Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
   6 */
   7
   8/*
   9	Module: rt2500pci
  10	Abstract: rt2500pci device specific routines.
  11	Supported chipsets: RT2560.
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/etherdevice.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/pci.h>
  19#include <linux/eeprom_93cx6.h>
  20#include <linux/slab.h>
  21
  22#include "rt2x00.h"
  23#include "rt2x00mmio.h"
  24#include "rt2x00pci.h"
  25#include "rt2500pci.h"
  26
  27/*
  28 * Register access.
  29 * All access to the CSR registers will go through the methods
  30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
  31 * BBP and RF register require indirect register access,
  32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  33 * These indirect registers work with busy bits,
  34 * and we will try maximal REGISTER_BUSY_COUNT times to access
  35 * the register while taking a REGISTER_BUSY_DELAY us delay
  36 * between each attampt. When the busy bit is still set at that time,
  37 * the access attempt is considered to have failed,
  38 * and we will print an error.
  39 */
  40#define WAIT_FOR_BBP(__dev, __reg) \
  41	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  42#define WAIT_FOR_RF(__dev, __reg) \
  43	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  44
  45static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  46				const unsigned int word, const u8 value)
  47{
  48	u32 reg;
  49
  50	mutex_lock(&rt2x00dev->csr_mutex);
  51
  52	/*
  53	 * Wait until the BBP becomes available, afterwards we
  54	 * can safely write the new data into the register.
  55	 */
  56	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  57		reg = 0;
  58		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  59		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  60		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  61		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  62
  63		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64	}
  65
  66	mutex_unlock(&rt2x00dev->csr_mutex);
  67}
  68
  69static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70			     const unsigned int word)
  71{
  72	u32 reg;
  73	u8 value;
  74
  75	mutex_lock(&rt2x00dev->csr_mutex);
  76
  77	/*
  78	 * Wait until the BBP becomes available, afterwards we
  79	 * can safely write the read request into the register.
  80	 * After the data has been written, we wait until hardware
  81	 * returns the correct value, if at any time the register
  82	 * doesn't become available in time, reg will be 0xffffffff
  83	 * which means we return 0xff to the caller.
  84	 */
  85	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  86		reg = 0;
  87		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  88		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  89		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  90
  91		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  92
  93		WAIT_FOR_BBP(rt2x00dev, &reg);
  94	}
  95
  96	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  97
  98	mutex_unlock(&rt2x00dev->csr_mutex);
  99
 100	return value;
 101}
 102
 103static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 104			       const unsigned int word, const u32 value)
 105{
 106	u32 reg;
 107
 108	mutex_lock(&rt2x00dev->csr_mutex);
 109
 110	/*
 111	 * Wait until the RF becomes available, afterwards we
 112	 * can safely write the new data into the register.
 113	 */
 114	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 115		reg = 0;
 116		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 117		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 118		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 119		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 120
 121		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 122		rt2x00_rf_write(rt2x00dev, word, value);
 123	}
 124
 125	mutex_unlock(&rt2x00dev->csr_mutex);
 126}
 127
 128static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 129{
 130	struct rt2x00_dev *rt2x00dev = eeprom->data;
 131	u32 reg;
 132
 133	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 134
 135	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 136	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 137	eeprom->reg_data_clock =
 138	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 139	eeprom->reg_chip_select =
 140	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 141}
 142
 143static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 144{
 145	struct rt2x00_dev *rt2x00dev = eeprom->data;
 146	u32 reg = 0;
 147
 148	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 149	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 150	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 151			   !!eeprom->reg_data_clock);
 152	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 153			   !!eeprom->reg_chip_select);
 154
 155	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 156}
 157
 158#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 159static const struct rt2x00debug rt2500pci_rt2x00debug = {
 160	.owner	= THIS_MODULE,
 161	.csr	= {
 162		.read		= rt2x00mmio_register_read,
 163		.write		= rt2x00mmio_register_write,
 164		.flags		= RT2X00DEBUGFS_OFFSET,
 165		.word_base	= CSR_REG_BASE,
 166		.word_size	= sizeof(u32),
 167		.word_count	= CSR_REG_SIZE / sizeof(u32),
 168	},
 169	.eeprom	= {
 170		.read		= rt2x00_eeprom_read,
 171		.write		= rt2x00_eeprom_write,
 172		.word_base	= EEPROM_BASE,
 173		.word_size	= sizeof(u16),
 174		.word_count	= EEPROM_SIZE / sizeof(u16),
 175	},
 176	.bbp	= {
 177		.read		= rt2500pci_bbp_read,
 178		.write		= rt2500pci_bbp_write,
 179		.word_base	= BBP_BASE,
 180		.word_size	= sizeof(u8),
 181		.word_count	= BBP_SIZE / sizeof(u8),
 182	},
 183	.rf	= {
 184		.read		= rt2x00_rf_read,
 185		.write		= rt2500pci_rf_write,
 186		.word_base	= RF_BASE,
 187		.word_size	= sizeof(u32),
 188		.word_count	= RF_SIZE / sizeof(u32),
 189	},
 190};
 191#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 192
 193static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 194{
 195	u32 reg;
 196
 197	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 198	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 199}
 200
 201#ifdef CONFIG_RT2X00_LIB_LEDS
 202static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 203				     enum led_brightness brightness)
 204{
 205	struct rt2x00_led *led =
 206	    container_of(led_cdev, struct rt2x00_led, led_dev);
 207	unsigned int enabled = brightness != LED_OFF;
 208	u32 reg;
 209
 210	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 211
 212	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 213		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 214	else if (led->type == LED_TYPE_ACTIVITY)
 215		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 216
 217	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 218}
 219
 220static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 221			       unsigned long *delay_on,
 222			       unsigned long *delay_off)
 223{
 224	struct rt2x00_led *led =
 225	    container_of(led_cdev, struct rt2x00_led, led_dev);
 226	u32 reg;
 227
 228	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 229	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 230	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 231	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 232
 233	return 0;
 234}
 235
 236static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 237			       struct rt2x00_led *led,
 238			       enum led_type type)
 239{
 240	led->rt2x00dev = rt2x00dev;
 241	led->type = type;
 242	led->led_dev.brightness_set = rt2500pci_brightness_set;
 243	led->led_dev.blink_set = rt2500pci_blink_set;
 244	led->flags = LED_INITIALIZED;
 245}
 246#endif /* CONFIG_RT2X00_LIB_LEDS */
 247
 248/*
 249 * Configuration handlers.
 250 */
 251static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 252				    const unsigned int filter_flags)
 253{
 254	u32 reg;
 255
 256	/*
 257	 * Start configuration steps.
 258	 * Note that the version error will always be dropped
 259	 * and broadcast frames will always be accepted since
 260	 * there is no filter for it at this time.
 261	 */
 262	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 263	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 264			   !(filter_flags & FIF_FCSFAIL));
 265	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 266			   !(filter_flags & FIF_PLCPFAIL));
 267	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 268			   !(filter_flags & FIF_CONTROL));
 269	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 270			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 271	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 272			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 273			   !rt2x00dev->intf_ap_count);
 274	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 275	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 276			   !(filter_flags & FIF_ALLMULTI));
 277	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 278	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 279}
 280
 281static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 282				  struct rt2x00_intf *intf,
 283				  struct rt2x00intf_conf *conf,
 284				  const unsigned int flags)
 285{
 286	struct data_queue *queue = rt2x00dev->bcn;
 287	unsigned int bcn_preload;
 288	u32 reg;
 289
 290	if (flags & CONFIG_UPDATE_TYPE) {
 291		/*
 292		 * Enable beacon config
 293		 */
 294		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 295		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
 296		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 297		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 298		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 299
 300		/*
 301		 * Enable synchronisation.
 302		 */
 303		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 304		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 305		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 306	}
 307
 308	if (flags & CONFIG_UPDATE_MAC)
 309		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 310					      conf->mac, sizeof(conf->mac));
 311
 312	if (flags & CONFIG_UPDATE_BSSID)
 313		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 314					      conf->bssid, sizeof(conf->bssid));
 315}
 316
 317static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 318				 struct rt2x00lib_erp *erp,
 319				 u32 changed)
 320{
 321	int preamble_mask;
 322	u32 reg;
 323
 324	/*
 325	 * When short preamble is enabled, we should set bit 0x08
 326	 */
 327	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 328		preamble_mask = erp->short_preamble << 3;
 329
 330		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
 331		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 332		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 333		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 334		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 335		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 336
 337		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
 338		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 339		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 340		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 341				   GET_DURATION(ACK_SIZE, 10));
 342		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 343
 344		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
 345		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 346		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 347		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 348				   GET_DURATION(ACK_SIZE, 20));
 349		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 350
 351		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
 352		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 353		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 354		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 355				   GET_DURATION(ACK_SIZE, 55));
 356		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 357
 358		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
 359		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 360		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 361		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 362				   GET_DURATION(ACK_SIZE, 110));
 363		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 364	}
 365
 366	if (changed & BSS_CHANGED_BASIC_RATES)
 367		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 368
 369	if (changed & BSS_CHANGED_ERP_SLOT) {
 370		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 371		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 372		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 373
 374		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
 375		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 376		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 377		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 378
 379		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
 380		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 381		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 382		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 383	}
 384
 385	if (changed & BSS_CHANGED_BEACON_INT) {
 386		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
 387		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 388				   erp->beacon_int * 16);
 389		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 390				   erp->beacon_int * 16);
 391		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 392	}
 393
 394}
 395
 396static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 397				 struct antenna_setup *ant)
 398{
 399	u32 reg;
 400	u8 r14;
 401	u8 r2;
 402
 403	/*
 404	 * We should never come here because rt2x00lib is supposed
 405	 * to catch this and send us the correct antenna explicitely.
 406	 */
 407	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 408	       ant->tx == ANTENNA_SW_DIVERSITY);
 409
 410	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
 411	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
 412	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
 413
 414	/*
 415	 * Configure the TX antenna.
 416	 */
 417	switch (ant->tx) {
 418	case ANTENNA_A:
 419		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 420		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 421		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 422		break;
 423	case ANTENNA_B:
 424	default:
 425		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 426		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 427		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 428		break;
 429	}
 430
 431	/*
 432	 * Configure the RX antenna.
 433	 */
 434	switch (ant->rx) {
 435	case ANTENNA_A:
 436		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 437		break;
 438	case ANTENNA_B:
 439	default:
 440		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 441		break;
 442	}
 443
 444	/*
 445	 * RT2525E and RT5222 need to flip TX I/Q
 446	 */
 447	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 448		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 449		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 450		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 451
 452		/*
 453		 * RT2525E does not need RX I/Q Flip.
 454		 */
 455		if (rt2x00_rf(rt2x00dev, RF2525E))
 456			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 457	} else {
 458		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 459		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 460	}
 461
 462	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 463	rt2500pci_bbp_write(rt2x00dev, 14, r14);
 464	rt2500pci_bbp_write(rt2x00dev, 2, r2);
 465}
 466
 467static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 468				     struct rf_channel *rf, const int txpower)
 469{
 470	u8 r70;
 471
 472	/*
 473	 * Set TXpower.
 474	 */
 475	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 476
 477	/*
 478	 * Switch on tuning bits.
 479	 * For RT2523 devices we do not need to update the R1 register.
 480	 */
 481	if (!rt2x00_rf(rt2x00dev, RF2523))
 482		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 483	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 484
 485	/*
 486	 * For RT2525 we should first set the channel to half band higher.
 487	 */
 488	if (rt2x00_rf(rt2x00dev, RF2525)) {
 489		static const u32 vals[] = {
 490			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 491			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 492			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 493			0x00080d2e, 0x00080d3a
 494		};
 495
 496		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 497		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 498		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 499		if (rf->rf4)
 500			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 501	}
 502
 503	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 504	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 505	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 506	if (rf->rf4)
 507		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 508
 509	/*
 510	 * Channel 14 requires the Japan filter bit to be set.
 511	 */
 512	r70 = 0x46;
 513	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 514	rt2500pci_bbp_write(rt2x00dev, 70, r70);
 515
 516	msleep(1);
 517
 518	/*
 519	 * Switch off tuning bits.
 520	 * For RT2523 devices we do not need to update the R1 register.
 521	 */
 522	if (!rt2x00_rf(rt2x00dev, RF2523)) {
 523		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 524		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 525	}
 526
 527	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 528	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 529
 530	/*
 531	 * Clear false CRC during channel switch.
 532	 */
 533	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
 534}
 535
 536static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 537				     const int txpower)
 538{
 539	u32 rf3;
 540
 541	rf3 = rt2x00_rf_read(rt2x00dev, 3);
 542	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 543	rt2500pci_rf_write(rt2x00dev, 3, rf3);
 544}
 545
 546static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 547					 struct rt2x00lib_conf *libconf)
 548{
 549	u32 reg;
 550
 551	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 552	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 553			   libconf->conf->long_frame_max_tx_count);
 554	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 555			   libconf->conf->short_frame_max_tx_count);
 556	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 557}
 558
 559static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 560				struct rt2x00lib_conf *libconf)
 561{
 562	enum dev_state state =
 563	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 564		STATE_SLEEP : STATE_AWAKE;
 565	u32 reg;
 566
 567	if (state == STATE_SLEEP) {
 568		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 569		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 570				   (rt2x00dev->beacon_int - 20) * 16);
 571		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 572				   libconf->conf->listen_interval - 1);
 573
 574		/* We must first disable autowake before it can be enabled */
 575		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 576		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 577
 578		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 579		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 580	} else {
 581		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 582		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 583		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 584	}
 585
 586	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 587}
 588
 589static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 590			     struct rt2x00lib_conf *libconf,
 591			     const unsigned int flags)
 592{
 593	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 594		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 595					 libconf->conf->power_level);
 596	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 597	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 598		rt2500pci_config_txpower(rt2x00dev,
 599					 libconf->conf->power_level);
 600	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 601		rt2500pci_config_retry_limit(rt2x00dev, libconf);
 602	if (flags & IEEE80211_CONF_CHANGE_PS)
 603		rt2500pci_config_ps(rt2x00dev, libconf);
 604}
 605
 606/*
 607 * Link tuning
 608 */
 609static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 610				 struct link_qual *qual)
 611{
 612	u32 reg;
 613
 614	/*
 615	 * Update FCS error count from register.
 616	 */
 617	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 618	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 619
 620	/*
 621	 * Update False CCA count from register.
 622	 */
 623	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
 624	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 625}
 626
 627static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 628				     struct link_qual *qual, u8 vgc_level)
 629{
 630	if (qual->vgc_level_reg != vgc_level) {
 631		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 632		qual->vgc_level = vgc_level;
 633		qual->vgc_level_reg = vgc_level;
 634	}
 635}
 636
 637static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 638				  struct link_qual *qual)
 639{
 640	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 641}
 642
 643static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 644				 struct link_qual *qual, const u32 count)
 645{
 646	/*
 647	 * To prevent collisions with MAC ASIC on chipsets
 648	 * up to version C the link tuning should halt after 20
 649	 * seconds while being associated.
 650	 */
 651	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 652	    rt2x00dev->intf_associated && count > 20)
 653		return;
 654
 655	/*
 656	 * Chipset versions C and lower should directly continue
 657	 * to the dynamic CCA tuning. Chipset version D and higher
 658	 * should go straight to dynamic CCA tuning when they
 659	 * are not associated.
 660	 */
 661	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 662	    !rt2x00dev->intf_associated)
 663		goto dynamic_cca_tune;
 664
 665	/*
 666	 * A too low RSSI will cause too much false CCA which will
 667	 * then corrupt the R17 tuning. To remidy this the tuning should
 668	 * be stopped (While making sure the R17 value will not exceed limits)
 669	 */
 670	if (qual->rssi < -80 && count > 20) {
 671		if (qual->vgc_level_reg >= 0x41)
 672			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 673		return;
 674	}
 675
 676	/*
 677	 * Special big-R17 for short distance
 678	 */
 679	if (qual->rssi >= -58) {
 680		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 681		return;
 682	}
 683
 684	/*
 685	 * Special mid-R17 for middle distance
 686	 */
 687	if (qual->rssi >= -74) {
 688		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 689		return;
 690	}
 691
 692	/*
 693	 * Leave short or middle distance condition, restore r17
 694	 * to the dynamic tuning range.
 695	 */
 696	if (qual->vgc_level_reg >= 0x41) {
 697		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 698		return;
 699	}
 700
 701dynamic_cca_tune:
 702
 703	/*
 704	 * R17 is inside the dynamic tuning range,
 705	 * start tuning the link based on the false cca counter.
 706	 */
 707	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 708		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 709	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 710		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 711}
 712
 713/*
 714 * Queue handlers.
 715 */
 716static void rt2500pci_start_queue(struct data_queue *queue)
 717{
 718	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 719	u32 reg;
 720
 721	switch (queue->qid) {
 722	case QID_RX:
 723		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 724		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 725		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 726		break;
 727	case QID_BEACON:
 728		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 729		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 730		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 731		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 732		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 733		break;
 734	default:
 735		break;
 736	}
 737}
 738
 739static void rt2500pci_kick_queue(struct data_queue *queue)
 740{
 741	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 742	u32 reg;
 743
 744	switch (queue->qid) {
 745	case QID_AC_VO:
 746		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 747		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 748		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 749		break;
 750	case QID_AC_VI:
 751		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 752		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 753		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 754		break;
 755	case QID_ATIM:
 756		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 757		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 758		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 759		break;
 760	default:
 761		break;
 762	}
 763}
 764
 765static void rt2500pci_stop_queue(struct data_queue *queue)
 766{
 767	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 768	u32 reg;
 769
 770	switch (queue->qid) {
 771	case QID_AC_VO:
 772	case QID_AC_VI:
 773	case QID_ATIM:
 774		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 775		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 776		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 777		break;
 778	case QID_RX:
 779		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 780		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 781		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 782		break;
 783	case QID_BEACON:
 784		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 785		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 786		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 787		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 788		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 789
 790		/*
 791		 * Wait for possibly running tbtt tasklets.
 792		 */
 793		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 794		break;
 795	default:
 796		break;
 797	}
 798}
 799
 800/*
 801 * Initialization functions.
 802 */
 803static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 804{
 805	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 806	u32 word;
 807
 808	if (entry->queue->qid == QID_RX) {
 809		word = rt2x00_desc_read(entry_priv->desc, 0);
 810
 811		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 812	} else {
 813		word = rt2x00_desc_read(entry_priv->desc, 0);
 814
 815		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 816		        rt2x00_get_field32(word, TXD_W0_VALID));
 817	}
 818}
 819
 820static void rt2500pci_clear_entry(struct queue_entry *entry)
 821{
 822	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 823	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 824	u32 word;
 825
 826	if (entry->queue->qid == QID_RX) {
 827		word = rt2x00_desc_read(entry_priv->desc, 1);
 828		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 829		rt2x00_desc_write(entry_priv->desc, 1, word);
 830
 831		word = rt2x00_desc_read(entry_priv->desc, 0);
 832		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 833		rt2x00_desc_write(entry_priv->desc, 0, word);
 834	} else {
 835		word = rt2x00_desc_read(entry_priv->desc, 0);
 836		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 837		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 838		rt2x00_desc_write(entry_priv->desc, 0, word);
 839	}
 840}
 841
 842static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 843{
 844	struct queue_entry_priv_mmio *entry_priv;
 845	u32 reg;
 846
 847	/*
 848	 * Initialize registers.
 849	 */
 850	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
 851	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 852	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 853	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 854	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 855	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 856
 857	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 858	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
 859	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 860			   entry_priv->desc_dma);
 861	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 862
 863	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 864	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
 865	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 866			   entry_priv->desc_dma);
 867	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 868
 869	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 870	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
 871	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 872			   entry_priv->desc_dma);
 873	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 874
 875	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 876	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
 877	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 878			   entry_priv->desc_dma);
 879	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 880
 881	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
 882	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 883	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 884	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 885
 886	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 887	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
 888	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 889			   entry_priv->desc_dma);
 890	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 891
 892	return 0;
 893}
 894
 895static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 896{
 897	u32 reg;
 898
 899	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 900	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 901	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 902	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 903
 904	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
 905	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 906	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 907	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 908	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 909
 910	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
 911	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 912			   rt2x00dev->rx->data_size / 128);
 913	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 914
 915	/*
 916	 * Always use CWmin and CWmax set in descriptor.
 917	 */
 918	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 919	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 920	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 921
 922	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 923	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 924	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 925	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 926	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 927	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 928	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 929	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 930	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 931	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 932
 933	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 934
 935	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
 936	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 937	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 938	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 939	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 940	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 941	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 942	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 943	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 944	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 945
 946	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
 947	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 948	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 949	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 950	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 951	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 952
 953	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
 954	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 955	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 956	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 957	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 958	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 959
 960	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
 961	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 962	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 963	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 964	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 965	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 966
 967	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
 968	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 969	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 970	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 971	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 972	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 973	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 974	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 975	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 976	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 977
 978	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
 979	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 980	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 981	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 982	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 983	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 984	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 985	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 986	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 987
 988	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 989
 990	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 991	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
 992
 993	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 994		return -EBUSY;
 995
 996	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
 997	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
 998
 999	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002
1003	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011
1012	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013
1014	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015
1016	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021
1022	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026
1027	/*
1028	 * We must clear the FCS and FIFO error count.
1029	 * These registers are cleared on read,
1030	 * so we may pass a useless variable to store the value.
1031	 */
1032	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034
1035	return 0;
1036}
1037
1038static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039{
1040	unsigned int i;
1041	u8 value;
1042
1043	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044		value = rt2500pci_bbp_read(rt2x00dev, 0);
1045		if ((value != 0xff) && (value != 0x00))
1046			return 0;
1047		udelay(REGISTER_BUSY_DELAY);
1048	}
1049
1050	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051	return -EACCES;
1052}
1053
1054static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055{
1056	unsigned int i;
1057	u16 eeprom;
1058	u8 reg_id;
1059	u8 value;
1060
1061	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062		return -EACCES;
1063
1064	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094
1095	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097
1098		if (eeprom != 0xffff && eeprom != 0x0000) {
1099			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102		}
1103	}
1104
1105	return 0;
1106}
1107
1108/*
1109 * Device state switch handlers.
1110 */
1111static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112				 enum dev_state state)
1113{
1114	int mask = (state == STATE_RADIO_IRQ_OFF);
1115	u32 reg;
1116	unsigned long flags;
1117
1118	/*
1119	 * When interrupts are being enabled, the interrupt registers
1120	 * should clear the register to assure a clean state.
1121	 */
1122	if (state == STATE_RADIO_IRQ_ON) {
1123		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125	}
1126
1127	/*
1128	 * Only toggle the interrupts bits we are going to use.
1129	 * Non-checked interrupt bits are disabled by default.
1130	 */
1131	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132
1133	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140
1141	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142
1143	if (state == STATE_RADIO_IRQ_OFF) {
1144		/*
1145		 * Ensure that all tasklets are finished.
1146		 */
1147		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150	}
1151}
1152
1153static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154{
1155	/*
1156	 * Initialize all registers.
1157	 */
1158	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159		     rt2500pci_init_registers(rt2x00dev) ||
1160		     rt2500pci_init_bbp(rt2x00dev)))
1161		return -EIO;
1162
1163	return 0;
1164}
1165
1166static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167{
1168	/*
1169	 * Disable power
1170	 */
1171	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172}
1173
1174static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175			       enum dev_state state)
1176{
1177	u32 reg, reg2;
1178	unsigned int i;
1179	char put_to_sleep;
1180	char bbp_state;
1181	char rf_state;
1182
1183	put_to_sleep = (state != STATE_AWAKE);
1184
1185	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191
1192	/*
1193	 * Device is not guaranteed to be in the requested state yet.
1194	 * We must wait until the register indicates that the
1195	 * device has entered the correct state.
1196	 */
1197	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201		if (bbp_state == state && rf_state == state)
1202			return 0;
1203		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204		msleep(10);
1205	}
1206
1207	return -EBUSY;
1208}
1209
1210static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211				      enum dev_state state)
1212{
1213	int retval = 0;
1214
1215	switch (state) {
1216	case STATE_RADIO_ON:
1217		retval = rt2500pci_enable_radio(rt2x00dev);
1218		break;
1219	case STATE_RADIO_OFF:
1220		rt2500pci_disable_radio(rt2x00dev);
1221		break;
1222	case STATE_RADIO_IRQ_ON:
1223	case STATE_RADIO_IRQ_OFF:
1224		rt2500pci_toggle_irq(rt2x00dev, state);
1225		break;
1226	case STATE_DEEP_SLEEP:
1227	case STATE_SLEEP:
1228	case STATE_STANDBY:
1229	case STATE_AWAKE:
1230		retval = rt2500pci_set_state(rt2x00dev, state);
1231		break;
1232	default:
1233		retval = -ENOTSUPP;
1234		break;
1235	}
1236
1237	if (unlikely(retval))
1238		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239			   state, retval);
1240
1241	return retval;
1242}
1243
1244/*
1245 * TX descriptor initialization
1246 */
1247static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248				    struct txentry_desc *txdesc)
1249{
1250	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252	__le32 *txd = entry_priv->desc;
1253	u32 word;
1254
1255	/*
1256	 * Start writing the descriptor words.
1257	 */
1258	word = rt2x00_desc_read(txd, 1);
1259	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260	rt2x00_desc_write(txd, 1, word);
1261
1262	word = rt2x00_desc_read(txd, 2);
1263	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267	rt2x00_desc_write(txd, 2, word);
1268
1269	word = rt2x00_desc_read(txd, 3);
1270	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273			   txdesc->u.plcp.length_low);
1274	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275			   txdesc->u.plcp.length_high);
1276	rt2x00_desc_write(txd, 3, word);
1277
1278	word = rt2x00_desc_read(txd, 10);
1279	rt2x00_set_field32(&word, TXD_W10_RTS,
1280			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281	rt2x00_desc_write(txd, 10, word);
1282
1283	/*
1284	 * Writing TXD word 0 must the last to prevent a race condition with
1285	 * the device, whereby the device may take hold of the TXD before we
1286	 * finished updating it.
1287	 */
1288	word = rt2x00_desc_read(txd, 0);
1289	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293	rt2x00_set_field32(&word, TXD_W0_ACK,
1294			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297	rt2x00_set_field32(&word, TXD_W0_OFDM,
1298			   (txdesc->rate_mode == RATE_MODE_OFDM));
1299	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305	rt2x00_desc_write(txd, 0, word);
1306
1307	/*
1308	 * Register descriptor details in skb frame descriptor.
1309	 */
1310	skbdesc->desc = txd;
1311	skbdesc->desc_len = TXD_DESC_SIZE;
1312}
1313
1314/*
1315 * TX data initialization
1316 */
1317static void rt2500pci_write_beacon(struct queue_entry *entry,
1318				   struct txentry_desc *txdesc)
1319{
1320	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321	u32 reg;
1322
1323	/*
1324	 * Disable beaconing while we are reloading the beacon data,
1325	 * otherwise we might be sending out invalid data.
1326	 */
1327	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330
1331	if (rt2x00queue_map_txskb(entry)) {
1332		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333		goto out;
1334	}
1335
1336	/*
1337	 * Write the TX descriptor for the beacon.
1338	 */
1339	rt2500pci_write_tx_desc(entry, txdesc);
1340
1341	/*
1342	 * Dump beacon to userspace through debugfs.
1343	 */
1344	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345out:
1346	/*
1347	 * Enable beaconing again.
1348	 */
1349	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351}
1352
1353/*
1354 * RX control handlers
1355 */
1356static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357				  struct rxdone_entry_desc *rxdesc)
1358{
1359	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360	u32 word0;
1361	u32 word2;
1362
1363	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365
1366	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370
1371	/*
1372	 * Obtain the status about this packet.
1373	 * When frame was received with an OFDM bitrate,
1374	 * the signal is the PLCP value. If it was received with
1375	 * a CCK bitrate the signal is the rate in 100kbit/s.
1376	 */
1377	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379	    entry->queue->rt2x00dev->rssi_offset;
1380	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381
1382	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384	else
1385		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387		rxdesc->dev_flags |= RXDONE_MY_BSS;
1388}
1389
1390/*
1391 * Interrupt functions.
1392 */
1393static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394			     const enum data_queue_qid queue_idx)
1395{
1396	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397	struct queue_entry_priv_mmio *entry_priv;
1398	struct queue_entry *entry;
1399	struct txdone_entry_desc txdesc;
1400	u32 word;
1401
1402	while (!rt2x00queue_empty(queue)) {
1403		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404		entry_priv = entry->priv_data;
1405		word = rt2x00_desc_read(entry_priv->desc, 0);
1406
1407		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408		    !rt2x00_get_field32(word, TXD_W0_VALID))
1409			break;
1410
1411		/*
1412		 * Obtain the status about this packet.
1413		 */
1414		txdesc.flags = 0;
1415		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416		case 0: /* Success */
1417		case 1: /* Success with retry */
1418			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419			break;
1420		case 2: /* Failure, excessive retries */
1421			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422			/* Fall through - this is a failed frame! */
1423		default: /* Failure */
1424			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1425		}
1426		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427
1428		rt2x00lib_txdone(entry, &txdesc);
1429	}
1430}
1431
1432static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433					      struct rt2x00_field32 irq_field)
1434{
1435	u32 reg;
1436
1437	/*
1438	 * Enable a single interrupt. The interrupt mask register
1439	 * access needs locking.
1440	 */
1441	spin_lock_irq(&rt2x00dev->irqmask_lock);
1442
1443	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444	rt2x00_set_field32(&reg, irq_field, 0);
1445	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446
1447	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448}
1449
1450static void rt2500pci_txstatus_tasklet(unsigned long data)
1451{
1452	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1453	u32 reg;
1454
1455	/*
1456	 * Handle all tx queues.
1457	 */
1458	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1459	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1460	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1461
1462	/*
1463	 * Enable all TXDONE interrupts again.
1464	 */
1465	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1466		spin_lock_irq(&rt2x00dev->irqmask_lock);
1467
1468		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1469		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1470		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1471		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1472		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1473
1474		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1475	}
1476}
1477
1478static void rt2500pci_tbtt_tasklet(unsigned long data)
1479{
1480	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1481	rt2x00lib_beacondone(rt2x00dev);
1482	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1483		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1484}
1485
1486static void rt2500pci_rxdone_tasklet(unsigned long data)
1487{
1488	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489	if (rt2x00mmio_rxdone(rt2x00dev))
1490		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1491	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1492		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1493}
1494
1495static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1496{
1497	struct rt2x00_dev *rt2x00dev = dev_instance;
1498	u32 reg, mask;
1499
1500	/*
1501	 * Get the interrupt sources & saved to local variable.
1502	 * Write register value back to clear pending interrupts.
1503	 */
1504	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1505	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1506
1507	if (!reg)
1508		return IRQ_NONE;
1509
1510	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1511		return IRQ_HANDLED;
1512
1513	mask = reg;
1514
1515	/*
1516	 * Schedule tasklets for interrupt handling.
1517	 */
1518	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1519		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1520
1521	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1522		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1523
1524	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1525	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1526	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1527		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1528		/*
1529		 * Mask out all txdone interrupts.
1530		 */
1531		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1532		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1533		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1534	}
1535
1536	/*
1537	 * Disable all interrupts for which a tasklet was scheduled right now,
1538	 * the tasklet will reenable the appropriate interrupts.
1539	 */
1540	spin_lock(&rt2x00dev->irqmask_lock);
1541
1542	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1543	reg |= mask;
1544	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1545
1546	spin_unlock(&rt2x00dev->irqmask_lock);
1547
1548	return IRQ_HANDLED;
1549}
1550
1551/*
1552 * Device probe functions.
1553 */
1554static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1555{
1556	struct eeprom_93cx6 eeprom;
1557	u32 reg;
1558	u16 word;
1559	u8 *mac;
1560
1561	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1562
1563	eeprom.data = rt2x00dev;
1564	eeprom.register_read = rt2500pci_eepromregister_read;
1565	eeprom.register_write = rt2500pci_eepromregister_write;
1566	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1567	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1568	eeprom.reg_data_in = 0;
1569	eeprom.reg_data_out = 0;
1570	eeprom.reg_data_clock = 0;
1571	eeprom.reg_chip_select = 0;
1572
1573	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1574			       EEPROM_SIZE / sizeof(u16));
1575
1576	/*
1577	 * Start validation of the data that has been read.
1578	 */
1579	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1580	rt2x00lib_set_mac_address(rt2x00dev, mac);
1581
1582	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1583	if (word == 0xffff) {
1584		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1585		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1586				   ANTENNA_SW_DIVERSITY);
1587		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1588				   ANTENNA_SW_DIVERSITY);
1589		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1590				   LED_MODE_DEFAULT);
1591		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1592		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1593		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1594		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1595		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1596	}
1597
1598	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1599	if (word == 0xffff) {
1600		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1601		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1602		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1603		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1604		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1605	}
1606
1607	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1608	if (word == 0xffff) {
1609		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1610				   DEFAULT_RSSI_OFFSET);
1611		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1612		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1613				  word);
1614	}
1615
1616	return 0;
1617}
1618
1619static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1620{
1621	u32 reg;
1622	u16 value;
1623	u16 eeprom;
1624
1625	/*
1626	 * Read EEPROM word for configuration.
1627	 */
1628	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1629
1630	/*
1631	 * Identify RF chipset.
1632	 */
1633	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1634	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1635	rt2x00_set_chip(rt2x00dev, RT2560, value,
1636			rt2x00_get_field32(reg, CSR0_REVISION));
1637
1638	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1639	    !rt2x00_rf(rt2x00dev, RF2523) &&
1640	    !rt2x00_rf(rt2x00dev, RF2524) &&
1641	    !rt2x00_rf(rt2x00dev, RF2525) &&
1642	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1643	    !rt2x00_rf(rt2x00dev, RF5222)) {
1644		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1645		return -ENODEV;
1646	}
1647
1648	/*
1649	 * Identify default antenna configuration.
1650	 */
1651	rt2x00dev->default_ant.tx =
1652	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1653	rt2x00dev->default_ant.rx =
1654	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1655
1656	/*
1657	 * Store led mode, for correct led behaviour.
1658	 */
1659#ifdef CONFIG_RT2X00_LIB_LEDS
1660	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1661
1662	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1663	if (value == LED_MODE_TXRX_ACTIVITY ||
1664	    value == LED_MODE_DEFAULT ||
1665	    value == LED_MODE_ASUS)
1666		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1667				   LED_TYPE_ACTIVITY);
1668#endif /* CONFIG_RT2X00_LIB_LEDS */
1669
1670	/*
1671	 * Detect if this device has an hardware controlled radio.
1672	 */
1673	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1674		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1675		/*
1676		 * On this device RFKILL initialized during probe does not work.
1677		 */
1678		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1679	}
1680
1681	/*
1682	 * Check if the BBP tuning should be enabled.
1683	 */
1684	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1685	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1686		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1687
1688	/*
1689	 * Read the RSSI <-> dBm offset information.
1690	 */
1691	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1692	rt2x00dev->rssi_offset =
1693	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1694
1695	return 0;
1696}
1697
1698/*
1699 * RF value list for RF2522
1700 * Supports: 2.4 GHz
1701 */
1702static const struct rf_channel rf_vals_bg_2522[] = {
1703	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1704	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1705	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1706	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1707	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1708	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1709	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1710	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1711	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1712	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1713	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1714	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1715	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1716	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1717};
1718
1719/*
1720 * RF value list for RF2523
1721 * Supports: 2.4 GHz
1722 */
1723static const struct rf_channel rf_vals_bg_2523[] = {
1724	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1725	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1726	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1727	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1728	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1729	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1730	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1731	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1732	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1733	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1734	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1735	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1736	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1737	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1738};
1739
1740/*
1741 * RF value list for RF2524
1742 * Supports: 2.4 GHz
1743 */
1744static const struct rf_channel rf_vals_bg_2524[] = {
1745	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1746	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1747	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1748	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1749	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1750	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1751	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1752	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1753	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1754	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1755	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1756	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1757	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1758	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1759};
1760
1761/*
1762 * RF value list for RF2525
1763 * Supports: 2.4 GHz
1764 */
1765static const struct rf_channel rf_vals_bg_2525[] = {
1766	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1767	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1768	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1769	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1770	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1771	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1772	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1773	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1774	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1775	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1776	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1777	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1778	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1779	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1780};
1781
1782/*
1783 * RF value list for RF2525e
1784 * Supports: 2.4 GHz
1785 */
1786static const struct rf_channel rf_vals_bg_2525e[] = {
1787	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1788	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1789	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1790	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1791	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1792	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1793	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1794	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1795	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1796	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1797	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1798	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1799	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1800	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1801};
1802
1803/*
1804 * RF value list for RF5222
1805 * Supports: 2.4 GHz & 5.2 GHz
1806 */
1807static const struct rf_channel rf_vals_5222[] = {
1808	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1809	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1810	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1811	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1812	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1813	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1814	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1815	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1816	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1817	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1818	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1819	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1820	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1821	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1822
1823	/* 802.11 UNI / HyperLan 2 */
1824	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1825	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1826	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1827	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1828	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1829	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1830	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1831	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1832
1833	/* 802.11 HyperLan 2 */
1834	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1835	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1836	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1837	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1838	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1839	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1840	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1841	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1842	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1843	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1844
1845	/* 802.11 UNII */
1846	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1847	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1848	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1849	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1850	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1851};
1852
1853static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1854{
1855	struct hw_mode_spec *spec = &rt2x00dev->spec;
1856	struct channel_info *info;
1857	char *tx_power;
1858	unsigned int i;
1859
1860	/*
1861	 * Initialize all hw fields.
1862	 */
1863	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1864	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1865	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1866	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1867
1868	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1869	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1870				rt2x00_eeprom_addr(rt2x00dev,
1871						   EEPROM_MAC_ADDR_0));
1872
1873	/*
1874	 * Disable powersaving as default.
1875	 */
1876	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1877
1878	/*
1879	 * Initialize hw_mode information.
1880	 */
1881	spec->supported_bands = SUPPORT_BAND_2GHZ;
1882	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1883
1884	if (rt2x00_rf(rt2x00dev, RF2522)) {
1885		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1886		spec->channels = rf_vals_bg_2522;
1887	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1888		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1889		spec->channels = rf_vals_bg_2523;
1890	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1891		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1892		spec->channels = rf_vals_bg_2524;
1893	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1894		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1895		spec->channels = rf_vals_bg_2525;
1896	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1897		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1898		spec->channels = rf_vals_bg_2525e;
1899	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1900		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1901		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1902		spec->channels = rf_vals_5222;
1903	}
1904
1905	/*
1906	 * Create channel information array
1907	 */
1908	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1909	if (!info)
1910		return -ENOMEM;
1911
1912	spec->channels_info = info;
1913
1914	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1915	for (i = 0; i < 14; i++) {
1916		info[i].max_power = MAX_TXPOWER;
1917		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1918	}
1919
1920	if (spec->num_channels > 14) {
1921		for (i = 14; i < spec->num_channels; i++) {
1922			info[i].max_power = MAX_TXPOWER;
1923			info[i].default_power1 = DEFAULT_TXPOWER;
1924		}
1925	}
1926
1927	return 0;
1928}
1929
1930static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1931{
1932	int retval;
1933	u32 reg;
1934
1935	/*
1936	 * Allocate eeprom data.
1937	 */
1938	retval = rt2500pci_validate_eeprom(rt2x00dev);
1939	if (retval)
1940		return retval;
1941
1942	retval = rt2500pci_init_eeprom(rt2x00dev);
1943	if (retval)
1944		return retval;
1945
1946	/*
1947	 * Enable rfkill polling by setting GPIO direction of the
1948	 * rfkill switch GPIO pin correctly.
1949	 */
1950	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1951	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1952	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1953
1954	/*
1955	 * Initialize hw specifications.
1956	 */
1957	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1958	if (retval)
1959		return retval;
1960
1961	/*
1962	 * This device requires the atim queue and DMA-mapped skbs.
1963	 */
1964	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1965	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1966	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1967
1968	/*
1969	 * Set the rssi offset.
1970	 */
1971	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1972
1973	return 0;
1974}
1975
1976/*
1977 * IEEE80211 stack callback functions.
1978 */
1979static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1980			     struct ieee80211_vif *vif)
1981{
1982	struct rt2x00_dev *rt2x00dev = hw->priv;
1983	u64 tsf;
1984	u32 reg;
1985
1986	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1987	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1988	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1989	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1990
1991	return tsf;
1992}
1993
1994static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1995{
1996	struct rt2x00_dev *rt2x00dev = hw->priv;
1997	u32 reg;
1998
1999	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2000	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2001}
2002
2003static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2004	.tx			= rt2x00mac_tx,
2005	.start			= rt2x00mac_start,
2006	.stop			= rt2x00mac_stop,
2007	.add_interface		= rt2x00mac_add_interface,
2008	.remove_interface	= rt2x00mac_remove_interface,
2009	.config			= rt2x00mac_config,
2010	.configure_filter	= rt2x00mac_configure_filter,
2011	.sw_scan_start		= rt2x00mac_sw_scan_start,
2012	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2013	.get_stats		= rt2x00mac_get_stats,
2014	.bss_info_changed	= rt2x00mac_bss_info_changed,
2015	.conf_tx		= rt2x00mac_conf_tx,
2016	.get_tsf		= rt2500pci_get_tsf,
2017	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2018	.rfkill_poll		= rt2x00mac_rfkill_poll,
2019	.flush			= rt2x00mac_flush,
2020	.set_antenna		= rt2x00mac_set_antenna,
2021	.get_antenna		= rt2x00mac_get_antenna,
2022	.get_ringparam		= rt2x00mac_get_ringparam,
2023	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2024};
2025
2026static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2027	.irq_handler		= rt2500pci_interrupt,
2028	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2029	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2030	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2031	.probe_hw		= rt2500pci_probe_hw,
2032	.initialize		= rt2x00mmio_initialize,
2033	.uninitialize		= rt2x00mmio_uninitialize,
2034	.get_entry_state	= rt2500pci_get_entry_state,
2035	.clear_entry		= rt2500pci_clear_entry,
2036	.set_device_state	= rt2500pci_set_device_state,
2037	.rfkill_poll		= rt2500pci_rfkill_poll,
2038	.link_stats		= rt2500pci_link_stats,
2039	.reset_tuner		= rt2500pci_reset_tuner,
2040	.link_tuner		= rt2500pci_link_tuner,
2041	.start_queue		= rt2500pci_start_queue,
2042	.kick_queue		= rt2500pci_kick_queue,
2043	.stop_queue		= rt2500pci_stop_queue,
2044	.flush_queue		= rt2x00mmio_flush_queue,
2045	.write_tx_desc		= rt2500pci_write_tx_desc,
2046	.write_beacon		= rt2500pci_write_beacon,
2047	.fill_rxdone		= rt2500pci_fill_rxdone,
2048	.config_filter		= rt2500pci_config_filter,
2049	.config_intf		= rt2500pci_config_intf,
2050	.config_erp		= rt2500pci_config_erp,
2051	.config_ant		= rt2500pci_config_ant,
2052	.config			= rt2500pci_config,
2053};
2054
2055static void rt2500pci_queue_init(struct data_queue *queue)
2056{
2057	switch (queue->qid) {
2058	case QID_RX:
2059		queue->limit = 32;
2060		queue->data_size = DATA_FRAME_SIZE;
2061		queue->desc_size = RXD_DESC_SIZE;
2062		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2063		break;
2064
2065	case QID_AC_VO:
2066	case QID_AC_VI:
2067	case QID_AC_BE:
2068	case QID_AC_BK:
2069		queue->limit = 32;
2070		queue->data_size = DATA_FRAME_SIZE;
2071		queue->desc_size = TXD_DESC_SIZE;
2072		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2073		break;
2074
2075	case QID_BEACON:
2076		queue->limit = 1;
2077		queue->data_size = MGMT_FRAME_SIZE;
2078		queue->desc_size = TXD_DESC_SIZE;
2079		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2080		break;
2081
2082	case QID_ATIM:
2083		queue->limit = 8;
2084		queue->data_size = DATA_FRAME_SIZE;
2085		queue->desc_size = TXD_DESC_SIZE;
2086		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2087		break;
2088
2089	default:
2090		BUG();
2091		break;
2092	}
2093}
2094
2095static const struct rt2x00_ops rt2500pci_ops = {
2096	.name			= KBUILD_MODNAME,
2097	.max_ap_intf		= 1,
2098	.eeprom_size		= EEPROM_SIZE,
2099	.rf_size		= RF_SIZE,
2100	.tx_queues		= NUM_TX_QUEUES,
2101	.queue_init		= rt2500pci_queue_init,
2102	.lib			= &rt2500pci_rt2x00_ops,
2103	.hw			= &rt2500pci_mac80211_ops,
2104#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2105	.debugfs		= &rt2500pci_rt2x00debug,
2106#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2107};
2108
2109/*
2110 * RT2500pci module information.
2111 */
2112static const struct pci_device_id rt2500pci_device_table[] = {
2113	{ PCI_DEVICE(0x1814, 0x0201) },
2114	{ 0, }
2115};
2116
2117MODULE_AUTHOR(DRV_PROJECT);
2118MODULE_VERSION(DRV_VERSION);
2119MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2120MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2121MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2122MODULE_LICENSE("GPL");
2123
2124static int rt2500pci_probe(struct pci_dev *pci_dev,
2125			   const struct pci_device_id *id)
2126{
2127	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2128}
2129
2130static struct pci_driver rt2500pci_driver = {
2131	.name		= KBUILD_MODNAME,
2132	.id_table	= rt2500pci_device_table,
2133	.probe		= rt2500pci_probe,
2134	.remove		= rt2x00pci_remove,
2135	.suspend	= rt2x00pci_suspend,
2136	.resume		= rt2x00pci_resume,
2137};
2138
2139module_pci_driver(rt2500pci_driver);