Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/moduleparam.h>
  19#include <linux/if_arp.h>
  20#include <linux/etherdevice.h>
  21#include <linux/rtnetlink.h>
  22
  23#include "wil6210.h"
  24#include "txrx.h"
  25#include "txrx_edma.h"
  26#include "wmi.h"
  27#include "boot_loader.h"
  28
  29#define WAIT_FOR_HALP_VOTE_MS 100
  30#define WAIT_FOR_SCAN_ABORT_MS 1000
  31#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  32#define WIL_BOARD_FILE_MAX_NAMELEN 128
  33
  34bool debug_fw; /* = false; */
  35module_param(debug_fw, bool, 0444);
  36MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  37
  38static u8 oob_mode;
  39module_param(oob_mode, byte, 0444);
  40MODULE_PARM_DESC(oob_mode,
  41		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  42
  43bool no_fw_recovery;
  44module_param(no_fw_recovery, bool, 0644);
  45MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  46
  47/* if not set via modparam, will be set to default value of 1/8 of
  48 * rx ring size during init flow
  49 */
  50unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  51module_param(rx_ring_overflow_thrsh, ushort, 0444);
  52MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  53		 " RX ring overflow threshold in descriptors.");
  54
  55/* We allow allocation of more than 1 page buffers to support large packets.
  56 * It is suboptimal behavior performance wise in case MTU above page size.
  57 */
  58unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  59static int mtu_max_set(const char *val, const struct kernel_param *kp)
  60{
  61	int ret;
  62
  63	/* sets mtu_max directly. no need to restore it in case of
  64	 * illegal value since we assume this will fail insmod
  65	 */
  66	ret = param_set_uint(val, kp);
  67	if (ret)
  68		return ret;
  69
  70	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  71		ret = -EINVAL;
  72
  73	return ret;
  74}
  75
  76static const struct kernel_param_ops mtu_max_ops = {
  77	.set = mtu_max_set,
  78	.get = param_get_uint,
  79};
  80
  81module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  82MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  83
  84static uint rx_ring_order;
  85static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  86static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  87
  88static int ring_order_set(const char *val, const struct kernel_param *kp)
  89{
  90	int ret;
  91	uint x;
  92
  93	ret = kstrtouint(val, 0, &x);
  94	if (ret)
  95		return ret;
  96
  97	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  98		return -EINVAL;
  99
 100	*((uint *)kp->arg) = x;
 101
 102	return 0;
 103}
 104
 105static const struct kernel_param_ops ring_order_ops = {
 106	.set = ring_order_set,
 107	.get = param_get_uint,
 108};
 109
 110module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 111MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 112module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 113MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 114module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 115MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 116
 117enum {
 118	WIL_BOOT_ERR,
 119	WIL_BOOT_VANILLA,
 120	WIL_BOOT_PRODUCTION,
 121	WIL_BOOT_DEVELOPMENT,
 122};
 123
 124enum {
 125	WIL_SIG_STATUS_VANILLA = 0x0,
 126	WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 127	WIL_SIG_STATUS_PRODUCTION = 0x2,
 128	WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 129};
 130
 131#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 132#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 133
 134#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 135
 136#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 137/* round up to be above 2 ms total */
 138#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 139
 140/*
 141 * Due to a hardware issue,
 142 * one has to read/write to/from NIC in 32-bit chunks;
 143 * regular memcpy_fromio and siblings will
 144 * not work on 64-bit platform - it uses 64-bit transactions
 145 *
 146 * Force 32-bit transactions to enable NIC on 64-bit platforms
 147 *
 148 * To avoid byte swap on big endian host, __raw_{read|write}l
 149 * should be used - {read|write}l would swap bytes to provide
 150 * little endian on PCI value in host endianness.
 151 */
 152void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 153			  size_t count)
 154{
 155	u32 *d = dst;
 156	const volatile u32 __iomem *s = src;
 157
 158	for (; count >= 4; count -= 4)
 159		*d++ = __raw_readl(s++);
 160
 161	if (unlikely(count)) {
 162		/* count can be 1..3 */
 163		u32 tmp = __raw_readl(s);
 164
 165		memcpy(d, &tmp, count);
 166	}
 167}
 168
 169void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 170			size_t count)
 171{
 172	volatile u32 __iomem *d = dst;
 173	const u32 *s = src;
 174
 175	for (; count >= 4; count -= 4)
 176		__raw_writel(*s++, d++);
 177
 178	if (unlikely(count)) {
 179		/* count can be 1..3 */
 180		u32 tmp = 0;
 181
 182		memcpy(&tmp, s, count);
 183		__raw_writel(tmp, d);
 184	}
 185}
 186
 187/* Device memory access is prohibited while reset or suspend.
 188 * wil_mem_access_lock protects accessing device memory in these cases
 189 */
 190int wil_mem_access_lock(struct wil6210_priv *wil)
 191{
 192	if (!down_read_trylock(&wil->mem_lock))
 193		return -EBUSY;
 194
 195	if (test_bit(wil_status_suspending, wil->status) ||
 196	    test_bit(wil_status_suspended, wil->status)) {
 197		up_read(&wil->mem_lock);
 198		return -EBUSY;
 199	}
 200
 201	return 0;
 202}
 203
 204void wil_mem_access_unlock(struct wil6210_priv *wil)
 205{
 206	up_read(&wil->mem_lock);
 207}
 208
 209static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 210{
 211	struct wil_ring *ring = &wil->ring_tx[id];
 212	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 213
 214	lockdep_assert_held(&wil->mutex);
 215
 216	if (!ring->va)
 217		return;
 218
 219	wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 220
 221	spin_lock_bh(&txdata->lock);
 222	txdata->dot1x_open = false;
 223	txdata->mid = U8_MAX;
 224	txdata->enabled = 0; /* no Tx can be in progress or start anew */
 225	spin_unlock_bh(&txdata->lock);
 226	/* napi_synchronize waits for completion of the current NAPI but will
 227	 * not prevent the next NAPI run.
 228	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
 229	 * before napi_synchronize so that the next scheduled NAPI will not
 230	 * handle this vring
 231	 */
 232	wmb();
 233	/* make sure NAPI won't touch this vring */
 234	if (test_bit(wil_status_napi_en, wil->status))
 235		napi_synchronize(&wil->napi_tx);
 236
 237	wil->txrx_ops.ring_fini_tx(wil, ring);
 238}
 239
 240static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 241{
 242	int i;
 243
 244	for (i = 0; i < wil->max_assoc_sta; i++) {
 245		if (wil->sta[i].mid == mid &&
 246		    wil->sta[i].status == wil_sta_connected)
 247			return true;
 248	}
 249
 250	return false;
 251}
 252
 253static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 254					u16 reason_code)
 255__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 256{
 257	uint i;
 258	struct wil6210_priv *wil = vif_to_wil(vif);
 259	struct net_device *ndev = vif_to_ndev(vif);
 260	struct wireless_dev *wdev = vif_to_wdev(vif);
 261	struct wil_sta_info *sta = &wil->sta[cid];
 262	int min_ring_id = wil_get_min_tx_ring_id(wil);
 263
 264	might_sleep();
 265	wil_dbg_misc(wil,
 266		     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 267		     cid, sta->mid, sta->status);
 268	/* inform upper layers */
 269	if (sta->status != wil_sta_unused) {
 270		if (vif->mid != sta->mid) {
 271			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 272				vif->mid);
 273		}
 274
 275		switch (wdev->iftype) {
 276		case NL80211_IFTYPE_AP:
 277		case NL80211_IFTYPE_P2P_GO:
 278			/* AP-like interface */
 279			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 280			break;
 281		default:
 282			break;
 283		}
 284		sta->status = wil_sta_unused;
 285		sta->mid = U8_MAX;
 286	}
 287	/* reorder buffers */
 288	for (i = 0; i < WIL_STA_TID_NUM; i++) {
 289		struct wil_tid_ampdu_rx *r;
 290
 291		spin_lock_bh(&sta->tid_rx_lock);
 292
 293		r = sta->tid_rx[i];
 294		sta->tid_rx[i] = NULL;
 295		wil_tid_ampdu_rx_free(wil, r);
 296
 297		spin_unlock_bh(&sta->tid_rx_lock);
 298	}
 299	/* crypto context */
 300	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 301	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 302	/* release vrings */
 303	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 304		if (wil->ring2cid_tid[i][0] == cid)
 305			wil_ring_fini_tx(wil, i);
 306	}
 307	/* statistics */
 308	memset(&sta->stats, 0, sizeof(sta->stats));
 309	sta->stats.tx_latency_min_us = U32_MAX;
 310}
 311
 312static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 313					 const u8 *bssid, u16 reason_code)
 314{
 315	struct wil6210_priv *wil = vif_to_wil(vif);
 316	int cid = -ENOENT;
 317	struct net_device *ndev;
 318	struct wireless_dev *wdev;
 319
 320	ndev = vif_to_ndev(vif);
 321	wdev = vif_to_wdev(vif);
 322
 323	might_sleep();
 324	wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 325		 bssid, reason_code);
 326
 327	/* Cases are:
 328	 * - disconnect single STA, still connected
 329	 * - disconnect single STA, already disconnected
 330	 * - disconnect all
 331	 *
 332	 * For "disconnect all", there are 3 options:
 333	 * - bssid == NULL
 334	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 335	 * - bssid is our MAC address
 336	 */
 337	if (bssid && !is_broadcast_ether_addr(bssid) &&
 338	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 339		cid = wil_find_cid(wil, vif->mid, bssid);
 340		wil_dbg_misc(wil,
 341			     "Disconnect complete %pM, CID=%d, reason=%d\n",
 342			     bssid, cid, reason_code);
 343		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 344			wil_disconnect_cid_complete(vif, cid, reason_code);
 345	} else { /* all */
 346		wil_dbg_misc(wil, "Disconnect complete all\n");
 347		for (cid = 0; cid < wil->max_assoc_sta; cid++)
 348			wil_disconnect_cid_complete(vif, cid, reason_code);
 349	}
 350
 351	/* link state */
 352	switch (wdev->iftype) {
 353	case NL80211_IFTYPE_STATION:
 354	case NL80211_IFTYPE_P2P_CLIENT:
 355		wil_bcast_fini(vif);
 356		wil_update_net_queues_bh(wil, vif, NULL, true);
 357		netif_carrier_off(ndev);
 358		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 359			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 360
 361		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 362			atomic_dec(&wil->connected_vifs);
 363			cfg80211_disconnected(ndev, reason_code,
 364					      NULL, 0,
 365					      vif->locally_generated_disc,
 366					      GFP_KERNEL);
 367			vif->locally_generated_disc = false;
 368		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 369			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 370						WLAN_STATUS_UNSPECIFIED_FAILURE,
 371						GFP_KERNEL);
 372			vif->bss = NULL;
 373		}
 374		clear_bit(wil_vif_fwconnecting, vif->status);
 375		clear_bit(wil_vif_ft_roam, vif->status);
 376		vif->ptk_rekey_state = WIL_REKEY_IDLE;
 377
 378		break;
 379	case NL80211_IFTYPE_AP:
 380	case NL80211_IFTYPE_P2P_GO:
 381		if (!wil_vif_is_connected(wil, vif->mid)) {
 382			wil_update_net_queues_bh(wil, vif, NULL, true);
 383			if (test_and_clear_bit(wil_vif_fwconnected,
 384					       vif->status))
 385				atomic_dec(&wil->connected_vifs);
 386		} else {
 387			wil_update_net_queues_bh(wil, vif, NULL, false);
 388		}
 389		break;
 390	default:
 391		break;
 392	}
 393}
 394
 395static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 396			      u16 reason_code)
 397{
 398	struct wil6210_priv *wil = vif_to_wil(vif);
 399	struct wireless_dev *wdev = vif_to_wdev(vif);
 400	struct wil_sta_info *sta = &wil->sta[cid];
 401	bool del_sta = false;
 402
 403	might_sleep();
 404	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 405		     cid, sta->mid, sta->status);
 406
 407	if (sta->status == wil_sta_unused)
 408		return 0;
 409
 410	if (vif->mid != sta->mid) {
 411		wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 412		return -EINVAL;
 413	}
 414
 415	/* inform lower layers */
 416	if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 417		del_sta = true;
 418
 419	/* disconnect by sending command disconnect/del_sta and wait
 420	 * synchronously for WMI_DISCONNECT_EVENTID event.
 421	 */
 422	return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 423}
 424
 425static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 426				u16 reason_code)
 427{
 428	struct wil6210_priv *wil;
 429	struct net_device *ndev;
 430	int cid = -ENOENT;
 431
 432	if (unlikely(!vif))
 433		return;
 434
 435	wil = vif_to_wil(vif);
 436	ndev = vif_to_ndev(vif);
 437
 438	might_sleep();
 439	wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 440
 441	/* Cases are:
 442	 * - disconnect single STA, still connected
 443	 * - disconnect single STA, already disconnected
 444	 * - disconnect all
 445	 *
 446	 * For "disconnect all", there are 3 options:
 447	 * - bssid == NULL
 448	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 449	 * - bssid is our MAC address
 450	 */
 451	if (bssid && !is_broadcast_ether_addr(bssid) &&
 452	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 453		cid = wil_find_cid(wil, vif->mid, bssid);
 454		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 455			     bssid, cid, reason_code);
 456		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 457			wil_disconnect_cid(vif, cid, reason_code);
 458	} else { /* all */
 459		wil_dbg_misc(wil, "Disconnect all\n");
 460		for (cid = 0; cid < wil->max_assoc_sta; cid++)
 461			wil_disconnect_cid(vif, cid, reason_code);
 462	}
 463
 464	/* call event handler manually after processing wmi_call,
 465	 * to avoid deadlock - disconnect event handler acquires
 466	 * wil->mutex while it is already held here
 467	 */
 468	_wil6210_disconnect_complete(vif, bssid, reason_code);
 469}
 470
 471void wil_disconnect_worker(struct work_struct *work)
 472{
 473	struct wil6210_vif *vif = container_of(work,
 474			struct wil6210_vif, disconnect_worker);
 475	struct wil6210_priv *wil = vif_to_wil(vif);
 476	struct net_device *ndev = vif_to_ndev(vif);
 477	int rc;
 478	struct {
 479		struct wmi_cmd_hdr wmi;
 480		struct wmi_disconnect_event evt;
 481	} __packed reply;
 482
 483	if (test_bit(wil_vif_fwconnected, vif->status))
 484		/* connect succeeded after all */
 485		return;
 486
 487	if (!test_bit(wil_vif_fwconnecting, vif->status))
 488		/* already disconnected */
 489		return;
 490
 491	memset(&reply, 0, sizeof(reply));
 492
 493	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 494		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 495		      WIL6210_DISCONNECT_TO_MS);
 496	if (rc) {
 497		wil_err(wil, "disconnect error %d\n", rc);
 498		return;
 499	}
 500
 501	wil_update_net_queues_bh(wil, vif, NULL, true);
 502	netif_carrier_off(ndev);
 503	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 504				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 505	clear_bit(wil_vif_fwconnecting, vif->status);
 506}
 507
 508static int wil_wait_for_recovery(struct wil6210_priv *wil)
 509{
 510	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 511				     fw_recovery_pending)) {
 512		wil_err(wil, "Interrupt, canceling recovery\n");
 513		return -ERESTARTSYS;
 514	}
 515	if (wil->recovery_state != fw_recovery_running) {
 516		wil_info(wil, "Recovery cancelled\n");
 517		return -EINTR;
 518	}
 519	wil_info(wil, "Proceed with recovery\n");
 520	return 0;
 521}
 522
 523void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 524{
 525	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 526		     wil->recovery_state, state);
 527
 528	wil->recovery_state = state;
 529	wake_up_interruptible(&wil->wq);
 530}
 531
 532bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 533{
 534	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 535}
 536
 537static void wil_fw_error_worker(struct work_struct *work)
 538{
 539	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 540						fw_error_worker);
 541	struct net_device *ndev = wil->main_ndev;
 542	struct wireless_dev *wdev;
 543
 544	wil_dbg_misc(wil, "fw error worker\n");
 545
 546	if (!ndev || !(ndev->flags & IFF_UP)) {
 547		wil_info(wil, "No recovery - interface is down\n");
 548		return;
 549	}
 550	wdev = ndev->ieee80211_ptr;
 551
 552	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 553	 * passed since last recovery attempt
 554	 */
 555	if (time_is_after_jiffies(wil->last_fw_recovery +
 556				  WIL6210_FW_RECOVERY_TO))
 557		wil->recovery_count++;
 558	else
 559		wil->recovery_count = 1; /* fw was alive for a long time */
 560
 561	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 562		wil_err(wil, "too many recovery attempts (%d), giving up\n",
 563			wil->recovery_count);
 564		return;
 565	}
 566
 567	wil->last_fw_recovery = jiffies;
 568
 569	wil_info(wil, "fw error recovery requested (try %d)...\n",
 570		 wil->recovery_count);
 571	if (!no_fw_recovery)
 572		wil->recovery_state = fw_recovery_running;
 573	if (wil_wait_for_recovery(wil) != 0)
 574		return;
 575
 576	rtnl_lock();
 577	mutex_lock(&wil->mutex);
 578	/* Needs adaptation for multiple VIFs
 579	 * need to go over all VIFs and consider the appropriate
 580	 * recovery because each one can have different iftype.
 581	 */
 582	switch (wdev->iftype) {
 583	case NL80211_IFTYPE_STATION:
 584	case NL80211_IFTYPE_P2P_CLIENT:
 585	case NL80211_IFTYPE_MONITOR:
 586		/* silent recovery, upper layers will see disconnect */
 587		__wil_down(wil);
 588		__wil_up(wil);
 589		break;
 590	case NL80211_IFTYPE_AP:
 591	case NL80211_IFTYPE_P2P_GO:
 592		if (no_fw_recovery) /* upper layers do recovery */
 593			break;
 594		/* silent recovery, upper layers will see disconnect */
 595		__wil_down(wil);
 596		__wil_up(wil);
 597		mutex_unlock(&wil->mutex);
 598		wil_cfg80211_ap_recovery(wil);
 599		mutex_lock(&wil->mutex);
 600		wil_info(wil, "... completed\n");
 601		break;
 602	default:
 603		wil_err(wil, "No recovery - unknown interface type %d\n",
 604			wdev->iftype);
 605		break;
 606	}
 607
 608	mutex_unlock(&wil->mutex);
 609	rtnl_unlock();
 610}
 611
 612static int wil_find_free_ring(struct wil6210_priv *wil)
 613{
 614	int i;
 615	int min_ring_id = wil_get_min_tx_ring_id(wil);
 616
 617	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 618		if (!wil->ring_tx[i].va)
 619			return i;
 620	}
 621	return -EINVAL;
 622}
 623
 624int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 625{
 626	struct wil6210_priv *wil = vif_to_wil(vif);
 627	int rc = -EINVAL, ringid;
 628
 629	if (cid < 0) {
 630		wil_err(wil, "No connection pending\n");
 631		goto out;
 632	}
 633	ringid = wil_find_free_ring(wil);
 634	if (ringid < 0) {
 635		wil_err(wil, "No free vring found\n");
 636		goto out;
 637	}
 638
 639	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 640		    cid, vif->mid, ringid);
 641
 642	rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 643					cid, 0);
 644	if (rc)
 645		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 646			cid, vif->mid, ringid);
 647
 648out:
 649	return rc;
 650}
 651
 652int wil_bcast_init(struct wil6210_vif *vif)
 653{
 654	struct wil6210_priv *wil = vif_to_wil(vif);
 655	int ri = vif->bcast_ring, rc;
 656
 657	if (ri >= 0 && wil->ring_tx[ri].va)
 658		return 0;
 659
 660	ri = wil_find_free_ring(wil);
 661	if (ri < 0)
 662		return ri;
 663
 664	vif->bcast_ring = ri;
 665	rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 666	if (rc)
 667		vif->bcast_ring = -1;
 668
 669	return rc;
 670}
 671
 672void wil_bcast_fini(struct wil6210_vif *vif)
 673{
 674	struct wil6210_priv *wil = vif_to_wil(vif);
 675	int ri = vif->bcast_ring;
 676
 677	if (ri < 0)
 678		return;
 679
 680	vif->bcast_ring = -1;
 681	wil_ring_fini_tx(wil, ri);
 682}
 683
 684void wil_bcast_fini_all(struct wil6210_priv *wil)
 685{
 686	int i;
 687	struct wil6210_vif *vif;
 688
 689	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 690		vif = wil->vifs[i];
 691		if (vif)
 692			wil_bcast_fini(vif);
 693	}
 694}
 695
 696int wil_priv_init(struct wil6210_priv *wil)
 697{
 698	uint i;
 699
 700	wil_dbg_misc(wil, "priv_init\n");
 701
 702	memset(wil->sta, 0, sizeof(wil->sta));
 703	for (i = 0; i < WIL6210_MAX_CID; i++) {
 704		spin_lock_init(&wil->sta[i].tid_rx_lock);
 705		wil->sta[i].mid = U8_MAX;
 706	}
 707
 708	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 709		spin_lock_init(&wil->ring_tx_data[i].lock);
 710		wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 711	}
 712
 713	mutex_init(&wil->mutex);
 714	mutex_init(&wil->vif_mutex);
 715	mutex_init(&wil->wmi_mutex);
 716	mutex_init(&wil->halp.lock);
 717
 718	init_completion(&wil->wmi_ready);
 719	init_completion(&wil->wmi_call);
 720	init_completion(&wil->halp.comp);
 721
 722	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 723	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 724
 725	INIT_LIST_HEAD(&wil->pending_wmi_ev);
 726	spin_lock_init(&wil->wmi_ev_lock);
 727	spin_lock_init(&wil->net_queue_lock);
 728	spin_lock_init(&wil->eap_lock);
 729
 730	init_waitqueue_head(&wil->wq);
 731	init_rwsem(&wil->mem_lock);
 732
 733	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 734	if (!wil->wmi_wq)
 735		return -EAGAIN;
 736
 737	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 738	if (!wil->wq_service)
 739		goto out_wmi_wq;
 740
 741	wil->last_fw_recovery = jiffies;
 742	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 743	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 744	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 745	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 746
 747	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 748		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 749
 750	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 751
 752	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 753			      WMI_WAKEUP_TRIGGER_BCAST;
 754	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 755	wil->ring_idle_trsh = 16;
 756
 757	wil->reply_mid = U8_MAX;
 758	wil->max_vifs = 1;
 759	wil->max_assoc_sta = max_assoc_sta;
 760
 761	/* edma configuration can be updated via debugfs before allocation */
 762	wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 763	wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 764
 765	/* Rx status ring size should be bigger than the number of RX buffers
 766	 * in order to prevent backpressure on the status ring, which may
 767	 * cause HW freeze.
 768	 */
 769	wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 770	/* Number of RX buffer IDs should be bigger than the RX descriptor
 771	 * ring size as in HW reorder flow, the HW can consume additional
 772	 * buffers before releasing the previous ones.
 773	 */
 774	wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 775
 776	wil->amsdu_en = 1;
 777
 778	return 0;
 779
 780out_wmi_wq:
 781	destroy_workqueue(wil->wmi_wq);
 782
 783	return -EAGAIN;
 784}
 785
 786void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 787{
 788	if (wil->platform_ops.bus_request) {
 789		wil->bus_request_kbps = kbps;
 790		wil->platform_ops.bus_request(wil->platform_handle, kbps);
 791	}
 792}
 793
 794/**
 795 * wil6210_disconnect - disconnect one connection
 796 * @vif: virtual interface context
 797 * @bssid: peer to disconnect, NULL to disconnect all
 798 * @reason_code: Reason code for the Disassociation frame
 799 *
 800 * Disconnect and release associated resources. Issue WMI
 801 * command(s) to trigger MAC disconnect. When command was issued
 802 * successfully, call the wil6210_disconnect_complete function
 803 * to handle the event synchronously
 804 */
 805void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 806			u16 reason_code)
 807{
 808	struct wil6210_priv *wil = vif_to_wil(vif);
 809
 810	wil_dbg_misc(wil, "disconnecting\n");
 811
 812	del_timer_sync(&vif->connect_timer);
 813	_wil6210_disconnect(vif, bssid, reason_code);
 814}
 815
 816/**
 817 * wil6210_disconnect_complete - handle disconnect event
 818 * @vif: virtual interface context
 819 * @bssid: peer to disconnect, NULL to disconnect all
 820 * @reason_code: Reason code for the Disassociation frame
 821 *
 822 * Release associated resources and indicate upper layers the
 823 * connection is terminated.
 824 */
 825void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 826				 u16 reason_code)
 827{
 828	struct wil6210_priv *wil = vif_to_wil(vif);
 829
 830	wil_dbg_misc(wil, "got disconnect\n");
 831
 832	del_timer_sync(&vif->connect_timer);
 833	_wil6210_disconnect_complete(vif, bssid, reason_code);
 834}
 835
 836void wil_priv_deinit(struct wil6210_priv *wil)
 837{
 838	wil_dbg_misc(wil, "priv_deinit\n");
 839
 840	wil_set_recovery_state(wil, fw_recovery_idle);
 841	cancel_work_sync(&wil->fw_error_worker);
 842	wmi_event_flush(wil);
 843	destroy_workqueue(wil->wq_service);
 844	destroy_workqueue(wil->wmi_wq);
 845	kfree(wil->brd_info);
 846}
 847
 848static void wil_shutdown_bl(struct wil6210_priv *wil)
 849{
 850	u32 val;
 851
 852	wil_s(wil, RGF_USER_BL +
 853	      offsetof(struct bl_dedicated_registers_v1,
 854		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 855
 856	usleep_range(100, 150);
 857
 858	val = wil_r(wil, RGF_USER_BL +
 859		    offsetof(struct bl_dedicated_registers_v1,
 860			     bl_shutdown_handshake));
 861	if (val & BL_SHUTDOWN_HS_RTD) {
 862		wil_dbg_misc(wil, "BL is ready for halt\n");
 863		return;
 864	}
 865
 866	wil_err(wil, "BL did not report ready for halt\n");
 867}
 868
 869/* this format is used by ARC embedded CPU for instruction memory */
 870static inline u32 ARC_me_imm32(u32 d)
 871{
 872	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 873}
 874
 875/* defines access to interrupt vectors for wil_freeze_bl */
 876#define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
 877/* ARC long jump instruction */
 878#define ARC_JAL_INST			(0x20200f80)
 879
 880static void wil_freeze_bl(struct wil6210_priv *wil)
 881{
 882	u32 jal, upc, saved;
 883	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 884
 885	jal = wil_r(wil, wil->iccm_base + ivt3);
 886	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 887		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 888		return;
 889	}
 890
 891	/* prevent the target from entering deep sleep
 892	 * and disabling memory access
 893	 */
 894	saved = wil_r(wil, RGF_USER_USAGE_8);
 895	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 896	usleep_range(20, 25); /* let the BL process the bit */
 897
 898	/* redirect to endless loop in the INT_L1 context and let it trap */
 899	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 900	usleep_range(20, 25); /* let the BL get into the trap */
 901
 902	/* verify the BL is frozen */
 903	upc = wil_r(wil, RGF_USER_CPU_PC);
 904	if (upc < ivt3 || (upc > (ivt3 + 8)))
 905		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 906
 907	wil_w(wil, RGF_USER_USAGE_8, saved);
 908}
 909
 910static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 911{
 912	u32 tmp, ver;
 913
 914	/* before halting device CPU driver must make sure BL is not accessing
 915	 * host memory. This is done differently depending on BL version:
 916	 * 1. For very old BL versions the procedure is skipped
 917	 * (not supported).
 918	 * 2. For old BL version we use a special trick to freeze the BL
 919	 * 3. For new BL versions we shutdown the BL using handshake procedure.
 920	 */
 921	tmp = wil_r(wil, RGF_USER_BL +
 922		    offsetof(struct bl_dedicated_registers_v0,
 923			     boot_loader_struct_version));
 924	if (!tmp) {
 925		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 926		return;
 927	}
 928
 929	tmp = wil_r(wil, RGF_USER_BL +
 930		    offsetof(struct bl_dedicated_registers_v1,
 931			     bl_shutdown_handshake));
 932	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 933
 934	if (ver > 0)
 935		wil_shutdown_bl(wil);
 936	else
 937		wil_freeze_bl(wil);
 938}
 939
 940static inline void wil_halt_cpu(struct wil6210_priv *wil)
 941{
 942	if (wil->hw_version >= HW_VER_TALYN_MB) {
 943		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 944		      BIT_USER_USER_CPU_MAN_RST);
 945		wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 946		      BIT_USER_MAC_CPU_MAN_RST);
 947	} else {
 948		wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 949		wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 950	}
 951}
 952
 953static inline void wil_release_cpu(struct wil6210_priv *wil)
 954{
 955	/* Start CPU */
 956	if (wil->hw_version >= HW_VER_TALYN_MB)
 957		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 958	else
 959		wil_w(wil, RGF_USER_USER_CPU_0, 1);
 960}
 961
 962static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 963{
 964	wil_info(wil, "oob_mode to %d\n", mode);
 965	switch (mode) {
 966	case 0:
 967		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 968		      BIT_USER_OOB_R2_MODE);
 969		break;
 970	case 1:
 971		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 972		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 973		break;
 974	case 2:
 975		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 976		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 977		break;
 978	default:
 979		wil_err(wil, "invalid oob_mode: %d\n", mode);
 980	}
 981}
 982
 983static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 984{
 985	int delay = 0;
 986	u32 x, x1 = 0;
 987
 988	/* wait until device ready. */
 989	if (no_flash) {
 990		msleep(PMU_READY_DELAY_MS);
 991
 992		wil_dbg_misc(wil, "Reset completed\n");
 993	} else {
 994		do {
 995			msleep(RST_DELAY);
 996			x = wil_r(wil, RGF_USER_BL +
 997				  offsetof(struct bl_dedicated_registers_v0,
 998					   boot_loader_ready));
 999			if (x1 != x) {
1000				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
1001					     x1, x);
1002				x1 = x;
1003			}
1004			if (delay++ > RST_COUNT) {
1005				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1006					x);
1007				return -ETIME;
1008			}
1009		} while (x != BL_READY);
1010
1011		wil_dbg_misc(wil, "Reset completed in %d ms\n",
1012			     delay * RST_DELAY);
1013	}
1014
1015	return 0;
1016}
1017
1018static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1019{
1020	u32 otp_hw;
1021	u8 signature_status;
1022	bool otp_signature_err;
1023	bool hw_section_done;
1024	u32 otp_qc_secured;
1025	int delay = 0;
1026
1027	/* Wait for OTP signature test to complete */
1028	usleep_range(2000, 2200);
1029
1030	wil->boot_config = WIL_BOOT_ERR;
1031
1032	/* Poll until OTP signature status is valid.
1033	 * In vanilla and development modes, when signature test is complete
1034	 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1035	 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1036	 * for signature status change to 2 or 3.
1037	 */
1038	do {
1039		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1040		signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1041		otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1042
1043		if (otp_signature_err &&
1044		    signature_status == WIL_SIG_STATUS_VANILLA) {
1045			wil->boot_config = WIL_BOOT_VANILLA;
1046			break;
1047		}
1048		if (otp_signature_err &&
1049		    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1050			wil->boot_config = WIL_BOOT_DEVELOPMENT;
1051			break;
1052		}
1053		if (!otp_signature_err &&
1054		    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1055			wil->boot_config = WIL_BOOT_PRODUCTION;
1056			break;
1057		}
1058		if  (!otp_signature_err &&
1059		     signature_status ==
1060		     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1061			/* Unrecognized OTP signature found. Possibly a
1062			 * corrupted production signature, access control
1063			 * is applied as in production mode, therefore
1064			 * do not fail
1065			 */
1066			wil->boot_config = WIL_BOOT_PRODUCTION;
1067			break;
1068		}
1069		if (delay++ > OTP_HW_COUNT)
1070			break;
1071
1072		usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1073	} while (!otp_signature_err && signature_status == 0);
1074
1075	if (wil->boot_config == WIL_BOOT_ERR) {
1076		wil_err(wil,
1077			"invalid boot config, signature_status %d otp_signature_err %d\n",
1078			signature_status, otp_signature_err);
1079		return -ETIME;
1080	}
1081
1082	wil_dbg_misc(wil,
1083		     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1084		     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1085
1086	if (wil->boot_config == WIL_BOOT_VANILLA)
1087		/* Assuming not SPI boot (currently not supported) */
1088		goto out;
1089
1090	hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1091	delay = 0;
1092
1093	while (!hw_section_done) {
1094		msleep(RST_DELAY);
1095
1096		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1097		hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1098
1099		if (delay++ > RST_COUNT) {
1100			wil_err(wil, "TO waiting for hw_section_done\n");
1101			return -ETIME;
1102		}
1103	}
1104
1105	wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1106
1107	otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1108	wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1109	wil_dbg_misc(wil, "secured boot is %sabled\n",
1110		     wil->secured_boot ? "en" : "dis");
1111
1112out:
1113	wil_dbg_misc(wil, "Reset completed\n");
1114
1115	return 0;
1116}
1117
1118static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1119{
1120	u32 x;
1121	int rc;
1122
1123	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1124
1125	if (wil->hw_version < HW_VER_TALYN) {
1126		/* Clear MAC link up */
1127		wil_s(wil, RGF_HP_CTRL, BIT(15));
1128		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1129		      BIT_HPAL_PERST_FROM_PAD);
1130		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1131	}
1132
1133	wil_halt_cpu(wil);
1134
1135	if (!no_flash) {
1136		/* clear all boot loader "ready" bits */
1137		wil_w(wil, RGF_USER_BL +
1138		      offsetof(struct bl_dedicated_registers_v0,
1139			       boot_loader_ready), 0);
1140		/* this should be safe to write even with old BLs */
1141		wil_w(wil, RGF_USER_BL +
1142		      offsetof(struct bl_dedicated_registers_v1,
1143			       bl_shutdown_handshake), 0);
1144	}
1145	/* Clear Fw Download notification */
1146	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1147
1148	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1149	/* XTAL stabilization should take about 3ms */
1150	usleep_range(5000, 7000);
1151	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1152	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1153		wil_err(wil, "Xtal stabilization timeout\n"
1154			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1155		return -ETIME;
1156	}
1157	/* switch 10k to XTAL*/
1158	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1159	/* 40 MHz */
1160	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1161
1162	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1163	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1164
1165	if (wil->hw_version >= HW_VER_TALYN_MB) {
1166		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1167		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1168		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1169		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1170	} else {
1171		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1172		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1173		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1174		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1175	}
1176
1177	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1178	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1179
1180	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1181	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1182	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1183	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1184
1185	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1186	/* reset A2 PCIE AHB */
1187	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1188
1189	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1190
1191	if (wil->hw_version == HW_VER_TALYN_MB)
1192		rc = wil_wait_device_ready_talyn_mb(wil);
1193	else
1194		rc = wil_wait_device_ready(wil, no_flash);
1195	if (rc)
1196		return rc;
1197
1198	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1199
1200	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
1201	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1202	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1203
1204	if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1205		/* Reset OTP HW vectors to fit 40MHz */
1206		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1207		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1208		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1209		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1210		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1211		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1212		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1213		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1214		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1215		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1216		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1217	}
1218
1219	return 0;
1220}
1221
1222static void wil_collect_fw_info(struct wil6210_priv *wil)
1223{
1224	struct wiphy *wiphy = wil_to_wiphy(wil);
1225	u8 retry_short;
1226	int rc;
1227
1228	wil_refresh_fw_capabilities(wil);
1229
1230	rc = wmi_get_mgmt_retry(wil, &retry_short);
1231	if (!rc) {
1232		wiphy->retry_short = retry_short;
1233		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1234	}
1235}
1236
1237void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1238{
1239	struct wiphy *wiphy = wil_to_wiphy(wil);
1240	int features;
1241
1242	wil->keep_radio_on_during_sleep =
1243		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1244			 wil->platform_capa) &&
1245		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1246
1247	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1248		 wil->keep_radio_on_during_sleep);
1249
1250	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1251		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1252	else
1253		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1254
1255	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1256		wiphy->max_sched_scan_reqs = 1;
1257		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1258		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1259		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1260		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1261	}
1262
1263	if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1264		wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1265
1266	if (wil->platform_ops.set_features) {
1267		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1268				     wil->fw_capabilities) &&
1269			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1270				     wil->platform_capa)) ?
1271			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1272
1273		if (wil->n_msi == 3)
1274			features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1275
1276		wil->platform_ops.set_features(wil->platform_handle, features);
1277	}
1278
1279	if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1280		     wil->fw_capabilities)) {
1281		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1282		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1283	} else {
1284		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1285		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1286	}
1287
1288	update_supported_bands(wil);
1289}
1290
1291void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1292{
1293	le32_to_cpus(&r->base);
1294	le16_to_cpus(&r->entry_size);
1295	le16_to_cpus(&r->size);
1296	le32_to_cpus(&r->tail);
1297	le32_to_cpus(&r->head);
1298}
1299
1300/* construct actual board file name to use */
1301void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1302{
1303	const char *board_file;
1304	const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1305			      WIL_FW_NAME_TALYN;
1306
1307	if (wil->board_file) {
1308		board_file = wil->board_file;
1309	} else {
1310		/* If specific FW file is used for Talyn,
1311		 * use specific board file
1312		 */
1313		if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1314			board_file = WIL_BRD_NAME_TALYN;
1315		else
1316			board_file = WIL_BOARD_FILE_NAME;
1317	}
1318
1319	strlcpy(buf, board_file, len);
1320}
1321
1322static int wil_get_bl_info(struct wil6210_priv *wil)
1323{
1324	struct net_device *ndev = wil->main_ndev;
1325	struct wiphy *wiphy = wil_to_wiphy(wil);
1326	union {
1327		struct bl_dedicated_registers_v0 bl0;
1328		struct bl_dedicated_registers_v1 bl1;
1329	} bl;
1330	u32 bl_ver;
1331	u8 *mac;
1332	u16 rf_status;
1333
1334	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1335			     sizeof(bl));
1336	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1337	mac = bl.bl0.mac_address;
1338
1339	if (bl_ver == 0) {
1340		le32_to_cpus(&bl.bl0.rf_type);
1341		le32_to_cpus(&bl.bl0.baseband_type);
1342		rf_status = 0; /* actually, unknown */
1343		wil_info(wil,
1344			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1345			 bl_ver, mac,
1346			 bl.bl0.rf_type, bl.bl0.baseband_type);
1347		wil_info(wil, "Boot Loader build unknown for struct v0\n");
1348	} else {
1349		le16_to_cpus(&bl.bl1.rf_type);
1350		rf_status = le16_to_cpu(bl.bl1.rf_status);
1351		le32_to_cpus(&bl.bl1.baseband_type);
1352		le16_to_cpus(&bl.bl1.bl_version_subminor);
1353		le16_to_cpus(&bl.bl1.bl_version_build);
1354		wil_info(wil,
1355			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1356			 bl_ver, mac,
1357			 bl.bl1.rf_type, rf_status,
1358			 bl.bl1.baseband_type);
1359		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1360			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1361			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1362	}
1363
1364	if (!is_valid_ether_addr(mac)) {
1365		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1366		return -EINVAL;
1367	}
1368
1369	ether_addr_copy(ndev->perm_addr, mac);
1370	ether_addr_copy(wiphy->perm_addr, mac);
1371	if (!is_valid_ether_addr(ndev->dev_addr))
1372		ether_addr_copy(ndev->dev_addr, mac);
1373
1374	if (rf_status) {/* bad RF cable? */
1375		wil_err(wil, "RF communication error 0x%04x",
1376			rf_status);
1377		return -EAGAIN;
1378	}
1379
1380	return 0;
1381}
1382
1383static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1384{
1385	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1386	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1387			   offsetof(struct bl_dedicated_registers_v0,
1388				    boot_loader_struct_version));
1389
1390	if (bl_ver < 2)
1391		return;
1392
1393	bl_assert_code = wil_r(wil, RGF_USER_BL +
1394			       offsetof(struct bl_dedicated_registers_v1,
1395					bl_assert_code));
1396	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1397				offsetof(struct bl_dedicated_registers_v1,
1398					 bl_assert_blink));
1399	bl_magic_number = wil_r(wil, RGF_USER_BL +
1400				offsetof(struct bl_dedicated_registers_v1,
1401					 bl_magic_number));
1402
1403	if (is_err) {
1404		wil_err(wil,
1405			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1406			bl_assert_code, bl_assert_blink, bl_magic_number);
1407	} else {
1408		wil_dbg_misc(wil,
1409			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1410			     bl_assert_code, bl_assert_blink, bl_magic_number);
1411	}
1412}
1413
1414static int wil_get_otp_info(struct wil6210_priv *wil)
1415{
1416	struct net_device *ndev = wil->main_ndev;
1417	struct wiphy *wiphy = wil_to_wiphy(wil);
1418	u8 mac[8];
1419	int mac_addr;
1420
1421	/* OEM MAC has precedence */
1422	mac_addr = RGF_OTP_OEM_MAC;
1423	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1424
1425	if (is_valid_ether_addr(mac)) {
1426		wil_info(wil, "using OEM MAC %pM\n", mac);
1427	} else {
1428		if (wil->hw_version >= HW_VER_TALYN_MB)
1429			mac_addr = RGF_OTP_MAC_TALYN_MB;
1430		else
1431			mac_addr = RGF_OTP_MAC;
1432
1433		wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1434				     sizeof(mac));
1435	}
1436
1437	if (!is_valid_ether_addr(mac)) {
1438		wil_err(wil, "Invalid MAC %pM\n", mac);
1439		return -EINVAL;
1440	}
1441
1442	ether_addr_copy(ndev->perm_addr, mac);
1443	ether_addr_copy(wiphy->perm_addr, mac);
1444	if (!is_valid_ether_addr(ndev->dev_addr))
1445		ether_addr_copy(ndev->dev_addr, mac);
1446
1447	return 0;
1448}
1449
1450static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1451{
1452	ulong to = msecs_to_jiffies(2000);
1453	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1454
1455	if (0 == left) {
1456		wil_err(wil, "Firmware not ready\n");
1457		return -ETIME;
1458	} else {
1459		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1460			 jiffies_to_msecs(to-left), wil->hw_version);
1461	}
1462	return 0;
1463}
1464
1465void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1466{
1467	struct wil6210_priv *wil = vif_to_wil(vif);
1468	int rc;
1469	struct cfg80211_scan_info info = {
1470		.aborted = true,
1471	};
1472
1473	lockdep_assert_held(&wil->vif_mutex);
1474
1475	if (!vif->scan_request)
1476		return;
1477
1478	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1479	del_timer_sync(&vif->scan_timer);
1480	mutex_unlock(&wil->vif_mutex);
1481	rc = wmi_abort_scan(vif);
1482	if (!rc && sync)
1483		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1484						 msecs_to_jiffies(
1485						 WAIT_FOR_SCAN_ABORT_MS));
1486
1487	mutex_lock(&wil->vif_mutex);
1488	if (vif->scan_request) {
1489		cfg80211_scan_done(vif->scan_request, &info);
1490		vif->scan_request = NULL;
1491	}
1492}
1493
1494void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1495{
1496	int i;
1497
1498	lockdep_assert_held(&wil->vif_mutex);
1499
1500	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1501		struct wil6210_vif *vif = wil->vifs[i];
1502
1503		if (vif)
1504			wil_abort_scan(vif, sync);
1505	}
1506}
1507
1508int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1509{
1510	int rc;
1511
1512	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1513		wil_err(wil, "set_power_mgmt not supported\n");
1514		return -EOPNOTSUPP;
1515	}
1516
1517	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1518	if (rc)
1519		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1520	else
1521		wil->ps_profile = ps_profile;
1522
1523	return rc;
1524}
1525
1526static void wil_pre_fw_config(struct wil6210_priv *wil)
1527{
1528	wil_clear_fw_log_addr(wil);
1529	/* Mark FW as loaded from host */
1530	wil_s(wil, RGF_USER_USAGE_6, 1);
1531
1532	/* clear any interrupts which on-card-firmware
1533	 * may have set
1534	 */
1535	wil6210_clear_irq(wil);
1536	/* CAF_ICR - clear and mask */
1537	/* it is W1C, clear by writing back same value */
1538	if (wil->hw_version < HW_VER_TALYN_MB) {
1539		wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1540		wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1541	}
1542	/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1543	 * In Talyn-MB host cannot access this register due to
1544	 * access control, hence PAL_UNIT_ICR is cleared by the FW
1545	 */
1546	if (wil->hw_version < HW_VER_TALYN_MB)
1547		wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1548		      0);
1549
1550	if (wil->fw_calib_result > 0) {
1551		__le32 val = cpu_to_le32(wil->fw_calib_result |
1552						(CALIB_RESULT_SIGNATURE << 8));
1553		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1554	}
1555}
1556
1557static int wil_restore_vifs(struct wil6210_priv *wil)
1558{
1559	struct wil6210_vif *vif;
1560	struct net_device *ndev;
1561	struct wireless_dev *wdev;
1562	int i, rc;
1563
1564	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1565		vif = wil->vifs[i];
1566		if (!vif)
1567			continue;
1568		vif->ap_isolate = 0;
1569		if (vif->mid) {
1570			ndev = vif_to_ndev(vif);
1571			wdev = vif_to_wdev(vif);
1572			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1573					       wdev->iftype);
1574			if (rc) {
1575				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1576					i, wdev->iftype, rc);
1577				return rc;
1578			}
1579		}
1580	}
1581
1582	return 0;
1583}
1584
1585/*
1586 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1587 * driver clears the addresses before FW starts and FW initializes the address
1588 * when it is ready to send logs.
1589 */
1590void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1591{
1592	/* FW log addr */
1593	wil_w(wil, RGF_USER_USAGE_1, 0);
1594	/* ucode log addr */
1595	wil_w(wil, RGF_USER_USAGE_2, 0);
1596	wil_dbg_misc(wil, "Cleared FW and ucode log address");
1597}
1598
1599/*
1600 * We reset all the structures, and we reset the UMAC.
1601 * After calling this routine, you're expected to reload
1602 * the firmware.
1603 */
1604int wil_reset(struct wil6210_priv *wil, bool load_fw)
1605{
1606	int rc, i;
1607	unsigned long status_flags = BIT(wil_status_resetting);
1608	int no_flash;
1609	struct wil6210_vif *vif;
1610
1611	wil_dbg_misc(wil, "reset\n");
1612
1613	WARN_ON(!mutex_is_locked(&wil->mutex));
1614	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1615
1616	if (debug_fw) {
1617		static const u8 mac[ETH_ALEN] = {
1618			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1619		};
1620		struct net_device *ndev = wil->main_ndev;
1621
1622		ether_addr_copy(ndev->perm_addr, mac);
1623		ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1624		return 0;
1625	}
1626
1627	if (wil->hw_version == HW_VER_UNKNOWN)
1628		return -ENODEV;
1629
1630	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1631	    wil->hw_version < HW_VER_TALYN_MB) {
1632		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1633		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1634	}
1635
1636	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1637		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1638		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1639	}
1640
1641	if (wil->platform_ops.notify) {
1642		rc = wil->platform_ops.notify(wil->platform_handle,
1643					      WIL_PLATFORM_EVT_PRE_RESET);
1644		if (rc)
1645			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1646				rc);
1647	}
1648
1649	set_bit(wil_status_resetting, wil->status);
1650	mutex_lock(&wil->vif_mutex);
1651	wil_abort_scan_all_vifs(wil, false);
1652	mutex_unlock(&wil->vif_mutex);
1653
1654	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1655		vif = wil->vifs[i];
1656		if (vif) {
1657			cancel_work_sync(&vif->disconnect_worker);
1658			wil6210_disconnect(vif, NULL,
1659					   WLAN_REASON_DEAUTH_LEAVING);
1660			vif->ptk_rekey_state = WIL_REKEY_IDLE;
1661		}
1662	}
1663	wil_bcast_fini_all(wil);
1664
1665	/* Disable device led before reset*/
1666	wmi_led_cfg(wil, false);
1667
1668	/* prevent NAPI from being scheduled and prevent wmi commands */
1669	mutex_lock(&wil->wmi_mutex);
1670	if (test_bit(wil_status_suspending, wil->status))
1671		status_flags |= BIT(wil_status_suspending);
1672	bitmap_and(wil->status, wil->status, &status_flags,
1673		   wil_status_last);
1674	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1675	mutex_unlock(&wil->wmi_mutex);
1676
1677	wil_mask_irq(wil);
1678
1679	wmi_event_flush(wil);
1680
1681	flush_workqueue(wil->wq_service);
1682	flush_workqueue(wil->wmi_wq);
1683
1684	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1685	if (!no_flash)
1686		wil_bl_crash_info(wil, false);
1687	wil_disable_irq(wil);
1688	rc = wil_target_reset(wil, no_flash);
1689	wil6210_clear_irq(wil);
1690	wil_enable_irq(wil);
1691	wil->txrx_ops.rx_fini(wil);
1692	wil->txrx_ops.tx_fini(wil);
1693	if (rc) {
1694		if (!no_flash)
1695			wil_bl_crash_info(wil, true);
1696		goto out;
1697	}
1698
1699	if (no_flash) {
1700		rc = wil_get_otp_info(wil);
1701	} else {
1702		rc = wil_get_bl_info(wil);
1703		if (rc == -EAGAIN && !load_fw)
1704			/* ignore RF error if not going up */
1705			rc = 0;
1706	}
1707	if (rc)
1708		goto out;
1709
1710	wil_set_oob_mode(wil, oob_mode);
1711	if (load_fw) {
1712		char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1713
1714		if  (wil->secured_boot) {
1715			wil_err(wil, "secured boot is not supported\n");
1716			return -ENOTSUPP;
1717		}
1718
1719		board_file[0] = '\0';
1720		wil_get_board_file(wil, board_file, sizeof(board_file));
1721		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1722			 wil->wil_fw_name, board_file);
1723
1724		if (!no_flash)
1725			wil_bl_prepare_halt(wil);
1726
1727		wil_halt_cpu(wil);
1728		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1729		/* Loading f/w from the file */
1730		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1731		if (rc)
1732			goto out;
1733		if (wil->num_of_brd_entries)
1734			rc = wil_request_board(wil, board_file);
1735		else
1736			rc = wil_request_firmware(wil, board_file, true);
1737		if (rc)
1738			goto out;
1739
1740		wil_pre_fw_config(wil);
1741		wil_release_cpu(wil);
1742	}
1743
1744	/* init after reset */
1745	reinit_completion(&wil->wmi_ready);
1746	reinit_completion(&wil->wmi_call);
1747	reinit_completion(&wil->halp.comp);
1748
1749	clear_bit(wil_status_resetting, wil->status);
1750
1751	if (load_fw) {
1752		wil_unmask_irq(wil);
1753
1754		/* we just started MAC, wait for FW ready */
1755		rc = wil_wait_for_fw_ready(wil);
1756		if (rc)
1757			return rc;
1758
1759		/* check FW is responsive */
1760		rc = wmi_echo(wil);
1761		if (rc) {
1762			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1763			return rc;
1764		}
1765
1766		wil->txrx_ops.configure_interrupt_moderation(wil);
1767
1768		/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1769		 * while there is back-pressure from Host during RX
1770		 */
1771		if (wil->hw_version >= HW_VER_TALYN_MB)
1772			wil_s(wil, RGF_DMA_MISC_CTL,
1773			      BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1774
1775		rc = wil_restore_vifs(wil);
1776		if (rc) {
1777			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1778			return rc;
1779		}
1780
1781		wil_collect_fw_info(wil);
1782
1783		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1784			wil_ps_update(wil, wil->ps_profile);
1785
1786		if (wil->platform_ops.notify) {
1787			rc = wil->platform_ops.notify(wil->platform_handle,
1788						      WIL_PLATFORM_EVT_FW_RDY);
1789			if (rc) {
1790				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1791					rc);
1792				rc = 0;
1793			}
1794		}
1795	}
1796
1797	return rc;
1798
1799out:
1800	clear_bit(wil_status_resetting, wil->status);
1801	return rc;
1802}
1803
1804void wil_fw_error_recovery(struct wil6210_priv *wil)
1805{
1806	wil_dbg_misc(wil, "starting fw error recovery\n");
1807
1808	if (test_bit(wil_status_resetting, wil->status)) {
1809		wil_info(wil, "Reset already in progress\n");
1810		return;
1811	}
1812
1813	wil->recovery_state = fw_recovery_pending;
1814	schedule_work(&wil->fw_error_worker);
1815}
1816
1817int __wil_up(struct wil6210_priv *wil)
1818{
1819	struct net_device *ndev = wil->main_ndev;
1820	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1821	int rc;
1822
1823	WARN_ON(!mutex_is_locked(&wil->mutex));
1824
1825	down_write(&wil->mem_lock);
1826	rc = wil_reset(wil, true);
1827	up_write(&wil->mem_lock);
1828	if (rc)
1829		return rc;
1830
1831	/* Rx RING. After MAC and beacon */
1832	if (rx_ring_order == 0)
1833		rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1834			WIL_RX_RING_SIZE_ORDER_DEFAULT :
1835			WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1836
1837	rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1838	if (rc)
1839		return rc;
1840
1841	rc = wil->txrx_ops.tx_init(wil);
1842	if (rc)
1843		return rc;
1844
1845	switch (wdev->iftype) {
1846	case NL80211_IFTYPE_STATION:
1847		wil_dbg_misc(wil, "type: STATION\n");
1848		ndev->type = ARPHRD_ETHER;
1849		break;
1850	case NL80211_IFTYPE_AP:
1851		wil_dbg_misc(wil, "type: AP\n");
1852		ndev->type = ARPHRD_ETHER;
1853		break;
1854	case NL80211_IFTYPE_P2P_CLIENT:
1855		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1856		ndev->type = ARPHRD_ETHER;
1857		break;
1858	case NL80211_IFTYPE_P2P_GO:
1859		wil_dbg_misc(wil, "type: P2P_GO\n");
1860		ndev->type = ARPHRD_ETHER;
1861		break;
1862	case NL80211_IFTYPE_MONITOR:
1863		wil_dbg_misc(wil, "type: Monitor\n");
1864		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1865		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1866		break;
1867	default:
1868		return -EOPNOTSUPP;
1869	}
1870
1871	/* MAC address - pre-requisite for other commands */
1872	wmi_set_mac_address(wil, ndev->dev_addr);
1873
1874	wil_dbg_misc(wil, "NAPI enable\n");
1875	napi_enable(&wil->napi_rx);
1876	napi_enable(&wil->napi_tx);
1877	set_bit(wil_status_napi_en, wil->status);
1878
1879	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1880
1881	return 0;
1882}
1883
1884int wil_up(struct wil6210_priv *wil)
1885{
1886	int rc;
1887
1888	wil_dbg_misc(wil, "up\n");
1889
1890	mutex_lock(&wil->mutex);
1891	rc = __wil_up(wil);
1892	mutex_unlock(&wil->mutex);
1893
1894	return rc;
1895}
1896
1897int __wil_down(struct wil6210_priv *wil)
1898{
1899	int rc;
1900	WARN_ON(!mutex_is_locked(&wil->mutex));
1901
1902	set_bit(wil_status_resetting, wil->status);
1903
1904	wil6210_bus_request(wil, 0);
1905
1906	wil_disable_irq(wil);
1907	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1908		napi_disable(&wil->napi_rx);
1909		napi_disable(&wil->napi_tx);
1910		wil_dbg_misc(wil, "NAPI disable\n");
1911	}
1912	wil_enable_irq(wil);
1913
1914	mutex_lock(&wil->vif_mutex);
1915	wil_p2p_stop_radio_operations(wil);
1916	wil_abort_scan_all_vifs(wil, false);
1917	mutex_unlock(&wil->vif_mutex);
1918
1919	down_write(&wil->mem_lock);
1920	rc = wil_reset(wil, false);
1921	up_write(&wil->mem_lock);
1922
1923	return rc;
1924}
1925
1926int wil_down(struct wil6210_priv *wil)
1927{
1928	int rc;
1929
1930	wil_dbg_misc(wil, "down\n");
1931
1932	wil_set_recovery_state(wil, fw_recovery_idle);
1933	mutex_lock(&wil->mutex);
1934	rc = __wil_down(wil);
1935	mutex_unlock(&wil->mutex);
1936
1937	return rc;
1938}
1939
1940int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1941{
1942	int i;
1943	int rc = -ENOENT;
1944
1945	for (i = 0; i < wil->max_assoc_sta; i++) {
1946		if (wil->sta[i].mid == mid &&
1947		    wil->sta[i].status != wil_sta_unused &&
1948		    ether_addr_equal(wil->sta[i].addr, mac)) {
1949			rc = i;
1950			break;
1951		}
1952	}
1953
1954	return rc;
1955}
1956
1957void wil_halp_vote(struct wil6210_priv *wil)
1958{
1959	unsigned long rc;
1960	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1961
1962	if (wil->hw_version >= HW_VER_TALYN_MB)
1963		return;
1964
1965	mutex_lock(&wil->halp.lock);
1966
1967	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1968		    wil->halp.ref_cnt);
1969
1970	if (++wil->halp.ref_cnt == 1) {
1971		reinit_completion(&wil->halp.comp);
1972		/* mark to IRQ context to handle HALP ICR */
1973		wil->halp.handle_icr = true;
1974		wil6210_set_halp(wil);
1975		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1976		if (!rc) {
1977			wil_err(wil, "HALP vote timed out\n");
1978			/* Mask HALP as done in case the interrupt is raised */
1979			wil->halp.handle_icr = false;
1980			wil6210_mask_halp(wil);
1981		} else {
1982			wil_dbg_irq(wil,
1983				    "halp_vote: HALP vote completed after %d ms\n",
1984				    jiffies_to_msecs(to_jiffies - rc));
1985		}
1986	}
1987
1988	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1989		    wil->halp.ref_cnt);
1990
1991	mutex_unlock(&wil->halp.lock);
1992}
1993
1994void wil_halp_unvote(struct wil6210_priv *wil)
1995{
1996	if (wil->hw_version >= HW_VER_TALYN_MB)
1997		return;
1998
1999	WARN_ON(wil->halp.ref_cnt == 0);
2000
2001	mutex_lock(&wil->halp.lock);
2002
2003	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2004		    wil->halp.ref_cnt);
2005
2006	if (--wil->halp.ref_cnt == 0) {
2007		wil6210_clear_halp(wil);
2008		wil_dbg_irq(wil, "HALP unvote\n");
2009	}
2010
2011	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2012		    wil->halp.ref_cnt);
2013
2014	mutex_unlock(&wil->halp.lock);
2015}
2016
2017void wil_init_txrx_ops(struct wil6210_priv *wil)
2018{
2019	if (wil->use_enhanced_dma_hw)
2020		wil_init_txrx_ops_edma(wil);
2021	else
2022		wil_init_txrx_ops_legacy_dma(wil);
2023}