Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called LICENSE.GPL.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <ilw@linux.intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *****************************************************************************/
  62
  63#include <linux/slab.h>
  64#include <net/mac80211.h>
  65
  66#include "iwl-dev.h"
  67#include "iwl-core.h"
  68#include "iwl-agn-calib.h"
  69#include "iwl-trans.h"
  70#include "iwl-agn.h"
  71
  72/*****************************************************************************
  73 * INIT calibrations framework
  74 *****************************************************************************/
  75
  76struct statistics_general_data {
  77	u32 beacon_silence_rssi_a;
  78	u32 beacon_silence_rssi_b;
  79	u32 beacon_silence_rssi_c;
  80	u32 beacon_energy_a;
  81	u32 beacon_energy_b;
  82	u32 beacon_energy_c;
  83};
  84
  85int iwl_send_calib_results(struct iwl_priv *priv)
  86{
  87	int ret = 0;
  88	int i = 0;
  89
  90	struct iwl_host_cmd hcmd = {
  91		.id = REPLY_PHY_CALIBRATION_CMD,
  92		.flags = CMD_SYNC,
  93	};
  94
  95	for (i = 0; i < IWL_CALIB_MAX; i++) {
  96		if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
  97		    priv->calib_results[i].buf) {
  98			hcmd.len[0] = priv->calib_results[i].buf_len;
  99			hcmd.data[0] = priv->calib_results[i].buf;
 100			hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
 101			ret = trans_send_cmd(&priv->trans, &hcmd);
 102			if (ret) {
 103				IWL_ERR(priv, "Error %d iteration %d\n",
 104					ret, i);
 105				break;
 106			}
 107		}
 108	}
 109
 110	return ret;
 111}
 112
 113int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
 114{
 115	if (res->buf_len != len) {
 116		kfree(res->buf);
 117		res->buf = kzalloc(len, GFP_ATOMIC);
 118	}
 119	if (unlikely(res->buf == NULL))
 120		return -ENOMEM;
 121
 122	res->buf_len = len;
 123	memcpy(res->buf, buf, len);
 124	return 0;
 125}
 126
 127void iwl_calib_free_results(struct iwl_priv *priv)
 128{
 129	int i;
 130
 131	for (i = 0; i < IWL_CALIB_MAX; i++) {
 132		kfree(priv->calib_results[i].buf);
 133		priv->calib_results[i].buf = NULL;
 134		priv->calib_results[i].buf_len = 0;
 135	}
 136}
 137
 138/*****************************************************************************
 139 * RUNTIME calibrations framework
 140 *****************************************************************************/
 141
 142/* "false alarms" are signals that our DSP tries to lock onto,
 143 *   but then determines that they are either noise, or transmissions
 144 *   from a distant wireless network (also "noise", really) that get
 145 *   "stepped on" by stronger transmissions within our own network.
 146 * This algorithm attempts to set a sensitivity level that is high
 147 *   enough to receive all of our own network traffic, but not so
 148 *   high that our DSP gets too busy trying to lock onto non-network
 149 *   activity/noise. */
 150static int iwl_sens_energy_cck(struct iwl_priv *priv,
 151				   u32 norm_fa,
 152				   u32 rx_enable_time,
 153				   struct statistics_general_data *rx_info)
 154{
 155	u32 max_nrg_cck = 0;
 156	int i = 0;
 157	u8 max_silence_rssi = 0;
 158	u32 silence_ref = 0;
 159	u8 silence_rssi_a = 0;
 160	u8 silence_rssi_b = 0;
 161	u8 silence_rssi_c = 0;
 162	u32 val;
 163
 164	/* "false_alarms" values below are cross-multiplications to assess the
 165	 *   numbers of false alarms within the measured period of actual Rx
 166	 *   (Rx is off when we're txing), vs the min/max expected false alarms
 167	 *   (some should be expected if rx is sensitive enough) in a
 168	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 169	 *
 170	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 171	 *
 172	 * */
 173	u32 false_alarms = norm_fa * 200 * 1024;
 174	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 175	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 176	struct iwl_sensitivity_data *data = NULL;
 177	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 178
 179	data = &(priv->sensitivity_data);
 180
 181	data->nrg_auto_corr_silence_diff = 0;
 182
 183	/* Find max silence rssi among all 3 receivers.
 184	 * This is background noise, which may include transmissions from other
 185	 *    networks, measured during silence before our network's beacon */
 186	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 187			    ALL_BAND_FILTER) >> 8);
 188	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 189			    ALL_BAND_FILTER) >> 8);
 190	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 191			    ALL_BAND_FILTER) >> 8);
 192
 193	val = max(silence_rssi_b, silence_rssi_c);
 194	max_silence_rssi = max(silence_rssi_a, (u8) val);
 195
 196	/* Store silence rssi in 20-beacon history table */
 197	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 198	data->nrg_silence_idx++;
 199	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 200		data->nrg_silence_idx = 0;
 201
 202	/* Find max silence rssi across 20 beacon history */
 203	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 204		val = data->nrg_silence_rssi[i];
 205		silence_ref = max(silence_ref, val);
 206	}
 207	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 208			silence_rssi_a, silence_rssi_b, silence_rssi_c,
 209			silence_ref);
 210
 211	/* Find max rx energy (min value!) among all 3 receivers,
 212	 *   measured during beacon frame.
 213	 * Save it in 10-beacon history table. */
 214	i = data->nrg_energy_idx;
 215	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 216	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 217
 218	data->nrg_energy_idx++;
 219	if (data->nrg_energy_idx >= 10)
 220		data->nrg_energy_idx = 0;
 221
 222	/* Find min rx energy (max value) across 10 beacon history.
 223	 * This is the minimum signal level that we want to receive well.
 224	 * Add backoff (margin so we don't miss slightly lower energy frames).
 225	 * This establishes an upper bound (min value) for energy threshold. */
 226	max_nrg_cck = data->nrg_value[0];
 227	for (i = 1; i < 10; i++)
 228		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 229	max_nrg_cck += 6;
 230
 231	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 232			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 233			rx_info->beacon_energy_c, max_nrg_cck - 6);
 234
 235	/* Count number of consecutive beacons with fewer-than-desired
 236	 *   false alarms. */
 237	if (false_alarms < min_false_alarms)
 238		data->num_in_cck_no_fa++;
 239	else
 240		data->num_in_cck_no_fa = 0;
 241	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 242			data->num_in_cck_no_fa);
 243
 244	/* If we got too many false alarms this time, reduce sensitivity */
 245	if ((false_alarms > max_false_alarms) &&
 246		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 247		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 248		     false_alarms, max_false_alarms);
 249		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 250		data->nrg_curr_state = IWL_FA_TOO_MANY;
 251		/* Store for "fewer than desired" on later beacon */
 252		data->nrg_silence_ref = silence_ref;
 253
 254		/* increase energy threshold (reduce nrg value)
 255		 *   to decrease sensitivity */
 256		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 257	/* Else if we got fewer than desired, increase sensitivity */
 258	} else if (false_alarms < min_false_alarms) {
 259		data->nrg_curr_state = IWL_FA_TOO_FEW;
 260
 261		/* Compare silence level with silence level for most recent
 262		 *   healthy number or too many false alarms */
 263		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 264						   (s32)silence_ref;
 265
 266		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 267			 false_alarms, min_false_alarms,
 268			 data->nrg_auto_corr_silence_diff);
 269
 270		/* Increase value to increase sensitivity, but only if:
 271		 * 1a) previous beacon did *not* have *too many* false alarms
 272		 * 1b) AND there's a significant difference in Rx levels
 273		 *      from a previous beacon with too many, or healthy # FAs
 274		 * OR 2) We've seen a lot of beacons (100) with too few
 275		 *       false alarms */
 276		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 277			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 278			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 279
 280			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 281			/* Increase nrg value to increase sensitivity */
 282			val = data->nrg_th_cck + NRG_STEP_CCK;
 283			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 284		} else {
 285			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 286		}
 287
 288	/* Else we got a healthy number of false alarms, keep status quo */
 289	} else {
 290		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 291		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 292
 293		/* Store for use in "fewer than desired" with later beacon */
 294		data->nrg_silence_ref = silence_ref;
 295
 296		/* If previous beacon had too many false alarms,
 297		 *   give it some extra margin by reducing sensitivity again
 298		 *   (but don't go below measured energy of desired Rx) */
 299		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
 300			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 301			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 302				data->nrg_th_cck -= NRG_MARGIN;
 303			else
 304				data->nrg_th_cck = max_nrg_cck;
 305		}
 306	}
 307
 308	/* Make sure the energy threshold does not go above the measured
 309	 * energy of the desired Rx signals (reduced by backoff margin),
 310	 * or else we might start missing Rx frames.
 311	 * Lower value is higher energy, so we use max()!
 312	 */
 313	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 314	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 315
 316	data->nrg_prev_state = data->nrg_curr_state;
 317
 318	/* Auto-correlation CCK algorithm */
 319	if (false_alarms > min_false_alarms) {
 320
 321		/* increase auto_corr values to decrease sensitivity
 322		 * so the DSP won't be disturbed by the noise
 323		 */
 324		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 325			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 326		else {
 327			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 328			data->auto_corr_cck =
 329				min((u32)ranges->auto_corr_max_cck, val);
 330		}
 331		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 332		data->auto_corr_cck_mrc =
 333			min((u32)ranges->auto_corr_max_cck_mrc, val);
 334	} else if ((false_alarms < min_false_alarms) &&
 335	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 336	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 337
 338		/* Decrease auto_corr values to increase sensitivity */
 339		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 340		data->auto_corr_cck =
 341			max((u32)ranges->auto_corr_min_cck, val);
 342		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 343		data->auto_corr_cck_mrc =
 344			max((u32)ranges->auto_corr_min_cck_mrc, val);
 345	}
 346
 347	return 0;
 348}
 349
 350
 351static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 352				       u32 norm_fa,
 353				       u32 rx_enable_time)
 354{
 355	u32 val;
 356	u32 false_alarms = norm_fa * 200 * 1024;
 357	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 358	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 359	struct iwl_sensitivity_data *data = NULL;
 360	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 361
 362	data = &(priv->sensitivity_data);
 363
 364	/* If we got too many false alarms this time, reduce sensitivity */
 365	if (false_alarms > max_false_alarms) {
 366
 367		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 368			     false_alarms, max_false_alarms);
 369
 370		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 371		data->auto_corr_ofdm =
 372			min((u32)ranges->auto_corr_max_ofdm, val);
 373
 374		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 375		data->auto_corr_ofdm_mrc =
 376			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 377
 378		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 379		data->auto_corr_ofdm_x1 =
 380			min((u32)ranges->auto_corr_max_ofdm_x1, val);
 381
 382		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 383		data->auto_corr_ofdm_mrc_x1 =
 384			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 385	}
 386
 387	/* Else if we got fewer than desired, increase sensitivity */
 388	else if (false_alarms < min_false_alarms) {
 389
 390		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 391			     false_alarms, min_false_alarms);
 392
 393		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 394		data->auto_corr_ofdm =
 395			max((u32)ranges->auto_corr_min_ofdm, val);
 396
 397		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 398		data->auto_corr_ofdm_mrc =
 399			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 400
 401		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 402		data->auto_corr_ofdm_x1 =
 403			max((u32)ranges->auto_corr_min_ofdm_x1, val);
 404
 405		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 406		data->auto_corr_ofdm_mrc_x1 =
 407			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 408	} else {
 409		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 410			 min_false_alarms, false_alarms, max_false_alarms);
 411	}
 412	return 0;
 413}
 414
 415static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 416				struct iwl_sensitivity_data *data,
 417				__le16 *tbl)
 418{
 419	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 420				cpu_to_le16((u16)data->auto_corr_ofdm);
 421	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 422				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 423	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 424				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 425	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 426				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 427
 428	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 429				cpu_to_le16((u16)data->auto_corr_cck);
 430	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 431				cpu_to_le16((u16)data->auto_corr_cck_mrc);
 432
 433	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 434				cpu_to_le16((u16)data->nrg_th_cck);
 435	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 436				cpu_to_le16((u16)data->nrg_th_ofdm);
 437
 438	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 439				cpu_to_le16(data->barker_corr_th_min);
 440	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 441				cpu_to_le16(data->barker_corr_th_min_mrc);
 442	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 443				cpu_to_le16(data->nrg_th_cca);
 444
 445	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 446			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 447			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 448			data->nrg_th_ofdm);
 449
 450	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 451			data->auto_corr_cck, data->auto_corr_cck_mrc,
 452			data->nrg_th_cck);
 453}
 454
 455/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 456static int iwl_sensitivity_write(struct iwl_priv *priv)
 457{
 458	struct iwl_sensitivity_cmd cmd;
 459	struct iwl_sensitivity_data *data = NULL;
 460	struct iwl_host_cmd cmd_out = {
 461		.id = SENSITIVITY_CMD,
 462		.len = { sizeof(struct iwl_sensitivity_cmd), },
 463		.flags = CMD_ASYNC,
 464		.data = { &cmd, },
 465	};
 466
 467	data = &(priv->sensitivity_data);
 468
 469	memset(&cmd, 0, sizeof(cmd));
 470
 471	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 472
 473	/* Update uCode's "work" table, and copy it to DSP */
 474	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 475
 476	/* Don't send command to uCode if nothing has changed */
 477	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 478		    sizeof(u16)*HD_TABLE_SIZE)) {
 479		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 480		return 0;
 481	}
 482
 483	/* Copy table for comparison next time */
 484	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 485	       sizeof(u16)*HD_TABLE_SIZE);
 486
 487	return trans_send_cmd(&priv->trans, &cmd_out);
 488}
 489
 490/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 491static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 492{
 493	struct iwl_enhance_sensitivity_cmd cmd;
 494	struct iwl_sensitivity_data *data = NULL;
 495	struct iwl_host_cmd cmd_out = {
 496		.id = SENSITIVITY_CMD,
 497		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 498		.flags = CMD_ASYNC,
 499		.data = { &cmd, },
 500	};
 501
 502	data = &(priv->sensitivity_data);
 503
 504	memset(&cmd, 0, sizeof(cmd));
 505
 506	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 507
 508	cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 509		HD_INA_NON_SQUARE_DET_OFDM_DATA;
 510	cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 511		HD_INA_NON_SQUARE_DET_CCK_DATA;
 512	cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 513		HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA;
 514	cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 515		HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA;
 516	cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 517		HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
 518	cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 519		HD_OFDM_NON_SQUARE_DET_SLOPE_DATA;
 520	cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 521		HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA;
 522	cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 523		HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA;
 524	cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 525		HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
 526	cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 527		HD_CCK_NON_SQUARE_DET_SLOPE_DATA;
 528	cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 529		HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA;
 530
 531	/* Update uCode's "work" table, and copy it to DSP */
 532	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 533
 534	/* Don't send command to uCode if nothing has changed */
 535	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 536		    sizeof(u16)*HD_TABLE_SIZE) &&
 537	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 538		    &(priv->enhance_sensitivity_tbl[0]),
 539		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 540		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 541		return 0;
 542	}
 543
 544	/* Copy table for comparison next time */
 545	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 546	       sizeof(u16)*HD_TABLE_SIZE);
 547	memcpy(&(priv->enhance_sensitivity_tbl[0]),
 548	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 549	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 550
 551	return trans_send_cmd(&priv->trans, &cmd_out);
 552}
 553
 554void iwl_init_sensitivity(struct iwl_priv *priv)
 555{
 556	int ret = 0;
 557	int i;
 558	struct iwl_sensitivity_data *data = NULL;
 559	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 560
 561	if (priv->disable_sens_cal)
 562		return;
 563
 564	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 565
 566	/* Clear driver's sensitivity algo data */
 567	data = &(priv->sensitivity_data);
 568
 569	if (ranges == NULL)
 570		return;
 571
 572	memset(data, 0, sizeof(struct iwl_sensitivity_data));
 573
 574	data->num_in_cck_no_fa = 0;
 575	data->nrg_curr_state = IWL_FA_TOO_MANY;
 576	data->nrg_prev_state = IWL_FA_TOO_MANY;
 577	data->nrg_silence_ref = 0;
 578	data->nrg_silence_idx = 0;
 579	data->nrg_energy_idx = 0;
 580
 581	for (i = 0; i < 10; i++)
 582		data->nrg_value[i] = 0;
 583
 584	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 585		data->nrg_silence_rssi[i] = 0;
 586
 587	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 588	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 589	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 590	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 591	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 592	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 593	data->nrg_th_cck = ranges->nrg_th_cck;
 594	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 595	data->barker_corr_th_min = ranges->barker_corr_th_min;
 596	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 597	data->nrg_th_cca = ranges->nrg_th_cca;
 598
 599	data->last_bad_plcp_cnt_ofdm = 0;
 600	data->last_fa_cnt_ofdm = 0;
 601	data->last_bad_plcp_cnt_cck = 0;
 602	data->last_fa_cnt_cck = 0;
 603
 604	if (priv->enhance_sensitivity_table)
 605		ret |= iwl_enhance_sensitivity_write(priv);
 606	else
 607		ret |= iwl_sensitivity_write(priv);
 608	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 609}
 610
 611void iwl_sensitivity_calibration(struct iwl_priv *priv)
 612{
 613	u32 rx_enable_time;
 614	u32 fa_cck;
 615	u32 fa_ofdm;
 616	u32 bad_plcp_cck;
 617	u32 bad_plcp_ofdm;
 618	u32 norm_fa_ofdm;
 619	u32 norm_fa_cck;
 620	struct iwl_sensitivity_data *data = NULL;
 621	struct statistics_rx_non_phy *rx_info;
 622	struct statistics_rx_phy *ofdm, *cck;
 623	unsigned long flags;
 624	struct statistics_general_data statis;
 625
 626	if (priv->disable_sens_cal)
 627		return;
 628
 629	data = &(priv->sensitivity_data);
 630
 631	if (!iwl_is_any_associated(priv)) {
 632		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 633		return;
 634	}
 635
 636	spin_lock_irqsave(&priv->lock, flags);
 637	rx_info = &priv->statistics.rx_non_phy;
 638	ofdm = &priv->statistics.rx_ofdm;
 639	cck = &priv->statistics.rx_cck;
 640	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 641		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 642		spin_unlock_irqrestore(&priv->lock, flags);
 643		return;
 644	}
 645
 646	/* Extract Statistics: */
 647	rx_enable_time = le32_to_cpu(rx_info->channel_load);
 648	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 649	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 650	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 651	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 652
 653	statis.beacon_silence_rssi_a =
 654			le32_to_cpu(rx_info->beacon_silence_rssi_a);
 655	statis.beacon_silence_rssi_b =
 656			le32_to_cpu(rx_info->beacon_silence_rssi_b);
 657	statis.beacon_silence_rssi_c =
 658			le32_to_cpu(rx_info->beacon_silence_rssi_c);
 659	statis.beacon_energy_a =
 660			le32_to_cpu(rx_info->beacon_energy_a);
 661	statis.beacon_energy_b =
 662			le32_to_cpu(rx_info->beacon_energy_b);
 663	statis.beacon_energy_c =
 664			le32_to_cpu(rx_info->beacon_energy_c);
 665
 666	spin_unlock_irqrestore(&priv->lock, flags);
 667
 668	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 669
 670	if (!rx_enable_time) {
 671		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 672		return;
 673	}
 674
 675	/* These statistics increase monotonically, and do not reset
 676	 *   at each beacon.  Calculate difference from last value, or just
 677	 *   use the new statistics value if it has reset or wrapped around. */
 678	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 679		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 680	else {
 681		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 682		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 683	}
 684
 685	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 686		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 687	else {
 688		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 689		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 690	}
 691
 692	if (data->last_fa_cnt_ofdm > fa_ofdm)
 693		data->last_fa_cnt_ofdm = fa_ofdm;
 694	else {
 695		fa_ofdm -= data->last_fa_cnt_ofdm;
 696		data->last_fa_cnt_ofdm += fa_ofdm;
 697	}
 698
 699	if (data->last_fa_cnt_cck > fa_cck)
 700		data->last_fa_cnt_cck = fa_cck;
 701	else {
 702		fa_cck -= data->last_fa_cnt_cck;
 703		data->last_fa_cnt_cck += fa_cck;
 704	}
 705
 706	/* Total aborted signal locks */
 707	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 708	norm_fa_cck = fa_cck + bad_plcp_cck;
 709
 710	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 711			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 712
 713	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 714	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 715	if (priv->enhance_sensitivity_table)
 716		iwl_enhance_sensitivity_write(priv);
 717	else
 718		iwl_sensitivity_write(priv);
 719}
 720
 721static inline u8 find_first_chain(u8 mask)
 722{
 723	if (mask & ANT_A)
 724		return CHAIN_A;
 725	if (mask & ANT_B)
 726		return CHAIN_B;
 727	return CHAIN_C;
 728}
 729
 730/**
 731 * Run disconnected antenna algorithm to find out which antennas are
 732 * disconnected.
 733 */
 734static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 735				     struct iwl_chain_noise_data *data)
 736{
 737	u32 active_chains = 0;
 738	u32 max_average_sig;
 739	u16 max_average_sig_antenna_i;
 740	u8 num_tx_chains;
 741	u8 first_chain;
 742	u16 i = 0;
 743
 744	average_sig[0] = data->chain_signal_a /
 745			 priv->cfg->base_params->chain_noise_num_beacons;
 746	average_sig[1] = data->chain_signal_b /
 747			 priv->cfg->base_params->chain_noise_num_beacons;
 748	average_sig[2] = data->chain_signal_c /
 749			 priv->cfg->base_params->chain_noise_num_beacons;
 750
 751	if (average_sig[0] >= average_sig[1]) {
 752		max_average_sig = average_sig[0];
 753		max_average_sig_antenna_i = 0;
 754		active_chains = (1 << max_average_sig_antenna_i);
 755	} else {
 756		max_average_sig = average_sig[1];
 757		max_average_sig_antenna_i = 1;
 758		active_chains = (1 << max_average_sig_antenna_i);
 759	}
 760
 761	if (average_sig[2] >= max_average_sig) {
 762		max_average_sig = average_sig[2];
 763		max_average_sig_antenna_i = 2;
 764		active_chains = (1 << max_average_sig_antenna_i);
 765	}
 766
 767	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 768		     average_sig[0], average_sig[1], average_sig[2]);
 769	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 770		     max_average_sig, max_average_sig_antenna_i);
 771
 772	/* Compare signal strengths for all 3 receivers. */
 773	for (i = 0; i < NUM_RX_CHAINS; i++) {
 774		if (i != max_average_sig_antenna_i) {
 775			s32 rssi_delta = (max_average_sig - average_sig[i]);
 776
 777			/* If signal is very weak, compared with
 778			 * strongest, mark it as disconnected. */
 779			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 780				data->disconn_array[i] = 1;
 781			else
 782				active_chains |= (1 << i);
 783			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 784			     "disconn_array[i] = %d\n",
 785			     i, rssi_delta, data->disconn_array[i]);
 786		}
 787	}
 788
 789	/*
 790	 * The above algorithm sometimes fails when the ucode
 791	 * reports 0 for all chains. It's not clear why that
 792	 * happens to start with, but it is then causing trouble
 793	 * because this can make us enable more chains than the
 794	 * hardware really has.
 795	 *
 796	 * To be safe, simply mask out any chains that we know
 797	 * are not on the device.
 798	 */
 799	active_chains &= priv->hw_params.valid_rx_ant;
 800
 801	num_tx_chains = 0;
 802	for (i = 0; i < NUM_RX_CHAINS; i++) {
 803		/* loops on all the bits of
 804		 * priv->hw_setting.valid_tx_ant */
 805		u8 ant_msk = (1 << i);
 806		if (!(priv->hw_params.valid_tx_ant & ant_msk))
 807			continue;
 808
 809		num_tx_chains++;
 810		if (data->disconn_array[i] == 0)
 811			/* there is a Tx antenna connected */
 812			break;
 813		if (num_tx_chains == priv->hw_params.tx_chains_num &&
 814		    data->disconn_array[i]) {
 815			/*
 816			 * If all chains are disconnected
 817			 * connect the first valid tx chain
 818			 */
 819			first_chain =
 820				find_first_chain(priv->cfg->valid_tx_ant);
 821			data->disconn_array[first_chain] = 0;
 822			active_chains |= BIT(first_chain);
 823			IWL_DEBUG_CALIB(priv,
 824					"All Tx chains are disconnected W/A - declare %d as connected\n",
 825					first_chain);
 826			break;
 827		}
 828	}
 829
 830	if (active_chains != priv->hw_params.valid_rx_ant &&
 831	    active_chains != priv->chain_noise_data.active_chains)
 832		IWL_DEBUG_CALIB(priv,
 833				"Detected that not all antennas are connected! "
 834				"Connected: %#x, valid: %#x.\n",
 835				active_chains, priv->hw_params.valid_rx_ant);
 836
 837	/* Save for use within RXON, TX, SCAN commands, etc. */
 838	data->active_chains = active_chains;
 839	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 840			active_chains);
 841}
 842
 843static void iwlagn_gain_computation(struct iwl_priv *priv,
 844		u32 average_noise[NUM_RX_CHAINS],
 845		u16 min_average_noise_antenna_i,
 846		u32 min_average_noise,
 847		u8 default_chain)
 848{
 849	int i;
 850	s32 delta_g;
 851	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 852
 853	/*
 854	 * Find Gain Code for the chains based on "default chain"
 855	 */
 856	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 857		if ((data->disconn_array[i])) {
 858			data->delta_gain_code[i] = 0;
 859			continue;
 860		}
 861
 862		delta_g = (priv->cfg->base_params->chain_noise_scale *
 863			((s32)average_noise[default_chain] -
 864			(s32)average_noise[i])) / 1500;
 865
 866		/* bound gain by 2 bits value max, 3rd bit is sign */
 867		data->delta_gain_code[i] =
 868			min(abs(delta_g),
 869			(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 870
 871		if (delta_g < 0)
 872			/*
 873			 * set negative sign ...
 874			 * note to Intel developers:  This is uCode API format,
 875			 *   not the format of any internal device registers.
 876			 *   Do not change this format for e.g. 6050 or similar
 877			 *   devices.  Change format only if more resolution
 878			 *   (i.e. more than 2 bits magnitude) is needed.
 879			 */
 880			data->delta_gain_code[i] |= (1 << 2);
 881	}
 882
 883	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 884			data->delta_gain_code[1], data->delta_gain_code[2]);
 885
 886	if (!data->radio_write) {
 887		struct iwl_calib_chain_noise_gain_cmd cmd;
 888
 889		memset(&cmd, 0, sizeof(cmd));
 890
 891		iwl_set_calib_hdr(&cmd.hdr,
 892			priv->phy_calib_chain_noise_gain_cmd);
 893		cmd.delta_gain_1 = data->delta_gain_code[1];
 894		cmd.delta_gain_2 = data->delta_gain_code[2];
 895		trans_send_cmd_pdu(&priv->trans, REPLY_PHY_CALIBRATION_CMD,
 896			CMD_ASYNC, sizeof(cmd), &cmd);
 897
 898		data->radio_write = 1;
 899		data->state = IWL_CHAIN_NOISE_CALIBRATED;
 900	}
 901}
 902
 903/*
 904 * Accumulate 16 beacons of signal and noise statistics for each of
 905 *   3 receivers/antennas/rx-chains, then figure out:
 906 * 1)  Which antennas are connected.
 907 * 2)  Differential rx gain settings to balance the 3 receivers.
 908 */
 909void iwl_chain_noise_calibration(struct iwl_priv *priv)
 910{
 911	struct iwl_chain_noise_data *data = NULL;
 912
 913	u32 chain_noise_a;
 914	u32 chain_noise_b;
 915	u32 chain_noise_c;
 916	u32 chain_sig_a;
 917	u32 chain_sig_b;
 918	u32 chain_sig_c;
 919	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 920	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 921	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 922	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 923	u16 i = 0;
 924	u16 rxon_chnum = INITIALIZATION_VALUE;
 925	u16 stat_chnum = INITIALIZATION_VALUE;
 926	u8 rxon_band24;
 927	u8 stat_band24;
 928	unsigned long flags;
 929	struct statistics_rx_non_phy *rx_info;
 930
 931	/*
 932	 * MULTI-FIXME:
 933	 * When we support multiple interfaces on different channels,
 934	 * this must be modified/fixed.
 935	 */
 936	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 937
 938	if (priv->disable_chain_noise_cal)
 939		return;
 940
 941	data = &(priv->chain_noise_data);
 942
 943	/*
 944	 * Accumulate just the first "chain_noise_num_beacons" after
 945	 * the first association, then we're done forever.
 946	 */
 947	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 948		if (data->state == IWL_CHAIN_NOISE_ALIVE)
 949			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 950		return;
 951	}
 952
 953	spin_lock_irqsave(&priv->lock, flags);
 954
 955	rx_info = &priv->statistics.rx_non_phy;
 956
 957	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 958		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 959		spin_unlock_irqrestore(&priv->lock, flags);
 960		return;
 961	}
 962
 963	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 964	rxon_chnum = le16_to_cpu(ctx->staging.channel);
 965	stat_band24 =
 966		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 967	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
 968
 969	/* Make sure we accumulate data for just the associated channel
 970	 *   (even if scanning). */
 971	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
 972		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
 973				rxon_chnum, rxon_band24);
 974		spin_unlock_irqrestore(&priv->lock, flags);
 975		return;
 976	}
 977
 978	/*
 979	 *  Accumulate beacon statistics values across
 980	 * "chain_noise_num_beacons"
 981	 */
 982	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
 983				IN_BAND_FILTER;
 984	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
 985				IN_BAND_FILTER;
 986	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
 987				IN_BAND_FILTER;
 988
 989	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 990	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 991	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 992
 993	spin_unlock_irqrestore(&priv->lock, flags);
 994
 995	data->beacon_count++;
 996
 997	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 998	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 999	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1000
1001	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1002	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1003	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1004
1005	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1006			rxon_chnum, rxon_band24, data->beacon_count);
1007	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1008			chain_sig_a, chain_sig_b, chain_sig_c);
1009	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1010			chain_noise_a, chain_noise_b, chain_noise_c);
1011
1012	/* If this is the "chain_noise_num_beacons", determine:
1013	 * 1)  Disconnected antennas (using signal strengths)
1014	 * 2)  Differential gain (using silence noise) to balance receivers */
1015	if (data->beacon_count !=
1016		priv->cfg->base_params->chain_noise_num_beacons)
1017		return;
1018
1019	/* Analyze signal for disconnected antenna */
1020	if (priv->cfg->bt_params &&
1021	    priv->cfg->bt_params->advanced_bt_coexist) {
1022		/* Disable disconnected antenna algorithm for advanced
1023		   bt coex, assuming valid antennas are connected */
1024		data->active_chains = priv->hw_params.valid_rx_ant;
1025		for (i = 0; i < NUM_RX_CHAINS; i++)
1026			if (!(data->active_chains & (1<<i)))
1027				data->disconn_array[i] = 1;
1028	} else
1029		iwl_find_disconn_antenna(priv, average_sig, data);
1030
1031	/* Analyze noise for rx balance */
1032	average_noise[0] = data->chain_noise_a /
1033			   priv->cfg->base_params->chain_noise_num_beacons;
1034	average_noise[1] = data->chain_noise_b /
1035			   priv->cfg->base_params->chain_noise_num_beacons;
1036	average_noise[2] = data->chain_noise_c /
1037			   priv->cfg->base_params->chain_noise_num_beacons;
1038
1039	for (i = 0; i < NUM_RX_CHAINS; i++) {
1040		if (!(data->disconn_array[i]) &&
1041		   (average_noise[i] <= min_average_noise)) {
1042			/* This means that chain i is active and has
1043			 * lower noise values so far: */
1044			min_average_noise = average_noise[i];
1045			min_average_noise_antenna_i = i;
1046		}
1047	}
1048
1049	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1050			average_noise[0], average_noise[1],
1051			average_noise[2]);
1052
1053	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1054			min_average_noise, min_average_noise_antenna_i);
1055
1056	iwlagn_gain_computation(priv, average_noise,
1057				min_average_noise_antenna_i, min_average_noise,
1058				find_first_chain(priv->cfg->valid_rx_ant));
1059
1060	/* Some power changes may have been made during the calibration.
1061	 * Update and commit the RXON
1062	 */
1063	iwl_update_chain_flags(priv);
1064
1065	data->state = IWL_CHAIN_NOISE_DONE;
1066	iwl_power_update_mode(priv, false);
1067}
1068
1069void iwl_reset_run_time_calib(struct iwl_priv *priv)
1070{
1071	int i;
1072	memset(&(priv->sensitivity_data), 0,
1073	       sizeof(struct iwl_sensitivity_data));
1074	memset(&(priv->chain_noise_data), 0,
1075	       sizeof(struct iwl_chain_noise_data));
1076	for (i = 0; i < NUM_RX_CHAINS; i++)
1077		priv->chain_noise_data.delta_gain_code[i] =
1078				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1079
1080	/* Ask for statistics now, the uCode will send notification
1081	 * periodically after association */
1082	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1083}