711 * Returns the number of bytes encrypted
 712 */
 713static int
 714ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 715			     struct page *dst_page, int dst_offset,
 716			     struct page *src_page, int src_offset, int size,
 717			     unsigned char *iv)
 718{
 719	struct scatterlist src_sg, dst_sg;
 720
 721	sg_init_table(&src_sg, 1);
 722	sg_init_table(&dst_sg, 1);
 723
 724	sg_set_page(&src_sg, src_page, size, src_offset);
 725	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 726	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 727}
 728
 729/**
 730 * ecryptfs_decrypt_page_offset
 731 * @crypt_stat: The cryptographic context
 732 * @dst_page: The page to decrypt into
 733 * @dst_offset: The offset in the page to decrypt into
 734 * @src_page: The page to decrypt from
 735 * @src_offset: The offset in the page to decrypt from
 736 * @size: The number of bytes to decrypt
 737 * @iv: The initialization vector to use for the decryption
 738 *
 739 * Returns the number of bytes decrypted
 740 */
 741static int
 742ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 743			     struct page *dst_page, int dst_offset,
 744			     struct page *src_page, int src_offset, int size,
 745			     unsigned char *iv)
 746{
 747	struct scatterlist src_sg, dst_sg;
 748
 749	sg_init_table(&src_sg, 1);
 750	sg_set_page(&src_sg, src_page, size, src_offset);
 751
 752	sg_init_table(&dst_sg, 1);
 753	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 754
 755	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 756}
 757
 758#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 759
 760/**
 761 * ecryptfs_init_crypt_ctx
 762 * @crypt_stat: Uninitialized crypt stats structure
 763 *
 764 * Initialize the crypto context.
 765 *
 766 * TODO: Performance: Keep a cache of initialized cipher contexts;
 767 * only init if needed
 768 */
 769int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 770{
 771	char *full_alg_name;
 772	int rc = -EINVAL;
 773
 774	if (!crypt_stat->cipher) {
 775		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
 776		goto out;
 777	}
 778	ecryptfs_printk(KERN_DEBUG,
 779			"Initializing cipher [%s]; strlen = [%d]; "
 780			"key_size_bits = [%zd]\n",
 781			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 782			crypt_stat->key_size << 3);
 
 783	if (crypt_stat->tfm) {
 784		rc = 0;
 785		goto out;
 786	}
 787	mutex_lock(&crypt_stat->cs_tfm_mutex);
 788	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 789						    crypt_stat->cipher, "cbc");
 790	if (rc)
 791		goto out_unlock;
 792	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
 793						 CRYPTO_ALG_ASYNC);
 794	kfree(full_alg_name);
 795	if (IS_ERR(crypt_stat->tfm)) {
 796		rc = PTR_ERR(crypt_stat->tfm);
 797		crypt_stat->tfm = NULL;
 798		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 799				"Error initializing cipher [%s]\n",
 800				crypt_stat->cipher);
 801		goto out_unlock;
 802	}
 803	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 
 804	rc = 0;
 
 
 805out_unlock:
 806	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 807out:
 808	return rc;
 809}
 810
 811static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 812{
 813	int extent_size_tmp;
 814
 815	crypt_stat->extent_mask = 0xFFFFFFFF;
 816	crypt_stat->extent_shift = 0;
 817	if (crypt_stat->extent_size == 0)
 818		return;
 819	extent_size_tmp = crypt_stat->extent_size;
 820	while ((extent_size_tmp & 0x01) == 0) {
 821		extent_size_tmp >>= 1;
 822		crypt_stat->extent_mask <<= 1;
 823		crypt_stat->extent_shift++;
 824	}
 825}
 826
 827void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 828{
 829	/* Default values; may be overwritten as we are parsing the
 830	 * packets. */
 831	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 832	set_extent_mask_and_shift(crypt_stat);
 833	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 834	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 835		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 836	else {
 837		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 838			crypt_stat->metadata_size =
 839				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 840		else
 841			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
 842	}
 843}
 844
 845/**
 846 * ecryptfs_compute_root_iv
 847 * @crypt_stats
 848 *
 849 * On error, sets the root IV to all 0's.
 850 */
 851int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 852{
 853	int rc = 0;
 854	char dst[MD5_DIGEST_SIZE];
 855
 856	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 857	BUG_ON(crypt_stat->iv_bytes <= 0);
 858	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 859		rc = -EINVAL;
 860		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 861				"cannot generate root IV\n");
 862		goto out;
 863	}
 864	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 865				    crypt_stat->key_size);
 866	if (rc) {
 867		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 868				"MD5 while generating root IV\n");
 869		goto out;
 870	}
 871	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 872out:
 873	if (rc) {
 874		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 875		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 876	}
 877	return rc;
 878}
 879
 880static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 881{
 882	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 883	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 884	ecryptfs_compute_root_iv(crypt_stat);
 885	if (unlikely(ecryptfs_verbosity > 0)) {
 886		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 887		ecryptfs_dump_hex(crypt_stat->key,
 888				  crypt_stat->key_size);
 889	}
 890}
 891
 892/**
 893 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 894 * @crypt_stat: The inode's cryptographic context
 895 * @mount_crypt_stat: The mount point's cryptographic context
 896 *
 897 * This function propagates the mount-wide flags to individual inode
 898 * flags.
 899 */
 900static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 901	struct ecryptfs_crypt_stat *crypt_stat,
 902	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 903{
 904	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 905		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 906	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 907		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 908	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 909		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 910		if (mount_crypt_stat->flags
 911		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 912			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 913		else if (mount_crypt_stat->flags
 914			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 915			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 916	}
 917}
 918
 919static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 920	struct ecryptfs_crypt_stat *crypt_stat,
 921	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 922{
 923	struct ecryptfs_global_auth_tok *global_auth_tok;
 924	int rc = 0;
 925
 926	mutex_lock(&crypt_stat->keysig_list_mutex);
 927	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 928
 929	list_for_each_entry(global_auth_tok,
 930			    &mount_crypt_stat->global_auth_tok_list,
 931			    mount_crypt_stat_list) {
 932		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 933			continue;
 934		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 935		if (rc) {
 936			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 937			goto out;
 938		}
 939	}
 940
 941out:
 942	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 943	mutex_unlock(&crypt_stat->keysig_list_mutex);
 944	return rc;
 945}
 946
 947/**
 948 * ecryptfs_set_default_crypt_stat_vals
 949 * @crypt_stat: The inode's cryptographic context
 950 * @mount_crypt_stat: The mount point's cryptographic context
 951 *
 952 * Default values in the event that policy does not override them.
 953 */
 954static void ecryptfs_set_default_crypt_stat_vals(
 955	struct ecryptfs_crypt_stat *crypt_stat,
 956	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 957{
 958	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 959						      mount_crypt_stat);
 960	ecryptfs_set_default_sizes(crypt_stat);
 961	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 962	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 963	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 964	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 965	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 966}
 967
 968/**
 969 * ecryptfs_new_file_context
 970 * @ecryptfs_dentry: The eCryptfs dentry
 971 *
 972 * If the crypto context for the file has not yet been established,
 973 * this is where we do that.  Establishing a new crypto context
 974 * involves the following decisions:
 975 *  - What cipher to use?
 976 *  - What set of authentication tokens to use?
 977 * Here we just worry about getting enough information into the
 978 * authentication tokens so that we know that they are available.
 979 * We associate the available authentication tokens with the new file
 980 * via the set of signatures in the crypt_stat struct.  Later, when
 981 * the headers are actually written out, we may again defer to
 982 * userspace to perform the encryption of the session key; for the
 983 * foreseeable future, this will be the case with public key packets.
 984 *
 985 * Returns zero on success; non-zero otherwise
 986 */
 987int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
 988{
 989	struct ecryptfs_crypt_stat *crypt_stat =
 990	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
 991	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 992	    &ecryptfs_superblock_to_private(
 993		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
 994	int cipher_name_len;
 995	int rc = 0;
 996
 997	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 998	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 999	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000						      mount_crypt_stat);
1001	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002							 mount_crypt_stat);
1003	if (rc) {
1004		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005		       "to the inode key sigs; rc = [%d]\n", rc);
1006		goto out;
1007	}
1008	cipher_name_len =
1009		strlen(mount_crypt_stat->global_default_cipher_name);
1010	memcpy(crypt_stat->cipher,
1011	       mount_crypt_stat->global_default_cipher_name,
1012	       cipher_name_len);
1013	crypt_stat->cipher[cipher_name_len] = '\0';
1014	crypt_stat->key_size =
1015		mount_crypt_stat->global_default_cipher_key_size;
1016	ecryptfs_generate_new_key(crypt_stat);
1017	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018	if (rc)
1019		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020				"context for cipher [%s]: rc = [%d]\n",
1021				crypt_stat->cipher, rc);
1022out:
1023	return rc;
1024}
1025
1026/**
1027 * ecryptfs_validate_marker - check for the ecryptfs marker
1028 * @data: The data block in which to check
1029 *
1030 * Returns zero if marker found; -EINVAL if not found
1031 */
1032static int ecryptfs_validate_marker(char *data)
1033{
1034	u32 m_1, m_2;
1035
1036	m_1 = get_unaligned_be32(data);
1037	m_2 = get_unaligned_be32(data + 4);
1038	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039		return 0;
1040	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042			MAGIC_ECRYPTFS_MARKER);
1043	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045	return -EINVAL;
1046}
1047
1048struct ecryptfs_flag_map_elem {
1049	u32 file_flag;
1050	u32 local_flag;
1051};
1052
1053/* Add support for additional flags by adding elements here. */
1054static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1056	{0x00000002, ECRYPTFS_ENCRYPTED},
1057	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1059};
1060
1061/**
1062 * ecryptfs_process_flags
1063 * @crypt_stat: The cryptographic context
1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read
1066 *
1067 * Returns zero on success; non-zero if the flag set is invalid
1068 */
1069static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070				  char *page_virt, int *bytes_read)
1071{
1072	int rc = 0;
1073	int i;
1074	u32 flags;
1075
1076	flags = get_unaligned_be32(page_virt);
1077	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079		if (flags & ecryptfs_flag_map[i].file_flag) {
1080			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1081		} else
1082			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083	/* Version is in top 8 bits of the 32-bit flag vector */
1084	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1085	(*bytes_read) = 4;
1086	return rc;
1087}
1088
1089/**
1090 * write_ecryptfs_marker
1091 * @page_virt: The pointer to in a page to begin writing the marker
1092 * @written: Number of bytes written
1093 *
1094 * Marker = 0x3c81b7f5
1095 */
1096static void write_ecryptfs_marker(char *page_virt, size_t *written)
1097{
1098	u32 m_1, m_2;
1099
1100	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102	put_unaligned_be32(m_1, page_virt);
1103	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104	put_unaligned_be32(m_2, page_virt);
1105	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1106}
1107
1108void ecryptfs_write_crypt_stat_flags(char *page_virt,
1109				     struct ecryptfs_crypt_stat *crypt_stat,
1110				     size_t *written)
1111{
1112	u32 flags = 0;
1113	int i;
1114
1115	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118			flags |= ecryptfs_flag_map[i].file_flag;
1119	/* Version is in top 8 bits of the 32-bit flag vector */
1120	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121	put_unaligned_be32(flags, page_virt);
1122	(*written) = 4;
1123}
1124
1125struct ecryptfs_cipher_code_str_map_elem {
1126	char cipher_str[16];
1127	u8 cipher_code;
1128};
1129
1130/* Add support for additional ciphers by adding elements here. The
1131 * cipher_code is whatever OpenPGP applicatoins use to identify the
1132 * ciphers. List in order of probability. */
1133static struct ecryptfs_cipher_code_str_map_elem
1134ecryptfs_cipher_code_str_map[] = {
1135	{"aes",RFC2440_CIPHER_AES_128 },
1136	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1137	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138	{"cast5", RFC2440_CIPHER_CAST_5},
1139	{"twofish", RFC2440_CIPHER_TWOFISH},
1140	{"cast6", RFC2440_CIPHER_CAST_6},
1141	{"aes", RFC2440_CIPHER_AES_192},
1142	{"aes", RFC2440_CIPHER_AES_256}
1143};
1144
1145/**
1146 * ecryptfs_code_for_cipher_string
1147 * @cipher_name: The string alias for the cipher
1148 * @key_bytes: Length of key in bytes; used for AES code selection
1149 *
1150 * Returns zero on no match, or the cipher code on match
1151 */
1152u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1153{
1154	int i;
1155	u8 code = 0;
1156	struct ecryptfs_cipher_code_str_map_elem *map =
1157		ecryptfs_cipher_code_str_map;
1158
1159	if (strcmp(cipher_name, "aes") == 0) {
1160		switch (key_bytes) {
1161		case 16:
1162			code = RFC2440_CIPHER_AES_128;
1163			break;
1164		case 24:
1165			code = RFC2440_CIPHER_AES_192;
1166			break;
1167		case 32:
1168			code = RFC2440_CIPHER_AES_256;
1169		}
1170	} else {
1171		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173				code = map[i].cipher_code;
1174				break;
1175			}
1176	}
1177	return code;
1178}
1179
1180/**
1181 * ecryptfs_cipher_code_to_string
1182 * @str: Destination to write out the cipher name
1183 * @cipher_code: The code to convert to cipher name string
1184 *
1185 * Returns zero on success
1186 */
1187int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1188{
1189	int rc = 0;
1190	int i;
1191
1192	str[0] = '\0';
1193	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196	if (str[0] == '\0') {
1197		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198				"[%d]\n", cipher_code);
1199		rc = -EINVAL;
1200	}
1201	return rc;
1202}
1203
1204int ecryptfs_read_and_validate_header_region(struct inode *inode)
1205{
1206	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1207	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1208	int rc;
1209
1210	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1211				 inode);
1212	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1213		return rc >= 0 ? -EINVAL : rc;
 
 
1214	rc = ecryptfs_validate_marker(marker);
1215	if (!rc)
1216		ecryptfs_i_size_init(file_size, inode);
1217	return rc;
1218}
1219
1220void
1221ecryptfs_write_header_metadata(char *virt,
1222			       struct ecryptfs_crypt_stat *crypt_stat,
1223			       size_t *written)
1224{
1225	u32 header_extent_size;
1226	u16 num_header_extents_at_front;
1227
1228	header_extent_size = (u32)crypt_stat->extent_size;
1229	num_header_extents_at_front =
1230		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1231	put_unaligned_be32(header_extent_size, virt);
1232	virt += 4;
1233	put_unaligned_be16(num_header_extents_at_front, virt);
1234	(*written) = 6;
1235}
1236
1237struct kmem_cache *ecryptfs_header_cache;
1238
1239/**
1240 * ecryptfs_write_headers_virt
1241 * @page_virt: The virtual address to write the headers to
1242 * @max: The size of memory allocated at page_virt
1243 * @size: Set to the number of bytes written by this function
1244 * @crypt_stat: The cryptographic context
1245 * @ecryptfs_dentry: The eCryptfs dentry
1246 *
1247 * Format version: 1
1248 *
1249 *   Header Extent:
1250 *     Octets 0-7:        Unencrypted file size (big-endian)
1251 *     Octets 8-15:       eCryptfs special marker
1252 *     Octets 16-19:      Flags
1253 *      Octet 16:         File format version number (between 0 and 255)
1254 *      Octets 17-18:     Reserved
1255 *      Octet 19:         Bit 1 (lsb): Reserved
1256 *                        Bit 2: Encrypted?
1257 *                        Bits 3-8: Reserved
1258 *     Octets 20-23:      Header extent size (big-endian)
1259 *     Octets 24-25:      Number of header extents at front of file
1260 *                        (big-endian)
1261 *     Octet  26:         Begin RFC 2440 authentication token packet set
1262 *   Data Extent 0:
1263 *     Lower data (CBC encrypted)
1264 *   Data Extent 1:
1265 *     Lower data (CBC encrypted)
1266 *   ...
1267 *
1268 * Returns zero on success
1269 */
1270static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1271				       size_t *size,
1272				       struct ecryptfs_crypt_stat *crypt_stat,
1273				       struct dentry *ecryptfs_dentry)
1274{
1275	int rc;
1276	size_t written;
1277	size_t offset;
1278
1279	offset = ECRYPTFS_FILE_SIZE_BYTES;
1280	write_ecryptfs_marker((page_virt + offset), &written);
1281	offset += written;
1282	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1283					&written);
1284	offset += written;
1285	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1286				       &written);
1287	offset += written;
1288	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1289					      ecryptfs_dentry, &written,
1290					      max - offset);
1291	if (rc)
1292		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1293				"set; rc = [%d]\n", rc);
1294	if (size) {
1295		offset += written;
1296		*size = offset;
1297	}
1298	return rc;
1299}
1300
1301static int
1302ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1303				    char *virt, size_t virt_len)
1304{
1305	int rc;
1306
1307	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1308				  0, virt_len);
1309	if (rc < 0)
1310		printk(KERN_ERR "%s: Error attempting to write header "
1311		       "information to lower file; rc = [%d]\n", __func__, rc);
1312	else
1313		rc = 0;
1314	return rc;
1315}
1316
1317static int
1318ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
 
1319				 char *page_virt, size_t size)
1320{
1321	int rc;
 
 
 
 
 
 
 
1322
1323	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1324			       size, 0);
 
 
 
 
 
1325	return rc;
1326}
1327
1328static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1329					       unsigned int order)
1330{
1331	struct page *page;
1332
1333	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1334	if (page)
1335		return (unsigned long) page_address(page);
1336	return 0;
1337}
1338
1339/**
1340 * ecryptfs_write_metadata
1341 * @ecryptfs_dentry: The eCryptfs dentry
 
1342 *
1343 * Write the file headers out.  This will likely involve a userspace
1344 * callout, in which the session key is encrypted with one or more
1345 * public keys and/or the passphrase necessary to do the encryption is
1346 * retrieved via a prompt.  Exactly what happens at this point should
1347 * be policy-dependent.
1348 *
1349 * Returns zero on success; non-zero on error
1350 */
1351int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
 
1352{
1353	struct ecryptfs_crypt_stat *crypt_stat =
1354		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1355	unsigned int order;
1356	char *virt;
1357	size_t virt_len;
1358	size_t size = 0;
1359	int rc = 0;
1360
1361	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1362		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1363			printk(KERN_ERR "Key is invalid; bailing out\n");
1364			rc = -EINVAL;
1365			goto out;
1366		}
1367	} else {
1368		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1369		       __func__);
1370		rc = -EINVAL;
1371		goto out;
1372	}
1373	virt_len = crypt_stat->metadata_size;
1374	order = get_order(virt_len);
1375	/* Released in this function */
1376	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1377	if (!virt) {
1378		printk(KERN_ERR "%s: Out of memory\n", __func__);
1379		rc = -ENOMEM;
1380		goto out;
1381	}
1382	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1383	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1384					 ecryptfs_dentry);
1385	if (unlikely(rc)) {
1386		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1387		       __func__, rc);
1388		goto out_free;
1389	}
1390	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1391		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1392						      size);
1393	else
1394		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1395							 virt_len);
1396	if (rc) {
1397		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1398		       "rc = [%d]\n", __func__, rc);
1399		goto out_free;
1400	}
1401out_free:
1402	free_pages((unsigned long)virt, order);
1403out:
1404	return rc;
1405}
1406
1407#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1408#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1409static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1410				 char *virt, int *bytes_read,
1411				 int validate_header_size)
1412{
1413	int rc = 0;
1414	u32 header_extent_size;
1415	u16 num_header_extents_at_front;
1416
1417	header_extent_size = get_unaligned_be32(virt);
1418	virt += sizeof(__be32);
1419	num_header_extents_at_front = get_unaligned_be16(virt);
1420	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1421				     * (size_t)header_extent_size));
1422	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1423	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1424	    && (crypt_stat->metadata_size
1425		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1426		rc = -EINVAL;
1427		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1428		       crypt_stat->metadata_size);
1429	}
1430	return rc;
1431}
1432
1433/**
1434 * set_default_header_data
1435 * @crypt_stat: The cryptographic context
1436 *
1437 * For version 0 file format; this function is only for backwards
1438 * compatibility for files created with the prior versions of
1439 * eCryptfs.
1440 */
1441static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1442{
1443	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1444}
1445
1446void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1447{
1448	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1449	struct ecryptfs_crypt_stat *crypt_stat;
1450	u64 file_size;
1451
1452	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1453	mount_crypt_stat =
1454		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1455	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1456		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1457		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1458			file_size += crypt_stat->metadata_size;
1459	} else
1460		file_size = get_unaligned_be64(page_virt);
1461	i_size_write(inode, (loff_t)file_size);
1462	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1463}
1464
1465/**
1466 * ecryptfs_read_headers_virt
1467 * @page_virt: The virtual address into which to read the headers
1468 * @crypt_stat: The cryptographic context
1469 * @ecryptfs_dentry: The eCryptfs dentry
1470 * @validate_header_size: Whether to validate the header size while reading
1471 *
1472 * Read/parse the header data. The header format is detailed in the
1473 * comment block for the ecryptfs_write_headers_virt() function.
1474 *
1475 * Returns zero on success
1476 */
1477static int ecryptfs_read_headers_virt(char *page_virt,
1478				      struct ecryptfs_crypt_stat *crypt_stat,
1479				      struct dentry *ecryptfs_dentry,
1480				      int validate_header_size)
1481{
1482	int rc = 0;
1483	int offset;
1484	int bytes_read;
1485
1486	ecryptfs_set_default_sizes(crypt_stat);
1487	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1488		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1489	offset = ECRYPTFS_FILE_SIZE_BYTES;
1490	rc = ecryptfs_validate_marker(page_virt + offset);
1491	if (rc)
1492		goto out;
1493	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1494		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1495	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1496	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1497				    &bytes_read);
1498	if (rc) {
1499		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1500		goto out;
1501	}
1502	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1503		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1504				"file version [%d] is supported by this "
1505				"version of eCryptfs\n",
1506				crypt_stat->file_version,
1507				ECRYPTFS_SUPPORTED_FILE_VERSION);
1508		rc = -EINVAL;
1509		goto out;
1510	}
1511	offset += bytes_read;
1512	if (crypt_stat->file_version >= 1) {
1513		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1514					   &bytes_read, validate_header_size);
1515		if (rc) {
1516			ecryptfs_printk(KERN_WARNING, "Error reading header "
1517					"metadata; rc = [%d]\n", rc);
1518		}
1519		offset += bytes_read;
1520	} else
1521		set_default_header_data(crypt_stat);
1522	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1523				       ecryptfs_dentry);
1524out:
1525	return rc;
1526}
1527
1528/**
1529 * ecryptfs_read_xattr_region
1530 * @page_virt: The vitual address into which to read the xattr data
1531 * @ecryptfs_inode: The eCryptfs inode
1532 *
1533 * Attempts to read the crypto metadata from the extended attribute
1534 * region of the lower file.
1535 *
1536 * Returns zero on success; non-zero on error
1537 */
1538int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1539{
1540	struct dentry *lower_dentry =
1541		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1542	ssize_t size;
1543	int rc = 0;
1544
1545	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
 
 
1546				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1547	if (size < 0) {
1548		if (unlikely(ecryptfs_verbosity > 0))
1549			printk(KERN_INFO "Error attempting to read the [%s] "
1550			       "xattr from the lower file; return value = "
1551			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1552		rc = -EINVAL;
1553		goto out;
1554	}
1555out:
1556	return rc;
1557}
1558
1559int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1560					    struct inode *inode)
1561{
1562	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1563	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1564	int rc;
1565
1566	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
 
1567				     ECRYPTFS_XATTR_NAME, file_size,
1568				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1569	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1570		return rc >= 0 ? -EINVAL : rc;
 
 
1571	rc = ecryptfs_validate_marker(marker);
1572	if (!rc)
1573		ecryptfs_i_size_init(file_size, inode);
1574	return rc;
1575}
1576
1577/**
1578 * ecryptfs_read_metadata
1579 *
1580 * Common entry point for reading file metadata. From here, we could
1581 * retrieve the header information from the header region of the file,
1582 * the xattr region of the file, or some other repostory that is
1583 * stored separately from the file itself. The current implementation
1584 * supports retrieving the metadata information from the file contents
1585 * and from the xattr region.
1586 *
1587 * Returns zero if valid headers found and parsed; non-zero otherwise
1588 */
1589int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1590{
1591	int rc = 0;
1592	char *page_virt = NULL;
1593	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1594	struct ecryptfs_crypt_stat *crypt_stat =
1595	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1596	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1597		&ecryptfs_superblock_to_private(
1598			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1599
1600	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1601						      mount_crypt_stat);
1602	/* Read the first page from the underlying file */
1603	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1604	if (!page_virt) {
1605		rc = -ENOMEM;
1606		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1607		       __func__);
1608		goto out;
1609	}
1610	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1611				 ecryptfs_inode);
1612	if (rc >= 0)
1613		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1614						ecryptfs_dentry,
1615						ECRYPTFS_VALIDATE_HEADER_SIZE);
1616	if (rc) {
1617		memset(page_virt, 0, PAGE_CACHE_SIZE);
 
1618		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1619		if (rc) {
1620			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621			       "file header region or xattr region\n");
 
1622			rc = -EINVAL;
1623			goto out;
1624		}
1625		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1626						ecryptfs_dentry,
1627						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1628		if (rc) {
1629			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1630			       "file xattr region either\n");
 
1631			rc = -EINVAL;
1632		}
1633		if (crypt_stat->mount_crypt_stat->flags
1634		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1635			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1636		} else {
1637			printk(KERN_WARNING "Attempt to access file with "
1638			       "crypto metadata only in the extended attribute "
1639			       "region, but eCryptfs was mounted without "
1640			       "xattr support enabled. eCryptfs will not treat "
1641			       "this like an encrypted file.\n");
 
1642			rc = -EINVAL;
1643		}
1644	}
1645out:
1646	if (page_virt) {
1647		memset(page_virt, 0, PAGE_CACHE_SIZE);
1648		kmem_cache_free(ecryptfs_header_cache, page_virt);
1649	}
1650	return rc;
1651}
1652
1653/**
1654 * ecryptfs_encrypt_filename - encrypt filename
1655 *
1656 * CBC-encrypts the filename. We do not want to encrypt the same
1657 * filename with the same key and IV, which may happen with hard
1658 * links, so we prepend random bits to each filename.
1659 *
1660 * Returns zero on success; non-zero otherwise
1661 */
1662static int
1663ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1664			  struct ecryptfs_crypt_stat *crypt_stat,
1665			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1666{
1667	int rc = 0;
1668
1669	filename->encrypted_filename = NULL;
1670	filename->encrypted_filename_size = 0;
1671	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1672	    || (mount_crypt_stat && (mount_crypt_stat->flags
1673				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1674		size_t packet_size;
1675		size_t remaining_bytes;
1676
1677		rc = ecryptfs_write_tag_70_packet(
1678			NULL, NULL,
1679			&filename->encrypted_filename_size,
1680			mount_crypt_stat, NULL,
1681			filename->filename_size);
1682		if (rc) {
1683			printk(KERN_ERR "%s: Error attempting to get packet "
1684			       "size for tag 72; rc = [%d]\n", __func__,
1685			       rc);
1686			filename->encrypted_filename_size = 0;
1687			goto out;
1688		}
1689		filename->encrypted_filename =
1690			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1691		if (!filename->encrypted_filename) {
1692			printk(KERN_ERR "%s: Out of memory whilst attempting "
1693			       "to kmalloc [%zd] bytes\n", __func__,
1694			       filename->encrypted_filename_size);
1695			rc = -ENOMEM;
1696			goto out;
1697		}
1698		remaining_bytes = filename->encrypted_filename_size;
1699		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1700						  &remaining_bytes,
1701						  &packet_size,
1702						  mount_crypt_stat,
1703						  filename->filename,
1704						  filename->filename_size);
1705		if (rc) {
1706			printk(KERN_ERR "%s: Error attempting to generate "
1707			       "tag 70 packet; rc = [%d]\n", __func__,
1708			       rc);
1709			kfree(filename->encrypted_filename);
1710			filename->encrypted_filename = NULL;
1711			filename->encrypted_filename_size = 0;
1712			goto out;
1713		}
1714		filename->encrypted_filename_size = packet_size;
1715	} else {
1716		printk(KERN_ERR "%s: No support for requested filename "
1717		       "encryption method in this release\n", __func__);
1718		rc = -EOPNOTSUPP;
1719		goto out;
1720	}
1721out:
1722	return rc;
1723}
1724
1725static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1726				  const char *name, size_t name_size)
1727{
1728	int rc = 0;
1729
1730	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1731	if (!(*copied_name)) {
1732		rc = -ENOMEM;
1733		goto out;
1734	}
1735	memcpy((void *)(*copied_name), (void *)name, name_size);
1736	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1737						 * in printing out the
1738						 * string in debug
1739						 * messages */
1740	(*copied_name_size) = name_size;
1741out:
1742	return rc;
1743}
1744
1745/**
1746 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1747 * @key_tfm: Crypto context for key material, set by this function
1748 * @cipher_name: Name of the cipher
1749 * @key_size: Size of the key in bytes
1750 *
1751 * Returns zero on success. Any crypto_tfm structs allocated here
1752 * should be released by other functions, such as on a superblock put
1753 * event, regardless of whether this function succeeds for fails.
1754 */
1755static int
1756ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1757			    char *cipher_name, size_t *key_size)
1758{
1759	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1760	char *full_alg_name = NULL;
1761	int rc;
1762
1763	*key_tfm = NULL;
1764	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1765		rc = -EINVAL;
1766		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1767		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1768		goto out;
1769	}
1770	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1771						    "ecb");
1772	if (rc)
1773		goto out;
1774	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1775	if (IS_ERR(*key_tfm)) {
1776		rc = PTR_ERR(*key_tfm);
1777		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1778		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1779		goto out;
1780	}
1781	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1782	if (*key_size == 0) {
1783		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1784
1785		*key_size = alg->max_keysize;
1786	}
1787	get_random_bytes(dummy_key, *key_size);
1788	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1789	if (rc) {
1790		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1791		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1792		       rc);
1793		rc = -EINVAL;
1794		goto out;
1795	}
1796out:
1797	kfree(full_alg_name);
1798	return rc;
1799}
1800
1801struct kmem_cache *ecryptfs_key_tfm_cache;
1802static struct list_head key_tfm_list;
1803struct mutex key_tfm_list_mutex;
1804
1805int __init ecryptfs_init_crypto(void)
1806{
1807	mutex_init(&key_tfm_list_mutex);
1808	INIT_LIST_HEAD(&key_tfm_list);
1809	return 0;
1810}
1811
1812/**
1813 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1814 *
1815 * Called only at module unload time
1816 */
1817int ecryptfs_destroy_crypto(void)
1818{
1819	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1820
1821	mutex_lock(&key_tfm_list_mutex);
1822	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1823				 key_tfm_list) {
1824		list_del(&key_tfm->key_tfm_list);
1825		if (key_tfm->key_tfm)
1826			crypto_free_blkcipher(key_tfm->key_tfm);
1827		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1828	}
1829	mutex_unlock(&key_tfm_list_mutex);
1830	return 0;
1831}
1832
1833int
1834ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1835			 size_t key_size)
1836{
1837	struct ecryptfs_key_tfm *tmp_tfm;
1838	int rc = 0;
1839
1840	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1841
1842	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1843	if (key_tfm != NULL)
1844		(*key_tfm) = tmp_tfm;
1845	if (!tmp_tfm) {
1846		rc = -ENOMEM;
1847		printk(KERN_ERR "Error attempting to allocate from "
1848		       "ecryptfs_key_tfm_cache\n");
1849		goto out;
1850	}
1851	mutex_init(&tmp_tfm->key_tfm_mutex);
1852	strncpy(tmp_tfm->cipher_name, cipher_name,
1853		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1854	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1855	tmp_tfm->key_size = key_size;
1856	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1857					 tmp_tfm->cipher_name,
1858					 &tmp_tfm->key_size);
1859	if (rc) {
1860		printk(KERN_ERR "Error attempting to initialize key TFM "
1861		       "cipher with name = [%s]; rc = [%d]\n",
1862		       tmp_tfm->cipher_name, rc);
1863		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1864		if (key_tfm != NULL)
1865			(*key_tfm) = NULL;
1866		goto out;
1867	}
1868	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1869out:
1870	return rc;
1871}
1872
1873/**
1874 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1875 * @cipher_name: the name of the cipher to search for
1876 * @key_tfm: set to corresponding tfm if found
1877 *
1878 * Searches for cached key_tfm matching @cipher_name
1879 * Must be called with &key_tfm_list_mutex held
1880 * Returns 1 if found, with @key_tfm set
1881 * Returns 0 if not found, with @key_tfm set to NULL
1882 */
1883int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1884{
1885	struct ecryptfs_key_tfm *tmp_key_tfm;
1886
1887	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1888
1889	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1890		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1891			if (key_tfm)
1892				(*key_tfm) = tmp_key_tfm;
1893			return 1;
1894		}
1895	}
1896	if (key_tfm)
1897		(*key_tfm) = NULL;
1898	return 0;
1899}
1900
1901/**
1902 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1903 *
1904 * @tfm: set to cached tfm found, or new tfm created
1905 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1906 * @cipher_name: the name of the cipher to search for and/or add
1907 *
1908 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1909 * Searches for cached item first, and creates new if not found.
1910 * Returns 0 on success, non-zero if adding new cipher failed
1911 */
1912int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1913					       struct mutex **tfm_mutex,
1914					       char *cipher_name)
1915{
1916	struct ecryptfs_key_tfm *key_tfm;
1917	int rc = 0;
1918
1919	(*tfm) = NULL;
1920	(*tfm_mutex) = NULL;
1921
1922	mutex_lock(&key_tfm_list_mutex);
1923	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1924		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1925		if (rc) {
1926			printk(KERN_ERR "Error adding new key_tfm to list; "
1927					"rc = [%d]\n", rc);
1928			goto out;
1929		}
1930	}
1931	(*tfm) = key_tfm->key_tfm;
1932	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1933out:
1934	mutex_unlock(&key_tfm_list_mutex);
1935	return rc;
1936}
1937
1938/* 64 characters forming a 6-bit target field */
1939static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1940						 "EFGHIJKLMNOPQRST"
1941						 "UVWXYZabcdefghij"
1942						 "klmnopqrstuvwxyz");
1943
1944/* We could either offset on every reverse map or just pad some 0x00's
1945 * at the front here */
1946static const unsigned char filename_rev_map[] = {
1947	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1948	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1949	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1950	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1951	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1952	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1953	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1954	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1955	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1956	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1957	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1958	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1959	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1960	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1961	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1962	0x3D, 0x3E, 0x3F
1963};
1964
1965/**
1966 * ecryptfs_encode_for_filename
1967 * @dst: Destination location for encoded filename
1968 * @dst_size: Size of the encoded filename in bytes
1969 * @src: Source location for the filename to encode
1970 * @src_size: Size of the source in bytes
1971 */
1972void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1973				  unsigned char *src, size_t src_size)
1974{
1975	size_t num_blocks;
1976	size_t block_num = 0;
1977	size_t dst_offset = 0;
1978	unsigned char last_block[3];
1979
1980	if (src_size == 0) {
1981		(*dst_size) = 0;
1982		goto out;
1983	}
1984	num_blocks = (src_size / 3);
1985	if ((src_size % 3) == 0) {
1986		memcpy(last_block, (&src[src_size - 3]), 3);
1987	} else {
1988		num_blocks++;
1989		last_block[2] = 0x00;
1990		switch (src_size % 3) {
1991		case 1:
1992			last_block[0] = src[src_size - 1];
1993			last_block[1] = 0x00;
1994			break;
1995		case 2:
1996			last_block[0] = src[src_size - 2];
1997			last_block[1] = src[src_size - 1];
1998		}
1999	}
2000	(*dst_size) = (num_blocks * 4);
2001	if (!dst)
2002		goto out;
2003	while (block_num < num_blocks) {
2004		unsigned char *src_block;
2005		unsigned char dst_block[4];
2006
2007		if (block_num == (num_blocks - 1))
2008			src_block = last_block;
2009		else
2010			src_block = &src[block_num * 3];
2011		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2012		dst_block[1] = (((src_block[0] << 4) & 0x30)
2013				| ((src_block[1] >> 4) & 0x0F));
2014		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2015				| ((src_block[2] >> 6) & 0x03));
2016		dst_block[3] = (src_block[2] & 0x3F);
2017		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2018		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2019		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2020		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2021		block_num++;
2022	}
2023out:
2024	return;
2025}
2026
 
 
 
 
 
 
 
 
 
 
 
2027/**
2028 * ecryptfs_decode_from_filename
2029 * @dst: If NULL, this function only sets @dst_size and returns. If
2030 *       non-NULL, this function decodes the encoded octets in @src
2031 *       into the memory that @dst points to.
2032 * @dst_size: Set to the size of the decoded string.
2033 * @src: The encoded set of octets to decode.
2034 * @src_size: The size of the encoded set of octets to decode.
2035 */
2036static void
2037ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2038			      const unsigned char *src, size_t src_size)
2039{
2040	u8 current_bit_offset = 0;
2041	size_t src_byte_offset = 0;
2042	size_t dst_byte_offset = 0;
2043
2044	if (dst == NULL) {
2045		/* Not exact; conservatively long. Every block of 4
2046		 * encoded characters decodes into a block of 3
2047		 * decoded characters. This segment of code provides
2048		 * the caller with the maximum amount of allocated
2049		 * space that @dst will need to point to in a
2050		 * subsequent call. */
2051		(*dst_size) = (((src_size + 1) * 3) / 4);
2052		goto out;
2053	}
2054	while (src_byte_offset < src_size) {
2055		unsigned char src_byte =
2056				filename_rev_map[(int)src[src_byte_offset]];
2057
2058		switch (current_bit_offset) {
2059		case 0:
2060			dst[dst_byte_offset] = (src_byte << 2);
2061			current_bit_offset = 6;
2062			break;
2063		case 6:
2064			dst[dst_byte_offset++] |= (src_byte >> 4);
2065			dst[dst_byte_offset] = ((src_byte & 0xF)
2066						 << 4);
2067			current_bit_offset = 4;
2068			break;
2069		case 4:
2070			dst[dst_byte_offset++] |= (src_byte >> 2);
2071			dst[dst_byte_offset] = (src_byte << 6);
2072			current_bit_offset = 2;
2073			break;
2074		case 2:
2075			dst[dst_byte_offset++] |= (src_byte);
2076			dst[dst_byte_offset] = 0;
2077			current_bit_offset = 0;
2078			break;
2079		}
2080		src_byte_offset++;
2081	}
2082	(*dst_size) = dst_byte_offset;
2083out:
2084	return;
2085}
2086
2087/**
2088 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2089 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2090 * @name: The plaintext name
2091 * @length: The length of the plaintext
2092 * @encoded_name: The encypted name
2093 *
2094 * Encrypts and encodes a filename into something that constitutes a
2095 * valid filename for a filesystem, with printable characters.
2096 *
2097 * We assume that we have a properly initialized crypto context,
2098 * pointed to by crypt_stat->tfm.
2099 *
2100 * Returns zero on success; non-zero on otherwise
2101 */
2102int ecryptfs_encrypt_and_encode_filename(
2103	char **encoded_name,
2104	size_t *encoded_name_size,
2105	struct ecryptfs_crypt_stat *crypt_stat,
2106	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2107	const char *name, size_t name_size)
2108{
2109	size_t encoded_name_no_prefix_size;
2110	int rc = 0;
2111
2112	(*encoded_name) = NULL;
2113	(*encoded_name_size) = 0;
2114	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2115	    || (mount_crypt_stat && (mount_crypt_stat->flags
2116				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2117		struct ecryptfs_filename *filename;
2118
2119		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2120		if (!filename) {
2121			printk(KERN_ERR "%s: Out of memory whilst attempting "
2122			       "to kzalloc [%zd] bytes\n", __func__,
2123			       sizeof(*filename));
2124			rc = -ENOMEM;
2125			goto out;
2126		}
2127		filename->filename = (char *)name;
2128		filename->filename_size = name_size;
2129		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2130					       mount_crypt_stat);
2131		if (rc) {
2132			printk(KERN_ERR "%s: Error attempting to encrypt "
2133			       "filename; rc = [%d]\n", __func__, rc);
2134			kfree(filename);
2135			goto out;
2136		}
2137		ecryptfs_encode_for_filename(
2138			NULL, &encoded_name_no_prefix_size,
2139			filename->encrypted_filename,
2140			filename->encrypted_filename_size);
2141		if ((crypt_stat && (crypt_stat->flags
2142				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2143		    || (mount_crypt_stat
2144			&& (mount_crypt_stat->flags
2145			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2146			(*encoded_name_size) =
2147				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2148				 + encoded_name_no_prefix_size);
2149		else
2150			(*encoded_name_size) =
2151				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2152				 + encoded_name_no_prefix_size);
2153		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2154		if (!(*encoded_name)) {
2155			printk(KERN_ERR "%s: Out of memory whilst attempting "
2156			       "to kzalloc [%zd] bytes\n", __func__,
2157			       (*encoded_name_size));
2158			rc = -ENOMEM;
2159			kfree(filename->encrypted_filename);
2160			kfree(filename);
2161			goto out;
2162		}
2163		if ((crypt_stat && (crypt_stat->flags
2164				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2165		    || (mount_crypt_stat
2166			&& (mount_crypt_stat->flags
2167			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2168			memcpy((*encoded_name),
2169			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2170			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2171			ecryptfs_encode_for_filename(
2172			    ((*encoded_name)
2173			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2174			    &encoded_name_no_prefix_size,
2175			    filename->encrypted_filename,
2176			    filename->encrypted_filename_size);
2177			(*encoded_name_size) =
2178				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2179				 + encoded_name_no_prefix_size);
2180			(*encoded_name)[(*encoded_name_size)] = '\0';
2181		} else {
2182			rc = -EOPNOTSUPP;
2183		}
2184		if (rc) {
2185			printk(KERN_ERR "%s: Error attempting to encode "
2186			       "encrypted filename; rc = [%d]\n", __func__,
2187			       rc);
2188			kfree((*encoded_name));
2189			(*encoded_name) = NULL;
2190			(*encoded_name_size) = 0;
2191		}
2192		kfree(filename->encrypted_filename);
2193		kfree(filename);
2194	} else {
2195		rc = ecryptfs_copy_filename(encoded_name,
2196					    encoded_name_size,
2197					    name, name_size);
2198	}
2199out:
2200	return rc;
2201}
2202
 
 
 
 
 
 
 
 
 
 
2203/**
2204 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2205 * @plaintext_name: The plaintext name
2206 * @plaintext_name_size: The plaintext name size
2207 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2208 * @name: The filename in cipher text
2209 * @name_size: The cipher text name size
2210 *
2211 * Decrypts and decodes the filename.
2212 *
2213 * Returns zero on error; non-zero otherwise
2214 */
2215int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2216					 size_t *plaintext_name_size,
2217					 struct dentry *ecryptfs_dir_dentry,
2218					 const char *name, size_t name_size)
2219{
2220	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2221		&ecryptfs_superblock_to_private(
2222			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2223	char *decoded_name;
2224	size_t decoded_name_size;
2225	size_t packet_size;
2226	int rc = 0;
2227
2228	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2229	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2230	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2231	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2232			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2233		const char *orig_name = name;
2234		size_t orig_name_size = name_size;
 
 
 
 
 
 
 
 
2235
2236		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2237		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2238		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2239					      name, name_size);
2240		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2241		if (!decoded_name) {
2242			printk(KERN_ERR "%s: Out of memory whilst attempting "
2243			       "to kmalloc [%zd] bytes\n", __func__,
2244			       decoded_name_size);
2245			rc = -ENOMEM;
2246			goto out;
2247		}
2248		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2249					      name, name_size);
2250		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2251						  plaintext_name_size,
2252						  &packet_size,
2253						  mount_crypt_stat,
2254						  decoded_name,
2255						  decoded_name_size);
2256		if (rc) {
2257			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2258			       "from filename; copying through filename "
2259			       "as-is\n", __func__);
2260			rc = ecryptfs_copy_filename(plaintext_name,
2261						    plaintext_name_size,
2262						    orig_name, orig_name_size);
2263			goto out_free;
2264		}
2265	} else {
2266		rc = ecryptfs_copy_filename(plaintext_name,
2267					    plaintext_name_size,
2268					    name, name_size);
2269		goto out;
2270	}
2271out_free:
2272	kfree(decoded_name);
2273out:
2274	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * eCryptfs: Linux filesystem encryption layer
   4 *
   5 * Copyright (C) 1997-2004 Erez Zadok
   6 * Copyright (C) 2001-2004 Stony Brook University
   7 * Copyright (C) 2004-2007 International Business Machines Corp.
   8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   9 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <crypto/hash.h>
  13#include <crypto/skcipher.h>
  14#include <linux/fs.h>
  15#include <linux/mount.h>
  16#include <linux/pagemap.h>
  17#include <linux/random.h>
  18#include <linux/compiler.h>
  19#include <linux/key.h>
  20#include <linux/namei.h>
 
  21#include <linux/file.h>
  22#include <linux/scatterlist.h>
  23#include <linux/slab.h>
  24#include <asm/unaligned.h>
  25#include <linux/kernel.h>
  26#include <linux/xattr.h>
  27#include "ecryptfs_kernel.h"
  28
  29#define DECRYPT		0
  30#define ENCRYPT		1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32/**
  33 * ecryptfs_from_hex
  34 * @dst: Buffer to take the bytes from src hex; must be at least of
  35 *       size (src_size / 2)
  36 * @src: Buffer to be converted from a hex string representation to raw value
  37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  38 */
  39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  40{
  41	int x;
  42	char tmp[3] = { 0, };
  43
  44	for (x = 0; x < dst_size; x++) {
  45		tmp[0] = src[x * 2];
  46		tmp[1] = src[x * 2 + 1];
  47		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  48	}
  49}
  50
  51static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  52				char *src, int len, char *dst)
  53{
  54	SHASH_DESC_ON_STACK(desc, tfm);
  55	int err;
  56
  57	desc->tfm = tfm;
  58	err = crypto_shash_digest(desc, src, len, dst);
  59	shash_desc_zero(desc);
  60	return err;
  61}
  62
  63/**
  64 * ecryptfs_calculate_md5 - calculates the md5 of @src
  65 * @dst: Pointer to 16 bytes of allocated memory
  66 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  67 * @src: Data to be md5'd
  68 * @len: Length of @src
  69 *
  70 * Uses the allocated crypto context that crypt_stat references to
  71 * generate the MD5 sum of the contents of src.
  72 */
  73static int ecryptfs_calculate_md5(char *dst,
  74				  struct ecryptfs_crypt_stat *crypt_stat,
  75				  char *src, int len)
  76{
  77	struct crypto_shash *tfm;
 
 
 
 
  78	int rc = 0;
  79
  80	tfm = crypt_stat->hash_tfm;
  81	rc = ecryptfs_hash_digest(tfm, src, len, dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82	if (rc) {
  83		printk(KERN_ERR
  84		       "%s: Error computing crypto hash; rc = [%d]\n",
  85		       __func__, rc);
  86		goto out;
  87	}
  88out:
 
  89	return rc;
  90}
  91
  92static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  93						  char *cipher_name,
  94						  char *chaining_modifier)
  95{
  96	int cipher_name_len = strlen(cipher_name);
  97	int chaining_modifier_len = strlen(chaining_modifier);
  98	int algified_name_len;
  99	int rc;
 100
 101	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 102	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 103	if (!(*algified_name)) {
 104		rc = -ENOMEM;
 105		goto out;
 106	}
 107	snprintf((*algified_name), algified_name_len, "%s(%s)",
 108		 chaining_modifier, cipher_name);
 109	rc = 0;
 110out:
 111	return rc;
 112}
 113
 114/**
 115 * ecryptfs_derive_iv
 116 * @iv: destination for the derived iv vale
 117 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 118 * @offset: Offset of the extent whose IV we are to derive
 119 *
 120 * Generate the initialization vector from the given root IV and page
 121 * offset.
 122 *
 123 * Returns zero on success; non-zero on error.
 124 */
 125int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 126		       loff_t offset)
 127{
 128	int rc = 0;
 129	char dst[MD5_DIGEST_SIZE];
 130	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 131
 132	if (unlikely(ecryptfs_verbosity > 0)) {
 133		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 134		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 135	}
 136	/* TODO: It is probably secure to just cast the least
 137	 * significant bits of the root IV into an unsigned long and
 138	 * add the offset to that rather than go through all this
 139	 * hashing business. -Halcrow */
 140	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 141	memset((src + crypt_stat->iv_bytes), 0, 16);
 142	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 143	if (unlikely(ecryptfs_verbosity > 0)) {
 144		ecryptfs_printk(KERN_DEBUG, "source:\n");
 145		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 146	}
 147	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 148				    (crypt_stat->iv_bytes + 16));
 149	if (rc) {
 150		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 151				"MD5 while generating IV for a page\n");
 152		goto out;
 153	}
 154	memcpy(iv, dst, crypt_stat->iv_bytes);
 155	if (unlikely(ecryptfs_verbosity > 0)) {
 156		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 157		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 158	}
 159out:
 160	return rc;
 161}
 162
 163/**
 164 * ecryptfs_init_crypt_stat
 165 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 166 *
 167 * Initialize the crypt_stat structure.
 168 */
 169int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 
 170{
 171	struct crypto_shash *tfm;
 172	int rc;
 173
 174	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 175	if (IS_ERR(tfm)) {
 176		rc = PTR_ERR(tfm);
 177		ecryptfs_printk(KERN_ERR, "Error attempting to "
 178				"allocate crypto context; rc = [%d]\n",
 179				rc);
 180		return rc;
 181	}
 182
 183	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 184	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 185	mutex_init(&crypt_stat->keysig_list_mutex);
 186	mutex_init(&crypt_stat->cs_mutex);
 187	mutex_init(&crypt_stat->cs_tfm_mutex);
 188	crypt_stat->hash_tfm = tfm;
 189	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 190
 191	return 0;
 192}
 193
 194/**
 195 * ecryptfs_destroy_crypt_stat
 196 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 197 *
 198 * Releases all memory associated with a crypt_stat struct.
 199 */
 200void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 201{
 202	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 203
 204	crypto_free_skcipher(crypt_stat->tfm);
 205	crypto_free_shash(crypt_stat->hash_tfm);
 
 
 206	list_for_each_entry_safe(key_sig, key_sig_tmp,
 207				 &crypt_stat->keysig_list, crypt_stat_list) {
 208		list_del(&key_sig->crypt_stat_list);
 209		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 210	}
 211	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 212}
 213
 214void ecryptfs_destroy_mount_crypt_stat(
 215	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 216{
 217	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 218
 219	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 220		return;
 221	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 222	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 223				 &mount_crypt_stat->global_auth_tok_list,
 224				 mount_crypt_stat_list) {
 225		list_del(&auth_tok->mount_crypt_stat_list);
 226		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 
 227			key_put(auth_tok->global_auth_tok_key);
 228		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 229	}
 230	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 231	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 232}
 233
 234/**
 235 * virt_to_scatterlist
 236 * @addr: Virtual address
 237 * @size: Size of data; should be an even multiple of the block size
 238 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 239 *      the number of scatterlist structs required in array
 240 * @sg_size: Max array size
 241 *
 242 * Fills in a scatterlist array with page references for a passed
 243 * virtual address.
 244 *
 245 * Returns the number of scatterlist structs in array used
 246 */
 247int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 248			int sg_size)
 249{
 250	int i = 0;
 251	struct page *pg;
 252	int offset;
 253	int remainder_of_page;
 254
 255	sg_init_table(sg, sg_size);
 256
 257	while (size > 0 && i < sg_size) {
 258		pg = virt_to_page(addr);
 259		offset = offset_in_page(addr);
 260		sg_set_page(&sg[i], pg, 0, offset);
 261		remainder_of_page = PAGE_SIZE - offset;
 
 262		if (size >= remainder_of_page) {
 263			sg[i].length = remainder_of_page;
 
 264			addr += remainder_of_page;
 265			size -= remainder_of_page;
 266		} else {
 267			sg[i].length = size;
 
 268			addr += size;
 269			size = 0;
 270		}
 271		i++;
 272	}
 273	if (size > 0)
 274		return -ENOMEM;
 275	return i;
 276}
 277
 278struct extent_crypt_result {
 279	struct completion completion;
 280	int rc;
 281};
 282
 283static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 284{
 285	struct extent_crypt_result *ecr = req->data;
 286
 287	if (rc == -EINPROGRESS)
 288		return;
 289
 290	ecr->rc = rc;
 291	complete(&ecr->completion);
 292}
 293
 294/**
 295 * crypt_scatterlist
 296 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 297 * @dst_sg: Destination of the data after performing the crypto operation
 298 * @src_sg: Data to be encrypted or decrypted
 299 * @size: Length of data
 300 * @iv: IV to use
 301 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 302 *
 303 * Returns the number of bytes encrypted or decrypted; negative value on error
 304 */
 305static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 306			     struct scatterlist *dst_sg,
 307			     struct scatterlist *src_sg, int size,
 308			     unsigned char *iv, int op)
 309{
 310	struct skcipher_request *req = NULL;
 311	struct extent_crypt_result ecr;
 
 
 312	int rc = 0;
 313
 314	BUG_ON(!crypt_stat || !crypt_stat->tfm
 315	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 316	if (unlikely(ecryptfs_verbosity > 0)) {
 317		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 318				crypt_stat->key_size);
 319		ecryptfs_dump_hex(crypt_stat->key,
 320				  crypt_stat->key_size);
 321	}
 322
 323	init_completion(&ecr.completion);
 324
 325	mutex_lock(&crypt_stat->cs_tfm_mutex);
 326	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 327	if (!req) {
 
 
 
 
 
 
 328		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 329		rc = -ENOMEM;
 330		goto out;
 331	}
 332
 333	skcipher_request_set_callback(req,
 334			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 335			extent_crypt_complete, &ecr);
 336	/* Consider doing this once, when the file is opened */
 337	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 338		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 339					    crypt_stat->key_size);
 340		if (rc) {
 341			ecryptfs_printk(KERN_ERR,
 342					"Error setting key; rc = [%d]\n",
 343					rc);
 344			mutex_unlock(&crypt_stat->cs_tfm_mutex);
 345			rc = -EINVAL;
 346			goto out;
 347		}
 348		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 349	}
 350	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 351	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 352	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 353			     crypto_skcipher_decrypt(req);
 354	if (rc == -EINPROGRESS || rc == -EBUSY) {
 355		struct extent_crypt_result *ecr = req->base.data;
 356
 357		wait_for_completion(&ecr->completion);
 358		rc = ecr->rc;
 359		reinit_completion(&ecr->completion);
 360	}
 361out:
 362	skcipher_request_free(req);
 363	return rc;
 364}
 365
 366/**
 367 * lower_offset_for_page
 368 *
 369 * Convert an eCryptfs page index into a lower byte offset
 370 */
 371static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 372				    struct page *page)
 373{
 374	return ecryptfs_lower_header_size(crypt_stat) +
 375	       ((loff_t)page->index << PAGE_SHIFT);
 376}
 377
 378/**
 379 * crypt_extent
 
 
 380 * @crypt_stat: crypt_stat containing cryptographic context for the
 381 *              encryption operation
 382 * @dst_page: The page to write the result into
 383 * @src_page: The page to read from
 384 * @extent_offset: Page extent offset for use in generating IV
 385 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 386 *
 387 * Encrypts or decrypts one extent of data.
 388 *
 389 * Return zero on success; non-zero otherwise
 390 */
 391static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 392			struct page *dst_page,
 393			struct page *src_page,
 394			unsigned long extent_offset, int op)
 395{
 396	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 397	loff_t extent_base;
 398	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 399	struct scatterlist src_sg, dst_sg;
 400	size_t extent_size = crypt_stat->extent_size;
 401	int rc;
 402
 403	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 
 404	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 405				(extent_base + extent_offset));
 406	if (rc) {
 407		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 408			"extent [0x%.16llx]; rc = [%d]\n",
 409			(unsigned long long)(extent_base + extent_offset), rc);
 410		goto out;
 411	}
 412
 413	sg_init_table(&src_sg, 1);
 414	sg_init_table(&dst_sg, 1);
 415
 416	sg_set_page(&src_sg, src_page, extent_size,
 417		    extent_offset * extent_size);
 418	sg_set_page(&dst_sg, dst_page, extent_size,
 419		    extent_offset * extent_size);
 420
 421	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 422			       extent_iv, op);
 
 
 
 
 423	if (rc < 0) {
 424		printk(KERN_ERR "%s: Error attempting to crypt page with "
 425		       "page_index = [%ld], extent_offset = [%ld]; "
 426		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 
 427		goto out;
 428	}
 429	rc = 0;
 
 
 
 
 
 
 
 
 430out:
 431	return rc;
 432}
 433
 434/**
 435 * ecryptfs_encrypt_page
 436 * @page: Page mapped from the eCryptfs inode for the file; contains
 437 *        decrypted content that needs to be encrypted (to a temporary
 438 *        page; not in place) and written out to the lower file
 439 *
 440 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 441 * that eCryptfs pages may straddle the lower pages -- for instance,
 442 * if the file was created on a machine with an 8K page size
 443 * (resulting in an 8K header), and then the file is copied onto a
 444 * host with a 32K page size, then when reading page 0 of the eCryptfs
 445 * file, 24K of page 0 of the lower file will be read and decrypted,
 446 * and then 8K of page 1 of the lower file will be read and decrypted.
 447 *
 448 * Returns zero on success; negative on error
 449 */
 450int ecryptfs_encrypt_page(struct page *page)
 451{
 452	struct inode *ecryptfs_inode;
 453	struct ecryptfs_crypt_stat *crypt_stat;
 454	char *enc_extent_virt;
 455	struct page *enc_extent_page = NULL;
 456	loff_t extent_offset;
 457	loff_t lower_offset;
 458	int rc = 0;
 459
 460	ecryptfs_inode = page->mapping->host;
 461	crypt_stat =
 462		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 463	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 464	enc_extent_page = alloc_page(GFP_USER);
 465	if (!enc_extent_page) {
 466		rc = -ENOMEM;
 467		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 468				"encrypted extent\n");
 469		goto out;
 470	}
 471
 472	for (extent_offset = 0;
 473	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 474	     extent_offset++) {
 475		rc = crypt_extent(crypt_stat, enc_extent_page, page,
 476				  extent_offset, ENCRYPT);
 
 
 477		if (rc) {
 478			printk(KERN_ERR "%s: Error encrypting extent; "
 479			       "rc = [%d]\n", __func__, rc);
 480			goto out;
 481		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	lower_offset = lower_offset_for_page(crypt_stat, page);
 485	enc_extent_virt = kmap(enc_extent_page);
 486	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 487				  PAGE_SIZE);
 488	kunmap(enc_extent_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489	if (rc < 0) {
 490		ecryptfs_printk(KERN_ERR,
 491			"Error attempting to write lower page; rc = [%d]\n",
 492			rc);
 
 493		goto out;
 494	}
 495	rc = 0;
 
 
 
 
 
 
 
 
 
 
 496out:
 497	if (enc_extent_page) {
 498		__free_page(enc_extent_page);
 499	}
 500	return rc;
 501}
 502
 503/**
 504 * ecryptfs_decrypt_page
 505 * @page: Page mapped from the eCryptfs inode for the file; data read
 506 *        and decrypted from the lower file will be written into this
 507 *        page
 508 *
 509 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 510 * that eCryptfs pages may straddle the lower pages -- for instance,
 511 * if the file was created on a machine with an 8K page size
 512 * (resulting in an 8K header), and then the file is copied onto a
 513 * host with a 32K page size, then when reading page 0 of the eCryptfs
 514 * file, 24K of page 0 of the lower file will be read and decrypted,
 515 * and then 8K of page 1 of the lower file will be read and decrypted.
 516 *
 517 * Returns zero on success; negative on error
 518 */
 519int ecryptfs_decrypt_page(struct page *page)
 520{
 521	struct inode *ecryptfs_inode;
 522	struct ecryptfs_crypt_stat *crypt_stat;
 523	char *page_virt;
 
 524	unsigned long extent_offset;
 525	loff_t lower_offset;
 526	int rc = 0;
 527
 528	ecryptfs_inode = page->mapping->host;
 529	crypt_stat =
 530		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 531	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 532
 533	lower_offset = lower_offset_for_page(crypt_stat, page);
 534	page_virt = kmap(page);
 535	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 536				 ecryptfs_inode);
 537	kunmap(page);
 538	if (rc < 0) {
 539		ecryptfs_printk(KERN_ERR,
 540			"Error attempting to read lower page; rc = [%d]\n",
 541			rc);
 542		goto out;
 543	}
 544
 545	for (extent_offset = 0;
 546	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 547	     extent_offset++) {
 548		rc = crypt_extent(crypt_stat, page, page,
 549				  extent_offset, DECRYPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550		if (rc) {
 551			printk(KERN_ERR "%s: Error encrypting extent; "
 552			       "rc = [%d]\n", __func__, rc);
 553			goto out;
 554		}
 555	}
 556out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557	return rc;
 558}
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 561
 562/**
 563 * ecryptfs_init_crypt_ctx
 564 * @crypt_stat: Uninitialized crypt stats structure
 565 *
 566 * Initialize the crypto context.
 567 *
 568 * TODO: Performance: Keep a cache of initialized cipher contexts;
 569 * only init if needed
 570 */
 571int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 572{
 573	char *full_alg_name;
 574	int rc = -EINVAL;
 575
 
 
 
 
 576	ecryptfs_printk(KERN_DEBUG,
 577			"Initializing cipher [%s]; strlen = [%d]; "
 578			"key_size_bits = [%zd]\n",
 579			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 580			crypt_stat->key_size << 3);
 581	mutex_lock(&crypt_stat->cs_tfm_mutex);
 582	if (crypt_stat->tfm) {
 583		rc = 0;
 584		goto out_unlock;
 585	}
 
 586	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 587						    crypt_stat->cipher, "cbc");
 588	if (rc)
 589		goto out_unlock;
 590	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 
 
 591	if (IS_ERR(crypt_stat->tfm)) {
 592		rc = PTR_ERR(crypt_stat->tfm);
 593		crypt_stat->tfm = NULL;
 594		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 595				"Error initializing cipher [%s]\n",
 596				full_alg_name);
 597		goto out_free;
 598	}
 599	crypto_skcipher_set_flags(crypt_stat->tfm,
 600				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
 601	rc = 0;
 602out_free:
 603	kfree(full_alg_name);
 604out_unlock:
 605	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 
 606	return rc;
 607}
 608
 609static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 610{
 611	int extent_size_tmp;
 612
 613	crypt_stat->extent_mask = 0xFFFFFFFF;
 614	crypt_stat->extent_shift = 0;
 615	if (crypt_stat->extent_size == 0)
 616		return;
 617	extent_size_tmp = crypt_stat->extent_size;
 618	while ((extent_size_tmp & 0x01) == 0) {
 619		extent_size_tmp >>= 1;
 620		crypt_stat->extent_mask <<= 1;
 621		crypt_stat->extent_shift++;
 622	}
 623}
 624
 625void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 626{
 627	/* Default values; may be overwritten as we are parsing the
 628	 * packets. */
 629	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 630	set_extent_mask_and_shift(crypt_stat);
 631	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 632	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 633		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 634	else {
 635		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 636			crypt_stat->metadata_size =
 637				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 638		else
 639			crypt_stat->metadata_size = PAGE_SIZE;
 640	}
 641}
 642
 643/**
 644 * ecryptfs_compute_root_iv
 645 * @crypt_stats
 646 *
 647 * On error, sets the root IV to all 0's.
 648 */
 649int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 650{
 651	int rc = 0;
 652	char dst[MD5_DIGEST_SIZE];
 653
 654	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 655	BUG_ON(crypt_stat->iv_bytes <= 0);
 656	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 657		rc = -EINVAL;
 658		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 659				"cannot generate root IV\n");
 660		goto out;
 661	}
 662	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 663				    crypt_stat->key_size);
 664	if (rc) {
 665		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 666				"MD5 while generating root IV\n");
 667		goto out;
 668	}
 669	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 670out:
 671	if (rc) {
 672		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 673		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 674	}
 675	return rc;
 676}
 677
 678static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 679{
 680	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 681	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 682	ecryptfs_compute_root_iv(crypt_stat);
 683	if (unlikely(ecryptfs_verbosity > 0)) {
 684		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 685		ecryptfs_dump_hex(crypt_stat->key,
 686				  crypt_stat->key_size);
 687	}
 688}
 689
 690/**
 691 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 692 * @crypt_stat: The inode's cryptographic context
 693 * @mount_crypt_stat: The mount point's cryptographic context
 694 *
 695 * This function propagates the mount-wide flags to individual inode
 696 * flags.
 697 */
 698static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 699	struct ecryptfs_crypt_stat *crypt_stat,
 700	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 701{
 702	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 703		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 704	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 705		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 706	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 707		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 708		if (mount_crypt_stat->flags
 709		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 710			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 711		else if (mount_crypt_stat->flags
 712			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 713			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 714	}
 715}
 716
 717static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 718	struct ecryptfs_crypt_stat *crypt_stat,
 719	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 720{
 721	struct ecryptfs_global_auth_tok *global_auth_tok;
 722	int rc = 0;
 723
 724	mutex_lock(&crypt_stat->keysig_list_mutex);
 725	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 726
 727	list_for_each_entry(global_auth_tok,
 728			    &mount_crypt_stat->global_auth_tok_list,
 729			    mount_crypt_stat_list) {
 730		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 731			continue;
 732		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 733		if (rc) {
 734			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 735			goto out;
 736		}
 737	}
 738
 739out:
 740	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 741	mutex_unlock(&crypt_stat->keysig_list_mutex);
 742	return rc;
 743}
 744
 745/**
 746 * ecryptfs_set_default_crypt_stat_vals
 747 * @crypt_stat: The inode's cryptographic context
 748 * @mount_crypt_stat: The mount point's cryptographic context
 749 *
 750 * Default values in the event that policy does not override them.
 751 */
 752static void ecryptfs_set_default_crypt_stat_vals(
 753	struct ecryptfs_crypt_stat *crypt_stat,
 754	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 755{
 756	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 757						      mount_crypt_stat);
 758	ecryptfs_set_default_sizes(crypt_stat);
 759	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 760	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 761	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 762	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 763	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 764}
 765
 766/**
 767 * ecryptfs_new_file_context
 768 * @ecryptfs_inode: The eCryptfs inode
 769 *
 770 * If the crypto context for the file has not yet been established,
 771 * this is where we do that.  Establishing a new crypto context
 772 * involves the following decisions:
 773 *  - What cipher to use?
 774 *  - What set of authentication tokens to use?
 775 * Here we just worry about getting enough information into the
 776 * authentication tokens so that we know that they are available.
 777 * We associate the available authentication tokens with the new file
 778 * via the set of signatures in the crypt_stat struct.  Later, when
 779 * the headers are actually written out, we may again defer to
 780 * userspace to perform the encryption of the session key; for the
 781 * foreseeable future, this will be the case with public key packets.
 782 *
 783 * Returns zero on success; non-zero otherwise
 784 */
 785int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 786{
 787	struct ecryptfs_crypt_stat *crypt_stat =
 788	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 789	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 790	    &ecryptfs_superblock_to_private(
 791		    ecryptfs_inode->i_sb)->mount_crypt_stat;
 792	int cipher_name_len;
 793	int rc = 0;
 794
 795	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 796	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 797	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 798						      mount_crypt_stat);
 799	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 800							 mount_crypt_stat);
 801	if (rc) {
 802		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 803		       "to the inode key sigs; rc = [%d]\n", rc);
 804		goto out;
 805	}
 806	cipher_name_len =
 807		strlen(mount_crypt_stat->global_default_cipher_name);
 808	memcpy(crypt_stat->cipher,
 809	       mount_crypt_stat->global_default_cipher_name,
 810	       cipher_name_len);
 811	crypt_stat->cipher[cipher_name_len] = '\0';
 812	crypt_stat->key_size =
 813		mount_crypt_stat->global_default_cipher_key_size;
 814	ecryptfs_generate_new_key(crypt_stat);
 815	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 816	if (rc)
 817		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 818				"context for cipher [%s]: rc = [%d]\n",
 819				crypt_stat->cipher, rc);
 820out:
 821	return rc;
 822}
 823
 824/**
 825 * ecryptfs_validate_marker - check for the ecryptfs marker
 826 * @data: The data block in which to check
 827 *
 828 * Returns zero if marker found; -EINVAL if not found
 829 */
 830static int ecryptfs_validate_marker(char *data)
 831{
 832	u32 m_1, m_2;
 833
 834	m_1 = get_unaligned_be32(data);
 835	m_2 = get_unaligned_be32(data + 4);
 836	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 837		return 0;
 838	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 839			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 840			MAGIC_ECRYPTFS_MARKER);
 841	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 842			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 843	return -EINVAL;
 844}
 845
 846struct ecryptfs_flag_map_elem {
 847	u32 file_flag;
 848	u32 local_flag;
 849};
 850
 851/* Add support for additional flags by adding elements here. */
 852static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 853	{0x00000001, ECRYPTFS_ENABLE_HMAC},
 854	{0x00000002, ECRYPTFS_ENCRYPTED},
 855	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 856	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 857};
 858
 859/**
 860 * ecryptfs_process_flags
 861 * @crypt_stat: The cryptographic context
 862 * @page_virt: Source data to be parsed
 863 * @bytes_read: Updated with the number of bytes read
 
 
 864 */
 865static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 866				  char *page_virt, int *bytes_read)
 867{
 
 868	int i;
 869	u32 flags;
 870
 871	flags = get_unaligned_be32(page_virt);
 872	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 
 873		if (flags & ecryptfs_flag_map[i].file_flag) {
 874			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 875		} else
 876			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 877	/* Version is in top 8 bits of the 32-bit flag vector */
 878	crypt_stat->file_version = ((flags >> 24) & 0xFF);
 879	(*bytes_read) = 4;
 
 880}
 881
 882/**
 883 * write_ecryptfs_marker
 884 * @page_virt: The pointer to in a page to begin writing the marker
 885 * @written: Number of bytes written
 886 *
 887 * Marker = 0x3c81b7f5
 888 */
 889static void write_ecryptfs_marker(char *page_virt, size_t *written)
 890{
 891	u32 m_1, m_2;
 892
 893	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 894	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 895	put_unaligned_be32(m_1, page_virt);
 896	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 897	put_unaligned_be32(m_2, page_virt);
 898	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 899}
 900
 901void ecryptfs_write_crypt_stat_flags(char *page_virt,
 902				     struct ecryptfs_crypt_stat *crypt_stat,
 903				     size_t *written)
 904{
 905	u32 flags = 0;
 906	int i;
 907
 908	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 
 909		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 910			flags |= ecryptfs_flag_map[i].file_flag;
 911	/* Version is in top 8 bits of the 32-bit flag vector */
 912	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 913	put_unaligned_be32(flags, page_virt);
 914	(*written) = 4;
 915}
 916
 917struct ecryptfs_cipher_code_str_map_elem {
 918	char cipher_str[16];
 919	u8 cipher_code;
 920};
 921
 922/* Add support for additional ciphers by adding elements here. The
 923 * cipher_code is whatever OpenPGP applications use to identify the
 924 * ciphers. List in order of probability. */
 925static struct ecryptfs_cipher_code_str_map_elem
 926ecryptfs_cipher_code_str_map[] = {
 927	{"aes",RFC2440_CIPHER_AES_128 },
 928	{"blowfish", RFC2440_CIPHER_BLOWFISH},
 929	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
 930	{"cast5", RFC2440_CIPHER_CAST_5},
 931	{"twofish", RFC2440_CIPHER_TWOFISH},
 932	{"cast6", RFC2440_CIPHER_CAST_6},
 933	{"aes", RFC2440_CIPHER_AES_192},
 934	{"aes", RFC2440_CIPHER_AES_256}
 935};
 936
 937/**
 938 * ecryptfs_code_for_cipher_string
 939 * @cipher_name: The string alias for the cipher
 940 * @key_bytes: Length of key in bytes; used for AES code selection
 941 *
 942 * Returns zero on no match, or the cipher code on match
 943 */
 944u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 945{
 946	int i;
 947	u8 code = 0;
 948	struct ecryptfs_cipher_code_str_map_elem *map =
 949		ecryptfs_cipher_code_str_map;
 950
 951	if (strcmp(cipher_name, "aes") == 0) {
 952		switch (key_bytes) {
 953		case 16:
 954			code = RFC2440_CIPHER_AES_128;
 955			break;
 956		case 24:
 957			code = RFC2440_CIPHER_AES_192;
 958			break;
 959		case 32:
 960			code = RFC2440_CIPHER_AES_256;
 961		}
 962	} else {
 963		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 964			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 965				code = map[i].cipher_code;
 966				break;
 967			}
 968	}
 969	return code;
 970}
 971
 972/**
 973 * ecryptfs_cipher_code_to_string
 974 * @str: Destination to write out the cipher name
 975 * @cipher_code: The code to convert to cipher name string
 976 *
 977 * Returns zero on success
 978 */
 979int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 980{
 981	int rc = 0;
 982	int i;
 983
 984	str[0] = '\0';
 985	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 986		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 987			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 988	if (str[0] == '\0') {
 989		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 990				"[%d]\n", cipher_code);
 991		rc = -EINVAL;
 992	}
 993	return rc;
 994}
 995
 996int ecryptfs_read_and_validate_header_region(struct inode *inode)
 997{
 998	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
 999	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1000	int rc;
1001
1002	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1003				 inode);
1004	if (rc < 0)
1005		return rc;
1006	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1007		return -EINVAL;
1008	rc = ecryptfs_validate_marker(marker);
1009	if (!rc)
1010		ecryptfs_i_size_init(file_size, inode);
1011	return rc;
1012}
1013
1014void
1015ecryptfs_write_header_metadata(char *virt,
1016			       struct ecryptfs_crypt_stat *crypt_stat,
1017			       size_t *written)
1018{
1019	u32 header_extent_size;
1020	u16 num_header_extents_at_front;
1021
1022	header_extent_size = (u32)crypt_stat->extent_size;
1023	num_header_extents_at_front =
1024		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1025	put_unaligned_be32(header_extent_size, virt);
1026	virt += 4;
1027	put_unaligned_be16(num_header_extents_at_front, virt);
1028	(*written) = 6;
1029}
1030
1031struct kmem_cache *ecryptfs_header_cache;
1032
1033/**
1034 * ecryptfs_write_headers_virt
1035 * @page_virt: The virtual address to write the headers to
1036 * @max: The size of memory allocated at page_virt
1037 * @size: Set to the number of bytes written by this function
1038 * @crypt_stat: The cryptographic context
1039 * @ecryptfs_dentry: The eCryptfs dentry
1040 *
1041 * Format version: 1
1042 *
1043 *   Header Extent:
1044 *     Octets 0-7:        Unencrypted file size (big-endian)
1045 *     Octets 8-15:       eCryptfs special marker
1046 *     Octets 16-19:      Flags
1047 *      Octet 16:         File format version number (between 0 and 255)
1048 *      Octets 17-18:     Reserved
1049 *      Octet 19:         Bit 1 (lsb): Reserved
1050 *                        Bit 2: Encrypted?
1051 *                        Bits 3-8: Reserved
1052 *     Octets 20-23:      Header extent size (big-endian)
1053 *     Octets 24-25:      Number of header extents at front of file
1054 *                        (big-endian)
1055 *     Octet  26:         Begin RFC 2440 authentication token packet set
1056 *   Data Extent 0:
1057 *     Lower data (CBC encrypted)
1058 *   Data Extent 1:
1059 *     Lower data (CBC encrypted)
1060 *   ...
1061 *
1062 * Returns zero on success
1063 */
1064static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1065				       size_t *size,
1066				       struct ecryptfs_crypt_stat *crypt_stat,
1067				       struct dentry *ecryptfs_dentry)
1068{
1069	int rc;
1070	size_t written;
1071	size_t offset;
1072
1073	offset = ECRYPTFS_FILE_SIZE_BYTES;
1074	write_ecryptfs_marker((page_virt + offset), &written);
1075	offset += written;
1076	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1077					&written);
1078	offset += written;
1079	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1080				       &written);
1081	offset += written;
1082	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1083					      ecryptfs_dentry, &written,
1084					      max - offset);
1085	if (rc)
1086		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1087				"set; rc = [%d]\n", rc);
1088	if (size) {
1089		offset += written;
1090		*size = offset;
1091	}
1092	return rc;
1093}
1094
1095static int
1096ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1097				    char *virt, size_t virt_len)
1098{
1099	int rc;
1100
1101	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1102				  0, virt_len);
1103	if (rc < 0)
1104		printk(KERN_ERR "%s: Error attempting to write header "
1105		       "information to lower file; rc = [%d]\n", __func__, rc);
1106	else
1107		rc = 0;
1108	return rc;
1109}
1110
1111static int
1112ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1113				 struct inode *ecryptfs_inode,
1114				 char *page_virt, size_t size)
1115{
1116	int rc;
1117	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1118	struct inode *lower_inode = d_inode(lower_dentry);
1119
1120	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1121		rc = -EOPNOTSUPP;
1122		goto out;
1123	}
1124
1125	inode_lock(lower_inode);
1126	rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1127			    page_virt, size, 0);
1128	if (!rc && ecryptfs_inode)
1129		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1130	inode_unlock(lower_inode);
1131out:
1132	return rc;
1133}
1134
1135static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1136					       unsigned int order)
1137{
1138	struct page *page;
1139
1140	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1141	if (page)
1142		return (unsigned long) page_address(page);
1143	return 0;
1144}
1145
1146/**
1147 * ecryptfs_write_metadata
1148 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149 * @ecryptfs_inode: The newly created eCryptfs inode
1150 *
1151 * Write the file headers out.  This will likely involve a userspace
1152 * callout, in which the session key is encrypted with one or more
1153 * public keys and/or the passphrase necessary to do the encryption is
1154 * retrieved via a prompt.  Exactly what happens at this point should
1155 * be policy-dependent.
1156 *
1157 * Returns zero on success; non-zero on error
1158 */
1159int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1160			    struct inode *ecryptfs_inode)
1161{
1162	struct ecryptfs_crypt_stat *crypt_stat =
1163		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1164	unsigned int order;
1165	char *virt;
1166	size_t virt_len;
1167	size_t size = 0;
1168	int rc = 0;
1169
1170	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1171		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1172			printk(KERN_ERR "Key is invalid; bailing out\n");
1173			rc = -EINVAL;
1174			goto out;
1175		}
1176	} else {
1177		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1178		       __func__);
1179		rc = -EINVAL;
1180		goto out;
1181	}
1182	virt_len = crypt_stat->metadata_size;
1183	order = get_order(virt_len);
1184	/* Released in this function */
1185	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1186	if (!virt) {
1187		printk(KERN_ERR "%s: Out of memory\n", __func__);
1188		rc = -ENOMEM;
1189		goto out;
1190	}
1191	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1193					 ecryptfs_dentry);
1194	if (unlikely(rc)) {
1195		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1196		       __func__, rc);
1197		goto out_free;
1198	}
1199	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1200		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1201						      virt, size);
1202	else
1203		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1204							 virt_len);
1205	if (rc) {
1206		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1207		       "rc = [%d]\n", __func__, rc);
1208		goto out_free;
1209	}
1210out_free:
1211	free_pages((unsigned long)virt, order);
1212out:
1213	return rc;
1214}
1215
1216#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1218static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1219				 char *virt, int *bytes_read,
1220				 int validate_header_size)
1221{
1222	int rc = 0;
1223	u32 header_extent_size;
1224	u16 num_header_extents_at_front;
1225
1226	header_extent_size = get_unaligned_be32(virt);
1227	virt += sizeof(__be32);
1228	num_header_extents_at_front = get_unaligned_be16(virt);
1229	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1230				     * (size_t)header_extent_size));
1231	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1232	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1233	    && (crypt_stat->metadata_size
1234		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1235		rc = -EINVAL;
1236		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1237		       crypt_stat->metadata_size);
1238	}
1239	return rc;
1240}
1241
1242/**
1243 * set_default_header_data
1244 * @crypt_stat: The cryptographic context
1245 *
1246 * For version 0 file format; this function is only for backwards
1247 * compatibility for files created with the prior versions of
1248 * eCryptfs.
1249 */
1250static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1251{
1252	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1253}
1254
1255void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1256{
1257	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1258	struct ecryptfs_crypt_stat *crypt_stat;
1259	u64 file_size;
1260
1261	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1262	mount_crypt_stat =
1263		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1264	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1265		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1266		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1267			file_size += crypt_stat->metadata_size;
1268	} else
1269		file_size = get_unaligned_be64(page_virt);
1270	i_size_write(inode, (loff_t)file_size);
1271	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1272}
1273
1274/**
1275 * ecryptfs_read_headers_virt
1276 * @page_virt: The virtual address into which to read the headers
1277 * @crypt_stat: The cryptographic context
1278 * @ecryptfs_dentry: The eCryptfs dentry
1279 * @validate_header_size: Whether to validate the header size while reading
1280 *
1281 * Read/parse the header data. The header format is detailed in the
1282 * comment block for the ecryptfs_write_headers_virt() function.
1283 *
1284 * Returns zero on success
1285 */
1286static int ecryptfs_read_headers_virt(char *page_virt,
1287				      struct ecryptfs_crypt_stat *crypt_stat,
1288				      struct dentry *ecryptfs_dentry,
1289				      int validate_header_size)
1290{
1291	int rc = 0;
1292	int offset;
1293	int bytes_read;
1294
1295	ecryptfs_set_default_sizes(crypt_stat);
1296	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1297		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1298	offset = ECRYPTFS_FILE_SIZE_BYTES;
1299	rc = ecryptfs_validate_marker(page_virt + offset);
1300	if (rc)
1301		goto out;
1302	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1303		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1304	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1305	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
 
 
 
 
 
1306	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1307		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1308				"file version [%d] is supported by this "
1309				"version of eCryptfs\n",
1310				crypt_stat->file_version,
1311				ECRYPTFS_SUPPORTED_FILE_VERSION);
1312		rc = -EINVAL;
1313		goto out;
1314	}
1315	offset += bytes_read;
1316	if (crypt_stat->file_version >= 1) {
1317		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1318					   &bytes_read, validate_header_size);
1319		if (rc) {
1320			ecryptfs_printk(KERN_WARNING, "Error reading header "
1321					"metadata; rc = [%d]\n", rc);
1322		}
1323		offset += bytes_read;
1324	} else
1325		set_default_header_data(crypt_stat);
1326	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1327				       ecryptfs_dentry);
1328out:
1329	return rc;
1330}
1331
1332/**
1333 * ecryptfs_read_xattr_region
1334 * @page_virt: The vitual address into which to read the xattr data
1335 * @ecryptfs_inode: The eCryptfs inode
1336 *
1337 * Attempts to read the crypto metadata from the extended attribute
1338 * region of the lower file.
1339 *
1340 * Returns zero on success; non-zero on error
1341 */
1342int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1343{
1344	struct dentry *lower_dentry =
1345		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1346	ssize_t size;
1347	int rc = 0;
1348
1349	size = ecryptfs_getxattr_lower(lower_dentry,
1350				       ecryptfs_inode_to_lower(ecryptfs_inode),
1351				       ECRYPTFS_XATTR_NAME,
1352				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1353	if (size < 0) {
1354		if (unlikely(ecryptfs_verbosity > 0))
1355			printk(KERN_INFO "Error attempting to read the [%s] "
1356			       "xattr from the lower file; return value = "
1357			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1358		rc = -EINVAL;
1359		goto out;
1360	}
1361out:
1362	return rc;
1363}
1364
1365int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1366					    struct inode *inode)
1367{
1368	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1369	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1370	int rc;
1371
1372	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1373				     ecryptfs_inode_to_lower(inode),
1374				     ECRYPTFS_XATTR_NAME, file_size,
1375				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1376	if (rc < 0)
1377		return rc;
1378	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1379		return -EINVAL;
1380	rc = ecryptfs_validate_marker(marker);
1381	if (!rc)
1382		ecryptfs_i_size_init(file_size, inode);
1383	return rc;
1384}
1385
1386/**
1387 * ecryptfs_read_metadata
1388 *
1389 * Common entry point for reading file metadata. From here, we could
1390 * retrieve the header information from the header region of the file,
1391 * the xattr region of the file, or some other repository that is
1392 * stored separately from the file itself. The current implementation
1393 * supports retrieving the metadata information from the file contents
1394 * and from the xattr region.
1395 *
1396 * Returns zero if valid headers found and parsed; non-zero otherwise
1397 */
1398int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1399{
1400	int rc;
1401	char *page_virt;
1402	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1403	struct ecryptfs_crypt_stat *crypt_stat =
1404	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1405	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1406		&ecryptfs_superblock_to_private(
1407			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1408
1409	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1410						      mount_crypt_stat);
1411	/* Read the first page from the underlying file */
1412	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1413	if (!page_virt) {
1414		rc = -ENOMEM;
 
 
1415		goto out;
1416	}
1417	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1418				 ecryptfs_inode);
1419	if (rc >= 0)
1420		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421						ecryptfs_dentry,
1422						ECRYPTFS_VALIDATE_HEADER_SIZE);
1423	if (rc) {
1424		/* metadata is not in the file header, so try xattrs */
1425		memset(page_virt, 0, PAGE_SIZE);
1426		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1427		if (rc) {
1428			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1429			       "file header region or xattr region, inode %lu\n",
1430				ecryptfs_inode->i_ino);
1431			rc = -EINVAL;
1432			goto out;
1433		}
1434		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1435						ecryptfs_dentry,
1436						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1437		if (rc) {
1438			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439			       "file xattr region either, inode %lu\n",
1440				ecryptfs_inode->i_ino);
1441			rc = -EINVAL;
1442		}
1443		if (crypt_stat->mount_crypt_stat->flags
1444		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1445			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1446		} else {
1447			printk(KERN_WARNING "Attempt to access file with "
1448			       "crypto metadata only in the extended attribute "
1449			       "region, but eCryptfs was mounted without "
1450			       "xattr support enabled. eCryptfs will not treat "
1451			       "this like an encrypted file, inode %lu\n",
1452				ecryptfs_inode->i_ino);
1453			rc = -EINVAL;
1454		}
1455	}
1456out:
1457	if (page_virt) {
1458		memset(page_virt, 0, PAGE_SIZE);
1459		kmem_cache_free(ecryptfs_header_cache, page_virt);
1460	}
1461	return rc;
1462}
1463
1464/**
1465 * ecryptfs_encrypt_filename - encrypt filename
1466 *
1467 * CBC-encrypts the filename. We do not want to encrypt the same
1468 * filename with the same key and IV, which may happen with hard
1469 * links, so we prepend random bits to each filename.
1470 *
1471 * Returns zero on success; non-zero otherwise
1472 */
1473static int
1474ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
 
1475			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1476{
1477	int rc = 0;
1478
1479	filename->encrypted_filename = NULL;
1480	filename->encrypted_filename_size = 0;
1481	if (mount_crypt_stat && (mount_crypt_stat->flags
1482				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
 
1483		size_t packet_size;
1484		size_t remaining_bytes;
1485
1486		rc = ecryptfs_write_tag_70_packet(
1487			NULL, NULL,
1488			&filename->encrypted_filename_size,
1489			mount_crypt_stat, NULL,
1490			filename->filename_size);
1491		if (rc) {
1492			printk(KERN_ERR "%s: Error attempting to get packet "
1493			       "size for tag 72; rc = [%d]\n", __func__,
1494			       rc);
1495			filename->encrypted_filename_size = 0;
1496			goto out;
1497		}
1498		filename->encrypted_filename =
1499			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1500		if (!filename->encrypted_filename) {
 
 
 
1501			rc = -ENOMEM;
1502			goto out;
1503		}
1504		remaining_bytes = filename->encrypted_filename_size;
1505		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1506						  &remaining_bytes,
1507						  &packet_size,
1508						  mount_crypt_stat,
1509						  filename->filename,
1510						  filename->filename_size);
1511		if (rc) {
1512			printk(KERN_ERR "%s: Error attempting to generate "
1513			       "tag 70 packet; rc = [%d]\n", __func__,
1514			       rc);
1515			kfree(filename->encrypted_filename);
1516			filename->encrypted_filename = NULL;
1517			filename->encrypted_filename_size = 0;
1518			goto out;
1519		}
1520		filename->encrypted_filename_size = packet_size;
1521	} else {
1522		printk(KERN_ERR "%s: No support for requested filename "
1523		       "encryption method in this release\n", __func__);
1524		rc = -EOPNOTSUPP;
1525		goto out;
1526	}
1527out:
1528	return rc;
1529}
1530
1531static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1532				  const char *name, size_t name_size)
1533{
1534	int rc = 0;
1535
1536	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1537	if (!(*copied_name)) {
1538		rc = -ENOMEM;
1539		goto out;
1540	}
1541	memcpy((void *)(*copied_name), (void *)name, name_size);
1542	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1543						 * in printing out the
1544						 * string in debug
1545						 * messages */
1546	(*copied_name_size) = name_size;
1547out:
1548	return rc;
1549}
1550
1551/**
1552 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553 * @key_tfm: Crypto context for key material, set by this function
1554 * @cipher_name: Name of the cipher
1555 * @key_size: Size of the key in bytes
1556 *
1557 * Returns zero on success. Any crypto_tfm structs allocated here
1558 * should be released by other functions, such as on a superblock put
1559 * event, regardless of whether this function succeeds for fails.
1560 */
1561static int
1562ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1563			    char *cipher_name, size_t *key_size)
1564{
1565	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1566	char *full_alg_name = NULL;
1567	int rc;
1568
1569	*key_tfm = NULL;
1570	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1571		rc = -EINVAL;
1572		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1573		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1574		goto out;
1575	}
1576	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1577						    "ecb");
1578	if (rc)
1579		goto out;
1580	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1581	if (IS_ERR(*key_tfm)) {
1582		rc = PTR_ERR(*key_tfm);
1583		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1584		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1585		goto out;
1586	}
1587	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1588	if (*key_size == 0)
1589		*key_size = crypto_skcipher_default_keysize(*key_tfm);
 
 
 
1590	get_random_bytes(dummy_key, *key_size);
1591	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1592	if (rc) {
1593		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1594		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1595		       rc);
1596		rc = -EINVAL;
1597		goto out;
1598	}
1599out:
1600	kfree(full_alg_name);
1601	return rc;
1602}
1603
1604struct kmem_cache *ecryptfs_key_tfm_cache;
1605static struct list_head key_tfm_list;
1606struct mutex key_tfm_list_mutex;
1607
1608int __init ecryptfs_init_crypto(void)
1609{
1610	mutex_init(&key_tfm_list_mutex);
1611	INIT_LIST_HEAD(&key_tfm_list);
1612	return 0;
1613}
1614
1615/**
1616 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1617 *
1618 * Called only at module unload time
1619 */
1620int ecryptfs_destroy_crypto(void)
1621{
1622	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1623
1624	mutex_lock(&key_tfm_list_mutex);
1625	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1626				 key_tfm_list) {
1627		list_del(&key_tfm->key_tfm_list);
1628		crypto_free_skcipher(key_tfm->key_tfm);
 
1629		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1630	}
1631	mutex_unlock(&key_tfm_list_mutex);
1632	return 0;
1633}
1634
1635int
1636ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1637			 size_t key_size)
1638{
1639	struct ecryptfs_key_tfm *tmp_tfm;
1640	int rc = 0;
1641
1642	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1643
1644	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1645	if (key_tfm)
1646		(*key_tfm) = tmp_tfm;
1647	if (!tmp_tfm) {
1648		rc = -ENOMEM;
 
 
1649		goto out;
1650	}
1651	mutex_init(&tmp_tfm->key_tfm_mutex);
1652	strncpy(tmp_tfm->cipher_name, cipher_name,
1653		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1654	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1655	tmp_tfm->key_size = key_size;
1656	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1657					 tmp_tfm->cipher_name,
1658					 &tmp_tfm->key_size);
1659	if (rc) {
1660		printk(KERN_ERR "Error attempting to initialize key TFM "
1661		       "cipher with name = [%s]; rc = [%d]\n",
1662		       tmp_tfm->cipher_name, rc);
1663		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1664		if (key_tfm)
1665			(*key_tfm) = NULL;
1666		goto out;
1667	}
1668	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1669out:
1670	return rc;
1671}
1672
1673/**
1674 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675 * @cipher_name: the name of the cipher to search for
1676 * @key_tfm: set to corresponding tfm if found
1677 *
1678 * Searches for cached key_tfm matching @cipher_name
1679 * Must be called with &key_tfm_list_mutex held
1680 * Returns 1 if found, with @key_tfm set
1681 * Returns 0 if not found, with @key_tfm set to NULL
1682 */
1683int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1684{
1685	struct ecryptfs_key_tfm *tmp_key_tfm;
1686
1687	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1688
1689	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1690		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1691			if (key_tfm)
1692				(*key_tfm) = tmp_key_tfm;
1693			return 1;
1694		}
1695	}
1696	if (key_tfm)
1697		(*key_tfm) = NULL;
1698	return 0;
1699}
1700
1701/**
1702 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1703 *
1704 * @tfm: set to cached tfm found, or new tfm created
1705 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706 * @cipher_name: the name of the cipher to search for and/or add
1707 *
1708 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709 * Searches for cached item first, and creates new if not found.
1710 * Returns 0 on success, non-zero if adding new cipher failed
1711 */
1712int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1713					       struct mutex **tfm_mutex,
1714					       char *cipher_name)
1715{
1716	struct ecryptfs_key_tfm *key_tfm;
1717	int rc = 0;
1718
1719	(*tfm) = NULL;
1720	(*tfm_mutex) = NULL;
1721
1722	mutex_lock(&key_tfm_list_mutex);
1723	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1724		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1725		if (rc) {
1726			printk(KERN_ERR "Error adding new key_tfm to list; "
1727					"rc = [%d]\n", rc);
1728			goto out;
1729		}
1730	}
1731	(*tfm) = key_tfm->key_tfm;
1732	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1733out:
1734	mutex_unlock(&key_tfm_list_mutex);
1735	return rc;
1736}
1737
1738/* 64 characters forming a 6-bit target field */
1739static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1740						 "EFGHIJKLMNOPQRST"
1741						 "UVWXYZabcdefghij"
1742						 "klmnopqrstuvwxyz");
1743
1744/* We could either offset on every reverse map or just pad some 0x00's
1745 * at the front here */
1746static const unsigned char filename_rev_map[256] = {
1747	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1763};
1764
1765/**
1766 * ecryptfs_encode_for_filename
1767 * @dst: Destination location for encoded filename
1768 * @dst_size: Size of the encoded filename in bytes
1769 * @src: Source location for the filename to encode
1770 * @src_size: Size of the source in bytes
1771 */
1772static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1773				  unsigned char *src, size_t src_size)
1774{
1775	size_t num_blocks;
1776	size_t block_num = 0;
1777	size_t dst_offset = 0;
1778	unsigned char last_block[3];
1779
1780	if (src_size == 0) {
1781		(*dst_size) = 0;
1782		goto out;
1783	}
1784	num_blocks = (src_size / 3);
1785	if ((src_size % 3) == 0) {
1786		memcpy(last_block, (&src[src_size - 3]), 3);
1787	} else {
1788		num_blocks++;
1789		last_block[2] = 0x00;
1790		switch (src_size % 3) {
1791		case 1:
1792			last_block[0] = src[src_size - 1];
1793			last_block[1] = 0x00;
1794			break;
1795		case 2:
1796			last_block[0] = src[src_size - 2];
1797			last_block[1] = src[src_size - 1];
1798		}
1799	}
1800	(*dst_size) = (num_blocks * 4);
1801	if (!dst)
1802		goto out;
1803	while (block_num < num_blocks) {
1804		unsigned char *src_block;
1805		unsigned char dst_block[4];
1806
1807		if (block_num == (num_blocks - 1))
1808			src_block = last_block;
1809		else
1810			src_block = &src[block_num * 3];
1811		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1812		dst_block[1] = (((src_block[0] << 4) & 0x30)
1813				| ((src_block[1] >> 4) & 0x0F));
1814		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1815				| ((src_block[2] >> 6) & 0x03));
1816		dst_block[3] = (src_block[2] & 0x3F);
1817		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1818		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1819		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1820		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1821		block_num++;
1822	}
1823out:
1824	return;
1825}
1826
1827static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1828{
1829	/* Not exact; conservatively long. Every block of 4
1830	 * encoded characters decodes into a block of 3
1831	 * decoded characters. This segment of code provides
1832	 * the caller with the maximum amount of allocated
1833	 * space that @dst will need to point to in a
1834	 * subsequent call. */
1835	return ((encoded_size + 1) * 3) / 4;
1836}
1837
1838/**
1839 * ecryptfs_decode_from_filename
1840 * @dst: If NULL, this function only sets @dst_size and returns. If
1841 *       non-NULL, this function decodes the encoded octets in @src
1842 *       into the memory that @dst points to.
1843 * @dst_size: Set to the size of the decoded string.
1844 * @src: The encoded set of octets to decode.
1845 * @src_size: The size of the encoded set of octets to decode.
1846 */
1847static void
1848ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1849			      const unsigned char *src, size_t src_size)
1850{
1851	u8 current_bit_offset = 0;
1852	size_t src_byte_offset = 0;
1853	size_t dst_byte_offset = 0;
1854
1855	if (!dst) {
1856		(*dst_size) = ecryptfs_max_decoded_size(src_size);
 
 
 
 
 
 
1857		goto out;
1858	}
1859	while (src_byte_offset < src_size) {
1860		unsigned char src_byte =
1861				filename_rev_map[(int)src[src_byte_offset]];
1862
1863		switch (current_bit_offset) {
1864		case 0:
1865			dst[dst_byte_offset] = (src_byte << 2);
1866			current_bit_offset = 6;
1867			break;
1868		case 6:
1869			dst[dst_byte_offset++] |= (src_byte >> 4);
1870			dst[dst_byte_offset] = ((src_byte & 0xF)
1871						 << 4);
1872			current_bit_offset = 4;
1873			break;
1874		case 4:
1875			dst[dst_byte_offset++] |= (src_byte >> 2);
1876			dst[dst_byte_offset] = (src_byte << 6);
1877			current_bit_offset = 2;
1878			break;
1879		case 2:
1880			dst[dst_byte_offset++] |= (src_byte);
 
1881			current_bit_offset = 0;
1882			break;
1883		}
1884		src_byte_offset++;
1885	}
1886	(*dst_size) = dst_byte_offset;
1887out:
1888	return;
1889}
1890
1891/**
1892 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894 * @name: The plaintext name
1895 * @length: The length of the plaintext
1896 * @encoded_name: The encypted name
1897 *
1898 * Encrypts and encodes a filename into something that constitutes a
1899 * valid filename for a filesystem, with printable characters.
1900 *
1901 * We assume that we have a properly initialized crypto context,
1902 * pointed to by crypt_stat->tfm.
1903 *
1904 * Returns zero on success; non-zero on otherwise
1905 */
1906int ecryptfs_encrypt_and_encode_filename(
1907	char **encoded_name,
1908	size_t *encoded_name_size,
 
1909	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1910	const char *name, size_t name_size)
1911{
1912	size_t encoded_name_no_prefix_size;
1913	int rc = 0;
1914
1915	(*encoded_name) = NULL;
1916	(*encoded_name_size) = 0;
1917	if (mount_crypt_stat && (mount_crypt_stat->flags
1918				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
 
1919		struct ecryptfs_filename *filename;
1920
1921		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1922		if (!filename) {
 
 
 
1923			rc = -ENOMEM;
1924			goto out;
1925		}
1926		filename->filename = (char *)name;
1927		filename->filename_size = name_size;
1928		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
 
1929		if (rc) {
1930			printk(KERN_ERR "%s: Error attempting to encrypt "
1931			       "filename; rc = [%d]\n", __func__, rc);
1932			kfree(filename);
1933			goto out;
1934		}
1935		ecryptfs_encode_for_filename(
1936			NULL, &encoded_name_no_prefix_size,
1937			filename->encrypted_filename,
1938			filename->encrypted_filename_size);
1939		if (mount_crypt_stat
 
 
1940			&& (mount_crypt_stat->flags
1941			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1942			(*encoded_name_size) =
1943				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944				 + encoded_name_no_prefix_size);
1945		else
1946			(*encoded_name_size) =
1947				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948				 + encoded_name_no_prefix_size);
1949		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1950		if (!(*encoded_name)) {
 
 
 
1951			rc = -ENOMEM;
1952			kfree(filename->encrypted_filename);
1953			kfree(filename);
1954			goto out;
1955		}
1956		if (mount_crypt_stat
 
 
1957			&& (mount_crypt_stat->flags
1958			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1959			memcpy((*encoded_name),
1960			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1961			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1962			ecryptfs_encode_for_filename(
1963			    ((*encoded_name)
1964			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1965			    &encoded_name_no_prefix_size,
1966			    filename->encrypted_filename,
1967			    filename->encrypted_filename_size);
1968			(*encoded_name_size) =
1969				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970				 + encoded_name_no_prefix_size);
1971			(*encoded_name)[(*encoded_name_size)] = '\0';
1972		} else {
1973			rc = -EOPNOTSUPP;
1974		}
1975		if (rc) {
1976			printk(KERN_ERR "%s: Error attempting to encode "
1977			       "encrypted filename; rc = [%d]\n", __func__,
1978			       rc);
1979			kfree((*encoded_name));
1980			(*encoded_name) = NULL;
1981			(*encoded_name_size) = 0;
1982		}
1983		kfree(filename->encrypted_filename);
1984		kfree(filename);
1985	} else {
1986		rc = ecryptfs_copy_filename(encoded_name,
1987					    encoded_name_size,
1988					    name, name_size);
1989	}
1990out:
1991	return rc;
1992}
1993
1994static bool is_dot_dotdot(const char *name, size_t name_size)
1995{
1996	if (name_size == 1 && name[0] == '.')
1997		return true;
1998	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1999		return true;
2000
2001	return false;
2002}
2003
2004/**
2005 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006 * @plaintext_name: The plaintext name
2007 * @plaintext_name_size: The plaintext name size
2008 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009 * @name: The filename in cipher text
2010 * @name_size: The cipher text name size
2011 *
2012 * Decrypts and decodes the filename.
2013 *
2014 * Returns zero on error; non-zero otherwise
2015 */
2016int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2017					 size_t *plaintext_name_size,
2018					 struct super_block *sb,
2019					 const char *name, size_t name_size)
2020{
2021	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2022		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
 
2023	char *decoded_name;
2024	size_t decoded_name_size;
2025	size_t packet_size;
2026	int rc = 0;
2027
2028	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2029	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2030		if (is_dot_dotdot(name, name_size)) {
2031			rc = ecryptfs_copy_filename(plaintext_name,
2032						    plaintext_name_size,
2033						    name, name_size);
2034			goto out;
2035		}
2036
2037		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2038		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2039			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2040			rc = -EINVAL;
2041			goto out;
2042		}
2043
2044		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2045		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2046		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2047					      name, name_size);
2048		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2049		if (!decoded_name) {
 
 
 
2050			rc = -ENOMEM;
2051			goto out;
2052		}
2053		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2054					      name, name_size);
2055		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2056						  plaintext_name_size,
2057						  &packet_size,
2058						  mount_crypt_stat,
2059						  decoded_name,
2060						  decoded_name_size);
2061		if (rc) {
2062			ecryptfs_printk(KERN_DEBUG,
2063					"%s: Could not parse tag 70 packet from filename\n",
2064					__func__);
 
 
 
2065			goto out_free;
2066		}
2067	} else {
2068		rc = ecryptfs_copy_filename(plaintext_name,
2069					    plaintext_name_size,
2070					    name, name_size);
2071		goto out;
2072	}
2073out_free:
2074	kfree(decoded_name);
2075out:
2076	return rc;
2077}
2078
2079#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2080
2081int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2082			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2083{
2084	struct crypto_skcipher *tfm;
2085	struct mutex *tfm_mutex;
2086	size_t cipher_blocksize;
2087	int rc;
2088
2089	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2090		(*namelen) = lower_namelen;
2091		return 0;
2092	}
2093
2094	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2095			mount_crypt_stat->global_default_fn_cipher_name);
2096	if (unlikely(rc)) {
2097		(*namelen) = 0;
2098		return rc;
2099	}
2100
2101	mutex_lock(tfm_mutex);
2102	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2103	mutex_unlock(tfm_mutex);
2104
2105	/* Return an exact amount for the common cases */
2106	if (lower_namelen == NAME_MAX
2107	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2108		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2109		return 0;
2110	}
2111
2112	/* Return a safe estimate for the uncommon cases */
2113	(*namelen) = lower_namelen;
2114	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2115	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2116	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2117	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2118	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2119	/* Worst case is that the filename is padded nearly a full block size */
2120	(*namelen) -= cipher_blocksize - 1;
2121
2122	if ((*namelen) < 0)
2123		(*namelen) = 0;
2124
2125	return 0;
2126}