Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
 
 
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
 
  39
  40#include <asm/io.h>
  41#include <linux/scatterlist.h>
  42#include <linux/mm.h>
  43#include <linux/dma-mapping.h>
  44
  45#include "usb.h"
  46
  47
  48const char *usbcore_name = "usbcore";
  49
  50static int nousb;	/* Disable USB when built into kernel image */
  51
  52#ifdef	CONFIG_USB_SUSPEND
  53static int usb_autosuspend_delay = 2;		/* Default delay value,
  54						 * in seconds */
 
 
 
 
 
 
 
 
 
 
 
  55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  57
  58#else
  59#define usb_autosuspend_delay		0
  60#endif
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/**
  64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  65 * for the given interface.
  66 * @config: the configuration to search (not necessarily the current config).
  67 * @iface_num: interface number to search in
  68 * @alt_num: alternate interface setting number to search for.
  69 *
  70 * Search the configuration's interface cache for the given alt setting.
 
 
  71 */
  72struct usb_host_interface *usb_find_alt_setting(
  73		struct usb_host_config *config,
  74		unsigned int iface_num,
  75		unsigned int alt_num)
  76{
  77	struct usb_interface_cache *intf_cache = NULL;
  78	int i;
  79
 
 
  80	for (i = 0; i < config->desc.bNumInterfaces; i++) {
  81		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  82				== iface_num) {
  83			intf_cache = config->intf_cache[i];
  84			break;
  85		}
  86	}
  87	if (!intf_cache)
  88		return NULL;
  89	for (i = 0; i < intf_cache->num_altsetting; i++)
  90		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
  91			return &intf_cache->altsetting[i];
  92
  93	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
  94			"config %u\n", alt_num, iface_num,
  95			config->desc.bConfigurationValue);
  96	return NULL;
  97}
  98EXPORT_SYMBOL_GPL(usb_find_alt_setting);
  99
 100/**
 101 * usb_ifnum_to_if - get the interface object with a given interface number
 102 * @dev: the device whose current configuration is considered
 103 * @ifnum: the desired interface
 104 *
 105 * This walks the device descriptor for the currently active configuration
 106 * and returns a pointer to the interface with that particular interface
 107 * number, or null.
 108 *
 109 * Note that configuration descriptors are not required to assign interface
 110 * numbers sequentially, so that it would be incorrect to assume that
 111 * the first interface in that descriptor corresponds to interface zero.
 112 * This routine helps device drivers avoid such mistakes.
 113 * However, you should make sure that you do the right thing with any
 114 * alternate settings available for this interfaces.
 115 *
 116 * Don't call this function unless you are bound to one of the interfaces
 117 * on this device or you have locked the device!
 
 
 
 118 */
 119struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 120				      unsigned ifnum)
 121{
 122	struct usb_host_config *config = dev->actconfig;
 123	int i;
 124
 125	if (!config)
 126		return NULL;
 127	for (i = 0; i < config->desc.bNumInterfaces; i++)
 128		if (config->interface[i]->altsetting[0]
 129				.desc.bInterfaceNumber == ifnum)
 130			return config->interface[i];
 131
 132	return NULL;
 133}
 134EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 135
 136/**
 137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 138 * @intf: the interface containing the altsetting in question
 139 * @altnum: the desired alternate setting number
 140 *
 141 * This searches the altsetting array of the specified interface for
 142 * an entry with the correct bAlternateSetting value and returns a pointer
 143 * to that entry, or null.
 144 *
 145 * Note that altsettings need not be stored sequentially by number, so
 146 * it would be incorrect to assume that the first altsetting entry in
 147 * the array corresponds to altsetting zero.  This routine helps device
 148 * drivers avoid such mistakes.
 149 *
 150 * Don't call this function unless you are bound to the intf interface
 151 * or you have locked the device!
 
 
 
 152 */
 153struct usb_host_interface *usb_altnum_to_altsetting(
 154					const struct usb_interface *intf,
 155					unsigned int altnum)
 156{
 157	int i;
 158
 159	for (i = 0; i < intf->num_altsetting; i++) {
 160		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 161			return &intf->altsetting[i];
 162	}
 163	return NULL;
 164}
 165EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 166
 167struct find_interface_arg {
 168	int minor;
 169	struct device_driver *drv;
 170};
 171
 172static int __find_interface(struct device *dev, void *data)
 173{
 174	struct find_interface_arg *arg = data;
 175	struct usb_interface *intf;
 176
 177	if (!is_usb_interface(dev))
 178		return 0;
 179
 180	if (dev->driver != arg->drv)
 181		return 0;
 182	intf = to_usb_interface(dev);
 183	return intf->minor == arg->minor;
 184}
 185
 186/**
 187 * usb_find_interface - find usb_interface pointer for driver and device
 188 * @drv: the driver whose current configuration is considered
 189 * @minor: the minor number of the desired device
 190 *
 191 * This walks the bus device list and returns a pointer to the interface
 192 * with the matching minor and driver.  Note, this only works for devices
 193 * that share the USB major number.
 
 
 194 */
 195struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 196{
 197	struct find_interface_arg argb;
 198	struct device *dev;
 199
 200	argb.minor = minor;
 201	argb.drv = &drv->drvwrap.driver;
 202
 203	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 204
 205	/* Drop reference count from bus_find_device */
 206	put_device(dev);
 207
 208	return dev ? to_usb_interface(dev) : NULL;
 209}
 210EXPORT_SYMBOL_GPL(usb_find_interface);
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212/**
 213 * usb_release_dev - free a usb device structure when all users of it are finished.
 214 * @dev: device that's been disconnected
 215 *
 216 * Will be called only by the device core when all users of this usb device are
 217 * done.
 218 */
 219static void usb_release_dev(struct device *dev)
 220{
 221	struct usb_device *udev;
 222	struct usb_hcd *hcd;
 223
 224	udev = to_usb_device(dev);
 225	hcd = bus_to_hcd(udev->bus);
 226
 227	usb_destroy_configuration(udev);
 
 
 228	usb_put_hcd(hcd);
 229	kfree(udev->product);
 230	kfree(udev->manufacturer);
 231	kfree(udev->serial);
 232	kfree(udev);
 233}
 234
 235#ifdef	CONFIG_HOTPLUG
 236static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 237{
 238	struct usb_device *usb_dev;
 239
 240	usb_dev = to_usb_device(dev);
 241
 242	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 243		return -ENOMEM;
 244
 245	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 246		return -ENOMEM;
 247
 248	return 0;
 249}
 250
 251#else
 252
 253static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 254{
 255	return -ENODEV;
 256}
 257#endif	/* CONFIG_HOTPLUG */
 258
 259#ifdef	CONFIG_PM
 260
 261/* USB device Power-Management thunks.
 262 * There's no need to distinguish here between quiescing a USB device
 263 * and powering it down; the generic_suspend() routine takes care of
 264 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 265 * USB interfaces there's no difference at all.
 266 */
 267
 268static int usb_dev_prepare(struct device *dev)
 269{
 270	return 0;		/* Implement eventually? */
 271}
 272
 273static void usb_dev_complete(struct device *dev)
 274{
 275	/* Currently used only for rebinding interfaces */
 276	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
 277}
 278
 279static int usb_dev_suspend(struct device *dev)
 280{
 281	return usb_suspend(dev, PMSG_SUSPEND);
 282}
 283
 284static int usb_dev_resume(struct device *dev)
 285{
 286	return usb_resume(dev, PMSG_RESUME);
 287}
 288
 289static int usb_dev_freeze(struct device *dev)
 290{
 291	return usb_suspend(dev, PMSG_FREEZE);
 292}
 293
 294static int usb_dev_thaw(struct device *dev)
 295{
 296	return usb_resume(dev, PMSG_THAW);
 297}
 298
 299static int usb_dev_poweroff(struct device *dev)
 300{
 301	return usb_suspend(dev, PMSG_HIBERNATE);
 302}
 303
 304static int usb_dev_restore(struct device *dev)
 305{
 306	return usb_resume(dev, PMSG_RESTORE);
 307}
 308
 309static const struct dev_pm_ops usb_device_pm_ops = {
 310	.prepare =	usb_dev_prepare,
 311	.complete =	usb_dev_complete,
 312	.suspend =	usb_dev_suspend,
 313	.resume =	usb_dev_resume,
 314	.freeze =	usb_dev_freeze,
 315	.thaw =		usb_dev_thaw,
 316	.poweroff =	usb_dev_poweroff,
 317	.restore =	usb_dev_restore,
 318#ifdef CONFIG_USB_SUSPEND
 319	.runtime_suspend =	usb_runtime_suspend,
 320	.runtime_resume =	usb_runtime_resume,
 321	.runtime_idle =		usb_runtime_idle,
 322#endif
 323};
 324
 325#endif	/* CONFIG_PM */
 326
 327
 328static char *usb_devnode(struct device *dev, mode_t *mode)
 
 329{
 330	struct usb_device *usb_dev;
 331
 332	usb_dev = to_usb_device(dev);
 333	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 334			 usb_dev->bus->busnum, usb_dev->devnum);
 335}
 336
 337struct device_type usb_device_type = {
 338	.name =		"usb_device",
 339	.release =	usb_release_dev,
 340	.uevent =	usb_dev_uevent,
 341	.devnode = 	usb_devnode,
 342#ifdef CONFIG_PM
 343	.pm =		&usb_device_pm_ops,
 344#endif
 345};
 346
 347
 348/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 349static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 350{
 351	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
 352	return hcd->wireless;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356/**
 357 * usb_alloc_dev - usb device constructor (usbcore-internal)
 358 * @parent: hub to which device is connected; null to allocate a root hub
 359 * @bus: bus used to access the device
 360 * @port1: one-based index of port; ignored for root hubs
 361 * Context: !in_interrupt()
 362 *
 363 * Only hub drivers (including virtual root hub drivers for host
 364 * controllers) should ever call this.
 365 *
 366 * This call may not be used in a non-sleeping context.
 
 
 
 367 */
 368struct usb_device *usb_alloc_dev(struct usb_device *parent,
 369				 struct usb_bus *bus, unsigned port1)
 370{
 371	struct usb_device *dev;
 372	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
 373	unsigned root_hub = 0;
 
 374
 375	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 376	if (!dev)
 377		return NULL;
 378
 379	if (!usb_get_hcd(bus_to_hcd(bus))) {
 380		kfree(dev);
 381		return NULL;
 382	}
 383	/* Root hubs aren't true devices, so don't allocate HCD resources */
 384	if (usb_hcd->driver->alloc_dev && parent &&
 385		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 386		usb_put_hcd(bus_to_hcd(bus));
 387		kfree(dev);
 388		return NULL;
 389	}
 390
 391	device_initialize(&dev->dev);
 392	dev->dev.bus = &usb_bus_type;
 393	dev->dev.type = &usb_device_type;
 394	dev->dev.groups = usb_device_groups;
 395	dev->dev.dma_mask = bus->controller->dma_mask;
 396	set_dev_node(&dev->dev, dev_to_node(bus->controller));
 
 
 
 
 
 
 
 
 
 
 
 397	dev->state = USB_STATE_ATTACHED;
 
 398	atomic_set(&dev->urbnum, 0);
 399
 400	INIT_LIST_HEAD(&dev->ep0.urb_list);
 401	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 402	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 403	/* ep0 maxpacket comes later, from device descriptor */
 404	usb_enable_endpoint(dev, &dev->ep0, false);
 405	dev->can_submit = 1;
 406
 407	/* Save readable and stable topology id, distinguishing devices
 408	 * by location for diagnostics, tools, driver model, etc.  The
 409	 * string is a path along hub ports, from the root.  Each device's
 410	 * dev->devpath will be stable until USB is re-cabled, and hubs
 411	 * are often labeled with these port numbers.  The name isn't
 412	 * as stable:  bus->busnum changes easily from modprobe order,
 413	 * cardbus or pci hotplugging, and so on.
 414	 */
 415	if (unlikely(!parent)) {
 416		dev->devpath[0] = '0';
 417		dev->route = 0;
 418
 419		dev->dev.parent = bus->controller;
 
 420		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 421		root_hub = 1;
 422	} else {
 423		/* match any labeling on the hubs; it's one-based */
 424		if (parent->devpath[0] == '0') {
 425			snprintf(dev->devpath, sizeof dev->devpath,
 426				"%d", port1);
 427			/* Root ports are not counted in route string */
 428			dev->route = 0;
 429		} else {
 430			snprintf(dev->devpath, sizeof dev->devpath,
 431				"%s.%d", parent->devpath, port1);
 432			/* Route string assumes hubs have less than 16 ports */
 433			if (port1 < 15)
 434				dev->route = parent->route +
 435					(port1 << ((parent->level - 1)*4));
 436			else
 437				dev->route = parent->route +
 438					(15 << ((parent->level - 1)*4));
 439		}
 440
 441		dev->dev.parent = &parent->dev;
 442		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 443
 
 
 
 
 
 
 
 444		/* hub driver sets up TT records */
 445	}
 446
 447	dev->portnum = port1;
 448	dev->bus = bus;
 449	dev->parent = parent;
 450	INIT_LIST_HEAD(&dev->filelist);
 451
 452#ifdef	CONFIG_PM
 453	pm_runtime_set_autosuspend_delay(&dev->dev,
 454			usb_autosuspend_delay * 1000);
 455	dev->connect_time = jiffies;
 456	dev->active_duration = -jiffies;
 457#endif
 458	if (root_hub)	/* Root hub always ok [and always wired] */
 459		dev->authorized = 1;
 460	else {
 461		dev->authorized = usb_hcd->authorized_default;
 462		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
 463	}
 464	return dev;
 465}
 
 466
 467/**
 468 * usb_get_dev - increments the reference count of the usb device structure
 469 * @dev: the device being referenced
 470 *
 471 * Each live reference to a device should be refcounted.
 472 *
 473 * Drivers for USB interfaces should normally record such references in
 474 * their probe() methods, when they bind to an interface, and release
 475 * them by calling usb_put_dev(), in their disconnect() methods.
 476 *
 477 * A pointer to the device with the incremented reference counter is returned.
 478 */
 479struct usb_device *usb_get_dev(struct usb_device *dev)
 480{
 481	if (dev)
 482		get_device(&dev->dev);
 483	return dev;
 484}
 485EXPORT_SYMBOL_GPL(usb_get_dev);
 486
 487/**
 488 * usb_put_dev - release a use of the usb device structure
 489 * @dev: device that's been disconnected
 490 *
 491 * Must be called when a user of a device is finished with it.  When the last
 492 * user of the device calls this function, the memory of the device is freed.
 493 */
 494void usb_put_dev(struct usb_device *dev)
 495{
 496	if (dev)
 497		put_device(&dev->dev);
 498}
 499EXPORT_SYMBOL_GPL(usb_put_dev);
 500
 501/**
 502 * usb_get_intf - increments the reference count of the usb interface structure
 503 * @intf: the interface being referenced
 504 *
 505 * Each live reference to a interface must be refcounted.
 506 *
 507 * Drivers for USB interfaces should normally record such references in
 508 * their probe() methods, when they bind to an interface, and release
 509 * them by calling usb_put_intf(), in their disconnect() methods.
 510 *
 511 * A pointer to the interface with the incremented reference counter is
 512 * returned.
 513 */
 514struct usb_interface *usb_get_intf(struct usb_interface *intf)
 515{
 516	if (intf)
 517		get_device(&intf->dev);
 518	return intf;
 519}
 520EXPORT_SYMBOL_GPL(usb_get_intf);
 521
 522/**
 523 * usb_put_intf - release a use of the usb interface structure
 524 * @intf: interface that's been decremented
 525 *
 526 * Must be called when a user of an interface is finished with it.  When the
 527 * last user of the interface calls this function, the memory of the interface
 528 * is freed.
 529 */
 530void usb_put_intf(struct usb_interface *intf)
 531{
 532	if (intf)
 533		put_device(&intf->dev);
 534}
 535EXPORT_SYMBOL_GPL(usb_put_intf);
 536
 537/*			USB device locking
 538 *
 539 * USB devices and interfaces are locked using the semaphore in their
 540 * embedded struct device.  The hub driver guarantees that whenever a
 541 * device is connected or disconnected, drivers are called with the
 542 * USB device locked as well as their particular interface.
 543 *
 544 * Complications arise when several devices are to be locked at the same
 545 * time.  Only hub-aware drivers that are part of usbcore ever have to
 546 * do this; nobody else needs to worry about it.  The rule for locking
 547 * is simple:
 548 *
 549 *	When locking both a device and its parent, always lock the
 550 *	the parent first.
 551 */
 552
 553/**
 554 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 555 * @udev: device that's being locked
 556 * @iface: interface bound to the driver making the request (optional)
 557 *
 558 * Attempts to acquire the device lock, but fails if the device is
 559 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 560 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 561 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 562 * disconnect; in some drivers (such as usb-storage) the disconnect()
 563 * or suspend() method will block waiting for a device reset to complete.
 564 *
 565 * Returns a negative error code for failure, otherwise 0.
 566 */
 567int usb_lock_device_for_reset(struct usb_device *udev,
 568			      const struct usb_interface *iface)
 569{
 570	unsigned long jiffies_expire = jiffies + HZ;
 571
 572	if (udev->state == USB_STATE_NOTATTACHED)
 573		return -ENODEV;
 574	if (udev->state == USB_STATE_SUSPENDED)
 575		return -EHOSTUNREACH;
 576	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 577			iface->condition == USB_INTERFACE_UNBOUND))
 578		return -EINTR;
 579
 580	while (!usb_trylock_device(udev)) {
 581
 582		/* If we can't acquire the lock after waiting one second,
 583		 * we're probably deadlocked */
 584		if (time_after(jiffies, jiffies_expire))
 585			return -EBUSY;
 586
 587		msleep(15);
 588		if (udev->state == USB_STATE_NOTATTACHED)
 589			return -ENODEV;
 590		if (udev->state == USB_STATE_SUSPENDED)
 591			return -EHOSTUNREACH;
 592		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 593				iface->condition == USB_INTERFACE_UNBOUND))
 594			return -EINTR;
 595	}
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 599
 600/**
 601 * usb_get_current_frame_number - return current bus frame number
 602 * @dev: the device whose bus is being queried
 603 *
 604 * Returns the current frame number for the USB host controller
 605 * used with the given USB device.  This can be used when scheduling
 606 * isochronous requests.
 607 *
 608 * Note that different kinds of host controller have different
 609 * "scheduling horizons".  While one type might support scheduling only
 610 * 32 frames into the future, others could support scheduling up to
 611 * 1024 frames into the future.
 
 612 */
 613int usb_get_current_frame_number(struct usb_device *dev)
 614{
 615	return usb_hcd_get_frame_number(dev);
 616}
 617EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 618
 619/*-------------------------------------------------------------------*/
 620/*
 621 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 622 * extra field of the interface and endpoint descriptor structs.
 623 */
 624
 625int __usb_get_extra_descriptor(char *buffer, unsigned size,
 626			       unsigned char type, void **ptr)
 627{
 628	struct usb_descriptor_header *header;
 629
 630	while (size >= sizeof(struct usb_descriptor_header)) {
 631		header = (struct usb_descriptor_header *)buffer;
 632
 633		if (header->bLength < 2) {
 634			printk(KERN_ERR
 635				"%s: bogus descriptor, type %d length %d\n",
 636				usbcore_name,
 637				header->bDescriptorType,
 638				header->bLength);
 639			return -1;
 640		}
 641
 642		if (header->bDescriptorType == type) {
 643			*ptr = header;
 644			return 0;
 645		}
 646
 647		buffer += header->bLength;
 648		size -= header->bLength;
 649	}
 650	return -1;
 651}
 652EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 653
 654/**
 655 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 656 * @dev: device the buffer will be used with
 657 * @size: requested buffer size
 658 * @mem_flags: affect whether allocation may block
 659 * @dma: used to return DMA address of buffer
 660 *
 661 * Return value is either null (indicating no buffer could be allocated), or
 662 * the cpu-space pointer to a buffer that may be used to perform DMA to the
 663 * specified device.  Such cpu-space buffers are returned along with the DMA
 664 * address (through the pointer provided).
 665 *
 
 666 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 667 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 668 * hardware during URB completion/resubmit.  The implementation varies between
 669 * platforms, depending on details of how DMA will work to this device.
 670 * Using these buffers also eliminates cacheline sharing problems on
 671 * architectures where CPU caches are not DMA-coherent.  On systems without
 672 * bus-snooping caches, these buffers are uncached.
 673 *
 674 * When the buffer is no longer used, free it with usb_free_coherent().
 675 */
 676void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 677			 dma_addr_t *dma)
 678{
 679	if (!dev || !dev->bus)
 680		return NULL;
 681	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 682}
 683EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 684
 685/**
 686 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 687 * @dev: device the buffer was used with
 688 * @size: requested buffer size
 689 * @addr: CPU address of buffer
 690 * @dma: DMA address of buffer
 691 *
 692 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 693 * been allocated using usb_alloc_coherent(), and the parameters must match
 694 * those provided in that allocation request.
 695 */
 696void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 697		       dma_addr_t dma)
 698{
 699	if (!dev || !dev->bus)
 700		return;
 701	if (!addr)
 702		return;
 703	hcd_buffer_free(dev->bus, size, addr, dma);
 704}
 705EXPORT_SYMBOL_GPL(usb_free_coherent);
 706
 707/**
 708 * usb_buffer_map - create DMA mapping(s) for an urb
 709 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 710 *
 711 * Return value is either null (indicating no buffer could be mapped), or
 712 * the parameter.  URB_NO_TRANSFER_DMA_MAP is
 713 * added to urb->transfer_flags if the operation succeeds.  If the device
 714 * is connected to this system through a non-DMA controller, this operation
 715 * always succeeds.
 716 *
 717 * This call would normally be used for an urb which is reused, perhaps
 718 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 719 * calls to synchronize memory and dma state.
 720 *
 721 * Reverse the effect of this call with usb_buffer_unmap().
 722 */
 723#if 0
 724struct urb *usb_buffer_map(struct urb *urb)
 725{
 726	struct usb_bus		*bus;
 727	struct device		*controller;
 728
 729	if (!urb
 730			|| !urb->dev
 731			|| !(bus = urb->dev->bus)
 732			|| !(controller = bus->controller))
 733		return NULL;
 734
 735	if (controller->dma_mask) {
 736		urb->transfer_dma = dma_map_single(controller,
 737			urb->transfer_buffer, urb->transfer_buffer_length,
 738			usb_pipein(urb->pipe)
 739				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 740	/* FIXME generic api broken like pci, can't report errors */
 741	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 742	} else
 743		urb->transfer_dma = ~0;
 744	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 745	return urb;
 746}
 747EXPORT_SYMBOL_GPL(usb_buffer_map);
 748#endif  /*  0  */
 749
 750/* XXX DISABLED, no users currently.  If you wish to re-enable this
 751 * XXX please determine whether the sync is to transfer ownership of
 752 * XXX the buffer from device to cpu or vice verse, and thusly use the
 753 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 754 */
 755#if 0
 756
 757/**
 758 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 759 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 760 */
 761void usb_buffer_dmasync(struct urb *urb)
 762{
 763	struct usb_bus		*bus;
 764	struct device		*controller;
 765
 766	if (!urb
 767			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 768			|| !urb->dev
 769			|| !(bus = urb->dev->bus)
 770			|| !(controller = bus->controller))
 771		return;
 772
 773	if (controller->dma_mask) {
 774		dma_sync_single_for_cpu(controller,
 775			urb->transfer_dma, urb->transfer_buffer_length,
 776			usb_pipein(urb->pipe)
 777				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 778		if (usb_pipecontrol(urb->pipe))
 779			dma_sync_single_for_cpu(controller,
 780					urb->setup_dma,
 781					sizeof(struct usb_ctrlrequest),
 782					DMA_TO_DEVICE);
 783	}
 784}
 785EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 786#endif
 787
 788/**
 789 * usb_buffer_unmap - free DMA mapping(s) for an urb
 790 * @urb: urb whose transfer_buffer will be unmapped
 791 *
 792 * Reverses the effect of usb_buffer_map().
 793 */
 794#if 0
 795void usb_buffer_unmap(struct urb *urb)
 796{
 797	struct usb_bus		*bus;
 798	struct device		*controller;
 799
 800	if (!urb
 801			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 802			|| !urb->dev
 803			|| !(bus = urb->dev->bus)
 804			|| !(controller = bus->controller))
 805		return;
 806
 807	if (controller->dma_mask) {
 808		dma_unmap_single(controller,
 809			urb->transfer_dma, urb->transfer_buffer_length,
 810			usb_pipein(urb->pipe)
 811				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 812	}
 813	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 814}
 815EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 816#endif  /*  0  */
 817
 818#if 0
 819/**
 820 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 821 * @dev: device to which the scatterlist will be mapped
 822 * @is_in: mapping transfer direction
 823 * @sg: the scatterlist to map
 824 * @nents: the number of entries in the scatterlist
 825 *
 826 * Return value is either < 0 (indicating no buffers could be mapped), or
 827 * the number of DMA mapping array entries in the scatterlist.
 828 *
 829 * The caller is responsible for placing the resulting DMA addresses from
 830 * the scatterlist into URB transfer buffer pointers, and for setting the
 831 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 832 *
 833 * Top I/O rates come from queuing URBs, instead of waiting for each one
 834 * to complete before starting the next I/O.   This is particularly easy
 835 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 836 * mapping entry returned, stopping on the first error or when all succeed.
 837 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 838 *
 839 * This call would normally be used when translating scatterlist requests,
 840 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 841 * may be able to coalesce mappings for improved I/O efficiency.
 842 *
 843 * Reverse the effect of this call with usb_buffer_unmap_sg().
 844 */
 845int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 846		      struct scatterlist *sg, int nents)
 847{
 848	struct usb_bus		*bus;
 849	struct device		*controller;
 850
 851	if (!dev
 852			|| !(bus = dev->bus)
 853			|| !(controller = bus->controller)
 854			|| !controller->dma_mask)
 855		return -EINVAL;
 856
 857	/* FIXME generic api broken like pci, can't report errors */
 858	return dma_map_sg(controller, sg, nents,
 859			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 860}
 861EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 862#endif
 863
 864/* XXX DISABLED, no users currently.  If you wish to re-enable this
 865 * XXX please determine whether the sync is to transfer ownership of
 866 * XXX the buffer from device to cpu or vice verse, and thusly use the
 867 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 868 */
 869#if 0
 870
 871/**
 872 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 873 * @dev: device to which the scatterlist will be mapped
 874 * @is_in: mapping transfer direction
 875 * @sg: the scatterlist to synchronize
 876 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 877 *
 878 * Use this when you are re-using a scatterlist's data buffers for
 879 * another USB request.
 880 */
 881void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 882			   struct scatterlist *sg, int n_hw_ents)
 883{
 884	struct usb_bus		*bus;
 885	struct device		*controller;
 886
 887	if (!dev
 888			|| !(bus = dev->bus)
 889			|| !(controller = bus->controller)
 890			|| !controller->dma_mask)
 891		return;
 892
 893	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 894			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 895}
 896EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 897#endif
 898
 899#if 0
 900/**
 901 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 902 * @dev: device to which the scatterlist will be mapped
 903 * @is_in: mapping transfer direction
 904 * @sg: the scatterlist to unmap
 905 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 906 *
 907 * Reverses the effect of usb_buffer_map_sg().
 908 */
 909void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 910			 struct scatterlist *sg, int n_hw_ents)
 911{
 912	struct usb_bus		*bus;
 913	struct device		*controller;
 914
 915	if (!dev
 916			|| !(bus = dev->bus)
 917			|| !(controller = bus->controller)
 918			|| !controller->dma_mask)
 919		return;
 920
 921	dma_unmap_sg(controller, sg, n_hw_ents,
 922			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 923}
 924EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 925#endif
 926
 927/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
 928#ifdef MODULE
 929module_param(nousb, bool, 0444);
 930#else
 931core_param(nousb, nousb, bool, 0444);
 932#endif
 933
 934/*
 935 * for external read access to <nousb>
 936 */
 937int usb_disabled(void)
 938{
 939	return nousb;
 940}
 941EXPORT_SYMBOL_GPL(usb_disabled);
 942
 943/*
 944 * Notifications of device and interface registration
 945 */
 946static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 947		void *data)
 948{
 949	struct device *dev = data;
 950
 951	switch (action) {
 952	case BUS_NOTIFY_ADD_DEVICE:
 953		if (dev->type == &usb_device_type)
 954			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 955		else if (dev->type == &usb_if_device_type)
 956			usb_create_sysfs_intf_files(to_usb_interface(dev));
 957		break;
 958
 959	case BUS_NOTIFY_DEL_DEVICE:
 960		if (dev->type == &usb_device_type)
 961			usb_remove_sysfs_dev_files(to_usb_device(dev));
 962		else if (dev->type == &usb_if_device_type)
 963			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 964		break;
 965	}
 966	return 0;
 967}
 968
 969static struct notifier_block usb_bus_nb = {
 970	.notifier_call = usb_bus_notify,
 971};
 972
 973struct dentry *usb_debug_root;
 974EXPORT_SYMBOL_GPL(usb_debug_root);
 975
 976static struct dentry *usb_debug_devices;
 977
 978static int usb_debugfs_init(void)
 979{
 980	usb_debug_root = debugfs_create_dir("usb", NULL);
 981	if (!usb_debug_root)
 982		return -ENOENT;
 983
 984	usb_debug_devices = debugfs_create_file("devices", 0444,
 985						usb_debug_root, NULL,
 986						&usbfs_devices_fops);
 987	if (!usb_debug_devices) {
 988		debugfs_remove(usb_debug_root);
 989		usb_debug_root = NULL;
 990		return -ENOENT;
 991	}
 992
 993	return 0;
 994}
 995
 996static void usb_debugfs_cleanup(void)
 997{
 998	debugfs_remove(usb_debug_devices);
 999	debugfs_remove(usb_debug_root);
1000}
1001
1002/*
1003 * Init
1004 */
1005static int __init usb_init(void)
1006{
1007	int retval;
1008	if (nousb) {
1009		pr_info("%s: USB support disabled\n", usbcore_name);
1010		return 0;
1011	}
 
1012
1013	retval = usb_debugfs_init();
1014	if (retval)
1015		goto out;
1016
 
1017	retval = bus_register(&usb_bus_type);
1018	if (retval)
1019		goto bus_register_failed;
1020	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1021	if (retval)
1022		goto bus_notifier_failed;
1023	retval = usb_major_init();
1024	if (retval)
1025		goto major_init_failed;
1026	retval = usb_register(&usbfs_driver);
1027	if (retval)
1028		goto driver_register_failed;
1029	retval = usb_devio_init();
1030	if (retval)
1031		goto usb_devio_init_failed;
1032	retval = usbfs_init();
1033	if (retval)
1034		goto fs_init_failed;
1035	retval = usb_hub_init();
1036	if (retval)
1037		goto hub_init_failed;
1038	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1039	if (!retval)
1040		goto out;
1041
1042	usb_hub_cleanup();
1043hub_init_failed:
1044	usbfs_cleanup();
1045fs_init_failed:
1046	usb_devio_cleanup();
1047usb_devio_init_failed:
1048	usb_deregister(&usbfs_driver);
1049driver_register_failed:
1050	usb_major_cleanup();
1051major_init_failed:
1052	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1053bus_notifier_failed:
1054	bus_unregister(&usb_bus_type);
1055bus_register_failed:
 
1056	usb_debugfs_cleanup();
1057out:
1058	return retval;
1059}
1060
1061/*
1062 * Cleanup
1063 */
1064static void __exit usb_exit(void)
1065{
1066	/* This will matter if shutdown/reboot does exitcalls. */
1067	if (nousb)
1068		return;
1069
 
1070	usb_deregister_device_driver(&usb_generic_driver);
1071	usb_major_cleanup();
1072	usbfs_cleanup();
1073	usb_deregister(&usbfs_driver);
1074	usb_devio_cleanup();
1075	usb_hub_cleanup();
1076	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1077	bus_unregister(&usb_bus_type);
 
1078	usb_debugfs_cleanup();
 
1079}
1080
1081subsys_initcall(usb_init);
1082module_exit(usb_exit);
1083MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else.
  23 * It should be considered a slave, with no callbacks. Callbacks
  24 * are evil.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/string.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>  /* for in_interrupt() */
  33#include <linux/kmod.h>
  34#include <linux/init.h>
  35#include <linux/spinlock.h>
  36#include <linux/errno.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/mutex.h>
  40#include <linux/workqueue.h>
  41#include <linux/debugfs.h>
  42#include <linux/usb/of.h>
  43
  44#include <asm/io.h>
  45#include <linux/scatterlist.h>
  46#include <linux/mm.h>
  47#include <linux/dma-mapping.h>
  48
  49#include "hub.h"
 
  50
  51const char *usbcore_name = "usbcore";
  52
  53static bool nousb;	/* Disable USB when built into kernel image */
  54
  55module_param(nousb, bool, 0444);
  56
  57/*
  58 * for external read access to <nousb>
  59 */
  60int usb_disabled(void)
  61{
  62	return nousb;
  63}
  64EXPORT_SYMBOL_GPL(usb_disabled);
  65
  66#ifdef	CONFIG_PM
  67/* Default delay value, in seconds */
  68static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  69module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  70MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  71
  72#else
  73#define usb_autosuspend_delay		0
  74#endif
  75
  76static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  77		struct usb_endpoint_descriptor **bulk_in,
  78		struct usb_endpoint_descriptor **bulk_out,
  79		struct usb_endpoint_descriptor **int_in,
  80		struct usb_endpoint_descriptor **int_out)
  81{
  82	switch (usb_endpoint_type(epd)) {
  83	case USB_ENDPOINT_XFER_BULK:
  84		if (usb_endpoint_dir_in(epd)) {
  85			if (bulk_in && !*bulk_in) {
  86				*bulk_in = epd;
  87				break;
  88			}
  89		} else {
  90			if (bulk_out && !*bulk_out) {
  91				*bulk_out = epd;
  92				break;
  93			}
  94		}
  95
  96		return false;
  97	case USB_ENDPOINT_XFER_INT:
  98		if (usb_endpoint_dir_in(epd)) {
  99			if (int_in && !*int_in) {
 100				*int_in = epd;
 101				break;
 102			}
 103		} else {
 104			if (int_out && !*int_out) {
 105				*int_out = epd;
 106				break;
 107			}
 108		}
 109
 110		return false;
 111	default:
 112		return false;
 113	}
 114
 115	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 116			(!int_in || *int_in) && (!int_out || *int_out);
 117}
 118
 119/**
 120 * usb_find_common_endpoints() -- look up common endpoint descriptors
 121 * @alt:	alternate setting to search
 122 * @bulk_in:	pointer to descriptor pointer, or NULL
 123 * @bulk_out:	pointer to descriptor pointer, or NULL
 124 * @int_in:	pointer to descriptor pointer, or NULL
 125 * @int_out:	pointer to descriptor pointer, or NULL
 126 *
 127 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 128 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 129 * provided pointers (unless they are NULL).
 130 *
 131 * If a requested endpoint is not found, the corresponding pointer is set to
 132 * NULL.
 133 *
 134 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 135 */
 136int usb_find_common_endpoints(struct usb_host_interface *alt,
 137		struct usb_endpoint_descriptor **bulk_in,
 138		struct usb_endpoint_descriptor **bulk_out,
 139		struct usb_endpoint_descriptor **int_in,
 140		struct usb_endpoint_descriptor **int_out)
 141{
 142	struct usb_endpoint_descriptor *epd;
 143	int i;
 144
 145	if (bulk_in)
 146		*bulk_in = NULL;
 147	if (bulk_out)
 148		*bulk_out = NULL;
 149	if (int_in)
 150		*int_in = NULL;
 151	if (int_out)
 152		*int_out = NULL;
 153
 154	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 155		epd = &alt->endpoint[i].desc;
 156
 157		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 158			return 0;
 159	}
 160
 161	return -ENXIO;
 162}
 163EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 164
 165/**
 166 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 167 * @alt:	alternate setting to search
 168 * @bulk_in:	pointer to descriptor pointer, or NULL
 169 * @bulk_out:	pointer to descriptor pointer, or NULL
 170 * @int_in:	pointer to descriptor pointer, or NULL
 171 * @int_out:	pointer to descriptor pointer, or NULL
 172 *
 173 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 174 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 175 * provided pointers (unless they are NULL).
 176 *
 177 * If a requested endpoint is not found, the corresponding pointer is set to
 178 * NULL.
 179 *
 180 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 181 */
 182int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 183		struct usb_endpoint_descriptor **bulk_in,
 184		struct usb_endpoint_descriptor **bulk_out,
 185		struct usb_endpoint_descriptor **int_in,
 186		struct usb_endpoint_descriptor **int_out)
 187{
 188	struct usb_endpoint_descriptor *epd;
 189	int i;
 190
 191	if (bulk_in)
 192		*bulk_in = NULL;
 193	if (bulk_out)
 194		*bulk_out = NULL;
 195	if (int_in)
 196		*int_in = NULL;
 197	if (int_out)
 198		*int_out = NULL;
 199
 200	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 201		epd = &alt->endpoint[i].desc;
 202
 203		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 204			return 0;
 205	}
 206
 207	return -ENXIO;
 208}
 209EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 210
 211/**
 212 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 213 * for the given interface.
 214 * @config: the configuration to search (not necessarily the current config).
 215 * @iface_num: interface number to search in
 216 * @alt_num: alternate interface setting number to search for.
 217 *
 218 * Search the configuration's interface cache for the given alt setting.
 219 *
 220 * Return: The alternate setting, if found. %NULL otherwise.
 221 */
 222struct usb_host_interface *usb_find_alt_setting(
 223		struct usb_host_config *config,
 224		unsigned int iface_num,
 225		unsigned int alt_num)
 226{
 227	struct usb_interface_cache *intf_cache = NULL;
 228	int i;
 229
 230	if (!config)
 231		return NULL;
 232	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 233		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 234				== iface_num) {
 235			intf_cache = config->intf_cache[i];
 236			break;
 237		}
 238	}
 239	if (!intf_cache)
 240		return NULL;
 241	for (i = 0; i < intf_cache->num_altsetting; i++)
 242		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 243			return &intf_cache->altsetting[i];
 244
 245	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 246			"config %u\n", alt_num, iface_num,
 247			config->desc.bConfigurationValue);
 248	return NULL;
 249}
 250EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 251
 252/**
 253 * usb_ifnum_to_if - get the interface object with a given interface number
 254 * @dev: the device whose current configuration is considered
 255 * @ifnum: the desired interface
 256 *
 257 * This walks the device descriptor for the currently active configuration
 258 * to find the interface object with the particular interface number.
 
 259 *
 260 * Note that configuration descriptors are not required to assign interface
 261 * numbers sequentially, so that it would be incorrect to assume that
 262 * the first interface in that descriptor corresponds to interface zero.
 263 * This routine helps device drivers avoid such mistakes.
 264 * However, you should make sure that you do the right thing with any
 265 * alternate settings available for this interfaces.
 266 *
 267 * Don't call this function unless you are bound to one of the interfaces
 268 * on this device or you have locked the device!
 269 *
 270 * Return: A pointer to the interface that has @ifnum as interface number,
 271 * if found. %NULL otherwise.
 272 */
 273struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 274				      unsigned ifnum)
 275{
 276	struct usb_host_config *config = dev->actconfig;
 277	int i;
 278
 279	if (!config)
 280		return NULL;
 281	for (i = 0; i < config->desc.bNumInterfaces; i++)
 282		if (config->interface[i]->altsetting[0]
 283				.desc.bInterfaceNumber == ifnum)
 284			return config->interface[i];
 285
 286	return NULL;
 287}
 288EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 289
 290/**
 291 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 292 * @intf: the interface containing the altsetting in question
 293 * @altnum: the desired alternate setting number
 294 *
 295 * This searches the altsetting array of the specified interface for
 296 * an entry with the correct bAlternateSetting value.
 
 297 *
 298 * Note that altsettings need not be stored sequentially by number, so
 299 * it would be incorrect to assume that the first altsetting entry in
 300 * the array corresponds to altsetting zero.  This routine helps device
 301 * drivers avoid such mistakes.
 302 *
 303 * Don't call this function unless you are bound to the intf interface
 304 * or you have locked the device!
 305 *
 306 * Return: A pointer to the entry of the altsetting array of @intf that
 307 * has @altnum as the alternate setting number. %NULL if not found.
 308 */
 309struct usb_host_interface *usb_altnum_to_altsetting(
 310					const struct usb_interface *intf,
 311					unsigned int altnum)
 312{
 313	int i;
 314
 315	for (i = 0; i < intf->num_altsetting; i++) {
 316		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 317			return &intf->altsetting[i];
 318	}
 319	return NULL;
 320}
 321EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 322
 323struct find_interface_arg {
 324	int minor;
 325	struct device_driver *drv;
 326};
 327
 328static int __find_interface(struct device *dev, const void *data)
 329{
 330	const struct find_interface_arg *arg = data;
 331	struct usb_interface *intf;
 332
 333	if (!is_usb_interface(dev))
 334		return 0;
 335
 336	if (dev->driver != arg->drv)
 337		return 0;
 338	intf = to_usb_interface(dev);
 339	return intf->minor == arg->minor;
 340}
 341
 342/**
 343 * usb_find_interface - find usb_interface pointer for driver and device
 344 * @drv: the driver whose current configuration is considered
 345 * @minor: the minor number of the desired device
 346 *
 347 * This walks the bus device list and returns a pointer to the interface
 348 * with the matching minor and driver.  Note, this only works for devices
 349 * that share the USB major number.
 350 *
 351 * Return: A pointer to the interface with the matching major and @minor.
 352 */
 353struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 354{
 355	struct find_interface_arg argb;
 356	struct device *dev;
 357
 358	argb.minor = minor;
 359	argb.drv = &drv->drvwrap.driver;
 360
 361	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 362
 363	/* Drop reference count from bus_find_device */
 364	put_device(dev);
 365
 366	return dev ? to_usb_interface(dev) : NULL;
 367}
 368EXPORT_SYMBOL_GPL(usb_find_interface);
 369
 370struct each_dev_arg {
 371	void *data;
 372	int (*fn)(struct usb_device *, void *);
 373};
 374
 375static int __each_dev(struct device *dev, void *data)
 376{
 377	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 378
 379	/* There are struct usb_interface on the same bus, filter them out */
 380	if (!is_usb_device(dev))
 381		return 0;
 382
 383	return arg->fn(to_usb_device(dev), arg->data);
 384}
 385
 386/**
 387 * usb_for_each_dev - iterate over all USB devices in the system
 388 * @data: data pointer that will be handed to the callback function
 389 * @fn: callback function to be called for each USB device
 390 *
 391 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 392 * returns anything other than 0, we break the iteration prematurely and return
 393 * that value.
 394 */
 395int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 396{
 397	struct each_dev_arg arg = {data, fn};
 398
 399	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 400}
 401EXPORT_SYMBOL_GPL(usb_for_each_dev);
 402
 403/**
 404 * usb_release_dev - free a usb device structure when all users of it are finished.
 405 * @dev: device that's been disconnected
 406 *
 407 * Will be called only by the device core when all users of this usb device are
 408 * done.
 409 */
 410static void usb_release_dev(struct device *dev)
 411{
 412	struct usb_device *udev;
 413	struct usb_hcd *hcd;
 414
 415	udev = to_usb_device(dev);
 416	hcd = bus_to_hcd(udev->bus);
 417
 418	usb_destroy_configuration(udev);
 419	usb_release_bos_descriptor(udev);
 420	of_node_put(dev->of_node);
 421	usb_put_hcd(hcd);
 422	kfree(udev->product);
 423	kfree(udev->manufacturer);
 424	kfree(udev->serial);
 425	kfree(udev);
 426}
 427
 
 428static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 429{
 430	struct usb_device *usb_dev;
 431
 432	usb_dev = to_usb_device(dev);
 433
 434	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 435		return -ENOMEM;
 436
 437	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 438		return -ENOMEM;
 439
 440	return 0;
 441}
 442
 
 
 
 
 
 
 
 
 443#ifdef	CONFIG_PM
 444
 445/* USB device Power-Management thunks.
 446 * There's no need to distinguish here between quiescing a USB device
 447 * and powering it down; the generic_suspend() routine takes care of
 448 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 449 * USB interfaces there's no difference at all.
 450 */
 451
 452static int usb_dev_prepare(struct device *dev)
 453{
 454	return 0;		/* Implement eventually? */
 455}
 456
 457static void usb_dev_complete(struct device *dev)
 458{
 459	/* Currently used only for rebinding interfaces */
 460	usb_resume_complete(dev);
 461}
 462
 463static int usb_dev_suspend(struct device *dev)
 464{
 465	return usb_suspend(dev, PMSG_SUSPEND);
 466}
 467
 468static int usb_dev_resume(struct device *dev)
 469{
 470	return usb_resume(dev, PMSG_RESUME);
 471}
 472
 473static int usb_dev_freeze(struct device *dev)
 474{
 475	return usb_suspend(dev, PMSG_FREEZE);
 476}
 477
 478static int usb_dev_thaw(struct device *dev)
 479{
 480	return usb_resume(dev, PMSG_THAW);
 481}
 482
 483static int usb_dev_poweroff(struct device *dev)
 484{
 485	return usb_suspend(dev, PMSG_HIBERNATE);
 486}
 487
 488static int usb_dev_restore(struct device *dev)
 489{
 490	return usb_resume(dev, PMSG_RESTORE);
 491}
 492
 493static const struct dev_pm_ops usb_device_pm_ops = {
 494	.prepare =	usb_dev_prepare,
 495	.complete =	usb_dev_complete,
 496	.suspend =	usb_dev_suspend,
 497	.resume =	usb_dev_resume,
 498	.freeze =	usb_dev_freeze,
 499	.thaw =		usb_dev_thaw,
 500	.poweroff =	usb_dev_poweroff,
 501	.restore =	usb_dev_restore,
 
 502	.runtime_suspend =	usb_runtime_suspend,
 503	.runtime_resume =	usb_runtime_resume,
 504	.runtime_idle =		usb_runtime_idle,
 
 505};
 506
 507#endif	/* CONFIG_PM */
 508
 509
 510static char *usb_devnode(struct device *dev,
 511			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 512{
 513	struct usb_device *usb_dev;
 514
 515	usb_dev = to_usb_device(dev);
 516	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 517			 usb_dev->bus->busnum, usb_dev->devnum);
 518}
 519
 520struct device_type usb_device_type = {
 521	.name =		"usb_device",
 522	.release =	usb_release_dev,
 523	.uevent =	usb_dev_uevent,
 524	.devnode = 	usb_devnode,
 525#ifdef CONFIG_PM
 526	.pm =		&usb_device_pm_ops,
 527#endif
 528};
 529
 530
 531/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 532static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 533{
 534	struct usb_hcd *hcd = bus_to_hcd(bus);
 535	return hcd->wireless;
 536}
 537
 538static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 539{
 540	struct usb_hub *hub;
 541
 542	if (!dev->parent)
 543		return true; /* Root hub always ok [and always wired] */
 544
 545	switch (hcd->dev_policy) {
 546	case USB_DEVICE_AUTHORIZE_NONE:
 547	default:
 548		return false;
 549
 550	case USB_DEVICE_AUTHORIZE_ALL:
 551		return true;
 552
 553	case USB_DEVICE_AUTHORIZE_INTERNAL:
 554		hub = usb_hub_to_struct_hub(dev->parent);
 555		return hub->ports[dev->portnum - 1]->connect_type ==
 556				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 557	}
 558}
 559
 560/**
 561 * usb_alloc_dev - usb device constructor (usbcore-internal)
 562 * @parent: hub to which device is connected; null to allocate a root hub
 563 * @bus: bus used to access the device
 564 * @port1: one-based index of port; ignored for root hubs
 565 * Context: !in_interrupt()
 566 *
 567 * Only hub drivers (including virtual root hub drivers for host
 568 * controllers) should ever call this.
 569 *
 570 * This call may not be used in a non-sleeping context.
 571 *
 572 * Return: On success, a pointer to the allocated usb device. %NULL on
 573 * failure.
 574 */
 575struct usb_device *usb_alloc_dev(struct usb_device *parent,
 576				 struct usb_bus *bus, unsigned port1)
 577{
 578	struct usb_device *dev;
 579	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 580	unsigned root_hub = 0;
 581	unsigned raw_port = port1;
 582
 583	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 584	if (!dev)
 585		return NULL;
 586
 587	if (!usb_get_hcd(usb_hcd)) {
 588		kfree(dev);
 589		return NULL;
 590	}
 591	/* Root hubs aren't true devices, so don't allocate HCD resources */
 592	if (usb_hcd->driver->alloc_dev && parent &&
 593		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 594		usb_put_hcd(bus_to_hcd(bus));
 595		kfree(dev);
 596		return NULL;
 597	}
 598
 599	device_initialize(&dev->dev);
 600	dev->dev.bus = &usb_bus_type;
 601	dev->dev.type = &usb_device_type;
 602	dev->dev.groups = usb_device_groups;
 603	/*
 604	 * Fake a dma_mask/offset for the USB device:
 605	 * We cannot really use the dma-mapping API (dma_alloc_* and
 606	 * dma_map_*) for USB devices but instead need to use
 607	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
 608	 * manually look into the mask/offset pair to determine whether
 609	 * they need bounce buffers.
 610	 * Note: calling dma_set_mask() on a USB device would set the
 611	 * mask for the entire HCD, so don't do that.
 612	 */
 613	dev->dev.dma_mask = bus->sysdev->dma_mask;
 614	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
 615	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 616	dev->state = USB_STATE_ATTACHED;
 617	dev->lpm_disable_count = 1;
 618	atomic_set(&dev->urbnum, 0);
 619
 620	INIT_LIST_HEAD(&dev->ep0.urb_list);
 621	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 622	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 623	/* ep0 maxpacket comes later, from device descriptor */
 624	usb_enable_endpoint(dev, &dev->ep0, false);
 625	dev->can_submit = 1;
 626
 627	/* Save readable and stable topology id, distinguishing devices
 628	 * by location for diagnostics, tools, driver model, etc.  The
 629	 * string is a path along hub ports, from the root.  Each device's
 630	 * dev->devpath will be stable until USB is re-cabled, and hubs
 631	 * are often labeled with these port numbers.  The name isn't
 632	 * as stable:  bus->busnum changes easily from modprobe order,
 633	 * cardbus or pci hotplugging, and so on.
 634	 */
 635	if (unlikely(!parent)) {
 636		dev->devpath[0] = '0';
 637		dev->route = 0;
 638
 639		dev->dev.parent = bus->controller;
 640		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 641		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 642		root_hub = 1;
 643	} else {
 644		/* match any labeling on the hubs; it's one-based */
 645		if (parent->devpath[0] == '0') {
 646			snprintf(dev->devpath, sizeof dev->devpath,
 647				"%d", port1);
 648			/* Root ports are not counted in route string */
 649			dev->route = 0;
 650		} else {
 651			snprintf(dev->devpath, sizeof dev->devpath,
 652				"%s.%d", parent->devpath, port1);
 653			/* Route string assumes hubs have less than 16 ports */
 654			if (port1 < 15)
 655				dev->route = parent->route +
 656					(port1 << ((parent->level - 1)*4));
 657			else
 658				dev->route = parent->route +
 659					(15 << ((parent->level - 1)*4));
 660		}
 661
 662		dev->dev.parent = &parent->dev;
 663		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 664
 665		if (!parent->parent) {
 666			/* device under root hub's port */
 667			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 668				port1);
 669		}
 670		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 671
 672		/* hub driver sets up TT records */
 673	}
 674
 675	dev->portnum = port1;
 676	dev->bus = bus;
 677	dev->parent = parent;
 678	INIT_LIST_HEAD(&dev->filelist);
 679
 680#ifdef	CONFIG_PM
 681	pm_runtime_set_autosuspend_delay(&dev->dev,
 682			usb_autosuspend_delay * 1000);
 683	dev->connect_time = jiffies;
 684	dev->active_duration = -jiffies;
 685#endif
 686
 687	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 688	if (!root_hub)
 689		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 690
 
 691	return dev;
 692}
 693EXPORT_SYMBOL_GPL(usb_alloc_dev);
 694
 695/**
 696 * usb_get_dev - increments the reference count of the usb device structure
 697 * @dev: the device being referenced
 698 *
 699 * Each live reference to a device should be refcounted.
 700 *
 701 * Drivers for USB interfaces should normally record such references in
 702 * their probe() methods, when they bind to an interface, and release
 703 * them by calling usb_put_dev(), in their disconnect() methods.
 704 *
 705 * Return: A pointer to the device with the incremented reference counter.
 706 */
 707struct usb_device *usb_get_dev(struct usb_device *dev)
 708{
 709	if (dev)
 710		get_device(&dev->dev);
 711	return dev;
 712}
 713EXPORT_SYMBOL_GPL(usb_get_dev);
 714
 715/**
 716 * usb_put_dev - release a use of the usb device structure
 717 * @dev: device that's been disconnected
 718 *
 719 * Must be called when a user of a device is finished with it.  When the last
 720 * user of the device calls this function, the memory of the device is freed.
 721 */
 722void usb_put_dev(struct usb_device *dev)
 723{
 724	if (dev)
 725		put_device(&dev->dev);
 726}
 727EXPORT_SYMBOL_GPL(usb_put_dev);
 728
 729/**
 730 * usb_get_intf - increments the reference count of the usb interface structure
 731 * @intf: the interface being referenced
 732 *
 733 * Each live reference to a interface must be refcounted.
 734 *
 735 * Drivers for USB interfaces should normally record such references in
 736 * their probe() methods, when they bind to an interface, and release
 737 * them by calling usb_put_intf(), in their disconnect() methods.
 738 *
 739 * Return: A pointer to the interface with the incremented reference counter.
 
 740 */
 741struct usb_interface *usb_get_intf(struct usb_interface *intf)
 742{
 743	if (intf)
 744		get_device(&intf->dev);
 745	return intf;
 746}
 747EXPORT_SYMBOL_GPL(usb_get_intf);
 748
 749/**
 750 * usb_put_intf - release a use of the usb interface structure
 751 * @intf: interface that's been decremented
 752 *
 753 * Must be called when a user of an interface is finished with it.  When the
 754 * last user of the interface calls this function, the memory of the interface
 755 * is freed.
 756 */
 757void usb_put_intf(struct usb_interface *intf)
 758{
 759	if (intf)
 760		put_device(&intf->dev);
 761}
 762EXPORT_SYMBOL_GPL(usb_put_intf);
 763
 764/*			USB device locking
 765 *
 766 * USB devices and interfaces are locked using the semaphore in their
 767 * embedded struct device.  The hub driver guarantees that whenever a
 768 * device is connected or disconnected, drivers are called with the
 769 * USB device locked as well as their particular interface.
 770 *
 771 * Complications arise when several devices are to be locked at the same
 772 * time.  Only hub-aware drivers that are part of usbcore ever have to
 773 * do this; nobody else needs to worry about it.  The rule for locking
 774 * is simple:
 775 *
 776 *	When locking both a device and its parent, always lock the
 777 *	the parent first.
 778 */
 779
 780/**
 781 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 782 * @udev: device that's being locked
 783 * @iface: interface bound to the driver making the request (optional)
 784 *
 785 * Attempts to acquire the device lock, but fails if the device is
 786 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 787 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 788 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 789 * disconnect; in some drivers (such as usb-storage) the disconnect()
 790 * or suspend() method will block waiting for a device reset to complete.
 791 *
 792 * Return: A negative error code for failure, otherwise 0.
 793 */
 794int usb_lock_device_for_reset(struct usb_device *udev,
 795			      const struct usb_interface *iface)
 796{
 797	unsigned long jiffies_expire = jiffies + HZ;
 798
 799	if (udev->state == USB_STATE_NOTATTACHED)
 800		return -ENODEV;
 801	if (udev->state == USB_STATE_SUSPENDED)
 802		return -EHOSTUNREACH;
 803	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 804			iface->condition == USB_INTERFACE_UNBOUND))
 805		return -EINTR;
 806
 807	while (!usb_trylock_device(udev)) {
 808
 809		/* If we can't acquire the lock after waiting one second,
 810		 * we're probably deadlocked */
 811		if (time_after(jiffies, jiffies_expire))
 812			return -EBUSY;
 813
 814		msleep(15);
 815		if (udev->state == USB_STATE_NOTATTACHED)
 816			return -ENODEV;
 817		if (udev->state == USB_STATE_SUSPENDED)
 818			return -EHOSTUNREACH;
 819		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 820				iface->condition == USB_INTERFACE_UNBOUND))
 821			return -EINTR;
 822	}
 823	return 0;
 824}
 825EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 826
 827/**
 828 * usb_get_current_frame_number - return current bus frame number
 829 * @dev: the device whose bus is being queried
 830 *
 831 * Return: The current frame number for the USB host controller used
 832 * with the given USB device. This can be used when scheduling
 833 * isochronous requests.
 834 *
 835 * Note: Different kinds of host controller have different "scheduling
 836 * horizons". While one type might support scheduling only 32 frames
 837 * into the future, others could support scheduling up to 1024 frames
 838 * into the future.
 839 *
 840 */
 841int usb_get_current_frame_number(struct usb_device *dev)
 842{
 843	return usb_hcd_get_frame_number(dev);
 844}
 845EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 846
 847/*-------------------------------------------------------------------*/
 848/*
 849 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 850 * extra field of the interface and endpoint descriptor structs.
 851 */
 852
 853int __usb_get_extra_descriptor(char *buffer, unsigned size,
 854			       unsigned char type, void **ptr, size_t minsize)
 855{
 856	struct usb_descriptor_header *header;
 857
 858	while (size >= sizeof(struct usb_descriptor_header)) {
 859		header = (struct usb_descriptor_header *)buffer;
 860
 861		if (header->bLength < 2 || header->bLength > size) {
 862			printk(KERN_ERR
 863				"%s: bogus descriptor, type %d length %d\n",
 864				usbcore_name,
 865				header->bDescriptorType,
 866				header->bLength);
 867			return -1;
 868		}
 869
 870		if (header->bDescriptorType == type && header->bLength >= minsize) {
 871			*ptr = header;
 872			return 0;
 873		}
 874
 875		buffer += header->bLength;
 876		size -= header->bLength;
 877	}
 878	return -1;
 879}
 880EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 881
 882/**
 883 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 884 * @dev: device the buffer will be used with
 885 * @size: requested buffer size
 886 * @mem_flags: affect whether allocation may block
 887 * @dma: used to return DMA address of buffer
 888 *
 889 * Return: Either null (indicating no buffer could be allocated), or the
 890 * cpu-space pointer to a buffer that may be used to perform DMA to the
 891 * specified device.  Such cpu-space buffers are returned along with the DMA
 892 * address (through the pointer provided).
 893 *
 894 * Note:
 895 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 896 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 897 * hardware during URB completion/resubmit.  The implementation varies between
 898 * platforms, depending on details of how DMA will work to this device.
 899 * Using these buffers also eliminates cacheline sharing problems on
 900 * architectures where CPU caches are not DMA-coherent.  On systems without
 901 * bus-snooping caches, these buffers are uncached.
 902 *
 903 * When the buffer is no longer used, free it with usb_free_coherent().
 904 */
 905void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 906			 dma_addr_t *dma)
 907{
 908	if (!dev || !dev->bus)
 909		return NULL;
 910	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 911}
 912EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 913
 914/**
 915 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 916 * @dev: device the buffer was used with
 917 * @size: requested buffer size
 918 * @addr: CPU address of buffer
 919 * @dma: DMA address of buffer
 920 *
 921 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 922 * been allocated using usb_alloc_coherent(), and the parameters must match
 923 * those provided in that allocation request.
 924 */
 925void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 926		       dma_addr_t dma)
 927{
 928	if (!dev || !dev->bus)
 929		return;
 930	if (!addr)
 931		return;
 932	hcd_buffer_free(dev->bus, size, addr, dma);
 933}
 934EXPORT_SYMBOL_GPL(usb_free_coherent);
 935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936/*
 937 * Notifications of device and interface registration
 938 */
 939static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 940		void *data)
 941{
 942	struct device *dev = data;
 943
 944	switch (action) {
 945	case BUS_NOTIFY_ADD_DEVICE:
 946		if (dev->type == &usb_device_type)
 947			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 948		else if (dev->type == &usb_if_device_type)
 949			usb_create_sysfs_intf_files(to_usb_interface(dev));
 950		break;
 951
 952	case BUS_NOTIFY_DEL_DEVICE:
 953		if (dev->type == &usb_device_type)
 954			usb_remove_sysfs_dev_files(to_usb_device(dev));
 955		else if (dev->type == &usb_if_device_type)
 956			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 957		break;
 958	}
 959	return 0;
 960}
 961
 962static struct notifier_block usb_bus_nb = {
 963	.notifier_call = usb_bus_notify,
 964};
 965
 966static struct dentry *usb_devices_root;
 
 
 
 967
 968static void usb_debugfs_init(void)
 969{
 970	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
 971					       NULL, &usbfs_devices_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 972}
 973
 974static void usb_debugfs_cleanup(void)
 975{
 976	debugfs_remove(usb_devices_root);
 
 977}
 978
 979/*
 980 * Init
 981 */
 982static int __init usb_init(void)
 983{
 984	int retval;
 985	if (usb_disabled()) {
 986		pr_info("%s: USB support disabled\n", usbcore_name);
 987		return 0;
 988	}
 989	usb_init_pool_max();
 990
 991	usb_debugfs_init();
 
 
 992
 993	usb_acpi_register();
 994	retval = bus_register(&usb_bus_type);
 995	if (retval)
 996		goto bus_register_failed;
 997	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
 998	if (retval)
 999		goto bus_notifier_failed;
1000	retval = usb_major_init();
1001	if (retval)
1002		goto major_init_failed;
1003	retval = usb_register(&usbfs_driver);
1004	if (retval)
1005		goto driver_register_failed;
1006	retval = usb_devio_init();
1007	if (retval)
1008		goto usb_devio_init_failed;
 
 
 
1009	retval = usb_hub_init();
1010	if (retval)
1011		goto hub_init_failed;
1012	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1013	if (!retval)
1014		goto out;
1015
1016	usb_hub_cleanup();
1017hub_init_failed:
 
 
1018	usb_devio_cleanup();
1019usb_devio_init_failed:
1020	usb_deregister(&usbfs_driver);
1021driver_register_failed:
1022	usb_major_cleanup();
1023major_init_failed:
1024	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1025bus_notifier_failed:
1026	bus_unregister(&usb_bus_type);
1027bus_register_failed:
1028	usb_acpi_unregister();
1029	usb_debugfs_cleanup();
1030out:
1031	return retval;
1032}
1033
1034/*
1035 * Cleanup
1036 */
1037static void __exit usb_exit(void)
1038{
1039	/* This will matter if shutdown/reboot does exitcalls. */
1040	if (usb_disabled())
1041		return;
1042
1043	usb_release_quirk_list();
1044	usb_deregister_device_driver(&usb_generic_driver);
1045	usb_major_cleanup();
 
1046	usb_deregister(&usbfs_driver);
1047	usb_devio_cleanup();
1048	usb_hub_cleanup();
1049	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050	bus_unregister(&usb_bus_type);
1051	usb_acpi_unregister();
1052	usb_debugfs_cleanup();
1053	idr_destroy(&usb_bus_idr);
1054}
1055
1056subsys_initcall(usb_init);
1057module_exit(usb_exit);
1058MODULE_LICENSE("GPL");