Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/etherdevice.h>
  19#include <net/ieee80211_radiotap.h>
  20#include <linux/if_arp.h>
  21#include <linux/moduleparam.h>
  22#include <linux/ip.h>
  23#include <linux/ipv6.h>
  24#include <net/ipv6.h>
  25#include <linux/prefetch.h>
  26
  27#include "wil6210.h"
  28#include "wmi.h"
  29#include "txrx.h"
  30#include "trace.h"
  31#include "txrx_edma.h"
  32
  33bool rx_align_2;
  34module_param(rx_align_2, bool, 0444);
  35MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
  36
  37bool rx_large_buf;
  38module_param(rx_large_buf, bool, 0444);
  39MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
  40
  41/* Drop Tx packets in case Tx ring is full */
  42bool drop_if_ring_full;
  43
  44static inline uint wil_rx_snaplen(void)
  45{
  46	return rx_align_2 ? 6 : 0;
  47}
  48
  49/* wil_ring_wmark_low - low watermark for available descriptor space */
  50static inline int wil_ring_wmark_low(struct wil_ring *ring)
  51{
  52	return ring->size / 8;
  53}
  54
  55/* wil_ring_wmark_high - high watermark for available descriptor space */
  56static inline int wil_ring_wmark_high(struct wil_ring *ring)
  57{
  58	return ring->size / 4;
  59}
  60
  61/* returns true if num avail descriptors is lower than wmark_low */
  62static inline int wil_ring_avail_low(struct wil_ring *ring)
  63{
  64	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
  65}
  66
  67/* returns true if num avail descriptors is higher than wmark_high */
  68static inline int wil_ring_avail_high(struct wil_ring *ring)
  69{
  70	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
  71}
  72
  73/* returns true when all tx vrings are empty */
  74bool wil_is_tx_idle(struct wil6210_priv *wil)
  75{
  76	int i;
  77	unsigned long data_comp_to;
  78	int min_ring_id = wil_get_min_tx_ring_id(wil);
  79
  80	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
  81		struct wil_ring *vring = &wil->ring_tx[i];
  82		int vring_index = vring - wil->ring_tx;
  83		struct wil_ring_tx_data *txdata =
  84			&wil->ring_tx_data[vring_index];
  85
  86		spin_lock(&txdata->lock);
  87
  88		if (!vring->va || !txdata->enabled) {
  89			spin_unlock(&txdata->lock);
  90			continue;
  91		}
  92
  93		data_comp_to = jiffies + msecs_to_jiffies(
  94					WIL_DATA_COMPLETION_TO_MS);
  95		if (test_bit(wil_status_napi_en, wil->status)) {
  96			while (!wil_ring_is_empty(vring)) {
  97				if (time_after(jiffies, data_comp_to)) {
  98					wil_dbg_pm(wil,
  99						   "TO waiting for idle tx\n");
 100					spin_unlock(&txdata->lock);
 101					return false;
 102				}
 103				wil_dbg_ratelimited(wil,
 104						    "tx vring is not empty -> NAPI\n");
 105				spin_unlock(&txdata->lock);
 106				napi_synchronize(&wil->napi_tx);
 107				msleep(20);
 108				spin_lock(&txdata->lock);
 109				if (!vring->va || !txdata->enabled)
 110					break;
 111			}
 112		}
 113
 114		spin_unlock(&txdata->lock);
 115	}
 116
 117	return true;
 118}
 119
 120static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
 121{
 122	struct device *dev = wil_to_dev(wil);
 123	size_t sz = vring->size * sizeof(vring->va[0]);
 124	uint i;
 125
 126	wil_dbg_misc(wil, "vring_alloc:\n");
 127
 128	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
 129
 130	vring->swhead = 0;
 131	vring->swtail = 0;
 132	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
 133	if (!vring->ctx) {
 134		vring->va = NULL;
 135		return -ENOMEM;
 136	}
 137
 138	/* vring->va should be aligned on its size rounded up to power of 2
 139	 * This is granted by the dma_alloc_coherent.
 140	 *
 141	 * HW has limitation that all vrings addresses must share the same
 142	 * upper 16 msb bits part of 48 bits address. To workaround that,
 143	 * if we are using more than 32 bit addresses switch to 32 bit
 144	 * allocation before allocating vring memory.
 145	 *
 146	 * There's no check for the return value of dma_set_mask_and_coherent,
 147	 * since we assume if we were able to set the mask during
 148	 * initialization in this system it will not fail if we set it again
 149	 */
 150	if (wil->dma_addr_size > 32)
 151		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
 152
 153	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
 154	if (!vring->va) {
 155		kfree(vring->ctx);
 156		vring->ctx = NULL;
 157		return -ENOMEM;
 158	}
 159
 160	if (wil->dma_addr_size > 32)
 161		dma_set_mask_and_coherent(dev,
 162					  DMA_BIT_MASK(wil->dma_addr_size));
 163
 164	/* initially, all descriptors are SW owned
 165	 * For Tx and Rx, ownership bit is at the same location, thus
 166	 * we can use any
 167	 */
 168	for (i = 0; i < vring->size; i++) {
 169		volatile struct vring_tx_desc *_d =
 170			&vring->va[i].tx.legacy;
 171
 172		_d->dma.status = TX_DMA_STATUS_DU;
 173	}
 174
 175	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
 176		     vring->va, &vring->pa, vring->ctx);
 177
 178	return 0;
 179}
 180
 181static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
 182			     struct wil_ctx *ctx)
 183{
 184	struct vring_tx_desc *d = &desc->legacy;
 185	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
 186	u16 dmalen = le16_to_cpu(d->dma.length);
 187
 188	switch (ctx->mapped_as) {
 189	case wil_mapped_as_single:
 190		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
 191		break;
 192	case wil_mapped_as_page:
 193		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
 194		break;
 195	default:
 196		break;
 197	}
 198}
 199
 200static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
 201{
 202	struct device *dev = wil_to_dev(wil);
 203	size_t sz = vring->size * sizeof(vring->va[0]);
 204
 205	lockdep_assert_held(&wil->mutex);
 206	if (!vring->is_rx) {
 207		int vring_index = vring - wil->ring_tx;
 208
 209		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
 210			     vring_index, vring->size, vring->va,
 211			     &vring->pa, vring->ctx);
 212	} else {
 213		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
 214			     vring->size, vring->va,
 215			     &vring->pa, vring->ctx);
 216	}
 217
 218	while (!wil_ring_is_empty(vring)) {
 219		dma_addr_t pa;
 220		u16 dmalen;
 221		struct wil_ctx *ctx;
 222
 223		if (!vring->is_rx) {
 224			struct vring_tx_desc dd, *d = &dd;
 225			volatile struct vring_tx_desc *_d =
 226					&vring->va[vring->swtail].tx.legacy;
 227
 228			ctx = &vring->ctx[vring->swtail];
 229			if (!ctx) {
 230				wil_dbg_txrx(wil,
 231					     "ctx(%d) was already completed\n",
 232					     vring->swtail);
 233				vring->swtail = wil_ring_next_tail(vring);
 234				continue;
 235			}
 236			*d = *_d;
 237			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
 238			if (ctx->skb)
 239				dev_kfree_skb_any(ctx->skb);
 240			vring->swtail = wil_ring_next_tail(vring);
 241		} else { /* rx */
 242			struct vring_rx_desc dd, *d = &dd;
 243			volatile struct vring_rx_desc *_d =
 244				&vring->va[vring->swhead].rx.legacy;
 245
 246			ctx = &vring->ctx[vring->swhead];
 247			*d = *_d;
 248			pa = wil_desc_addr(&d->dma.addr);
 249			dmalen = le16_to_cpu(d->dma.length);
 250			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
 251			kfree_skb(ctx->skb);
 252			wil_ring_advance_head(vring, 1);
 253		}
 254	}
 255	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
 256	kfree(vring->ctx);
 257	vring->pa = 0;
 258	vring->va = NULL;
 259	vring->ctx = NULL;
 260}
 261
 262/**
 263 * Allocate one skb for Rx VRING
 264 *
 265 * Safe to call from IRQ
 266 */
 267static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
 268			       u32 i, int headroom)
 269{
 270	struct device *dev = wil_to_dev(wil);
 271	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
 272	struct vring_rx_desc dd, *d = &dd;
 273	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
 274	dma_addr_t pa;
 275	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
 276
 277	if (unlikely(!skb))
 278		return -ENOMEM;
 279
 280	skb_reserve(skb, headroom);
 281	skb_put(skb, sz);
 282
 283	/**
 284	 * Make sure that the network stack calculates checksum for packets
 285	 * which failed the HW checksum calculation
 286	 */
 287	skb->ip_summed = CHECKSUM_NONE;
 288
 289	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
 290	if (unlikely(dma_mapping_error(dev, pa))) {
 291		kfree_skb(skb);
 292		return -ENOMEM;
 293	}
 294
 295	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
 296	wil_desc_addr_set(&d->dma.addr, pa);
 297	/* ip_length don't care */
 298	/* b11 don't care */
 299	/* error don't care */
 300	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
 301	d->dma.length = cpu_to_le16(sz);
 302	*_d = *d;
 303	vring->ctx[i].skb = skb;
 304
 305	return 0;
 306}
 307
 308/**
 309 * Adds radiotap header
 310 *
 311 * Any error indicated as "Bad FCS"
 312 *
 313 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
 314 *  - Rx descriptor: 32 bytes
 315 *  - Phy info
 316 */
 317static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
 318				       struct sk_buff *skb)
 319{
 320	struct wil6210_rtap {
 321		struct ieee80211_radiotap_header rthdr;
 322		/* fields should be in the order of bits in rthdr.it_present */
 323		/* flags */
 324		u8 flags;
 325		/* channel */
 326		__le16 chnl_freq __aligned(2);
 327		__le16 chnl_flags;
 328		/* MCS */
 329		u8 mcs_present;
 330		u8 mcs_flags;
 331		u8 mcs_index;
 332	} __packed;
 333	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 334	struct wil6210_rtap *rtap;
 335	int rtap_len = sizeof(struct wil6210_rtap);
 336	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
 337
 338	if (skb_headroom(skb) < rtap_len &&
 339	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
 340		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
 341		return;
 342	}
 343
 344	rtap = skb_push(skb, rtap_len);
 345	memset(rtap, 0, rtap_len);
 346
 347	rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
 348	rtap->rthdr.it_len = cpu_to_le16(rtap_len);
 349	rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
 350			(1 << IEEE80211_RADIOTAP_CHANNEL) |
 351			(1 << IEEE80211_RADIOTAP_MCS));
 352	if (d->dma.status & RX_DMA_STATUS_ERROR)
 353		rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
 354
 355	rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
 356	rtap->chnl_flags = cpu_to_le16(0);
 357
 358	rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
 359	rtap->mcs_flags = 0;
 360	rtap->mcs_index = wil_rxdesc_mcs(d);
 361}
 362
 363static bool wil_is_rx_idle(struct wil6210_priv *wil)
 364{
 365	struct vring_rx_desc *_d;
 366	struct wil_ring *ring = &wil->ring_rx;
 367
 368	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
 369	if (_d->dma.status & RX_DMA_STATUS_DU)
 370		return false;
 371
 372	return true;
 373}
 374
 375static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
 376{
 377	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 378	int mid = wil_rxdesc_mid(d);
 379	struct wil6210_vif *vif = wil->vifs[mid];
 380	/* cid from DMA descriptor is limited to 3 bits.
 381	 * In case of cid>=8, the value would be cid modulo 8 and we need to
 382	 * find real cid by locating the transmitter (ta) inside sta array
 383	 */
 384	int cid = wil_rxdesc_cid(d);
 385	unsigned int snaplen = wil_rx_snaplen();
 386	struct ieee80211_hdr_3addr *hdr;
 387	int i;
 388	unsigned char *ta;
 389	u8 ftype;
 390
 391	/* in monitor mode there are no connections */
 392	if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
 393		return cid;
 394
 395	ftype = wil_rxdesc_ftype(d) << 2;
 396	if (likely(ftype == IEEE80211_FTYPE_DATA)) {
 397		if (unlikely(skb->len < ETH_HLEN + snaplen)) {
 398			wil_err_ratelimited(wil,
 399					    "Short data frame, len = %d\n",
 400					    skb->len);
 401			return -ENOENT;
 402		}
 403		ta = wil_skb_get_sa(skb);
 404	} else {
 405		if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
 406			wil_err_ratelimited(wil, "Short frame, len = %d\n",
 407					    skb->len);
 408			return -ENOENT;
 409		}
 410		hdr = (void *)skb->data;
 411		ta = hdr->addr2;
 412	}
 413
 414	if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
 415		return cid;
 416
 417	/* assuming no concurrency between AP interfaces and STA interfaces.
 418	 * multista is used only in P2P_GO or AP mode. In other modes return
 419	 * cid from the rx descriptor
 420	 */
 421	if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
 422	    vif->wdev.iftype != NL80211_IFTYPE_AP)
 423		return cid;
 424
 425	/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
 426	 * to find the real cid, compare transmitter address with the stored
 427	 * stations mac address in the driver sta array
 428	 */
 429	for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
 430		if (wil->sta[i].status != wil_sta_unused &&
 431		    ether_addr_equal(wil->sta[i].addr, ta)) {
 432			cid = i;
 433			break;
 434		}
 435	}
 436	if (i >= wil->max_assoc_sta) {
 437		wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
 438				    ta, vif->wdev.iftype, ftype, skb->len);
 439		cid = -ENOENT;
 440	}
 441
 442	return cid;
 443}
 444
 445/**
 446 * reap 1 frame from @swhead
 447 *
 448 * Rx descriptor copied to skb->cb
 449 *
 450 * Safe to call from IRQ
 451 */
 452static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
 453					 struct wil_ring *vring)
 454{
 455	struct device *dev = wil_to_dev(wil);
 456	struct wil6210_vif *vif;
 457	struct net_device *ndev;
 458	volatile struct vring_rx_desc *_d;
 459	struct vring_rx_desc *d;
 460	struct sk_buff *skb;
 461	dma_addr_t pa;
 462	unsigned int snaplen = wil_rx_snaplen();
 463	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
 464	u16 dmalen;
 465	u8 ftype;
 466	int cid, mid;
 467	int i;
 468	struct wil_net_stats *stats;
 469
 470	BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
 471
 472again:
 473	if (unlikely(wil_ring_is_empty(vring)))
 474		return NULL;
 475
 476	i = (int)vring->swhead;
 477	_d = &vring->va[i].rx.legacy;
 478	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
 479		/* it is not error, we just reached end of Rx done area */
 480		return NULL;
 481	}
 482
 483	skb = vring->ctx[i].skb;
 484	vring->ctx[i].skb = NULL;
 485	wil_ring_advance_head(vring, 1);
 486	if (!skb) {
 487		wil_err(wil, "No Rx skb at [%d]\n", i);
 488		goto again;
 489	}
 490	d = wil_skb_rxdesc(skb);
 491	*d = *_d;
 492	pa = wil_desc_addr(&d->dma.addr);
 493
 494	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
 495	dmalen = le16_to_cpu(d->dma.length);
 496
 497	trace_wil6210_rx(i, d);
 498	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
 499	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
 500			  (const void *)d, sizeof(*d), false);
 501
 502	mid = wil_rxdesc_mid(d);
 503	vif = wil->vifs[mid];
 504
 505	if (unlikely(!vif)) {
 506		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
 507			     mid);
 508		kfree_skb(skb);
 509		goto again;
 510	}
 511	ndev = vif_to_ndev(vif);
 512	if (unlikely(dmalen > sz)) {
 513		wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
 514				    dmalen);
 515		kfree_skb(skb);
 516		goto again;
 517	}
 518	skb_trim(skb, dmalen);
 519
 520	prefetch(skb->data);
 521
 522	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
 523			  skb->data, skb_headlen(skb), false);
 524
 525	cid = wil_rx_get_cid_by_skb(wil, skb);
 526	if (cid == -ENOENT) {
 527		kfree_skb(skb);
 528		goto again;
 529	}
 530	wil_skb_set_cid(skb, (u8)cid);
 531	stats = &wil->sta[cid].stats;
 532
 533	stats->last_mcs_rx = wil_rxdesc_mcs(d);
 534	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
 535		stats->rx_per_mcs[stats->last_mcs_rx]++;
 536
 537	/* use radiotap header only if required */
 538	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
 539		wil_rx_add_radiotap_header(wil, skb);
 540
 541	/* no extra checks if in sniffer mode */
 542	if (ndev->type != ARPHRD_ETHER)
 543		return skb;
 544	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
 545	 * Driver should recognize it by frame type, that is found
 546	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
 547	 */
 548	ftype = wil_rxdesc_ftype(d) << 2;
 549	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
 550		u8 fc1 = wil_rxdesc_fc1(d);
 551		int tid = wil_rxdesc_tid(d);
 552		u16 seq = wil_rxdesc_seq(d);
 553
 554		wil_dbg_txrx(wil,
 555			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
 556			     fc1, mid, cid, tid, seq);
 557		stats->rx_non_data_frame++;
 558		if (wil_is_back_req(fc1)) {
 559			wil_dbg_txrx(wil,
 560				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
 561				     mid, cid, tid, seq);
 562			wil_rx_bar(wil, vif, cid, tid, seq);
 563		} else {
 564			/* print again all info. One can enable only this
 565			 * without overhead for printing every Rx frame
 566			 */
 567			wil_dbg_txrx(wil,
 568				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
 569				     fc1, mid, cid, tid, seq);
 570			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
 571					  (const void *)d, sizeof(*d), false);
 572			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
 573					  skb->data, skb_headlen(skb), false);
 574		}
 575		kfree_skb(skb);
 576		goto again;
 577	}
 578
 579	/* L4 IDENT is on when HW calculated checksum, check status
 580	 * and in case of error drop the packet
 581	 * higher stack layers will handle retransmission (if required)
 582	 */
 583	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
 584		/* L4 protocol identified, csum calculated */
 585		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
 586			skb->ip_summed = CHECKSUM_UNNECESSARY;
 587		/* If HW reports bad checksum, let IP stack re-check it
 588		 * For example, HW don't understand Microsoft IP stack that
 589		 * mis-calculates TCP checksum - if it should be 0x0,
 590		 * it writes 0xffff in violation of RFC 1624
 591		 */
 592		else
 593			stats->rx_csum_err++;
 594	}
 595
 596	if (snaplen) {
 597		/* Packet layout
 598		 * +-------+-------+---------+------------+------+
 599		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
 600		 * +-------+-------+---------+------------+------+
 601		 * Need to remove SNAP, shifting SA and DA forward
 602		 */
 603		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
 604		skb_pull(skb, snaplen);
 605	}
 606
 607	return skb;
 608}
 609
 610/**
 611 * allocate and fill up to @count buffers in rx ring
 612 * buffers posted at @swtail
 613 * Note: we have a single RX queue for servicing all VIFs, but we
 614 * allocate skbs with headroom according to main interface only. This
 615 * means it will not work with monitor interface together with other VIFs.
 616 * Currently we only support monitor interface on its own without other VIFs,
 617 * and we will need to fix this code once we add support.
 618 */
 619static int wil_rx_refill(struct wil6210_priv *wil, int count)
 620{
 621	struct net_device *ndev = wil->main_ndev;
 622	struct wil_ring *v = &wil->ring_rx;
 623	u32 next_tail;
 624	int rc = 0;
 625	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
 626			WIL6210_RTAP_SIZE : 0;
 627
 628	for (; next_tail = wil_ring_next_tail(v),
 629	     (next_tail != v->swhead) && (count-- > 0);
 630	     v->swtail = next_tail) {
 631		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
 632		if (unlikely(rc)) {
 633			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
 634					    rc, v->swtail);
 635			break;
 636		}
 637	}
 638
 639	/* make sure all writes to descriptors (shared memory) are done before
 640	 * committing them to HW
 641	 */
 642	wmb();
 643
 644	wil_w(wil, v->hwtail, v->swtail);
 645
 646	return rc;
 647}
 648
 649/**
 650 * reverse_memcmp - Compare two areas of memory, in reverse order
 651 * @cs: One area of memory
 652 * @ct: Another area of memory
 653 * @count: The size of the area.
 654 *
 655 * Cut'n'paste from original memcmp (see lib/string.c)
 656 * with minimal modifications
 657 */
 658int reverse_memcmp(const void *cs, const void *ct, size_t count)
 659{
 660	const unsigned char *su1, *su2;
 661	int res = 0;
 662
 663	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
 664	     --su1, --su2, count--) {
 665		res = *su1 - *su2;
 666		if (res)
 667			break;
 668	}
 669	return res;
 670}
 671
 672static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
 673{
 674	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 675	int cid = wil_skb_get_cid(skb);
 676	int tid = wil_rxdesc_tid(d);
 677	int key_id = wil_rxdesc_key_id(d);
 678	int mc = wil_rxdesc_mcast(d);
 679	struct wil_sta_info *s = &wil->sta[cid];
 680	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
 681				      &s->tid_crypto_rx[tid];
 682	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
 683	const u8 *pn = (u8 *)&d->mac.pn_15_0;
 684
 685	if (!cc->key_set) {
 686		wil_err_ratelimited(wil,
 687				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
 688				    cid, tid, mc, key_id);
 689		return -EINVAL;
 690	}
 691
 692	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
 693		wil_err_ratelimited(wil,
 694				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
 695				    cid, tid, mc, key_id, pn, cc->pn);
 696		return -EINVAL;
 697	}
 698	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
 699
 700	return 0;
 701}
 702
 703static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
 704			      struct wil_net_stats *stats)
 705{
 706	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 707
 708	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
 709	    (d->dma.error & RX_DMA_ERROR_MIC)) {
 710		stats->rx_mic_error++;
 711		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
 712		return -EFAULT;
 713	}
 714
 715	return 0;
 716}
 717
 718static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
 719				    int *security)
 720{
 721	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 722
 723	*cid = wil_skb_get_cid(skb);
 724	*security = wil_rxdesc_security(d);
 725}
 726
 727/*
 728 * Check if skb is ptk eapol key message
 729 *
 730 * returns a pointer to the start of the eapol key structure, NULL
 731 * if frame is not PTK eapol key
 732 */
 733static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
 734						  struct sk_buff *skb)
 735{
 736	u8 *buf;
 737	const struct wil_1x_hdr *hdr;
 738	struct wil_eapol_key *key;
 739	u16 key_info;
 740	int len = skb->len;
 741
 742	if (!skb_mac_header_was_set(skb)) {
 743		wil_err(wil, "mac header was not set\n");
 744		return NULL;
 745	}
 746
 747	len -= skb_mac_offset(skb);
 748
 749	if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
 750	    sizeof(struct wil_eapol_key))
 751		return NULL;
 752
 753	buf = skb_mac_header(skb) + sizeof(struct ethhdr);
 754
 755	hdr = (const struct wil_1x_hdr *)buf;
 756	if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
 757		return NULL;
 758
 759	key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
 760	if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
 761	    key->type != WIL_EAPOL_KEY_TYPE_RSN)
 762		return NULL;
 763
 764	key_info = be16_to_cpu(key->key_info);
 765	if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
 766		return NULL;
 767
 768	return key;
 769}
 770
 771static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
 772{
 773	struct wil_eapol_key *key;
 774	u16 key_info;
 775
 776	key = wil_is_ptk_eapol_key(wil, skb);
 777	if (!key)
 778		return false;
 779
 780	key_info = be16_to_cpu(key->key_info);
 781	if (key_info & (WIL_KEY_INFO_MIC |
 782			WIL_KEY_INFO_ENCR_KEY_DATA)) {
 783		/* 3/4 of 4-Way Handshake */
 784		wil_dbg_misc(wil, "EAPOL key message 3\n");
 785		return true;
 786	}
 787	/* 1/4 of 4-Way Handshake */
 788	wil_dbg_misc(wil, "EAPOL key message 1\n");
 789
 790	return false;
 791}
 792
 793static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
 794{
 795	struct wil_eapol_key *key;
 796	u32 *nonce, i;
 797
 798	key = wil_is_ptk_eapol_key(wil, skb);
 799	if (!key)
 800		return false;
 801
 802	nonce = (u32 *)key->key_nonce;
 803	for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
 804		if (*nonce != 0) {
 805			/* message 2/4 */
 806			wil_dbg_misc(wil, "EAPOL key message 2\n");
 807			return false;
 808		}
 809	}
 810	wil_dbg_misc(wil, "EAPOL key message 4\n");
 811
 812	return true;
 813}
 814
 815void wil_enable_tx_key_worker(struct work_struct *work)
 816{
 817	struct wil6210_vif *vif = container_of(work,
 818			struct wil6210_vif, enable_tx_key_worker);
 819	struct wil6210_priv *wil = vif_to_wil(vif);
 820	int rc, cid;
 821
 822	rtnl_lock();
 823	if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
 824		wil_dbg_misc(wil, "Invalid rekey state = %d\n",
 825			     vif->ptk_rekey_state);
 826		rtnl_unlock();
 827		return;
 828	}
 829
 830	cid =  wil_find_cid_by_idx(wil, vif->mid, 0);
 831	if (!wil_cid_valid(wil, cid)) {
 832		wil_err(wil, "Invalid cid = %d\n", cid);
 833		rtnl_unlock();
 834		return;
 835	}
 836
 837	wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
 838	rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
 839				WMI_KEY_USE_APPLY_PTK);
 840
 841	vif->ptk_rekey_state = WIL_REKEY_IDLE;
 842	rtnl_unlock();
 843
 844	if (rc)
 845		wil_err(wil, "Apply PTK key failed %d\n", rc);
 846}
 847
 848void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
 849{
 850	struct wil6210_priv *wil = vif_to_wil(vif);
 851	struct wireless_dev *wdev = vif_to_wdev(vif);
 852	bool q = false;
 853
 854	if (wdev->iftype != NL80211_IFTYPE_STATION ||
 855	    !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
 856		return;
 857
 858	/* check if skb is an EAP message 4/4 */
 859	if (!wil_skb_is_eap_4(wil, skb))
 860		return;
 861
 862	spin_lock_bh(&wil->eap_lock);
 863	switch (vif->ptk_rekey_state) {
 864	case WIL_REKEY_IDLE:
 865		/* ignore idle state, can happen due to M4 retransmission */
 866		break;
 867	case WIL_REKEY_M3_RECEIVED:
 868		vif->ptk_rekey_state = WIL_REKEY_IDLE;
 869		break;
 870	case WIL_REKEY_WAIT_M4_SENT:
 871		q = true;
 872		break;
 873	default:
 874		wil_err(wil, "Unknown rekey state = %d",
 875			vif->ptk_rekey_state);
 876	}
 877	spin_unlock_bh(&wil->eap_lock);
 878
 879	if (q) {
 880		q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
 881		wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
 882			     q);
 883	}
 884}
 885
 886static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
 887{
 888	struct wil6210_priv *wil = vif_to_wil(vif);
 889	struct wireless_dev *wdev = vif_to_wdev(vif);
 890
 891	if (wdev->iftype != NL80211_IFTYPE_STATION ||
 892	    !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
 893		return;
 894
 895	/* check if skb is a EAP message 3/4 */
 896	if (!wil_skb_is_eap_3(wil, skb))
 897		return;
 898
 899	if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
 900		vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
 901}
 902
 903/*
 904 * Pass Rx packet to the netif. Update statistics.
 905 * Called in softirq context (NAPI poll).
 906 */
 907void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
 908		  struct wil_net_stats *stats, bool gro)
 909{
 910	gro_result_t rc = GRO_NORMAL;
 911	struct wil6210_vif *vif = ndev_to_vif(ndev);
 912	struct wil6210_priv *wil = ndev_to_wil(ndev);
 913	struct wireless_dev *wdev = vif_to_wdev(vif);
 914	unsigned int len = skb->len;
 915	u8 *sa, *da = wil_skb_get_da(skb);
 916	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
 917	 * is not suitable, need to look at data
 918	 */
 919	int mcast = is_multicast_ether_addr(da);
 920	struct sk_buff *xmit_skb = NULL;
 921	static const char * const gro_res_str[] = {
 922		[GRO_MERGED]		= "GRO_MERGED",
 923		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
 924		[GRO_HELD]		= "GRO_HELD",
 925		[GRO_NORMAL]		= "GRO_NORMAL",
 926		[GRO_DROP]		= "GRO_DROP",
 927		[GRO_CONSUMED]		= "GRO_CONSUMED",
 928	};
 929
 930	if (wdev->iftype == NL80211_IFTYPE_STATION) {
 931		sa = wil_skb_get_sa(skb);
 932		if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
 933			/* mcast packet looped back to us */
 934			rc = GRO_DROP;
 935			dev_kfree_skb(skb);
 936			goto stats;
 937		}
 938	} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
 939		if (mcast) {
 940			/* send multicast frames both to higher layers in
 941			 * local net stack and back to the wireless medium
 942			 */
 943			xmit_skb = skb_copy(skb, GFP_ATOMIC);
 944		} else {
 945			int xmit_cid = wil_find_cid(wil, vif->mid, da);
 946
 947			if (xmit_cid >= 0) {
 948				/* The destination station is associated to
 949				 * this AP (in this VLAN), so send the frame
 950				 * directly to it and do not pass it to local
 951				 * net stack.
 952				 */
 953				xmit_skb = skb;
 954				skb = NULL;
 955			}
 956		}
 957	}
 958	if (xmit_skb) {
 959		/* Send to wireless media and increase priority by 256 to
 960		 * keep the received priority instead of reclassifying
 961		 * the frame (see cfg80211_classify8021d).
 962		 */
 963		xmit_skb->dev = ndev;
 964		xmit_skb->priority += 256;
 965		xmit_skb->protocol = htons(ETH_P_802_3);
 966		skb_reset_network_header(xmit_skb);
 967		skb_reset_mac_header(xmit_skb);
 968		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
 969		dev_queue_xmit(xmit_skb);
 970	}
 971
 972	if (skb) { /* deliver to local stack */
 973		skb->protocol = eth_type_trans(skb, ndev);
 974		skb->dev = ndev;
 975
 976		if (skb->protocol == cpu_to_be16(ETH_P_PAE))
 977			wil_rx_handle_eapol(vif, skb);
 978
 979		if (gro)
 980			rc = napi_gro_receive(&wil->napi_rx, skb);
 981		else
 982			netif_rx_ni(skb);
 983		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
 984			     len, gro_res_str[rc]);
 985	}
 986stats:
 987	/* statistics. rc set to GRO_NORMAL for AP bridging */
 988	if (unlikely(rc == GRO_DROP)) {
 989		ndev->stats.rx_dropped++;
 990		stats->rx_dropped++;
 991		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
 992	} else {
 993		ndev->stats.rx_packets++;
 994		stats->rx_packets++;
 995		ndev->stats.rx_bytes += len;
 996		stats->rx_bytes += len;
 997		if (mcast)
 998			ndev->stats.multicast++;
 999	}
1000}
1001
1002void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
1003{
1004	int cid, security;
1005	struct wil6210_priv *wil = ndev_to_wil(ndev);
1006	struct wil_net_stats *stats;
1007
1008	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
1009
1010	stats = &wil->sta[cid].stats;
1011
1012	skb_orphan(skb);
1013
1014	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
1015		wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
1016		dev_kfree_skb(skb);
1017		ndev->stats.rx_dropped++;
1018		stats->rx_replay++;
1019		stats->rx_dropped++;
1020		return;
1021	}
1022
1023	/* check errors reported by HW and update statistics */
1024	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
1025		dev_kfree_skb(skb);
1026		return;
1027	}
1028
1029	wil_netif_rx(skb, ndev, cid, stats, true);
1030}
1031
1032/**
1033 * Proceed all completed skb's from Rx VRING
1034 *
1035 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1036 */
1037void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1038{
1039	struct net_device *ndev = wil->main_ndev;
1040	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1041	struct wil_ring *v = &wil->ring_rx;
1042	struct sk_buff *skb;
1043
1044	if (unlikely(!v->va)) {
1045		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1046		return;
1047	}
1048	wil_dbg_txrx(wil, "rx_handle\n");
1049	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1050		(*quota)--;
1051
1052		/* monitor is currently supported on main interface only */
1053		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1054			skb->dev = ndev;
1055			skb_reset_mac_header(skb);
1056			skb->ip_summed = CHECKSUM_UNNECESSARY;
1057			skb->pkt_type = PACKET_OTHERHOST;
1058			skb->protocol = htons(ETH_P_802_2);
1059			wil_netif_rx_any(skb, ndev);
1060		} else {
1061			wil_rx_reorder(wil, skb);
1062		}
1063	}
1064	wil_rx_refill(wil, v->size);
1065}
1066
1067static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1068{
1069	wil->rx_buf_len = rx_large_buf ?
1070		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1071	if (mtu_max > wil->rx_buf_len) {
1072		/* do not allow RX buffers to be smaller than mtu_max, for
1073		 * backward compatibility (mtu_max parameter was also used
1074		 * to support receiving large packets)
1075		 */
1076		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1077		wil->rx_buf_len = mtu_max;
1078	}
1079}
1080
1081static int wil_rx_init(struct wil6210_priv *wil, uint order)
1082{
1083	struct wil_ring *vring = &wil->ring_rx;
1084	int rc;
1085
1086	wil_dbg_misc(wil, "rx_init\n");
1087
1088	if (vring->va) {
1089		wil_err(wil, "Rx ring already allocated\n");
1090		return -EINVAL;
1091	}
1092
1093	wil_rx_buf_len_init(wil);
1094
1095	vring->size = 1 << order;
1096	vring->is_rx = true;
1097	rc = wil_vring_alloc(wil, vring);
1098	if (rc)
1099		return rc;
1100
1101	rc = wmi_rx_chain_add(wil, vring);
1102	if (rc)
1103		goto err_free;
1104
1105	rc = wil_rx_refill(wil, vring->size);
1106	if (rc)
1107		goto err_free;
1108
1109	return 0;
1110 err_free:
1111	wil_vring_free(wil, vring);
1112
1113	return rc;
1114}
1115
1116static void wil_rx_fini(struct wil6210_priv *wil)
1117{
1118	struct wil_ring *vring = &wil->ring_rx;
1119
1120	wil_dbg_misc(wil, "rx_fini\n");
1121
1122	if (vring->va)
1123		wil_vring_free(wil, vring);
1124}
1125
1126static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1127			   u32 len, int vring_index)
1128{
1129	struct vring_tx_desc *d = &desc->legacy;
1130
1131	wil_desc_addr_set(&d->dma.addr, pa);
1132	d->dma.ip_length = 0;
1133	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1134	d->dma.b11 = 0/*14 | BIT(7)*/;
1135	d->dma.error = 0;
1136	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1137	d->dma.length = cpu_to_le16((u16)len);
1138	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1139	d->mac.d[0] = 0;
1140	d->mac.d[1] = 0;
1141	d->mac.d[2] = 0;
1142	d->mac.ucode_cmd = 0;
1143	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
1144	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1145		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1146
1147	return 0;
1148}
1149
1150void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1151{
1152	spin_lock_bh(&txdata->lock);
1153	txdata->dot1x_open = 0;
1154	txdata->enabled = 0;
1155	txdata->idle = 0;
1156	txdata->last_idle = 0;
1157	txdata->begin = 0;
1158	txdata->agg_wsize = 0;
1159	txdata->agg_timeout = 0;
1160	txdata->agg_amsdu = 0;
1161	txdata->addba_in_progress = false;
1162	txdata->mid = U8_MAX;
1163	spin_unlock_bh(&txdata->lock);
1164}
1165
1166static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1167			     int cid, int tid)
1168{
1169	struct wil6210_priv *wil = vif_to_wil(vif);
1170	int rc;
1171	struct wmi_vring_cfg_cmd cmd = {
1172		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1173		.vring_cfg = {
1174			.tx_sw_ring = {
1175				.max_mpdu_size =
1176					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1177				.ring_size = cpu_to_le16(size),
1178			},
1179			.ringid = id,
1180			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1181			.mac_ctrl = 0,
1182			.to_resolution = 0,
1183			.agg_max_wsize = 0,
1184			.schd_params = {
1185				.priority = cpu_to_le16(0),
1186				.timeslot_us = cpu_to_le16(0xfff),
1187			},
1188		},
1189	};
1190	struct {
1191		struct wmi_cmd_hdr wmi;
1192		struct wmi_vring_cfg_done_event cmd;
1193	} __packed reply = {
1194		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1195	};
1196	struct wil_ring *vring = &wil->ring_tx[id];
1197	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1198
1199	if (cid >= WIL6210_RX_DESC_MAX_CID) {
1200		cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1201		cmd.vring_cfg.cid = cid;
1202		cmd.vring_cfg.tid = tid;
1203	} else {
1204		cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1205	}
1206
1207	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1208		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1209	lockdep_assert_held(&wil->mutex);
1210
1211	if (vring->va) {
1212		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1213		rc = -EINVAL;
1214		goto out;
1215	}
1216
1217	wil_tx_data_init(txdata);
1218	vring->is_rx = false;
1219	vring->size = size;
1220	rc = wil_vring_alloc(wil, vring);
1221	if (rc)
1222		goto out;
1223
1224	wil->ring2cid_tid[id][0] = cid;
1225	wil->ring2cid_tid[id][1] = tid;
1226
1227	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1228
1229	if (!vif->privacy)
1230		txdata->dot1x_open = true;
1231	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1232		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1233		      WIL_WMI_CALL_GENERAL_TO_MS);
1234	if (rc)
1235		goto out_free;
1236
1237	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1238		wil_err(wil, "Tx config failed, status 0x%02x\n",
1239			reply.cmd.status);
1240		rc = -EINVAL;
1241		goto out_free;
1242	}
1243
1244	spin_lock_bh(&txdata->lock);
1245	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1246	txdata->mid = vif->mid;
1247	txdata->enabled = 1;
1248	spin_unlock_bh(&txdata->lock);
1249
1250	if (txdata->dot1x_open && (agg_wsize >= 0))
1251		wil_addba_tx_request(wil, id, agg_wsize);
1252
1253	return 0;
1254 out_free:
1255	spin_lock_bh(&txdata->lock);
1256	txdata->dot1x_open = false;
1257	txdata->enabled = 0;
1258	spin_unlock_bh(&txdata->lock);
1259	wil_vring_free(wil, vring);
1260	wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1261	wil->ring2cid_tid[id][1] = 0;
1262
1263 out:
1264
1265	return rc;
1266}
1267
1268static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1269			       int tid)
1270{
1271	struct wil6210_priv *wil = vif_to_wil(vif);
1272	int rc;
1273	struct wmi_vring_cfg_cmd cmd = {
1274		.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1275		.vring_cfg = {
1276			.tx_sw_ring = {
1277				.max_mpdu_size =
1278					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1279				.ring_size = 0,
1280			},
1281			.ringid = ring_id,
1282			.cidxtid = mk_cidxtid(cid, tid),
1283			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1284			.mac_ctrl = 0,
1285			.to_resolution = 0,
1286			.agg_max_wsize = 0,
1287			.schd_params = {
1288				.priority = cpu_to_le16(0),
1289				.timeslot_us = cpu_to_le16(0xfff),
1290			},
1291		},
1292	};
1293	struct {
1294		struct wmi_cmd_hdr wmi;
1295		struct wmi_vring_cfg_done_event cmd;
1296	} __packed reply = {
1297		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1298	};
1299	struct wil_ring *vring = &wil->ring_tx[ring_id];
1300	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1301
1302	wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1303		     cid, tid);
1304	lockdep_assert_held(&wil->mutex);
1305
1306	if (!vring->va) {
1307		wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1308		return -EINVAL;
1309	}
1310
1311	if (wil->ring2cid_tid[ring_id][0] != cid ||
1312	    wil->ring2cid_tid[ring_id][1] != tid) {
1313		wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1314			wil->ring2cid_tid[ring_id][0],
1315			wil->ring2cid_tid[ring_id][1]);
1316	}
1317
1318	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1319
1320	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1321		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1322		      WIL_WMI_CALL_GENERAL_TO_MS);
1323	if (rc)
1324		goto fail;
1325
1326	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1327		wil_err(wil, "Tx modify failed, status 0x%02x\n",
1328			reply.cmd.status);
1329		rc = -EINVAL;
1330		goto fail;
1331	}
1332
1333	/* set BA aggregation window size to 0 to force a new BA with the
1334	 * new AP
1335	 */
1336	txdata->agg_wsize = 0;
1337	if (txdata->dot1x_open && agg_wsize >= 0)
1338		wil_addba_tx_request(wil, ring_id, agg_wsize);
1339
1340	return 0;
1341fail:
1342	spin_lock_bh(&txdata->lock);
1343	txdata->dot1x_open = false;
1344	txdata->enabled = 0;
1345	spin_unlock_bh(&txdata->lock);
1346	wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1347	wil->ring2cid_tid[ring_id][1] = 0;
1348	return rc;
1349}
1350
1351int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1352{
1353	struct wil6210_priv *wil = vif_to_wil(vif);
1354	int rc;
1355	struct wmi_bcast_vring_cfg_cmd cmd = {
1356		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1357		.vring_cfg = {
1358			.tx_sw_ring = {
1359				.max_mpdu_size =
1360					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1361				.ring_size = cpu_to_le16(size),
1362			},
1363			.ringid = id,
1364			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1365		},
1366	};
1367	struct {
1368		struct wmi_cmd_hdr wmi;
1369		struct wmi_vring_cfg_done_event cmd;
1370	} __packed reply = {
1371		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1372	};
1373	struct wil_ring *vring = &wil->ring_tx[id];
1374	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1375
1376	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1377		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1378	lockdep_assert_held(&wil->mutex);
1379
1380	if (vring->va) {
1381		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1382		rc = -EINVAL;
1383		goto out;
1384	}
1385
1386	wil_tx_data_init(txdata);
1387	vring->is_rx = false;
1388	vring->size = size;
1389	rc = wil_vring_alloc(wil, vring);
1390	if (rc)
1391		goto out;
1392
1393	wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1394	wil->ring2cid_tid[id][1] = 0; /* TID */
1395
1396	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1397
1398	if (!vif->privacy)
1399		txdata->dot1x_open = true;
1400	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1401		      &cmd, sizeof(cmd),
1402		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1403		      WIL_WMI_CALL_GENERAL_TO_MS);
1404	if (rc)
1405		goto out_free;
1406
1407	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1408		wil_err(wil, "Tx config failed, status 0x%02x\n",
1409			reply.cmd.status);
1410		rc = -EINVAL;
1411		goto out_free;
1412	}
1413
1414	spin_lock_bh(&txdata->lock);
1415	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1416	txdata->mid = vif->mid;
1417	txdata->enabled = 1;
1418	spin_unlock_bh(&txdata->lock);
1419
1420	return 0;
1421 out_free:
1422	spin_lock_bh(&txdata->lock);
1423	txdata->enabled = 0;
1424	txdata->dot1x_open = false;
1425	spin_unlock_bh(&txdata->lock);
1426	wil_vring_free(wil, vring);
1427 out:
1428
1429	return rc;
1430}
1431
1432static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1433					  struct wil6210_vif *vif,
1434					  struct sk_buff *skb)
1435{
1436	int i, cid;
1437	const u8 *da = wil_skb_get_da(skb);
1438	int min_ring_id = wil_get_min_tx_ring_id(wil);
1439
1440	cid = wil_find_cid(wil, vif->mid, da);
1441
1442	if (cid < 0 || cid >= wil->max_assoc_sta)
1443		return NULL;
1444
1445	/* TODO: fix for multiple TID */
1446	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1447		if (!wil->ring_tx_data[i].dot1x_open &&
1448		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1449			continue;
1450		if (wil->ring2cid_tid[i][0] == cid) {
1451			struct wil_ring *v = &wil->ring_tx[i];
1452			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1453
1454			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1455				     da, i);
1456			if (v->va && txdata->enabled) {
1457				return v;
1458			} else {
1459				wil_dbg_txrx(wil,
1460					     "find_tx_ucast: vring[%d] not valid\n",
1461					     i);
1462				return NULL;
1463			}
1464		}
1465	}
1466
1467	return NULL;
1468}
1469
1470static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1471		       struct wil_ring *ring, struct sk_buff *skb);
1472
1473static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1474					     struct wil6210_vif *vif,
1475					     struct sk_buff *skb)
1476{
1477	struct wil_ring *ring;
1478	int i;
1479	u8 cid;
1480	struct wil_ring_tx_data  *txdata;
1481	int min_ring_id = wil_get_min_tx_ring_id(wil);
1482
1483	/* In the STA mode, it is expected to have only 1 VRING
1484	 * for the AP we connected to.
1485	 * find 1-st vring eligible for this skb and use it.
1486	 */
1487	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1488		ring = &wil->ring_tx[i];
1489		txdata = &wil->ring_tx_data[i];
1490		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1491			continue;
1492
1493		cid = wil->ring2cid_tid[i][0];
1494		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1495			continue;
1496
1497		if (!wil->ring_tx_data[i].dot1x_open &&
1498		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1499			continue;
1500
1501		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1502
1503		return ring;
1504	}
1505
1506	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1507
1508	return NULL;
1509}
1510
1511/* Use one of 2 strategies:
1512 *
1513 * 1. New (real broadcast):
1514 *    use dedicated broadcast vring
1515 * 2. Old (pseudo-DMS):
1516 *    Find 1-st vring and return it;
1517 *    duplicate skb and send it to other active vrings;
1518 *    in all cases override dest address to unicast peer's address
1519 * Use old strategy when new is not supported yet:
1520 *  - for PBSS
1521 */
1522static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1523					    struct wil6210_vif *vif,
1524					    struct sk_buff *skb)
1525{
1526	struct wil_ring *v;
1527	struct wil_ring_tx_data *txdata;
1528	int i = vif->bcast_ring;
1529
1530	if (i < 0)
1531		return NULL;
1532	v = &wil->ring_tx[i];
1533	txdata = &wil->ring_tx_data[i];
1534	if (!v->va || !txdata->enabled)
1535		return NULL;
1536	if (!wil->ring_tx_data[i].dot1x_open &&
1537	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1538		return NULL;
1539
1540	return v;
1541}
1542
1543static void wil_set_da_for_vring(struct wil6210_priv *wil,
1544				 struct sk_buff *skb, int vring_index)
1545{
1546	u8 *da = wil_skb_get_da(skb);
1547	int cid = wil->ring2cid_tid[vring_index][0];
1548
1549	ether_addr_copy(da, wil->sta[cid].addr);
1550}
1551
1552static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1553					    struct wil6210_vif *vif,
1554					    struct sk_buff *skb)
1555{
1556	struct wil_ring *v, *v2;
1557	struct sk_buff *skb2;
1558	int i;
1559	u8 cid;
1560	const u8 *src = wil_skb_get_sa(skb);
1561	struct wil_ring_tx_data *txdata, *txdata2;
1562	int min_ring_id = wil_get_min_tx_ring_id(wil);
1563
1564	/* find 1-st vring eligible for data */
1565	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1566		v = &wil->ring_tx[i];
1567		txdata = &wil->ring_tx_data[i];
1568		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1569			continue;
1570
1571		cid = wil->ring2cid_tid[i][0];
1572		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1573			continue;
1574		if (!wil->ring_tx_data[i].dot1x_open &&
1575		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1576			continue;
1577
1578		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1579		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1580			continue;
1581
1582		goto found;
1583	}
1584
1585	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1586
1587	return NULL;
1588
1589found:
1590	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1591	wil_set_da_for_vring(wil, skb, i);
1592
1593	/* find other active vrings and duplicate skb for each */
1594	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1595		v2 = &wil->ring_tx[i];
1596		txdata2 = &wil->ring_tx_data[i];
1597		if (!v2->va || txdata2->mid != vif->mid)
1598			continue;
1599		cid = wil->ring2cid_tid[i][0];
1600		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1601			continue;
1602		if (!wil->ring_tx_data[i].dot1x_open &&
1603		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1604			continue;
1605
1606		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1607			continue;
1608
1609		skb2 = skb_copy(skb, GFP_ATOMIC);
1610		if (skb2) {
1611			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1612			wil_set_da_for_vring(wil, skb2, i);
1613			wil_tx_ring(wil, vif, v2, skb2);
1614			/* successful call to wil_tx_ring takes skb2 ref */
1615			dev_kfree_skb_any(skb2);
1616		} else {
1617			wil_err(wil, "skb_copy failed\n");
1618		}
1619	}
1620
1621	return v;
1622}
1623
1624static inline
1625void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1626{
1627	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1628}
1629
1630/**
1631 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1632 * @skb is used to obtain the protocol and headers length.
1633 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1634 * 2 - middle, 3 - last descriptor.
1635 */
1636
1637static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1638					  struct sk_buff *skb,
1639					  int tso_desc_type, bool is_ipv4,
1640					  int tcp_hdr_len, int skb_net_hdr_len)
1641{
1642	d->dma.b11 = ETH_HLEN; /* MAC header length */
1643	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1644
1645	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1646	/* L4 header len: TCP header length */
1647	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1648
1649	/* Setup TSO: bit and desc type */
1650	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1651		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1652	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1653
1654	d->dma.ip_length = skb_net_hdr_len;
1655	/* Enable TCP/UDP checksum */
1656	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1657	/* Calculate pseudo-header */
1658	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1659}
1660
1661/**
1662 * Sets the descriptor @d up for csum. The corresponding
1663 * @skb is used to obtain the protocol and headers length.
1664 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1665 * Note, if d==NULL, the function only returns the protocol result.
1666 *
1667 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1668 * is "if unrolling" to optimize the critical path.
1669 */
1670
1671static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1672				     struct sk_buff *skb){
1673	int protocol;
1674
1675	if (skb->ip_summed != CHECKSUM_PARTIAL)
1676		return 0;
1677
1678	d->dma.b11 = ETH_HLEN; /* MAC header length */
1679
1680	switch (skb->protocol) {
1681	case cpu_to_be16(ETH_P_IP):
1682		protocol = ip_hdr(skb)->protocol;
1683		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1684		break;
1685	case cpu_to_be16(ETH_P_IPV6):
1686		protocol = ipv6_hdr(skb)->nexthdr;
1687		break;
1688	default:
1689		return -EINVAL;
1690	}
1691
1692	switch (protocol) {
1693	case IPPROTO_TCP:
1694		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1695		/* L4 header len: TCP header length */
1696		d->dma.d0 |=
1697		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1698		break;
1699	case IPPROTO_UDP:
1700		/* L4 header len: UDP header length */
1701		d->dma.d0 |=
1702		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1703		break;
1704	default:
1705		return -EINVAL;
1706	}
1707
1708	d->dma.ip_length = skb_network_header_len(skb);
1709	/* Enable TCP/UDP checksum */
1710	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1711	/* Calculate pseudo-header */
1712	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1713
1714	return 0;
1715}
1716
1717static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1718{
1719	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1720	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1721	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1722}
1723
1724static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1725{
1726	d->dma.d0 |= wil_tso_type_lst <<
1727		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1728}
1729
1730static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1731			      struct wil_ring *vring, struct sk_buff *skb)
1732{
1733	struct device *dev = wil_to_dev(wil);
1734
1735	/* point to descriptors in shared memory */
1736	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1737				      *_first_desc = NULL;
1738
1739	/* pointers to shadow descriptors */
1740	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1741			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1742			     *first_desc = &first_desc_mem;
1743
1744	/* pointer to shadow descriptors' context */
1745	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1746
1747	int descs_used = 0; /* total number of used descriptors */
1748	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1749
1750	u32 swhead = vring->swhead;
1751	int used, avail = wil_ring_avail_tx(vring);
1752	int nr_frags = skb_shinfo(skb)->nr_frags;
1753	int min_desc_required = nr_frags + 1;
1754	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1755	int f, len, hdrlen, headlen;
1756	int vring_index = vring - wil->ring_tx;
1757	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1758	uint i = swhead;
1759	dma_addr_t pa;
1760	const skb_frag_t *frag = NULL;
1761	int rem_data = mss;
1762	int lenmss;
1763	int hdr_compensation_need = true;
1764	int desc_tso_type = wil_tso_type_first;
1765	bool is_ipv4;
1766	int tcp_hdr_len;
1767	int skb_net_hdr_len;
1768	int gso_type;
1769	int rc = -EINVAL;
1770
1771	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1772		     vring_index);
1773
1774	if (unlikely(!txdata->enabled))
1775		return -EINVAL;
1776
1777	/* A typical page 4K is 3-4 payloads, we assume each fragment
1778	 * is a full payload, that's how min_desc_required has been
1779	 * calculated. In real we might need more or less descriptors,
1780	 * this is the initial check only.
1781	 */
1782	if (unlikely(avail < min_desc_required)) {
1783		wil_err_ratelimited(wil,
1784				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1785				    vring_index, min_desc_required);
1786		return -ENOMEM;
1787	}
1788
1789	/* Header Length = MAC header len + IP header len + TCP header len*/
1790	hdrlen = ETH_HLEN +
1791		(int)skb_network_header_len(skb) +
1792		tcp_hdrlen(skb);
1793
1794	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1795	switch (gso_type) {
1796	case SKB_GSO_TCPV4:
1797		/* TCP v4, zero out the IP length and IPv4 checksum fields
1798		 * as required by the offloading doc
1799		 */
1800		ip_hdr(skb)->tot_len = 0;
1801		ip_hdr(skb)->check = 0;
1802		is_ipv4 = true;
1803		break;
1804	case SKB_GSO_TCPV6:
1805		/* TCP v6, zero out the payload length */
1806		ipv6_hdr(skb)->payload_len = 0;
1807		is_ipv4 = false;
1808		break;
1809	default:
1810		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1811		 * It is also illegal for both to be set simultaneously
1812		 */
1813		return -EINVAL;
1814	}
1815
1816	if (skb->ip_summed != CHECKSUM_PARTIAL)
1817		return -EINVAL;
1818
1819	/* tcp header length and skb network header length are fixed for all
1820	 * packet's descriptors - read then once here
1821	 */
1822	tcp_hdr_len = tcp_hdrlen(skb);
1823	skb_net_hdr_len = skb_network_header_len(skb);
1824
1825	_hdr_desc = &vring->va[i].tx.legacy;
1826
1827	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1828	if (unlikely(dma_mapping_error(dev, pa))) {
1829		wil_err(wil, "TSO: Skb head DMA map error\n");
1830		goto err_exit;
1831	}
1832
1833	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1834				  hdrlen, vring_index);
1835	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1836				      tcp_hdr_len, skb_net_hdr_len);
1837	wil_tx_last_desc(hdr_desc);
1838
1839	vring->ctx[i].mapped_as = wil_mapped_as_single;
1840	hdr_ctx = &vring->ctx[i];
1841
1842	descs_used++;
1843	headlen = skb_headlen(skb) - hdrlen;
1844
1845	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1846		if (headlen) {
1847			len = headlen;
1848			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1849				     len);
1850		} else {
1851			frag = &skb_shinfo(skb)->frags[f];
1852			len = skb_frag_size(frag);
1853			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1854		}
1855
1856		while (len) {
1857			wil_dbg_txrx(wil,
1858				     "TSO: len %d, rem_data %d, descs_used %d\n",
1859				     len, rem_data, descs_used);
1860
1861			if (descs_used == avail)  {
1862				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1863				rc = -ENOMEM;
1864				goto mem_error;
1865			}
1866
1867			lenmss = min_t(int, rem_data, len);
1868			i = (swhead + descs_used) % vring->size;
1869			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1870
1871			if (!headlen) {
1872				pa = skb_frag_dma_map(dev, frag,
1873						      skb_frag_size(frag) - len,
1874						      lenmss, DMA_TO_DEVICE);
1875				vring->ctx[i].mapped_as = wil_mapped_as_page;
1876			} else {
1877				pa = dma_map_single(dev,
1878						    skb->data +
1879						    skb_headlen(skb) - headlen,
1880						    lenmss,
1881						    DMA_TO_DEVICE);
1882				vring->ctx[i].mapped_as = wil_mapped_as_single;
1883				headlen -= lenmss;
1884			}
1885
1886			if (unlikely(dma_mapping_error(dev, pa))) {
1887				wil_err(wil, "TSO: DMA map page error\n");
1888				goto mem_error;
1889			}
1890
1891			_desc = &vring->va[i].tx.legacy;
1892
1893			if (!_first_desc) {
1894				_first_desc = _desc;
1895				first_ctx = &vring->ctx[i];
1896				d = first_desc;
1897			} else {
1898				d = &desc_mem;
1899			}
1900
1901			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1902						  pa, lenmss, vring_index);
1903			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1904						      is_ipv4, tcp_hdr_len,
1905						      skb_net_hdr_len);
1906
1907			/* use tso_type_first only once */
1908			desc_tso_type = wil_tso_type_mid;
1909
1910			descs_used++;  /* desc used so far */
1911			sg_desc_cnt++; /* desc used for this segment */
1912			len -= lenmss;
1913			rem_data -= lenmss;
1914
1915			wil_dbg_txrx(wil,
1916				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1917				     len, rem_data, descs_used, sg_desc_cnt);
1918
1919			/* Close the segment if reached mss size or last frag*/
1920			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1921				if (hdr_compensation_need) {
1922					/* first segment include hdr desc for
1923					 * release
1924					 */
1925					hdr_ctx->nr_frags = sg_desc_cnt;
1926					wil_tx_desc_set_nr_frags(first_desc,
1927								 sg_desc_cnt +
1928								 1);
1929					hdr_compensation_need = false;
1930				} else {
1931					wil_tx_desc_set_nr_frags(first_desc,
1932								 sg_desc_cnt);
1933				}
1934				first_ctx->nr_frags = sg_desc_cnt - 1;
1935
1936				wil_tx_last_desc(d);
1937
1938				/* first descriptor may also be the last
1939				 * for this mss - make sure not to copy
1940				 * it twice
1941				 */
1942				if (first_desc != d)
1943					*_first_desc = *first_desc;
1944
1945				/*last descriptor will be copied at the end
1946				 * of this TS processing
1947				 */
1948				if (f < nr_frags - 1 || len > 0)
1949					*_desc = *d;
1950
1951				rem_data = mss;
1952				_first_desc = NULL;
1953				sg_desc_cnt = 0;
1954			} else if (first_desc != d) /* update mid descriptor */
1955					*_desc = *d;
1956		}
1957	}
1958
1959	if (!_desc)
1960		goto mem_error;
1961
1962	/* first descriptor may also be the last.
1963	 * in this case d pointer is invalid
1964	 */
1965	if (_first_desc == _desc)
1966		d = first_desc;
1967
1968	/* Last data descriptor */
1969	wil_set_tx_desc_last_tso(d);
1970	*_desc = *d;
1971
1972	/* Fill the total number of descriptors in first desc (hdr)*/
1973	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1974	*_hdr_desc = *hdr_desc;
1975
1976	/* hold reference to skb
1977	 * to prevent skb release before accounting
1978	 * in case of immediate "tx done"
1979	 */
1980	vring->ctx[i].skb = skb_get(skb);
1981
1982	/* performance monitoring */
1983	used = wil_ring_used_tx(vring);
1984	if (wil_val_in_range(wil->ring_idle_trsh,
1985			     used, used + descs_used)) {
1986		txdata->idle += get_cycles() - txdata->last_idle;
1987		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1988			     vring_index, used, used + descs_used);
1989	}
1990
1991	/* Make sure to advance the head only after descriptor update is done.
1992	 * This will prevent a race condition where the completion thread
1993	 * will see the DU bit set from previous run and will handle the
1994	 * skb before it was completed.
1995	 */
1996	wmb();
1997
1998	/* advance swhead */
1999	wil_ring_advance_head(vring, descs_used);
2000	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
2001
2002	/* make sure all writes to descriptors (shared memory) are done before
2003	 * committing them to HW
2004	 */
2005	wmb();
2006
2007	if (wil->tx_latency)
2008		*(ktime_t *)&skb->cb = ktime_get();
2009	else
2010		memset(skb->cb, 0, sizeof(ktime_t));
2011
2012	wil_w(wil, vring->hwtail, vring->swhead);
2013	return 0;
2014
2015mem_error:
2016	while (descs_used > 0) {
2017		struct wil_ctx *ctx;
2018
2019		i = (swhead + descs_used - 1) % vring->size;
2020		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2021		_desc = &vring->va[i].tx.legacy;
2022		*d = *_desc;
2023		_desc->dma.status = TX_DMA_STATUS_DU;
2024		ctx = &vring->ctx[i];
2025		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2026		memset(ctx, 0, sizeof(*ctx));
2027		descs_used--;
2028	}
2029err_exit:
2030	return rc;
2031}
2032
2033static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2034			 struct wil_ring *ring, struct sk_buff *skb)
2035{
2036	struct device *dev = wil_to_dev(wil);
2037	struct vring_tx_desc dd, *d = &dd;
2038	volatile struct vring_tx_desc *_d;
2039	u32 swhead = ring->swhead;
2040	int avail = wil_ring_avail_tx(ring);
2041	int nr_frags = skb_shinfo(skb)->nr_frags;
2042	uint f = 0;
2043	int ring_index = ring - wil->ring_tx;
2044	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
2045	uint i = swhead;
2046	dma_addr_t pa;
2047	int used;
2048	bool mcast = (ring_index == vif->bcast_ring);
2049	uint len = skb_headlen(skb);
2050
2051	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2052		     skb->len, ring_index, nr_frags);
2053
2054	if (unlikely(!txdata->enabled))
2055		return -EINVAL;
2056
2057	if (unlikely(avail < 1 + nr_frags)) {
2058		wil_err_ratelimited(wil,
2059				    "Tx ring[%2d] full. No space for %d fragments\n",
2060				    ring_index, 1 + nr_frags);
2061		return -ENOMEM;
2062	}
2063	_d = &ring->va[i].tx.legacy;
2064
2065	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2066
2067	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2068		     skb_headlen(skb), skb->data, &pa);
2069	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2070			  skb->data, skb_headlen(skb), false);
2071
2072	if (unlikely(dma_mapping_error(dev, pa)))
2073		return -EINVAL;
2074	ring->ctx[i].mapped_as = wil_mapped_as_single;
2075	/* 1-st segment */
2076	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2077				   ring_index);
2078	if (unlikely(mcast)) {
2079		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2080		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2081			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2082	}
2083	/* Process TCP/UDP checksum offloading */
2084	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2085		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2086			ring_index);
2087		goto dma_error;
2088	}
2089
2090	ring->ctx[i].nr_frags = nr_frags;
2091	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2092
2093	/* middle segments */
2094	for (; f < nr_frags; f++) {
2095		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2096		int len = skb_frag_size(frag);
2097
2098		*_d = *d;
2099		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2100		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2101				  (const void *)d, sizeof(*d), false);
2102		i = (swhead + f + 1) % ring->size;
2103		_d = &ring->va[i].tx.legacy;
2104		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2105				      DMA_TO_DEVICE);
2106		if (unlikely(dma_mapping_error(dev, pa))) {
2107			wil_err(wil, "Tx[%2d] failed to map fragment\n",
2108				ring_index);
2109			goto dma_error;
2110		}
2111		ring->ctx[i].mapped_as = wil_mapped_as_page;
2112		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2113					   pa, len, ring_index);
2114		/* no need to check return code -
2115		 * if it succeeded for 1-st descriptor,
2116		 * it will succeed here too
2117		 */
2118		wil_tx_desc_offload_setup(d, skb);
2119	}
2120	/* for the last seg only */
2121	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2122	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2123	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2124	*_d = *d;
2125	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2126	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2127			  (const void *)d, sizeof(*d), false);
2128
2129	/* hold reference to skb
2130	 * to prevent skb release before accounting
2131	 * in case of immediate "tx done"
2132	 */
2133	ring->ctx[i].skb = skb_get(skb);
2134
2135	/* performance monitoring */
2136	used = wil_ring_used_tx(ring);
2137	if (wil_val_in_range(wil->ring_idle_trsh,
2138			     used, used + nr_frags + 1)) {
2139		txdata->idle += get_cycles() - txdata->last_idle;
2140		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
2141			     ring_index, used, used + nr_frags + 1);
2142	}
2143
2144	/* Make sure to advance the head only after descriptor update is done.
2145	 * This will prevent a race condition where the completion thread
2146	 * will see the DU bit set from previous run and will handle the
2147	 * skb before it was completed.
2148	 */
2149	wmb();
2150
2151	/* advance swhead */
2152	wil_ring_advance_head(ring, nr_frags + 1);
2153	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2154		     ring->swhead);
2155	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2156
2157	/* make sure all writes to descriptors (shared memory) are done before
2158	 * committing them to HW
2159	 */
2160	wmb();
2161
2162	if (wil->tx_latency)
2163		*(ktime_t *)&skb->cb = ktime_get();
2164	else
2165		memset(skb->cb, 0, sizeof(ktime_t));
2166
2167	wil_w(wil, ring->hwtail, ring->swhead);
2168
2169	return 0;
2170 dma_error:
2171	/* unmap what we have mapped */
2172	nr_frags = f + 1; /* frags mapped + one for skb head */
2173	for (f = 0; f < nr_frags; f++) {
2174		struct wil_ctx *ctx;
2175
2176		i = (swhead + f) % ring->size;
2177		ctx = &ring->ctx[i];
2178		_d = &ring->va[i].tx.legacy;
2179		*d = *_d;
2180		_d->dma.status = TX_DMA_STATUS_DU;
2181		wil->txrx_ops.tx_desc_unmap(dev,
2182					    (union wil_tx_desc *)d,
2183					    ctx);
2184
2185		memset(ctx, 0, sizeof(*ctx));
2186	}
2187
2188	return -EINVAL;
2189}
2190
2191static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2192		       struct wil_ring *ring, struct sk_buff *skb)
2193{
2194	int ring_index = ring - wil->ring_tx;
2195	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2196	int rc;
2197
2198	spin_lock(&txdata->lock);
2199
2200	if (test_bit(wil_status_suspending, wil->status) ||
2201	    test_bit(wil_status_suspended, wil->status) ||
2202	    test_bit(wil_status_resuming, wil->status)) {
2203		wil_dbg_txrx(wil,
2204			     "suspend/resume in progress. drop packet\n");
2205		spin_unlock(&txdata->lock);
2206		return -EINVAL;
2207	}
2208
2209	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2210	     (wil, vif, ring, skb);
2211
2212	spin_unlock(&txdata->lock);
2213
2214	return rc;
2215}
2216
2217/**
2218 * Check status of tx vrings and stop/wake net queues if needed
2219 * It will start/stop net queues of a specific VIF net_device.
2220 *
2221 * This function does one of two checks:
2222 * In case check_stop is true, will check if net queues need to be stopped. If
2223 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2224 * In case check_stop is false, will check if net queues need to be waked. If
2225 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2226 * vring is the vring which is currently being modified by either adding
2227 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2228 * be null when irrelevant (e.g. connect/disconnect events).
2229 *
2230 * The implementation is to stop net queues if modified vring has low
2231 * descriptor availability. Wake if all vrings are not in low descriptor
2232 * availability and modified vring has high descriptor availability.
2233 */
2234static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2235					   struct wil6210_vif *vif,
2236					   struct wil_ring *ring,
2237					   bool check_stop)
2238{
2239	int i;
2240	int min_ring_id = wil_get_min_tx_ring_id(wil);
2241
2242	if (unlikely(!vif))
2243		return;
2244
2245	if (ring)
2246		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2247			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
2248			     vif->net_queue_stopped);
2249	else
2250		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2251			     check_stop, vif->mid, vif->net_queue_stopped);
2252
2253	if (ring && drop_if_ring_full)
2254		/* no need to stop/wake net queues */
2255		return;
2256
2257	if (check_stop == vif->net_queue_stopped)
2258		/* net queues already in desired state */
2259		return;
2260
2261	if (check_stop) {
2262		if (!ring || unlikely(wil_ring_avail_low(ring))) {
2263			/* not enough room in the vring */
2264			netif_tx_stop_all_queues(vif_to_ndev(vif));
2265			vif->net_queue_stopped = true;
2266			wil_dbg_txrx(wil, "netif_tx_stop called\n");
2267		}
2268		return;
2269	}
2270
2271	/* Do not wake the queues in suspend flow */
2272	if (test_bit(wil_status_suspending, wil->status) ||
2273	    test_bit(wil_status_suspended, wil->status))
2274		return;
2275
2276	/* check wake */
2277	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2278		struct wil_ring *cur_ring = &wil->ring_tx[i];
2279		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2280
2281		if (txdata->mid != vif->mid || !cur_ring->va ||
2282		    !txdata->enabled || cur_ring == ring)
2283			continue;
2284
2285		if (wil_ring_avail_low(cur_ring)) {
2286			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2287				     (int)(cur_ring - wil->ring_tx));
2288			return;
2289		}
2290	}
2291
2292	if (!ring || wil_ring_avail_high(ring)) {
2293		/* enough room in the ring */
2294		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2295		netif_tx_wake_all_queues(vif_to_ndev(vif));
2296		vif->net_queue_stopped = false;
2297	}
2298}
2299
2300void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2301			   struct wil_ring *ring, bool check_stop)
2302{
2303	spin_lock(&wil->net_queue_lock);
2304	__wil_update_net_queues(wil, vif, ring, check_stop);
2305	spin_unlock(&wil->net_queue_lock);
2306}
2307
2308void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2309			      struct wil_ring *ring, bool check_stop)
2310{
2311	spin_lock_bh(&wil->net_queue_lock);
2312	__wil_update_net_queues(wil, vif, ring, check_stop);
2313	spin_unlock_bh(&wil->net_queue_lock);
2314}
2315
2316netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2317{
2318	struct wil6210_vif *vif = ndev_to_vif(ndev);
2319	struct wil6210_priv *wil = vif_to_wil(vif);
2320	const u8 *da = wil_skb_get_da(skb);
2321	bool bcast = is_multicast_ether_addr(da);
2322	struct wil_ring *ring;
2323	static bool pr_once_fw;
2324	int rc;
2325
2326	wil_dbg_txrx(wil, "start_xmit\n");
2327	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2328		if (!pr_once_fw) {
2329			wil_err(wil, "FW not ready\n");
2330			pr_once_fw = true;
2331		}
2332		goto drop;
2333	}
2334	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2335		wil_dbg_ratelimited(wil,
2336				    "VIF not connected, packet dropped\n");
2337		goto drop;
2338	}
2339	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2340		wil_err(wil, "Xmit in monitor mode not supported\n");
2341		goto drop;
2342	}
2343	pr_once_fw = false;
2344
2345	/* find vring */
2346	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2347		/* in STA mode (ESS), all to same VRING (to AP) */
2348		ring = wil_find_tx_ring_sta(wil, vif, skb);
2349	} else if (bcast) {
2350		if (vif->pbss)
2351			/* in pbss, no bcast VRING - duplicate skb in
2352			 * all stations VRINGs
2353			 */
2354			ring = wil_find_tx_bcast_2(wil, vif, skb);
2355		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2356			/* AP has a dedicated bcast VRING */
2357			ring = wil_find_tx_bcast_1(wil, vif, skb);
2358		else
2359			/* unexpected combination, fallback to duplicating
2360			 * the skb in all stations VRINGs
2361			 */
2362			ring = wil_find_tx_bcast_2(wil, vif, skb);
2363	} else {
2364		/* unicast, find specific VRING by dest. address */
2365		ring = wil_find_tx_ucast(wil, vif, skb);
2366	}
2367	if (unlikely(!ring)) {
2368		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2369		goto drop;
2370	}
2371	/* set up vring entry */
2372	rc = wil_tx_ring(wil, vif, ring, skb);
2373
2374	switch (rc) {
2375	case 0:
2376		/* shall we stop net queues? */
2377		wil_update_net_queues_bh(wil, vif, ring, true);
2378		/* statistics will be updated on the tx_complete */
2379		dev_kfree_skb_any(skb);
2380		return NETDEV_TX_OK;
2381	case -ENOMEM:
2382		if (drop_if_ring_full)
2383			goto drop;
2384		return NETDEV_TX_BUSY;
2385	default:
2386		break; /* goto drop; */
2387	}
2388 drop:
2389	ndev->stats.tx_dropped++;
2390	dev_kfree_skb_any(skb);
2391
2392	return NET_XMIT_DROP;
2393}
2394
2395void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2396			 struct wil_sta_info *sta)
2397{
2398	int skb_time_us;
2399	int bin;
2400
2401	if (!wil->tx_latency)
2402		return;
2403
2404	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2405		return;
2406
2407	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2408	bin = skb_time_us / wil->tx_latency_res;
2409	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2410
2411	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2412	sta->tx_latency_bins[bin]++;
2413	sta->stats.tx_latency_total_us += skb_time_us;
2414	if (skb_time_us < sta->stats.tx_latency_min_us)
2415		sta->stats.tx_latency_min_us = skb_time_us;
2416	if (skb_time_us > sta->stats.tx_latency_max_us)
2417		sta->stats.tx_latency_max_us = skb_time_us;
2418}
2419
2420/**
2421 * Clean up transmitted skb's from the Tx VRING
2422 *
2423 * Return number of descriptors cleared
2424 *
2425 * Safe to call from IRQ
2426 */
2427int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2428{
2429	struct wil6210_priv *wil = vif_to_wil(vif);
2430	struct net_device *ndev = vif_to_ndev(vif);
2431	struct device *dev = wil_to_dev(wil);
2432	struct wil_ring *vring = &wil->ring_tx[ringid];
2433	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2434	int done = 0;
2435	int cid = wil->ring2cid_tid[ringid][0];
2436	struct wil_net_stats *stats = NULL;
2437	volatile struct vring_tx_desc *_d;
2438	int used_before_complete;
2439	int used_new;
2440
2441	if (unlikely(!vring->va)) {
2442		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2443		return 0;
2444	}
2445
2446	if (unlikely(!txdata->enabled)) {
2447		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2448		return 0;
2449	}
2450
2451	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2452
2453	used_before_complete = wil_ring_used_tx(vring);
2454
2455	if (cid < wil->max_assoc_sta)
2456		stats = &wil->sta[cid].stats;
2457
2458	while (!wil_ring_is_empty(vring)) {
2459		int new_swtail;
2460		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2461		/**
2462		 * For the fragmented skb, HW will set DU bit only for the
2463		 * last fragment. look for it.
2464		 * In TSO the first DU will include hdr desc
2465		 */
2466		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2467		/* TODO: check we are not past head */
2468
2469		_d = &vring->va[lf].tx.legacy;
2470		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2471			break;
2472
2473		new_swtail = (lf + 1) % vring->size;
2474		while (vring->swtail != new_swtail) {
2475			struct vring_tx_desc dd, *d = &dd;
2476			u16 dmalen;
2477			struct sk_buff *skb;
2478
2479			ctx = &vring->ctx[vring->swtail];
2480			skb = ctx->skb;
2481			_d = &vring->va[vring->swtail].tx.legacy;
2482
2483			*d = *_d;
2484
2485			dmalen = le16_to_cpu(d->dma.length);
2486			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2487					      d->dma.error);
2488			wil_dbg_txrx(wil,
2489				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2490				     ringid, vring->swtail, dmalen,
2491				     d->dma.status, d->dma.error);
2492			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2493					  (const void *)d, sizeof(*d), false);
2494
2495			wil->txrx_ops.tx_desc_unmap(dev,
2496						    (union wil_tx_desc *)d,
2497						    ctx);
2498
2499			if (skb) {
2500				if (likely(d->dma.error == 0)) {
2501					ndev->stats.tx_packets++;
2502					ndev->stats.tx_bytes += skb->len;
2503					if (stats) {
2504						stats->tx_packets++;
2505						stats->tx_bytes += skb->len;
2506
2507						wil_tx_latency_calc(wil, skb,
2508							&wil->sta[cid]);
2509					}
2510				} else {
2511					ndev->stats.tx_errors++;
2512					if (stats)
2513						stats->tx_errors++;
2514				}
2515
2516				if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2517					wil_tx_complete_handle_eapol(vif, skb);
2518
2519				wil_consume_skb(skb, d->dma.error == 0);
2520			}
2521			memset(ctx, 0, sizeof(*ctx));
2522			/* Make sure the ctx is zeroed before updating the tail
2523			 * to prevent a case where wil_tx_ring will see
2524			 * this descriptor as used and handle it before ctx zero
2525			 * is completed.
2526			 */
2527			wmb();
2528			/* There is no need to touch HW descriptor:
2529			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2530			 *   so hardware will not try to process this desc.,
2531			 * - rest of descriptor will be initialized on Tx.
2532			 */
2533			vring->swtail = wil_ring_next_tail(vring);
2534			done++;
2535		}
2536	}
2537
2538	/* performance monitoring */
2539	used_new = wil_ring_used_tx(vring);
2540	if (wil_val_in_range(wil->ring_idle_trsh,
2541			     used_new, used_before_complete)) {
2542		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2543			     ringid, used_before_complete, used_new);
2544		txdata->last_idle = get_cycles();
2545	}
2546
2547	/* shall we wake net queues? */
2548	if (done)
2549		wil_update_net_queues(wil, vif, vring, false);
2550
2551	return done;
2552}
2553
2554static inline int wil_tx_init(struct wil6210_priv *wil)
2555{
2556	return 0;
2557}
2558
2559static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2560
2561static void wil_get_reorder_params(struct wil6210_priv *wil,
2562				   struct sk_buff *skb, int *tid, int *cid,
2563				   int *mid, u16 *seq, int *mcast, int *retry)
2564{
2565	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2566
2567	*tid = wil_rxdesc_tid(d);
2568	*cid = wil_skb_get_cid(skb);
2569	*mid = wil_rxdesc_mid(d);
2570	*seq = wil_rxdesc_seq(d);
2571	*mcast = wil_rxdesc_mcast(d);
2572	*retry = wil_rxdesc_retry(d);
2573}
2574
2575void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2576{
2577	wil->txrx_ops.configure_interrupt_moderation =
2578		wil_configure_interrupt_moderation;
2579	/* TX ops */
2580	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2581	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2582	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2583	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2584	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2585	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2586	wil->txrx_ops.tx_init = wil_tx_init;
2587	wil->txrx_ops.tx_fini = wil_tx_fini;
2588	wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2589	/* RX ops */
2590	wil->txrx_ops.rx_init = wil_rx_init;
2591	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2592	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2593	wil->txrx_ops.get_netif_rx_params =
2594		wil_get_netif_rx_params;
2595	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2596	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2597	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2598	wil->txrx_ops.rx_fini = wil_rx_fini;
2599}