Loading...
1/*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/string.h>
27#include <linux/bitops.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h> /* for in_interrupt() */
30#include <linux/kmod.h>
31#include <linux/init.h>
32#include <linux/spinlock.h>
33#include <linux/errno.h>
34#include <linux/usb.h>
35#include <linux/usb/hcd.h>
36#include <linux/mutex.h>
37#include <linux/workqueue.h>
38#include <linux/debugfs.h>
39
40#include <asm/io.h>
41#include <linux/scatterlist.h>
42#include <linux/mm.h>
43#include <linux/dma-mapping.h>
44
45#include "usb.h"
46
47
48const char *usbcore_name = "usbcore";
49
50static int nousb; /* Disable USB when built into kernel image */
51
52#ifdef CONFIG_USB_SUSPEND
53static int usb_autosuspend_delay = 2; /* Default delay value,
54 * in seconds */
55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57
58#else
59#define usb_autosuspend_delay 0
60#endif
61
62
63/**
64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
65 * for the given interface.
66 * @config: the configuration to search (not necessarily the current config).
67 * @iface_num: interface number to search in
68 * @alt_num: alternate interface setting number to search for.
69 *
70 * Search the configuration's interface cache for the given alt setting.
71 */
72struct usb_host_interface *usb_find_alt_setting(
73 struct usb_host_config *config,
74 unsigned int iface_num,
75 unsigned int alt_num)
76{
77 struct usb_interface_cache *intf_cache = NULL;
78 int i;
79
80 for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 == iface_num) {
83 intf_cache = config->intf_cache[i];
84 break;
85 }
86 }
87 if (!intf_cache)
88 return NULL;
89 for (i = 0; i < intf_cache->num_altsetting; i++)
90 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 return &intf_cache->altsetting[i];
92
93 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 "config %u\n", alt_num, iface_num,
95 config->desc.bConfigurationValue);
96 return NULL;
97}
98EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99
100/**
101 * usb_ifnum_to_if - get the interface object with a given interface number
102 * @dev: the device whose current configuration is considered
103 * @ifnum: the desired interface
104 *
105 * This walks the device descriptor for the currently active configuration
106 * and returns a pointer to the interface with that particular interface
107 * number, or null.
108 *
109 * Note that configuration descriptors are not required to assign interface
110 * numbers sequentially, so that it would be incorrect to assume that
111 * the first interface in that descriptor corresponds to interface zero.
112 * This routine helps device drivers avoid such mistakes.
113 * However, you should make sure that you do the right thing with any
114 * alternate settings available for this interfaces.
115 *
116 * Don't call this function unless you are bound to one of the interfaces
117 * on this device or you have locked the device!
118 */
119struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 unsigned ifnum)
121{
122 struct usb_host_config *config = dev->actconfig;
123 int i;
124
125 if (!config)
126 return NULL;
127 for (i = 0; i < config->desc.bNumInterfaces; i++)
128 if (config->interface[i]->altsetting[0]
129 .desc.bInterfaceNumber == ifnum)
130 return config->interface[i];
131
132 return NULL;
133}
134EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135
136/**
137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138 * @intf: the interface containing the altsetting in question
139 * @altnum: the desired alternate setting number
140 *
141 * This searches the altsetting array of the specified interface for
142 * an entry with the correct bAlternateSetting value and returns a pointer
143 * to that entry, or null.
144 *
145 * Note that altsettings need not be stored sequentially by number, so
146 * it would be incorrect to assume that the first altsetting entry in
147 * the array corresponds to altsetting zero. This routine helps device
148 * drivers avoid such mistakes.
149 *
150 * Don't call this function unless you are bound to the intf interface
151 * or you have locked the device!
152 */
153struct usb_host_interface *usb_altnum_to_altsetting(
154 const struct usb_interface *intf,
155 unsigned int altnum)
156{
157 int i;
158
159 for (i = 0; i < intf->num_altsetting; i++) {
160 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 return &intf->altsetting[i];
162 }
163 return NULL;
164}
165EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166
167struct find_interface_arg {
168 int minor;
169 struct device_driver *drv;
170};
171
172static int __find_interface(struct device *dev, void *data)
173{
174 struct find_interface_arg *arg = data;
175 struct usb_interface *intf;
176
177 if (!is_usb_interface(dev))
178 return 0;
179
180 if (dev->driver != arg->drv)
181 return 0;
182 intf = to_usb_interface(dev);
183 return intf->minor == arg->minor;
184}
185
186/**
187 * usb_find_interface - find usb_interface pointer for driver and device
188 * @drv: the driver whose current configuration is considered
189 * @minor: the minor number of the desired device
190 *
191 * This walks the bus device list and returns a pointer to the interface
192 * with the matching minor and driver. Note, this only works for devices
193 * that share the USB major number.
194 */
195struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196{
197 struct find_interface_arg argb;
198 struct device *dev;
199
200 argb.minor = minor;
201 argb.drv = &drv->drvwrap.driver;
202
203 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204
205 /* Drop reference count from bus_find_device */
206 put_device(dev);
207
208 return dev ? to_usb_interface(dev) : NULL;
209}
210EXPORT_SYMBOL_GPL(usb_find_interface);
211
212/**
213 * usb_release_dev - free a usb device structure when all users of it are finished.
214 * @dev: device that's been disconnected
215 *
216 * Will be called only by the device core when all users of this usb device are
217 * done.
218 */
219static void usb_release_dev(struct device *dev)
220{
221 struct usb_device *udev;
222 struct usb_hcd *hcd;
223
224 udev = to_usb_device(dev);
225 hcd = bus_to_hcd(udev->bus);
226
227 usb_destroy_configuration(udev);
228 usb_put_hcd(hcd);
229 kfree(udev->product);
230 kfree(udev->manufacturer);
231 kfree(udev->serial);
232 kfree(udev);
233}
234
235#ifdef CONFIG_HOTPLUG
236static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237{
238 struct usb_device *usb_dev;
239
240 usb_dev = to_usb_device(dev);
241
242 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 return -ENOMEM;
244
245 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 return -ENOMEM;
247
248 return 0;
249}
250
251#else
252
253static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254{
255 return -ENODEV;
256}
257#endif /* CONFIG_HOTPLUG */
258
259#ifdef CONFIG_PM
260
261/* USB device Power-Management thunks.
262 * There's no need to distinguish here between quiescing a USB device
263 * and powering it down; the generic_suspend() routine takes care of
264 * it by skipping the usb_port_suspend() call for a quiesce. And for
265 * USB interfaces there's no difference at all.
266 */
267
268static int usb_dev_prepare(struct device *dev)
269{
270 return 0; /* Implement eventually? */
271}
272
273static void usb_dev_complete(struct device *dev)
274{
275 /* Currently used only for rebinding interfaces */
276 usb_resume(dev, PMSG_ON); /* FIXME: change to PMSG_COMPLETE */
277}
278
279static int usb_dev_suspend(struct device *dev)
280{
281 return usb_suspend(dev, PMSG_SUSPEND);
282}
283
284static int usb_dev_resume(struct device *dev)
285{
286 return usb_resume(dev, PMSG_RESUME);
287}
288
289static int usb_dev_freeze(struct device *dev)
290{
291 return usb_suspend(dev, PMSG_FREEZE);
292}
293
294static int usb_dev_thaw(struct device *dev)
295{
296 return usb_resume(dev, PMSG_THAW);
297}
298
299static int usb_dev_poweroff(struct device *dev)
300{
301 return usb_suspend(dev, PMSG_HIBERNATE);
302}
303
304static int usb_dev_restore(struct device *dev)
305{
306 return usb_resume(dev, PMSG_RESTORE);
307}
308
309static const struct dev_pm_ops usb_device_pm_ops = {
310 .prepare = usb_dev_prepare,
311 .complete = usb_dev_complete,
312 .suspend = usb_dev_suspend,
313 .resume = usb_dev_resume,
314 .freeze = usb_dev_freeze,
315 .thaw = usb_dev_thaw,
316 .poweroff = usb_dev_poweroff,
317 .restore = usb_dev_restore,
318#ifdef CONFIG_USB_SUSPEND
319 .runtime_suspend = usb_runtime_suspend,
320 .runtime_resume = usb_runtime_resume,
321 .runtime_idle = usb_runtime_idle,
322#endif
323};
324
325#endif /* CONFIG_PM */
326
327
328static char *usb_devnode(struct device *dev, mode_t *mode)
329{
330 struct usb_device *usb_dev;
331
332 usb_dev = to_usb_device(dev);
333 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
334 usb_dev->bus->busnum, usb_dev->devnum);
335}
336
337struct device_type usb_device_type = {
338 .name = "usb_device",
339 .release = usb_release_dev,
340 .uevent = usb_dev_uevent,
341 .devnode = usb_devnode,
342#ifdef CONFIG_PM
343 .pm = &usb_device_pm_ops,
344#endif
345};
346
347
348/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
349static unsigned usb_bus_is_wusb(struct usb_bus *bus)
350{
351 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
352 return hcd->wireless;
353}
354
355
356/**
357 * usb_alloc_dev - usb device constructor (usbcore-internal)
358 * @parent: hub to which device is connected; null to allocate a root hub
359 * @bus: bus used to access the device
360 * @port1: one-based index of port; ignored for root hubs
361 * Context: !in_interrupt()
362 *
363 * Only hub drivers (including virtual root hub drivers for host
364 * controllers) should ever call this.
365 *
366 * This call may not be used in a non-sleeping context.
367 */
368struct usb_device *usb_alloc_dev(struct usb_device *parent,
369 struct usb_bus *bus, unsigned port1)
370{
371 struct usb_device *dev;
372 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
373 unsigned root_hub = 0;
374
375 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
376 if (!dev)
377 return NULL;
378
379 if (!usb_get_hcd(bus_to_hcd(bus))) {
380 kfree(dev);
381 return NULL;
382 }
383 /* Root hubs aren't true devices, so don't allocate HCD resources */
384 if (usb_hcd->driver->alloc_dev && parent &&
385 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
386 usb_put_hcd(bus_to_hcd(bus));
387 kfree(dev);
388 return NULL;
389 }
390
391 device_initialize(&dev->dev);
392 dev->dev.bus = &usb_bus_type;
393 dev->dev.type = &usb_device_type;
394 dev->dev.groups = usb_device_groups;
395 dev->dev.dma_mask = bus->controller->dma_mask;
396 set_dev_node(&dev->dev, dev_to_node(bus->controller));
397 dev->state = USB_STATE_ATTACHED;
398 atomic_set(&dev->urbnum, 0);
399
400 INIT_LIST_HEAD(&dev->ep0.urb_list);
401 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
402 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
403 /* ep0 maxpacket comes later, from device descriptor */
404 usb_enable_endpoint(dev, &dev->ep0, false);
405 dev->can_submit = 1;
406
407 /* Save readable and stable topology id, distinguishing devices
408 * by location for diagnostics, tools, driver model, etc. The
409 * string is a path along hub ports, from the root. Each device's
410 * dev->devpath will be stable until USB is re-cabled, and hubs
411 * are often labeled with these port numbers. The name isn't
412 * as stable: bus->busnum changes easily from modprobe order,
413 * cardbus or pci hotplugging, and so on.
414 */
415 if (unlikely(!parent)) {
416 dev->devpath[0] = '0';
417 dev->route = 0;
418
419 dev->dev.parent = bus->controller;
420 dev_set_name(&dev->dev, "usb%d", bus->busnum);
421 root_hub = 1;
422 } else {
423 /* match any labeling on the hubs; it's one-based */
424 if (parent->devpath[0] == '0') {
425 snprintf(dev->devpath, sizeof dev->devpath,
426 "%d", port1);
427 /* Root ports are not counted in route string */
428 dev->route = 0;
429 } else {
430 snprintf(dev->devpath, sizeof dev->devpath,
431 "%s.%d", parent->devpath, port1);
432 /* Route string assumes hubs have less than 16 ports */
433 if (port1 < 15)
434 dev->route = parent->route +
435 (port1 << ((parent->level - 1)*4));
436 else
437 dev->route = parent->route +
438 (15 << ((parent->level - 1)*4));
439 }
440
441 dev->dev.parent = &parent->dev;
442 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
443
444 /* hub driver sets up TT records */
445 }
446
447 dev->portnum = port1;
448 dev->bus = bus;
449 dev->parent = parent;
450 INIT_LIST_HEAD(&dev->filelist);
451
452#ifdef CONFIG_PM
453 pm_runtime_set_autosuspend_delay(&dev->dev,
454 usb_autosuspend_delay * 1000);
455 dev->connect_time = jiffies;
456 dev->active_duration = -jiffies;
457#endif
458 if (root_hub) /* Root hub always ok [and always wired] */
459 dev->authorized = 1;
460 else {
461 dev->authorized = usb_hcd->authorized_default;
462 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
463 }
464 return dev;
465}
466
467/**
468 * usb_get_dev - increments the reference count of the usb device structure
469 * @dev: the device being referenced
470 *
471 * Each live reference to a device should be refcounted.
472 *
473 * Drivers for USB interfaces should normally record such references in
474 * their probe() methods, when they bind to an interface, and release
475 * them by calling usb_put_dev(), in their disconnect() methods.
476 *
477 * A pointer to the device with the incremented reference counter is returned.
478 */
479struct usb_device *usb_get_dev(struct usb_device *dev)
480{
481 if (dev)
482 get_device(&dev->dev);
483 return dev;
484}
485EXPORT_SYMBOL_GPL(usb_get_dev);
486
487/**
488 * usb_put_dev - release a use of the usb device structure
489 * @dev: device that's been disconnected
490 *
491 * Must be called when a user of a device is finished with it. When the last
492 * user of the device calls this function, the memory of the device is freed.
493 */
494void usb_put_dev(struct usb_device *dev)
495{
496 if (dev)
497 put_device(&dev->dev);
498}
499EXPORT_SYMBOL_GPL(usb_put_dev);
500
501/**
502 * usb_get_intf - increments the reference count of the usb interface structure
503 * @intf: the interface being referenced
504 *
505 * Each live reference to a interface must be refcounted.
506 *
507 * Drivers for USB interfaces should normally record such references in
508 * their probe() methods, when they bind to an interface, and release
509 * them by calling usb_put_intf(), in their disconnect() methods.
510 *
511 * A pointer to the interface with the incremented reference counter is
512 * returned.
513 */
514struct usb_interface *usb_get_intf(struct usb_interface *intf)
515{
516 if (intf)
517 get_device(&intf->dev);
518 return intf;
519}
520EXPORT_SYMBOL_GPL(usb_get_intf);
521
522/**
523 * usb_put_intf - release a use of the usb interface structure
524 * @intf: interface that's been decremented
525 *
526 * Must be called when a user of an interface is finished with it. When the
527 * last user of the interface calls this function, the memory of the interface
528 * is freed.
529 */
530void usb_put_intf(struct usb_interface *intf)
531{
532 if (intf)
533 put_device(&intf->dev);
534}
535EXPORT_SYMBOL_GPL(usb_put_intf);
536
537/* USB device locking
538 *
539 * USB devices and interfaces are locked using the semaphore in their
540 * embedded struct device. The hub driver guarantees that whenever a
541 * device is connected or disconnected, drivers are called with the
542 * USB device locked as well as their particular interface.
543 *
544 * Complications arise when several devices are to be locked at the same
545 * time. Only hub-aware drivers that are part of usbcore ever have to
546 * do this; nobody else needs to worry about it. The rule for locking
547 * is simple:
548 *
549 * When locking both a device and its parent, always lock the
550 * the parent first.
551 */
552
553/**
554 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
555 * @udev: device that's being locked
556 * @iface: interface bound to the driver making the request (optional)
557 *
558 * Attempts to acquire the device lock, but fails if the device is
559 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
560 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
561 * lock, the routine polls repeatedly. This is to prevent deadlock with
562 * disconnect; in some drivers (such as usb-storage) the disconnect()
563 * or suspend() method will block waiting for a device reset to complete.
564 *
565 * Returns a negative error code for failure, otherwise 0.
566 */
567int usb_lock_device_for_reset(struct usb_device *udev,
568 const struct usb_interface *iface)
569{
570 unsigned long jiffies_expire = jiffies + HZ;
571
572 if (udev->state == USB_STATE_NOTATTACHED)
573 return -ENODEV;
574 if (udev->state == USB_STATE_SUSPENDED)
575 return -EHOSTUNREACH;
576 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
577 iface->condition == USB_INTERFACE_UNBOUND))
578 return -EINTR;
579
580 while (!usb_trylock_device(udev)) {
581
582 /* If we can't acquire the lock after waiting one second,
583 * we're probably deadlocked */
584 if (time_after(jiffies, jiffies_expire))
585 return -EBUSY;
586
587 msleep(15);
588 if (udev->state == USB_STATE_NOTATTACHED)
589 return -ENODEV;
590 if (udev->state == USB_STATE_SUSPENDED)
591 return -EHOSTUNREACH;
592 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
593 iface->condition == USB_INTERFACE_UNBOUND))
594 return -EINTR;
595 }
596 return 0;
597}
598EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
599
600/**
601 * usb_get_current_frame_number - return current bus frame number
602 * @dev: the device whose bus is being queried
603 *
604 * Returns the current frame number for the USB host controller
605 * used with the given USB device. This can be used when scheduling
606 * isochronous requests.
607 *
608 * Note that different kinds of host controller have different
609 * "scheduling horizons". While one type might support scheduling only
610 * 32 frames into the future, others could support scheduling up to
611 * 1024 frames into the future.
612 */
613int usb_get_current_frame_number(struct usb_device *dev)
614{
615 return usb_hcd_get_frame_number(dev);
616}
617EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
618
619/*-------------------------------------------------------------------*/
620/*
621 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
622 * extra field of the interface and endpoint descriptor structs.
623 */
624
625int __usb_get_extra_descriptor(char *buffer, unsigned size,
626 unsigned char type, void **ptr)
627{
628 struct usb_descriptor_header *header;
629
630 while (size >= sizeof(struct usb_descriptor_header)) {
631 header = (struct usb_descriptor_header *)buffer;
632
633 if (header->bLength < 2) {
634 printk(KERN_ERR
635 "%s: bogus descriptor, type %d length %d\n",
636 usbcore_name,
637 header->bDescriptorType,
638 header->bLength);
639 return -1;
640 }
641
642 if (header->bDescriptorType == type) {
643 *ptr = header;
644 return 0;
645 }
646
647 buffer += header->bLength;
648 size -= header->bLength;
649 }
650 return -1;
651}
652EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
653
654/**
655 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
656 * @dev: device the buffer will be used with
657 * @size: requested buffer size
658 * @mem_flags: affect whether allocation may block
659 * @dma: used to return DMA address of buffer
660 *
661 * Return value is either null (indicating no buffer could be allocated), or
662 * the cpu-space pointer to a buffer that may be used to perform DMA to the
663 * specified device. Such cpu-space buffers are returned along with the DMA
664 * address (through the pointer provided).
665 *
666 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
667 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
668 * hardware during URB completion/resubmit. The implementation varies between
669 * platforms, depending on details of how DMA will work to this device.
670 * Using these buffers also eliminates cacheline sharing problems on
671 * architectures where CPU caches are not DMA-coherent. On systems without
672 * bus-snooping caches, these buffers are uncached.
673 *
674 * When the buffer is no longer used, free it with usb_free_coherent().
675 */
676void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
677 dma_addr_t *dma)
678{
679 if (!dev || !dev->bus)
680 return NULL;
681 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
682}
683EXPORT_SYMBOL_GPL(usb_alloc_coherent);
684
685/**
686 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
687 * @dev: device the buffer was used with
688 * @size: requested buffer size
689 * @addr: CPU address of buffer
690 * @dma: DMA address of buffer
691 *
692 * This reclaims an I/O buffer, letting it be reused. The memory must have
693 * been allocated using usb_alloc_coherent(), and the parameters must match
694 * those provided in that allocation request.
695 */
696void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
697 dma_addr_t dma)
698{
699 if (!dev || !dev->bus)
700 return;
701 if (!addr)
702 return;
703 hcd_buffer_free(dev->bus, size, addr, dma);
704}
705EXPORT_SYMBOL_GPL(usb_free_coherent);
706
707/**
708 * usb_buffer_map - create DMA mapping(s) for an urb
709 * @urb: urb whose transfer_buffer/setup_packet will be mapped
710 *
711 * Return value is either null (indicating no buffer could be mapped), or
712 * the parameter. URB_NO_TRANSFER_DMA_MAP is
713 * added to urb->transfer_flags if the operation succeeds. If the device
714 * is connected to this system through a non-DMA controller, this operation
715 * always succeeds.
716 *
717 * This call would normally be used for an urb which is reused, perhaps
718 * as the target of a large periodic transfer, with usb_buffer_dmasync()
719 * calls to synchronize memory and dma state.
720 *
721 * Reverse the effect of this call with usb_buffer_unmap().
722 */
723#if 0
724struct urb *usb_buffer_map(struct urb *urb)
725{
726 struct usb_bus *bus;
727 struct device *controller;
728
729 if (!urb
730 || !urb->dev
731 || !(bus = urb->dev->bus)
732 || !(controller = bus->controller))
733 return NULL;
734
735 if (controller->dma_mask) {
736 urb->transfer_dma = dma_map_single(controller,
737 urb->transfer_buffer, urb->transfer_buffer_length,
738 usb_pipein(urb->pipe)
739 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
740 /* FIXME generic api broken like pci, can't report errors */
741 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
742 } else
743 urb->transfer_dma = ~0;
744 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745 return urb;
746}
747EXPORT_SYMBOL_GPL(usb_buffer_map);
748#endif /* 0 */
749
750/* XXX DISABLED, no users currently. If you wish to re-enable this
751 * XXX please determine whether the sync is to transfer ownership of
752 * XXX the buffer from device to cpu or vice verse, and thusly use the
753 * XXX appropriate _for_{cpu,device}() method. -DaveM
754 */
755#if 0
756
757/**
758 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
759 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
760 */
761void usb_buffer_dmasync(struct urb *urb)
762{
763 struct usb_bus *bus;
764 struct device *controller;
765
766 if (!urb
767 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
768 || !urb->dev
769 || !(bus = urb->dev->bus)
770 || !(controller = bus->controller))
771 return;
772
773 if (controller->dma_mask) {
774 dma_sync_single_for_cpu(controller,
775 urb->transfer_dma, urb->transfer_buffer_length,
776 usb_pipein(urb->pipe)
777 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
778 if (usb_pipecontrol(urb->pipe))
779 dma_sync_single_for_cpu(controller,
780 urb->setup_dma,
781 sizeof(struct usb_ctrlrequest),
782 DMA_TO_DEVICE);
783 }
784}
785EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
786#endif
787
788/**
789 * usb_buffer_unmap - free DMA mapping(s) for an urb
790 * @urb: urb whose transfer_buffer will be unmapped
791 *
792 * Reverses the effect of usb_buffer_map().
793 */
794#if 0
795void usb_buffer_unmap(struct urb *urb)
796{
797 struct usb_bus *bus;
798 struct device *controller;
799
800 if (!urb
801 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
802 || !urb->dev
803 || !(bus = urb->dev->bus)
804 || !(controller = bus->controller))
805 return;
806
807 if (controller->dma_mask) {
808 dma_unmap_single(controller,
809 urb->transfer_dma, urb->transfer_buffer_length,
810 usb_pipein(urb->pipe)
811 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
812 }
813 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
814}
815EXPORT_SYMBOL_GPL(usb_buffer_unmap);
816#endif /* 0 */
817
818#if 0
819/**
820 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
821 * @dev: device to which the scatterlist will be mapped
822 * @is_in: mapping transfer direction
823 * @sg: the scatterlist to map
824 * @nents: the number of entries in the scatterlist
825 *
826 * Return value is either < 0 (indicating no buffers could be mapped), or
827 * the number of DMA mapping array entries in the scatterlist.
828 *
829 * The caller is responsible for placing the resulting DMA addresses from
830 * the scatterlist into URB transfer buffer pointers, and for setting the
831 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
832 *
833 * Top I/O rates come from queuing URBs, instead of waiting for each one
834 * to complete before starting the next I/O. This is particularly easy
835 * to do with scatterlists. Just allocate and submit one URB for each DMA
836 * mapping entry returned, stopping on the first error or when all succeed.
837 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
838 *
839 * This call would normally be used when translating scatterlist requests,
840 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
841 * may be able to coalesce mappings for improved I/O efficiency.
842 *
843 * Reverse the effect of this call with usb_buffer_unmap_sg().
844 */
845int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
846 struct scatterlist *sg, int nents)
847{
848 struct usb_bus *bus;
849 struct device *controller;
850
851 if (!dev
852 || !(bus = dev->bus)
853 || !(controller = bus->controller)
854 || !controller->dma_mask)
855 return -EINVAL;
856
857 /* FIXME generic api broken like pci, can't report errors */
858 return dma_map_sg(controller, sg, nents,
859 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
860}
861EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
862#endif
863
864/* XXX DISABLED, no users currently. If you wish to re-enable this
865 * XXX please determine whether the sync is to transfer ownership of
866 * XXX the buffer from device to cpu or vice verse, and thusly use the
867 * XXX appropriate _for_{cpu,device}() method. -DaveM
868 */
869#if 0
870
871/**
872 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
873 * @dev: device to which the scatterlist will be mapped
874 * @is_in: mapping transfer direction
875 * @sg: the scatterlist to synchronize
876 * @n_hw_ents: the positive return value from usb_buffer_map_sg
877 *
878 * Use this when you are re-using a scatterlist's data buffers for
879 * another USB request.
880 */
881void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
882 struct scatterlist *sg, int n_hw_ents)
883{
884 struct usb_bus *bus;
885 struct device *controller;
886
887 if (!dev
888 || !(bus = dev->bus)
889 || !(controller = bus->controller)
890 || !controller->dma_mask)
891 return;
892
893 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
894 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
895}
896EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
897#endif
898
899#if 0
900/**
901 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
902 * @dev: device to which the scatterlist will be mapped
903 * @is_in: mapping transfer direction
904 * @sg: the scatterlist to unmap
905 * @n_hw_ents: the positive return value from usb_buffer_map_sg
906 *
907 * Reverses the effect of usb_buffer_map_sg().
908 */
909void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
910 struct scatterlist *sg, int n_hw_ents)
911{
912 struct usb_bus *bus;
913 struct device *controller;
914
915 if (!dev
916 || !(bus = dev->bus)
917 || !(controller = bus->controller)
918 || !controller->dma_mask)
919 return;
920
921 dma_unmap_sg(controller, sg, n_hw_ents,
922 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
923}
924EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
925#endif
926
927/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
928#ifdef MODULE
929module_param(nousb, bool, 0444);
930#else
931core_param(nousb, nousb, bool, 0444);
932#endif
933
934/*
935 * for external read access to <nousb>
936 */
937int usb_disabled(void)
938{
939 return nousb;
940}
941EXPORT_SYMBOL_GPL(usb_disabled);
942
943/*
944 * Notifications of device and interface registration
945 */
946static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
947 void *data)
948{
949 struct device *dev = data;
950
951 switch (action) {
952 case BUS_NOTIFY_ADD_DEVICE:
953 if (dev->type == &usb_device_type)
954 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
955 else if (dev->type == &usb_if_device_type)
956 usb_create_sysfs_intf_files(to_usb_interface(dev));
957 break;
958
959 case BUS_NOTIFY_DEL_DEVICE:
960 if (dev->type == &usb_device_type)
961 usb_remove_sysfs_dev_files(to_usb_device(dev));
962 else if (dev->type == &usb_if_device_type)
963 usb_remove_sysfs_intf_files(to_usb_interface(dev));
964 break;
965 }
966 return 0;
967}
968
969static struct notifier_block usb_bus_nb = {
970 .notifier_call = usb_bus_notify,
971};
972
973struct dentry *usb_debug_root;
974EXPORT_SYMBOL_GPL(usb_debug_root);
975
976static struct dentry *usb_debug_devices;
977
978static int usb_debugfs_init(void)
979{
980 usb_debug_root = debugfs_create_dir("usb", NULL);
981 if (!usb_debug_root)
982 return -ENOENT;
983
984 usb_debug_devices = debugfs_create_file("devices", 0444,
985 usb_debug_root, NULL,
986 &usbfs_devices_fops);
987 if (!usb_debug_devices) {
988 debugfs_remove(usb_debug_root);
989 usb_debug_root = NULL;
990 return -ENOENT;
991 }
992
993 return 0;
994}
995
996static void usb_debugfs_cleanup(void)
997{
998 debugfs_remove(usb_debug_devices);
999 debugfs_remove(usb_debug_root);
1000}
1001
1002/*
1003 * Init
1004 */
1005static int __init usb_init(void)
1006{
1007 int retval;
1008 if (nousb) {
1009 pr_info("%s: USB support disabled\n", usbcore_name);
1010 return 0;
1011 }
1012
1013 retval = usb_debugfs_init();
1014 if (retval)
1015 goto out;
1016
1017 retval = bus_register(&usb_bus_type);
1018 if (retval)
1019 goto bus_register_failed;
1020 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1021 if (retval)
1022 goto bus_notifier_failed;
1023 retval = usb_major_init();
1024 if (retval)
1025 goto major_init_failed;
1026 retval = usb_register(&usbfs_driver);
1027 if (retval)
1028 goto driver_register_failed;
1029 retval = usb_devio_init();
1030 if (retval)
1031 goto usb_devio_init_failed;
1032 retval = usbfs_init();
1033 if (retval)
1034 goto fs_init_failed;
1035 retval = usb_hub_init();
1036 if (retval)
1037 goto hub_init_failed;
1038 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1039 if (!retval)
1040 goto out;
1041
1042 usb_hub_cleanup();
1043hub_init_failed:
1044 usbfs_cleanup();
1045fs_init_failed:
1046 usb_devio_cleanup();
1047usb_devio_init_failed:
1048 usb_deregister(&usbfs_driver);
1049driver_register_failed:
1050 usb_major_cleanup();
1051major_init_failed:
1052 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1053bus_notifier_failed:
1054 bus_unregister(&usb_bus_type);
1055bus_register_failed:
1056 usb_debugfs_cleanup();
1057out:
1058 return retval;
1059}
1060
1061/*
1062 * Cleanup
1063 */
1064static void __exit usb_exit(void)
1065{
1066 /* This will matter if shutdown/reboot does exitcalls. */
1067 if (nousb)
1068 return;
1069
1070 usb_deregister_device_driver(&usb_generic_driver);
1071 usb_major_cleanup();
1072 usbfs_cleanup();
1073 usb_deregister(&usbfs_driver);
1074 usb_devio_cleanup();
1075 usb_hub_cleanup();
1076 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1077 bus_unregister(&usb_bus_type);
1078 usb_debugfs_cleanup();
1079}
1080
1081subsys_initcall(usb_init);
1082module_exit(usb_exit);
1083MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 * (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else.
23 * It should be considered a slave, with no callbacks. Callbacks
24 * are evil.
25 */
26
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/string.h>
30#include <linux/bitops.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h> /* for in_interrupt() */
33#include <linux/kmod.h>
34#include <linux/init.h>
35#include <linux/spinlock.h>
36#include <linux/errno.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/mutex.h>
40#include <linux/workqueue.h>
41#include <linux/debugfs.h>
42#include <linux/usb/of.h>
43
44#include <asm/io.h>
45#include <linux/scatterlist.h>
46#include <linux/mm.h>
47#include <linux/dma-mapping.h>
48
49#include "hub.h"
50
51const char *usbcore_name = "usbcore";
52
53static bool nousb; /* Disable USB when built into kernel image */
54
55module_param(nousb, bool, 0444);
56
57/*
58 * for external read access to <nousb>
59 */
60int usb_disabled(void)
61{
62 return nousb;
63}
64EXPORT_SYMBOL_GPL(usb_disabled);
65
66#ifdef CONFIG_PM
67/* Default delay value, in seconds */
68static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
69module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
70MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
71
72#else
73#define usb_autosuspend_delay 0
74#endif
75
76static bool match_endpoint(struct usb_endpoint_descriptor *epd,
77 struct usb_endpoint_descriptor **bulk_in,
78 struct usb_endpoint_descriptor **bulk_out,
79 struct usb_endpoint_descriptor **int_in,
80 struct usb_endpoint_descriptor **int_out)
81{
82 switch (usb_endpoint_type(epd)) {
83 case USB_ENDPOINT_XFER_BULK:
84 if (usb_endpoint_dir_in(epd)) {
85 if (bulk_in && !*bulk_in) {
86 *bulk_in = epd;
87 break;
88 }
89 } else {
90 if (bulk_out && !*bulk_out) {
91 *bulk_out = epd;
92 break;
93 }
94 }
95
96 return false;
97 case USB_ENDPOINT_XFER_INT:
98 if (usb_endpoint_dir_in(epd)) {
99 if (int_in && !*int_in) {
100 *int_in = epd;
101 break;
102 }
103 } else {
104 if (int_out && !*int_out) {
105 *int_out = epd;
106 break;
107 }
108 }
109
110 return false;
111 default:
112 return false;
113 }
114
115 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
116 (!int_in || *int_in) && (!int_out || *int_out);
117}
118
119/**
120 * usb_find_common_endpoints() -- look up common endpoint descriptors
121 * @alt: alternate setting to search
122 * @bulk_in: pointer to descriptor pointer, or NULL
123 * @bulk_out: pointer to descriptor pointer, or NULL
124 * @int_in: pointer to descriptor pointer, or NULL
125 * @int_out: pointer to descriptor pointer, or NULL
126 *
127 * Search the alternate setting's endpoint descriptors for the first bulk-in,
128 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
129 * provided pointers (unless they are NULL).
130 *
131 * If a requested endpoint is not found, the corresponding pointer is set to
132 * NULL.
133 *
134 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
135 */
136int usb_find_common_endpoints(struct usb_host_interface *alt,
137 struct usb_endpoint_descriptor **bulk_in,
138 struct usb_endpoint_descriptor **bulk_out,
139 struct usb_endpoint_descriptor **int_in,
140 struct usb_endpoint_descriptor **int_out)
141{
142 struct usb_endpoint_descriptor *epd;
143 int i;
144
145 if (bulk_in)
146 *bulk_in = NULL;
147 if (bulk_out)
148 *bulk_out = NULL;
149 if (int_in)
150 *int_in = NULL;
151 if (int_out)
152 *int_out = NULL;
153
154 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
155 epd = &alt->endpoint[i].desc;
156
157 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
158 return 0;
159 }
160
161 return -ENXIO;
162}
163EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
164
165/**
166 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
167 * @alt: alternate setting to search
168 * @bulk_in: pointer to descriptor pointer, or NULL
169 * @bulk_out: pointer to descriptor pointer, or NULL
170 * @int_in: pointer to descriptor pointer, or NULL
171 * @int_out: pointer to descriptor pointer, or NULL
172 *
173 * Search the alternate setting's endpoint descriptors for the last bulk-in,
174 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
175 * provided pointers (unless they are NULL).
176 *
177 * If a requested endpoint is not found, the corresponding pointer is set to
178 * NULL.
179 *
180 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
181 */
182int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
183 struct usb_endpoint_descriptor **bulk_in,
184 struct usb_endpoint_descriptor **bulk_out,
185 struct usb_endpoint_descriptor **int_in,
186 struct usb_endpoint_descriptor **int_out)
187{
188 struct usb_endpoint_descriptor *epd;
189 int i;
190
191 if (bulk_in)
192 *bulk_in = NULL;
193 if (bulk_out)
194 *bulk_out = NULL;
195 if (int_in)
196 *int_in = NULL;
197 if (int_out)
198 *int_out = NULL;
199
200 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
201 epd = &alt->endpoint[i].desc;
202
203 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
204 return 0;
205 }
206
207 return -ENXIO;
208}
209EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
210
211/**
212 * usb_find_alt_setting() - Given a configuration, find the alternate setting
213 * for the given interface.
214 * @config: the configuration to search (not necessarily the current config).
215 * @iface_num: interface number to search in
216 * @alt_num: alternate interface setting number to search for.
217 *
218 * Search the configuration's interface cache for the given alt setting.
219 *
220 * Return: The alternate setting, if found. %NULL otherwise.
221 */
222struct usb_host_interface *usb_find_alt_setting(
223 struct usb_host_config *config,
224 unsigned int iface_num,
225 unsigned int alt_num)
226{
227 struct usb_interface_cache *intf_cache = NULL;
228 int i;
229
230 if (!config)
231 return NULL;
232 for (i = 0; i < config->desc.bNumInterfaces; i++) {
233 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
234 == iface_num) {
235 intf_cache = config->intf_cache[i];
236 break;
237 }
238 }
239 if (!intf_cache)
240 return NULL;
241 for (i = 0; i < intf_cache->num_altsetting; i++)
242 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
243 return &intf_cache->altsetting[i];
244
245 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
246 "config %u\n", alt_num, iface_num,
247 config->desc.bConfigurationValue);
248 return NULL;
249}
250EXPORT_SYMBOL_GPL(usb_find_alt_setting);
251
252/**
253 * usb_ifnum_to_if - get the interface object with a given interface number
254 * @dev: the device whose current configuration is considered
255 * @ifnum: the desired interface
256 *
257 * This walks the device descriptor for the currently active configuration
258 * to find the interface object with the particular interface number.
259 *
260 * Note that configuration descriptors are not required to assign interface
261 * numbers sequentially, so that it would be incorrect to assume that
262 * the first interface in that descriptor corresponds to interface zero.
263 * This routine helps device drivers avoid such mistakes.
264 * However, you should make sure that you do the right thing with any
265 * alternate settings available for this interfaces.
266 *
267 * Don't call this function unless you are bound to one of the interfaces
268 * on this device or you have locked the device!
269 *
270 * Return: A pointer to the interface that has @ifnum as interface number,
271 * if found. %NULL otherwise.
272 */
273struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
274 unsigned ifnum)
275{
276 struct usb_host_config *config = dev->actconfig;
277 int i;
278
279 if (!config)
280 return NULL;
281 for (i = 0; i < config->desc.bNumInterfaces; i++)
282 if (config->interface[i]->altsetting[0]
283 .desc.bInterfaceNumber == ifnum)
284 return config->interface[i];
285
286 return NULL;
287}
288EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
289
290/**
291 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
292 * @intf: the interface containing the altsetting in question
293 * @altnum: the desired alternate setting number
294 *
295 * This searches the altsetting array of the specified interface for
296 * an entry with the correct bAlternateSetting value.
297 *
298 * Note that altsettings need not be stored sequentially by number, so
299 * it would be incorrect to assume that the first altsetting entry in
300 * the array corresponds to altsetting zero. This routine helps device
301 * drivers avoid such mistakes.
302 *
303 * Don't call this function unless you are bound to the intf interface
304 * or you have locked the device!
305 *
306 * Return: A pointer to the entry of the altsetting array of @intf that
307 * has @altnum as the alternate setting number. %NULL if not found.
308 */
309struct usb_host_interface *usb_altnum_to_altsetting(
310 const struct usb_interface *intf,
311 unsigned int altnum)
312{
313 int i;
314
315 for (i = 0; i < intf->num_altsetting; i++) {
316 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
317 return &intf->altsetting[i];
318 }
319 return NULL;
320}
321EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
322
323struct find_interface_arg {
324 int minor;
325 struct device_driver *drv;
326};
327
328static int __find_interface(struct device *dev, const void *data)
329{
330 const struct find_interface_arg *arg = data;
331 struct usb_interface *intf;
332
333 if (!is_usb_interface(dev))
334 return 0;
335
336 if (dev->driver != arg->drv)
337 return 0;
338 intf = to_usb_interface(dev);
339 return intf->minor == arg->minor;
340}
341
342/**
343 * usb_find_interface - find usb_interface pointer for driver and device
344 * @drv: the driver whose current configuration is considered
345 * @minor: the minor number of the desired device
346 *
347 * This walks the bus device list and returns a pointer to the interface
348 * with the matching minor and driver. Note, this only works for devices
349 * that share the USB major number.
350 *
351 * Return: A pointer to the interface with the matching major and @minor.
352 */
353struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
354{
355 struct find_interface_arg argb;
356 struct device *dev;
357
358 argb.minor = minor;
359 argb.drv = &drv->drvwrap.driver;
360
361 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
362
363 /* Drop reference count from bus_find_device */
364 put_device(dev);
365
366 return dev ? to_usb_interface(dev) : NULL;
367}
368EXPORT_SYMBOL_GPL(usb_find_interface);
369
370struct each_dev_arg {
371 void *data;
372 int (*fn)(struct usb_device *, void *);
373};
374
375static int __each_dev(struct device *dev, void *data)
376{
377 struct each_dev_arg *arg = (struct each_dev_arg *)data;
378
379 /* There are struct usb_interface on the same bus, filter them out */
380 if (!is_usb_device(dev))
381 return 0;
382
383 return arg->fn(to_usb_device(dev), arg->data);
384}
385
386/**
387 * usb_for_each_dev - iterate over all USB devices in the system
388 * @data: data pointer that will be handed to the callback function
389 * @fn: callback function to be called for each USB device
390 *
391 * Iterate over all USB devices and call @fn for each, passing it @data. If it
392 * returns anything other than 0, we break the iteration prematurely and return
393 * that value.
394 */
395int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
396{
397 struct each_dev_arg arg = {data, fn};
398
399 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
400}
401EXPORT_SYMBOL_GPL(usb_for_each_dev);
402
403/**
404 * usb_release_dev - free a usb device structure when all users of it are finished.
405 * @dev: device that's been disconnected
406 *
407 * Will be called only by the device core when all users of this usb device are
408 * done.
409 */
410static void usb_release_dev(struct device *dev)
411{
412 struct usb_device *udev;
413 struct usb_hcd *hcd;
414
415 udev = to_usb_device(dev);
416 hcd = bus_to_hcd(udev->bus);
417
418 usb_destroy_configuration(udev);
419 usb_release_bos_descriptor(udev);
420 of_node_put(dev->of_node);
421 usb_put_hcd(hcd);
422 kfree(udev->product);
423 kfree(udev->manufacturer);
424 kfree(udev->serial);
425 kfree(udev);
426}
427
428static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
429{
430 struct usb_device *usb_dev;
431
432 usb_dev = to_usb_device(dev);
433
434 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
435 return -ENOMEM;
436
437 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
438 return -ENOMEM;
439
440 return 0;
441}
442
443#ifdef CONFIG_PM
444
445/* USB device Power-Management thunks.
446 * There's no need to distinguish here between quiescing a USB device
447 * and powering it down; the generic_suspend() routine takes care of
448 * it by skipping the usb_port_suspend() call for a quiesce. And for
449 * USB interfaces there's no difference at all.
450 */
451
452static int usb_dev_prepare(struct device *dev)
453{
454 return 0; /* Implement eventually? */
455}
456
457static void usb_dev_complete(struct device *dev)
458{
459 /* Currently used only for rebinding interfaces */
460 usb_resume_complete(dev);
461}
462
463static int usb_dev_suspend(struct device *dev)
464{
465 return usb_suspend(dev, PMSG_SUSPEND);
466}
467
468static int usb_dev_resume(struct device *dev)
469{
470 return usb_resume(dev, PMSG_RESUME);
471}
472
473static int usb_dev_freeze(struct device *dev)
474{
475 return usb_suspend(dev, PMSG_FREEZE);
476}
477
478static int usb_dev_thaw(struct device *dev)
479{
480 return usb_resume(dev, PMSG_THAW);
481}
482
483static int usb_dev_poweroff(struct device *dev)
484{
485 return usb_suspend(dev, PMSG_HIBERNATE);
486}
487
488static int usb_dev_restore(struct device *dev)
489{
490 return usb_resume(dev, PMSG_RESTORE);
491}
492
493static const struct dev_pm_ops usb_device_pm_ops = {
494 .prepare = usb_dev_prepare,
495 .complete = usb_dev_complete,
496 .suspend = usb_dev_suspend,
497 .resume = usb_dev_resume,
498 .freeze = usb_dev_freeze,
499 .thaw = usb_dev_thaw,
500 .poweroff = usb_dev_poweroff,
501 .restore = usb_dev_restore,
502 .runtime_suspend = usb_runtime_suspend,
503 .runtime_resume = usb_runtime_resume,
504 .runtime_idle = usb_runtime_idle,
505};
506
507#endif /* CONFIG_PM */
508
509
510static char *usb_devnode(struct device *dev,
511 umode_t *mode, kuid_t *uid, kgid_t *gid)
512{
513 struct usb_device *usb_dev;
514
515 usb_dev = to_usb_device(dev);
516 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
517 usb_dev->bus->busnum, usb_dev->devnum);
518}
519
520struct device_type usb_device_type = {
521 .name = "usb_device",
522 .release = usb_release_dev,
523 .uevent = usb_dev_uevent,
524 .devnode = usb_devnode,
525#ifdef CONFIG_PM
526 .pm = &usb_device_pm_ops,
527#endif
528};
529
530
531/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
532static unsigned usb_bus_is_wusb(struct usb_bus *bus)
533{
534 struct usb_hcd *hcd = bus_to_hcd(bus);
535 return hcd->wireless;
536}
537
538static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
539{
540 struct usb_hub *hub;
541
542 if (!dev->parent)
543 return true; /* Root hub always ok [and always wired] */
544
545 switch (hcd->dev_policy) {
546 case USB_DEVICE_AUTHORIZE_NONE:
547 default:
548 return false;
549
550 case USB_DEVICE_AUTHORIZE_ALL:
551 return true;
552
553 case USB_DEVICE_AUTHORIZE_INTERNAL:
554 hub = usb_hub_to_struct_hub(dev->parent);
555 return hub->ports[dev->portnum - 1]->connect_type ==
556 USB_PORT_CONNECT_TYPE_HARD_WIRED;
557 }
558}
559
560/**
561 * usb_alloc_dev - usb device constructor (usbcore-internal)
562 * @parent: hub to which device is connected; null to allocate a root hub
563 * @bus: bus used to access the device
564 * @port1: one-based index of port; ignored for root hubs
565 * Context: !in_interrupt()
566 *
567 * Only hub drivers (including virtual root hub drivers for host
568 * controllers) should ever call this.
569 *
570 * This call may not be used in a non-sleeping context.
571 *
572 * Return: On success, a pointer to the allocated usb device. %NULL on
573 * failure.
574 */
575struct usb_device *usb_alloc_dev(struct usb_device *parent,
576 struct usb_bus *bus, unsigned port1)
577{
578 struct usb_device *dev;
579 struct usb_hcd *usb_hcd = bus_to_hcd(bus);
580 unsigned root_hub = 0;
581 unsigned raw_port = port1;
582
583 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
584 if (!dev)
585 return NULL;
586
587 if (!usb_get_hcd(usb_hcd)) {
588 kfree(dev);
589 return NULL;
590 }
591 /* Root hubs aren't true devices, so don't allocate HCD resources */
592 if (usb_hcd->driver->alloc_dev && parent &&
593 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
594 usb_put_hcd(bus_to_hcd(bus));
595 kfree(dev);
596 return NULL;
597 }
598
599 device_initialize(&dev->dev);
600 dev->dev.bus = &usb_bus_type;
601 dev->dev.type = &usb_device_type;
602 dev->dev.groups = usb_device_groups;
603 /*
604 * Fake a dma_mask/offset for the USB device:
605 * We cannot really use the dma-mapping API (dma_alloc_* and
606 * dma_map_*) for USB devices but instead need to use
607 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
608 * manually look into the mask/offset pair to determine whether
609 * they need bounce buffers.
610 * Note: calling dma_set_mask() on a USB device would set the
611 * mask for the entire HCD, so don't do that.
612 */
613 dev->dev.dma_mask = bus->sysdev->dma_mask;
614 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
615 set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
616 dev->state = USB_STATE_ATTACHED;
617 dev->lpm_disable_count = 1;
618 atomic_set(&dev->urbnum, 0);
619
620 INIT_LIST_HEAD(&dev->ep0.urb_list);
621 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
622 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
623 /* ep0 maxpacket comes later, from device descriptor */
624 usb_enable_endpoint(dev, &dev->ep0, false);
625 dev->can_submit = 1;
626
627 /* Save readable and stable topology id, distinguishing devices
628 * by location for diagnostics, tools, driver model, etc. The
629 * string is a path along hub ports, from the root. Each device's
630 * dev->devpath will be stable until USB is re-cabled, and hubs
631 * are often labeled with these port numbers. The name isn't
632 * as stable: bus->busnum changes easily from modprobe order,
633 * cardbus or pci hotplugging, and so on.
634 */
635 if (unlikely(!parent)) {
636 dev->devpath[0] = '0';
637 dev->route = 0;
638
639 dev->dev.parent = bus->controller;
640 device_set_of_node_from_dev(&dev->dev, bus->sysdev);
641 dev_set_name(&dev->dev, "usb%d", bus->busnum);
642 root_hub = 1;
643 } else {
644 /* match any labeling on the hubs; it's one-based */
645 if (parent->devpath[0] == '0') {
646 snprintf(dev->devpath, sizeof dev->devpath,
647 "%d", port1);
648 /* Root ports are not counted in route string */
649 dev->route = 0;
650 } else {
651 snprintf(dev->devpath, sizeof dev->devpath,
652 "%s.%d", parent->devpath, port1);
653 /* Route string assumes hubs have less than 16 ports */
654 if (port1 < 15)
655 dev->route = parent->route +
656 (port1 << ((parent->level - 1)*4));
657 else
658 dev->route = parent->route +
659 (15 << ((parent->level - 1)*4));
660 }
661
662 dev->dev.parent = &parent->dev;
663 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
664
665 if (!parent->parent) {
666 /* device under root hub's port */
667 raw_port = usb_hcd_find_raw_port_number(usb_hcd,
668 port1);
669 }
670 dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
671
672 /* hub driver sets up TT records */
673 }
674
675 dev->portnum = port1;
676 dev->bus = bus;
677 dev->parent = parent;
678 INIT_LIST_HEAD(&dev->filelist);
679
680#ifdef CONFIG_PM
681 pm_runtime_set_autosuspend_delay(&dev->dev,
682 usb_autosuspend_delay * 1000);
683 dev->connect_time = jiffies;
684 dev->active_duration = -jiffies;
685#endif
686
687 dev->authorized = usb_dev_authorized(dev, usb_hcd);
688 if (!root_hub)
689 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
690
691 return dev;
692}
693EXPORT_SYMBOL_GPL(usb_alloc_dev);
694
695/**
696 * usb_get_dev - increments the reference count of the usb device structure
697 * @dev: the device being referenced
698 *
699 * Each live reference to a device should be refcounted.
700 *
701 * Drivers for USB interfaces should normally record such references in
702 * their probe() methods, when they bind to an interface, and release
703 * them by calling usb_put_dev(), in their disconnect() methods.
704 *
705 * Return: A pointer to the device with the incremented reference counter.
706 */
707struct usb_device *usb_get_dev(struct usb_device *dev)
708{
709 if (dev)
710 get_device(&dev->dev);
711 return dev;
712}
713EXPORT_SYMBOL_GPL(usb_get_dev);
714
715/**
716 * usb_put_dev - release a use of the usb device structure
717 * @dev: device that's been disconnected
718 *
719 * Must be called when a user of a device is finished with it. When the last
720 * user of the device calls this function, the memory of the device is freed.
721 */
722void usb_put_dev(struct usb_device *dev)
723{
724 if (dev)
725 put_device(&dev->dev);
726}
727EXPORT_SYMBOL_GPL(usb_put_dev);
728
729/**
730 * usb_get_intf - increments the reference count of the usb interface structure
731 * @intf: the interface being referenced
732 *
733 * Each live reference to a interface must be refcounted.
734 *
735 * Drivers for USB interfaces should normally record such references in
736 * their probe() methods, when they bind to an interface, and release
737 * them by calling usb_put_intf(), in their disconnect() methods.
738 *
739 * Return: A pointer to the interface with the incremented reference counter.
740 */
741struct usb_interface *usb_get_intf(struct usb_interface *intf)
742{
743 if (intf)
744 get_device(&intf->dev);
745 return intf;
746}
747EXPORT_SYMBOL_GPL(usb_get_intf);
748
749/**
750 * usb_put_intf - release a use of the usb interface structure
751 * @intf: interface that's been decremented
752 *
753 * Must be called when a user of an interface is finished with it. When the
754 * last user of the interface calls this function, the memory of the interface
755 * is freed.
756 */
757void usb_put_intf(struct usb_interface *intf)
758{
759 if (intf)
760 put_device(&intf->dev);
761}
762EXPORT_SYMBOL_GPL(usb_put_intf);
763
764/* USB device locking
765 *
766 * USB devices and interfaces are locked using the semaphore in their
767 * embedded struct device. The hub driver guarantees that whenever a
768 * device is connected or disconnected, drivers are called with the
769 * USB device locked as well as their particular interface.
770 *
771 * Complications arise when several devices are to be locked at the same
772 * time. Only hub-aware drivers that are part of usbcore ever have to
773 * do this; nobody else needs to worry about it. The rule for locking
774 * is simple:
775 *
776 * When locking both a device and its parent, always lock the
777 * the parent first.
778 */
779
780/**
781 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
782 * @udev: device that's being locked
783 * @iface: interface bound to the driver making the request (optional)
784 *
785 * Attempts to acquire the device lock, but fails if the device is
786 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
787 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
788 * lock, the routine polls repeatedly. This is to prevent deadlock with
789 * disconnect; in some drivers (such as usb-storage) the disconnect()
790 * or suspend() method will block waiting for a device reset to complete.
791 *
792 * Return: A negative error code for failure, otherwise 0.
793 */
794int usb_lock_device_for_reset(struct usb_device *udev,
795 const struct usb_interface *iface)
796{
797 unsigned long jiffies_expire = jiffies + HZ;
798
799 if (udev->state == USB_STATE_NOTATTACHED)
800 return -ENODEV;
801 if (udev->state == USB_STATE_SUSPENDED)
802 return -EHOSTUNREACH;
803 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
804 iface->condition == USB_INTERFACE_UNBOUND))
805 return -EINTR;
806
807 while (!usb_trylock_device(udev)) {
808
809 /* If we can't acquire the lock after waiting one second,
810 * we're probably deadlocked */
811 if (time_after(jiffies, jiffies_expire))
812 return -EBUSY;
813
814 msleep(15);
815 if (udev->state == USB_STATE_NOTATTACHED)
816 return -ENODEV;
817 if (udev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
820 iface->condition == USB_INTERFACE_UNBOUND))
821 return -EINTR;
822 }
823 return 0;
824}
825EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
826
827/**
828 * usb_get_current_frame_number - return current bus frame number
829 * @dev: the device whose bus is being queried
830 *
831 * Return: The current frame number for the USB host controller used
832 * with the given USB device. This can be used when scheduling
833 * isochronous requests.
834 *
835 * Note: Different kinds of host controller have different "scheduling
836 * horizons". While one type might support scheduling only 32 frames
837 * into the future, others could support scheduling up to 1024 frames
838 * into the future.
839 *
840 */
841int usb_get_current_frame_number(struct usb_device *dev)
842{
843 return usb_hcd_get_frame_number(dev);
844}
845EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
846
847/*-------------------------------------------------------------------*/
848/*
849 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
850 * extra field of the interface and endpoint descriptor structs.
851 */
852
853int __usb_get_extra_descriptor(char *buffer, unsigned size,
854 unsigned char type, void **ptr, size_t minsize)
855{
856 struct usb_descriptor_header *header;
857
858 while (size >= sizeof(struct usb_descriptor_header)) {
859 header = (struct usb_descriptor_header *)buffer;
860
861 if (header->bLength < 2 || header->bLength > size) {
862 printk(KERN_ERR
863 "%s: bogus descriptor, type %d length %d\n",
864 usbcore_name,
865 header->bDescriptorType,
866 header->bLength);
867 return -1;
868 }
869
870 if (header->bDescriptorType == type && header->bLength >= minsize) {
871 *ptr = header;
872 return 0;
873 }
874
875 buffer += header->bLength;
876 size -= header->bLength;
877 }
878 return -1;
879}
880EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
881
882/**
883 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
884 * @dev: device the buffer will be used with
885 * @size: requested buffer size
886 * @mem_flags: affect whether allocation may block
887 * @dma: used to return DMA address of buffer
888 *
889 * Return: Either null (indicating no buffer could be allocated), or the
890 * cpu-space pointer to a buffer that may be used to perform DMA to the
891 * specified device. Such cpu-space buffers are returned along with the DMA
892 * address (through the pointer provided).
893 *
894 * Note:
895 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
896 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
897 * hardware during URB completion/resubmit. The implementation varies between
898 * platforms, depending on details of how DMA will work to this device.
899 * Using these buffers also eliminates cacheline sharing problems on
900 * architectures where CPU caches are not DMA-coherent. On systems without
901 * bus-snooping caches, these buffers are uncached.
902 *
903 * When the buffer is no longer used, free it with usb_free_coherent().
904 */
905void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
906 dma_addr_t *dma)
907{
908 if (!dev || !dev->bus)
909 return NULL;
910 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
911}
912EXPORT_SYMBOL_GPL(usb_alloc_coherent);
913
914/**
915 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
916 * @dev: device the buffer was used with
917 * @size: requested buffer size
918 * @addr: CPU address of buffer
919 * @dma: DMA address of buffer
920 *
921 * This reclaims an I/O buffer, letting it be reused. The memory must have
922 * been allocated using usb_alloc_coherent(), and the parameters must match
923 * those provided in that allocation request.
924 */
925void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
926 dma_addr_t dma)
927{
928 if (!dev || !dev->bus)
929 return;
930 if (!addr)
931 return;
932 hcd_buffer_free(dev->bus, size, addr, dma);
933}
934EXPORT_SYMBOL_GPL(usb_free_coherent);
935
936/*
937 * Notifications of device and interface registration
938 */
939static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
940 void *data)
941{
942 struct device *dev = data;
943
944 switch (action) {
945 case BUS_NOTIFY_ADD_DEVICE:
946 if (dev->type == &usb_device_type)
947 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
948 else if (dev->type == &usb_if_device_type)
949 usb_create_sysfs_intf_files(to_usb_interface(dev));
950 break;
951
952 case BUS_NOTIFY_DEL_DEVICE:
953 if (dev->type == &usb_device_type)
954 usb_remove_sysfs_dev_files(to_usb_device(dev));
955 else if (dev->type == &usb_if_device_type)
956 usb_remove_sysfs_intf_files(to_usb_interface(dev));
957 break;
958 }
959 return 0;
960}
961
962static struct notifier_block usb_bus_nb = {
963 .notifier_call = usb_bus_notify,
964};
965
966static struct dentry *usb_devices_root;
967
968static void usb_debugfs_init(void)
969{
970 usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
971 NULL, &usbfs_devices_fops);
972}
973
974static void usb_debugfs_cleanup(void)
975{
976 debugfs_remove(usb_devices_root);
977}
978
979/*
980 * Init
981 */
982static int __init usb_init(void)
983{
984 int retval;
985 if (usb_disabled()) {
986 pr_info("%s: USB support disabled\n", usbcore_name);
987 return 0;
988 }
989 usb_init_pool_max();
990
991 usb_debugfs_init();
992
993 usb_acpi_register();
994 retval = bus_register(&usb_bus_type);
995 if (retval)
996 goto bus_register_failed;
997 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
998 if (retval)
999 goto bus_notifier_failed;
1000 retval = usb_major_init();
1001 if (retval)
1002 goto major_init_failed;
1003 retval = usb_register(&usbfs_driver);
1004 if (retval)
1005 goto driver_register_failed;
1006 retval = usb_devio_init();
1007 if (retval)
1008 goto usb_devio_init_failed;
1009 retval = usb_hub_init();
1010 if (retval)
1011 goto hub_init_failed;
1012 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1013 if (!retval)
1014 goto out;
1015
1016 usb_hub_cleanup();
1017hub_init_failed:
1018 usb_devio_cleanup();
1019usb_devio_init_failed:
1020 usb_deregister(&usbfs_driver);
1021driver_register_failed:
1022 usb_major_cleanup();
1023major_init_failed:
1024 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1025bus_notifier_failed:
1026 bus_unregister(&usb_bus_type);
1027bus_register_failed:
1028 usb_acpi_unregister();
1029 usb_debugfs_cleanup();
1030out:
1031 return retval;
1032}
1033
1034/*
1035 * Cleanup
1036 */
1037static void __exit usb_exit(void)
1038{
1039 /* This will matter if shutdown/reboot does exitcalls. */
1040 if (usb_disabled())
1041 return;
1042
1043 usb_release_quirk_list();
1044 usb_deregister_device_driver(&usb_generic_driver);
1045 usb_major_cleanup();
1046 usb_deregister(&usbfs_driver);
1047 usb_devio_cleanup();
1048 usb_hub_cleanup();
1049 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050 bus_unregister(&usb_bus_type);
1051 usb_acpi_unregister();
1052 usb_debugfs_cleanup();
1053 idr_destroy(&usb_bus_idr);
1054}
1055
1056subsys_initcall(usb_init);
1057module_exit(usb_exit);
1058MODULE_LICENSE("GPL");