Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
   2/*
   3	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
   4
   5	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
   6	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
   7	Copyright 2001 Manfred Spraul				    [natsemi.c]
   8	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
   9       	Written 1997-2001 by Donald Becker.			    [8139too.c]
  10	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
  11
  12	This software may be used and distributed according to the terms of
  13	the GNU General Public License (GPL), incorporated herein by reference.
  14	Drivers based on or derived from this code fall under the GPL and must
  15	retain the authorship, copyright and license notice.  This file is not
  16	a complete program and may only be used when the entire operating
  17	system is licensed under the GPL.
  18
  19	See the file COPYING in this distribution for more information.
  20
  21	Contributors:
  22
  23		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
  24		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
  25		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
  26
  27	TODO:
  28	* Test Tx checksumming thoroughly
  29
  30	Low priority TODO:
  31	* Complete reset on PciErr
  32	* Consider Rx interrupt mitigation using TimerIntr
  33	* Investigate using skb->priority with h/w VLAN priority
  34	* Investigate using High Priority Tx Queue with skb->priority
  35	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
  36	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
  37	* Implement Tx software interrupt mitigation via
  38	  Tx descriptor bit
  39	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
  40	  for this to be supported, one must(?) turn on packet padding.
  41	* Support external MII transceivers (patch available)
  42
  43	NOTES:
  44	* TX checksumming is considered experimental.  It is off by
  45	  default, use ethtool to turn it on.
  46
  47 */
  48
  49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  50
  51#define DRV_NAME		"8139cp"
  52#define DRV_VERSION		"1.3"
  53#define DRV_RELDATE		"Mar 22, 2004"
  54
  55
  56#include <linux/module.h>
  57#include <linux/moduleparam.h>
  58#include <linux/kernel.h>
  59#include <linux/compiler.h>
  60#include <linux/netdevice.h>
  61#include <linux/etherdevice.h>
  62#include <linux/init.h>
  63#include <linux/interrupt.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/delay.h>
  67#include <linux/ethtool.h>
  68#include <linux/gfp.h>
  69#include <linux/mii.h>
  70#include <linux/if_vlan.h>
  71#include <linux/crc32.h>
  72#include <linux/in.h>
  73#include <linux/ip.h>
  74#include <linux/tcp.h>
  75#include <linux/udp.h>
  76#include <linux/cache.h>
  77#include <asm/io.h>
  78#include <asm/irq.h>
  79#include <linux/uaccess.h>
  80
  81/* These identify the driver base version and may not be removed. */
  82static char version[] =
  83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
  84
  85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
  87MODULE_VERSION(DRV_VERSION);
  88MODULE_LICENSE("GPL");
  89
  90static int debug = -1;
  91module_param(debug, int, 0);
  92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
  93
  94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  95   The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
  96static int multicast_filter_limit = 32;
  97module_param(multicast_filter_limit, int, 0);
  98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
  99
 100#define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
 101				 NETIF_MSG_PROBE 	| \
 102				 NETIF_MSG_LINK)
 103#define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
 104#define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
 105#define CP_REGS_SIZE		(0xff + 1)
 106#define CP_REGS_VER		1		/* version 1 */
 107#define CP_RX_RING_SIZE		64
 108#define CP_TX_RING_SIZE		64
 109#define CP_RING_BYTES		\
 110		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
 111		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
 112		 CP_STATS_SIZE)
 113#define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
 114#define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
 115#define TX_BUFFS_AVAIL(CP)					\
 116	(((CP)->tx_tail <= (CP)->tx_head) ?			\
 117	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
 118	  (CP)->tx_tail - (CP)->tx_head - 1)
 119
 120#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
 121#define CP_INTERNAL_PHY		32
 122
 123/* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
 124#define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
 125#define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
 126#define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
 127#define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
 128
 129/* Time in jiffies before concluding the transmitter is hung. */
 130#define TX_TIMEOUT		(6*HZ)
 131
 132/* hardware minimum and maximum for a single frame's data payload */
 133#define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
 134#define CP_MAX_MTU		4096
 135
 136enum {
 137	/* NIC register offsets */
 138	MAC0		= 0x00,	/* Ethernet hardware address. */
 139	MAR0		= 0x08,	/* Multicast filter. */
 140	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
 141	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
 142	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
 143	Cmd		= 0x37, /* Command register */
 144	IntrMask	= 0x3C, /* Interrupt mask */
 145	IntrStatus	= 0x3E, /* Interrupt status */
 146	TxConfig	= 0x40, /* Tx configuration */
 147	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
 148	RxConfig	= 0x44, /* Rx configuration */
 149	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
 150	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
 151	Config1		= 0x52, /* Config1 */
 152	Config3		= 0x59, /* Config3 */
 153	Config4		= 0x5A, /* Config4 */
 154	MultiIntr	= 0x5C, /* Multiple interrupt select */
 155	BasicModeCtrl	= 0x62,	/* MII BMCR */
 156	BasicModeStatus	= 0x64, /* MII BMSR */
 157	NWayAdvert	= 0x66, /* MII ADVERTISE */
 158	NWayLPAR	= 0x68, /* MII LPA */
 159	NWayExpansion	= 0x6A, /* MII Expansion */
 160	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
 161	Config5		= 0xD8,	/* Config5 */
 162	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
 163	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
 164	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
 165	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
 166	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
 167	TxThresh	= 0xEC, /* Early Tx threshold */
 168	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
 169	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
 170
 171	/* Tx and Rx status descriptors */
 172	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
 173	RingEnd		= (1 << 30), /* End of descriptor ring */
 174	FirstFrag	= (1 << 29), /* First segment of a packet */
 175	LastFrag	= (1 << 28), /* Final segment of a packet */
 176	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
 177	MSSShift	= 16,	     /* MSS value position */
 178	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
 179	TxError		= (1 << 23), /* Tx error summary */
 180	RxError		= (1 << 20), /* Rx error summary */
 181	IPCS		= (1 << 18), /* Calculate IP checksum */
 182	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
 183	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
 184	TxVlanTag	= (1 << 17), /* Add VLAN tag */
 185	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
 186	IPFail		= (1 << 15), /* IP checksum failed */
 187	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
 188	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
 189	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
 190	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
 191	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
 192	RxProtoTCP	= 1,
 193	RxProtoUDP	= 2,
 194	RxProtoIP	= 3,
 195	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
 196	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
 197	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
 198	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
 199	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
 200	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
 201	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
 202	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
 203	RxErrCRC	= (1 << 18), /* Rx CRC error */
 204	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
 205	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
 206	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
 207
 208	/* StatsAddr register */
 209	DumpStats	= (1 << 3),  /* Begin stats dump */
 210
 211	/* RxConfig register */
 212	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
 213	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
 214	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
 215	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
 216	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
 217	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
 218	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
 219	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
 220
 221	/* IntrMask / IntrStatus registers */
 222	PciErr		= (1 << 15), /* System error on the PCI bus */
 223	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
 224	LenChg		= (1 << 13), /* Cable length change */
 225	SWInt		= (1 << 8),  /* Software-requested interrupt */
 226	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
 227	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
 228	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
 229	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
 230	TxErr		= (1 << 3),  /* Tx error */
 231	TxOK		= (1 << 2),  /* Tx packet sent */
 232	RxErr		= (1 << 1),  /* Rx error */
 233	RxOK		= (1 << 0),  /* Rx packet received */
 234	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
 235					but hardware likes to raise it */
 236
 237	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
 238			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
 239			  RxErr | RxOK | IntrResvd,
 240
 241	/* C mode command register */
 242	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
 243	RxOn		= (1 << 3),  /* Rx mode enable */
 244	TxOn		= (1 << 2),  /* Tx mode enable */
 245
 246	/* C+ mode command register */
 247	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
 248	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
 249	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
 250	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
 251	CpRxOn		= (1 << 1),  /* Rx mode enable */
 252	CpTxOn		= (1 << 0),  /* Tx mode enable */
 253
 254	/* Cfg9436 EEPROM control register */
 255	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
 256	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
 257
 258	/* TxConfig register */
 259	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
 260	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
 261
 262	/* Early Tx Threshold register */
 263	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
 264	TxThreshMax	= 2048,	     /* Max early Tx threshold */
 265
 266	/* Config1 register */
 267	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
 268	LWACT           = (1 << 4),  /* LWAKE active mode */
 269	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
 270
 271	/* Config3 register */
 272	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
 273	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
 274	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
 275
 276	/* Config4 register */
 277	LWPTN           = (1 << 1),  /* LWAKE Pattern */
 278	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
 279
 280	/* Config5 register */
 281	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
 282	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
 283	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
 284	LANWake         = (1 << 1),  /* Enable LANWake signal */
 285	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
 286
 287	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
 288	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
 289	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
 290};
 291
 292static const unsigned int cp_rx_config =
 293	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
 294	  (RX_DMA_BURST << RxCfgDMAShift);
 295
 296struct cp_desc {
 297	__le32		opts1;
 298	__le32		opts2;
 299	__le64		addr;
 300};
 301
 302struct cp_dma_stats {
 303	__le64			tx_ok;
 304	__le64			rx_ok;
 305	__le64			tx_err;
 306	__le32			rx_err;
 307	__le16			rx_fifo;
 308	__le16			frame_align;
 309	__le32			tx_ok_1col;
 310	__le32			tx_ok_mcol;
 311	__le64			rx_ok_phys;
 312	__le64			rx_ok_bcast;
 313	__le32			rx_ok_mcast;
 314	__le16			tx_abort;
 315	__le16			tx_underrun;
 316} __packed;
 317
 318struct cp_extra_stats {
 319	unsigned long		rx_frags;
 320};
 321
 322struct cp_private {
 323	void			__iomem *regs;
 324	struct net_device	*dev;
 325	spinlock_t		lock;
 326	u32			msg_enable;
 327
 328	struct napi_struct	napi;
 329
 330	struct pci_dev		*pdev;
 331	u32			rx_config;
 332	u16			cpcmd;
 333
 334	struct cp_extra_stats	cp_stats;
 335
 336	unsigned		rx_head		____cacheline_aligned;
 337	unsigned		rx_tail;
 338	struct cp_desc		*rx_ring;
 339	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
 340
 341	unsigned		tx_head		____cacheline_aligned;
 342	unsigned		tx_tail;
 343	struct cp_desc		*tx_ring;
 344	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
 345	u32			tx_opts[CP_TX_RING_SIZE];
 346
 347	unsigned		rx_buf_sz;
 348	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
 349
 350	dma_addr_t		ring_dma;
 351
 352	struct mii_if_info	mii_if;
 353};
 354
 355#define cpr8(reg)	readb(cp->regs + (reg))
 356#define cpr16(reg)	readw(cp->regs + (reg))
 357#define cpr32(reg)	readl(cp->regs + (reg))
 358#define cpw8(reg,val)	writeb((val), cp->regs + (reg))
 359#define cpw16(reg,val)	writew((val), cp->regs + (reg))
 360#define cpw32(reg,val)	writel((val), cp->regs + (reg))
 361#define cpw8_f(reg,val) do {			\
 362	writeb((val), cp->regs + (reg));	\
 363	readb(cp->regs + (reg));		\
 364	} while (0)
 365#define cpw16_f(reg,val) do {			\
 366	writew((val), cp->regs + (reg));	\
 367	readw(cp->regs + (reg));		\
 368	} while (0)
 369#define cpw32_f(reg,val) do {			\
 370	writel((val), cp->regs + (reg));	\
 371	readl(cp->regs + (reg));		\
 372	} while (0)
 373
 374
 375static void __cp_set_rx_mode (struct net_device *dev);
 376static void cp_tx (struct cp_private *cp);
 377static void cp_clean_rings (struct cp_private *cp);
 378#ifdef CONFIG_NET_POLL_CONTROLLER
 379static void cp_poll_controller(struct net_device *dev);
 380#endif
 381static int cp_get_eeprom_len(struct net_device *dev);
 382static int cp_get_eeprom(struct net_device *dev,
 383			 struct ethtool_eeprom *eeprom, u8 *data);
 384static int cp_set_eeprom(struct net_device *dev,
 385			 struct ethtool_eeprom *eeprom, u8 *data);
 386
 387static struct {
 388	const char str[ETH_GSTRING_LEN];
 389} ethtool_stats_keys[] = {
 390	{ "tx_ok" },
 391	{ "rx_ok" },
 392	{ "tx_err" },
 393	{ "rx_err" },
 394	{ "rx_fifo" },
 395	{ "frame_align" },
 396	{ "tx_ok_1col" },
 397	{ "tx_ok_mcol" },
 398	{ "rx_ok_phys" },
 399	{ "rx_ok_bcast" },
 400	{ "rx_ok_mcast" },
 401	{ "tx_abort" },
 402	{ "tx_underrun" },
 403	{ "rx_frags" },
 404};
 405
 406
 407static inline void cp_set_rxbufsize (struct cp_private *cp)
 408{
 409	unsigned int mtu = cp->dev->mtu;
 410
 411	if (mtu > ETH_DATA_LEN)
 412		/* MTU + ethernet header + FCS + optional VLAN tag */
 413		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
 414	else
 415		cp->rx_buf_sz = PKT_BUF_SZ;
 416}
 417
 418static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
 419			      struct cp_desc *desc)
 420{
 421	u32 opts2 = le32_to_cpu(desc->opts2);
 422
 423	skb->protocol = eth_type_trans (skb, cp->dev);
 424
 425	cp->dev->stats.rx_packets++;
 426	cp->dev->stats.rx_bytes += skb->len;
 427
 428	if (opts2 & RxVlanTagged)
 429		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
 430
 431	napi_gro_receive(&cp->napi, skb);
 432}
 433
 434static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
 435			    u32 status, u32 len)
 436{
 437	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
 438		  rx_tail, status, len);
 439	cp->dev->stats.rx_errors++;
 440	if (status & RxErrFrame)
 441		cp->dev->stats.rx_frame_errors++;
 442	if (status & RxErrCRC)
 443		cp->dev->stats.rx_crc_errors++;
 444	if ((status & RxErrRunt) || (status & RxErrLong))
 445		cp->dev->stats.rx_length_errors++;
 446	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
 447		cp->dev->stats.rx_length_errors++;
 448	if (status & RxErrFIFO)
 449		cp->dev->stats.rx_fifo_errors++;
 450}
 451
 452static inline unsigned int cp_rx_csum_ok (u32 status)
 453{
 454	unsigned int protocol = (status >> 16) & 0x3;
 455
 456	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
 457	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
 458		return 1;
 459	else
 460		return 0;
 461}
 462
 463static int cp_rx_poll(struct napi_struct *napi, int budget)
 464{
 465	struct cp_private *cp = container_of(napi, struct cp_private, napi);
 466	struct net_device *dev = cp->dev;
 467	unsigned int rx_tail = cp->rx_tail;
 468	int rx = 0;
 469
 470	cpw16(IntrStatus, cp_rx_intr_mask);
 471
 472	while (rx < budget) {
 473		u32 status, len;
 474		dma_addr_t mapping, new_mapping;
 475		struct sk_buff *skb, *new_skb;
 476		struct cp_desc *desc;
 477		const unsigned buflen = cp->rx_buf_sz;
 478
 479		skb = cp->rx_skb[rx_tail];
 480		BUG_ON(!skb);
 481
 482		desc = &cp->rx_ring[rx_tail];
 483		status = le32_to_cpu(desc->opts1);
 484		if (status & DescOwn)
 485			break;
 486
 487		len = (status & 0x1fff) - 4;
 488		mapping = le64_to_cpu(desc->addr);
 489
 490		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
 491			/* we don't support incoming fragmented frames.
 492			 * instead, we attempt to ensure that the
 493			 * pre-allocated RX skbs are properly sized such
 494			 * that RX fragments are never encountered
 495			 */
 496			cp_rx_err_acct(cp, rx_tail, status, len);
 497			dev->stats.rx_dropped++;
 498			cp->cp_stats.rx_frags++;
 499			goto rx_next;
 500		}
 501
 502		if (status & (RxError | RxErrFIFO)) {
 503			cp_rx_err_acct(cp, rx_tail, status, len);
 504			goto rx_next;
 505		}
 506
 507		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
 508			  rx_tail, status, len);
 509
 510		new_skb = napi_alloc_skb(napi, buflen);
 511		if (!new_skb) {
 512			dev->stats.rx_dropped++;
 513			goto rx_next;
 514		}
 515
 516		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
 517					 PCI_DMA_FROMDEVICE);
 518		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
 519			dev->stats.rx_dropped++;
 520			kfree_skb(new_skb);
 521			goto rx_next;
 522		}
 523
 524		dma_unmap_single(&cp->pdev->dev, mapping,
 525				 buflen, PCI_DMA_FROMDEVICE);
 526
 527		/* Handle checksum offloading for incoming packets. */
 528		if (cp_rx_csum_ok(status))
 529			skb->ip_summed = CHECKSUM_UNNECESSARY;
 530		else
 531			skb_checksum_none_assert(skb);
 532
 533		skb_put(skb, len);
 534
 535		cp->rx_skb[rx_tail] = new_skb;
 536
 537		cp_rx_skb(cp, skb, desc);
 538		rx++;
 539		mapping = new_mapping;
 540
 541rx_next:
 542		cp->rx_ring[rx_tail].opts2 = 0;
 543		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
 544		if (rx_tail == (CP_RX_RING_SIZE - 1))
 545			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
 546						  cp->rx_buf_sz);
 547		else
 548			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
 549		rx_tail = NEXT_RX(rx_tail);
 550	}
 551
 552	cp->rx_tail = rx_tail;
 553
 554	/* if we did not reach work limit, then we're done with
 555	 * this round of polling
 556	 */
 557	if (rx < budget && napi_complete_done(napi, rx)) {
 558		unsigned long flags;
 559
 560		spin_lock_irqsave(&cp->lock, flags);
 561		cpw16_f(IntrMask, cp_intr_mask);
 562		spin_unlock_irqrestore(&cp->lock, flags);
 563	}
 564
 565	return rx;
 566}
 567
 568static irqreturn_t cp_interrupt (int irq, void *dev_instance)
 569{
 570	struct net_device *dev = dev_instance;
 571	struct cp_private *cp;
 572	int handled = 0;
 573	u16 status;
 574	u16 mask;
 575
 576	if (unlikely(dev == NULL))
 577		return IRQ_NONE;
 578	cp = netdev_priv(dev);
 579
 580	spin_lock(&cp->lock);
 581
 582	mask = cpr16(IntrMask);
 583	if (!mask)
 584		goto out_unlock;
 585
 586	status = cpr16(IntrStatus);
 587	if (!status || (status == 0xFFFF))
 588		goto out_unlock;
 589
 590	handled = 1;
 591
 592	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
 593		  status, cpr8(Cmd), cpr16(CpCmd));
 594
 595	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
 596
 597	/* close possible race's with dev_close */
 598	if (unlikely(!netif_running(dev))) {
 599		cpw16(IntrMask, 0);
 600		goto out_unlock;
 601	}
 602
 603	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
 604		if (napi_schedule_prep(&cp->napi)) {
 605			cpw16_f(IntrMask, cp_norx_intr_mask);
 606			__napi_schedule(&cp->napi);
 607		}
 608
 609	if (status & (TxOK | TxErr | TxEmpty | SWInt))
 610		cp_tx(cp);
 611	if (status & LinkChg)
 612		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
 613
 614
 615	if (status & PciErr) {
 616		u16 pci_status;
 617
 618		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
 619		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
 620		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
 621			   status, pci_status);
 622
 623		/* TODO: reset hardware */
 624	}
 625
 626out_unlock:
 627	spin_unlock(&cp->lock);
 628
 629	return IRQ_RETVAL(handled);
 630}
 631
 632#ifdef CONFIG_NET_POLL_CONTROLLER
 633/*
 634 * Polling receive - used by netconsole and other diagnostic tools
 635 * to allow network i/o with interrupts disabled.
 636 */
 637static void cp_poll_controller(struct net_device *dev)
 638{
 639	struct cp_private *cp = netdev_priv(dev);
 640	const int irq = cp->pdev->irq;
 641
 642	disable_irq(irq);
 643	cp_interrupt(irq, dev);
 644	enable_irq(irq);
 645}
 646#endif
 647
 648static void cp_tx (struct cp_private *cp)
 649{
 650	unsigned tx_head = cp->tx_head;
 651	unsigned tx_tail = cp->tx_tail;
 652	unsigned bytes_compl = 0, pkts_compl = 0;
 653
 654	while (tx_tail != tx_head) {
 655		struct cp_desc *txd = cp->tx_ring + tx_tail;
 656		struct sk_buff *skb;
 657		u32 status;
 658
 659		rmb();
 660		status = le32_to_cpu(txd->opts1);
 661		if (status & DescOwn)
 662			break;
 663
 664		skb = cp->tx_skb[tx_tail];
 665		BUG_ON(!skb);
 666
 667		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 668				 cp->tx_opts[tx_tail] & 0xffff,
 669				 PCI_DMA_TODEVICE);
 670
 671		if (status & LastFrag) {
 672			if (status & (TxError | TxFIFOUnder)) {
 673				netif_dbg(cp, tx_err, cp->dev,
 674					  "tx err, status 0x%x\n", status);
 675				cp->dev->stats.tx_errors++;
 676				if (status & TxOWC)
 677					cp->dev->stats.tx_window_errors++;
 678				if (status & TxMaxCol)
 679					cp->dev->stats.tx_aborted_errors++;
 680				if (status & TxLinkFail)
 681					cp->dev->stats.tx_carrier_errors++;
 682				if (status & TxFIFOUnder)
 683					cp->dev->stats.tx_fifo_errors++;
 684			} else {
 685				cp->dev->stats.collisions +=
 686					((status >> TxColCntShift) & TxColCntMask);
 687				cp->dev->stats.tx_packets++;
 688				cp->dev->stats.tx_bytes += skb->len;
 689				netif_dbg(cp, tx_done, cp->dev,
 690					  "tx done, slot %d\n", tx_tail);
 691			}
 692			bytes_compl += skb->len;
 693			pkts_compl++;
 694			dev_consume_skb_irq(skb);
 695		}
 696
 697		cp->tx_skb[tx_tail] = NULL;
 698
 699		tx_tail = NEXT_TX(tx_tail);
 700	}
 701
 702	cp->tx_tail = tx_tail;
 703
 704	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
 705	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
 706		netif_wake_queue(cp->dev);
 707}
 708
 709static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
 710{
 711	return skb_vlan_tag_present(skb) ?
 712		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
 713}
 714
 715static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
 716				   int first, int entry_last)
 717{
 718	int frag, index;
 719	struct cp_desc *txd;
 720	skb_frag_t *this_frag;
 721	for (frag = 0; frag+first < entry_last; frag++) {
 722		index = first+frag;
 723		cp->tx_skb[index] = NULL;
 724		txd = &cp->tx_ring[index];
 725		this_frag = &skb_shinfo(skb)->frags[frag];
 726		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 727				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
 728	}
 729}
 730
 731static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
 732					struct net_device *dev)
 733{
 734	struct cp_private *cp = netdev_priv(dev);
 735	unsigned entry;
 736	u32 eor, opts1;
 737	unsigned long intr_flags;
 738	__le32 opts2;
 739	int mss = 0;
 740
 741	spin_lock_irqsave(&cp->lock, intr_flags);
 742
 743	/* This is a hard error, log it. */
 744	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
 745		netif_stop_queue(dev);
 746		spin_unlock_irqrestore(&cp->lock, intr_flags);
 747		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 748		return NETDEV_TX_BUSY;
 749	}
 750
 751	entry = cp->tx_head;
 752	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 753	mss = skb_shinfo(skb)->gso_size;
 754
 755	if (mss > MSSMask) {
 756		netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
 757				 mss);
 758		goto out_dma_error;
 759	}
 760
 761	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
 762	opts1 = DescOwn;
 763	if (mss)
 764		opts1 |= LargeSend | (mss << MSSShift);
 765	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 766		const struct iphdr *ip = ip_hdr(skb);
 767		if (ip->protocol == IPPROTO_TCP)
 768			opts1 |= IPCS | TCPCS;
 769		else if (ip->protocol == IPPROTO_UDP)
 770			opts1 |= IPCS | UDPCS;
 771		else {
 772			WARN_ONCE(1,
 773				  "Net bug: asked to checksum invalid Legacy IP packet\n");
 774			goto out_dma_error;
 775		}
 776	}
 777
 778	if (skb_shinfo(skb)->nr_frags == 0) {
 779		struct cp_desc *txd = &cp->tx_ring[entry];
 780		u32 len;
 781		dma_addr_t mapping;
 782
 783		len = skb->len;
 784		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
 785		if (dma_mapping_error(&cp->pdev->dev, mapping))
 786			goto out_dma_error;
 787
 788		txd->opts2 = opts2;
 789		txd->addr = cpu_to_le64(mapping);
 790		wmb();
 791
 792		opts1 |= eor | len | FirstFrag | LastFrag;
 793
 794		txd->opts1 = cpu_to_le32(opts1);
 795		wmb();
 796
 797		cp->tx_skb[entry] = skb;
 798		cp->tx_opts[entry] = opts1;
 799		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
 800			  entry, skb->len);
 801	} else {
 802		struct cp_desc *txd;
 803		u32 first_len, first_eor, ctrl;
 804		dma_addr_t first_mapping;
 805		int frag, first_entry = entry;
 806
 807		/* We must give this initial chunk to the device last.
 808		 * Otherwise we could race with the device.
 809		 */
 810		first_eor = eor;
 811		first_len = skb_headlen(skb);
 812		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
 813					       first_len, PCI_DMA_TODEVICE);
 814		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
 815			goto out_dma_error;
 816
 817		cp->tx_skb[entry] = skb;
 818
 819		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
 820			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
 821			u32 len;
 822			dma_addr_t mapping;
 823
 824			entry = NEXT_TX(entry);
 825
 826			len = skb_frag_size(this_frag);
 827			mapping = dma_map_single(&cp->pdev->dev,
 828						 skb_frag_address(this_frag),
 829						 len, PCI_DMA_TODEVICE);
 830			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
 831				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
 832				goto out_dma_error;
 833			}
 834
 835			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 836
 837			ctrl = opts1 | eor | len;
 838
 839			if (frag == skb_shinfo(skb)->nr_frags - 1)
 840				ctrl |= LastFrag;
 841
 842			txd = &cp->tx_ring[entry];
 843			txd->opts2 = opts2;
 844			txd->addr = cpu_to_le64(mapping);
 845			wmb();
 846
 847			txd->opts1 = cpu_to_le32(ctrl);
 848			wmb();
 849
 850			cp->tx_opts[entry] = ctrl;
 851			cp->tx_skb[entry] = skb;
 852		}
 853
 854		txd = &cp->tx_ring[first_entry];
 855		txd->opts2 = opts2;
 856		txd->addr = cpu_to_le64(first_mapping);
 857		wmb();
 858
 859		ctrl = opts1 | first_eor | first_len | FirstFrag;
 860		txd->opts1 = cpu_to_le32(ctrl);
 861		wmb();
 862
 863		cp->tx_opts[first_entry] = ctrl;
 864		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
 865			  first_entry, entry, skb->len);
 866	}
 867	cp->tx_head = NEXT_TX(entry);
 868
 869	netdev_sent_queue(dev, skb->len);
 870	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
 871		netif_stop_queue(dev);
 872
 873out_unlock:
 874	spin_unlock_irqrestore(&cp->lock, intr_flags);
 875
 876	cpw8(TxPoll, NormalTxPoll);
 877
 878	return NETDEV_TX_OK;
 879out_dma_error:
 880	dev_kfree_skb_any(skb);
 881	cp->dev->stats.tx_dropped++;
 882	goto out_unlock;
 883}
 884
 885/* Set or clear the multicast filter for this adaptor.
 886   This routine is not state sensitive and need not be SMP locked. */
 887
 888static void __cp_set_rx_mode (struct net_device *dev)
 889{
 890	struct cp_private *cp = netdev_priv(dev);
 891	u32 mc_filter[2];	/* Multicast hash filter */
 892	int rx_mode;
 893
 894	/* Note: do not reorder, GCC is clever about common statements. */
 895	if (dev->flags & IFF_PROMISC) {
 896		/* Unconditionally log net taps. */
 897		rx_mode =
 898		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
 899		    AcceptAllPhys;
 900		mc_filter[1] = mc_filter[0] = 0xffffffff;
 901	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
 902		   (dev->flags & IFF_ALLMULTI)) {
 903		/* Too many to filter perfectly -- accept all multicasts. */
 904		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
 905		mc_filter[1] = mc_filter[0] = 0xffffffff;
 906	} else {
 907		struct netdev_hw_addr *ha;
 908		rx_mode = AcceptBroadcast | AcceptMyPhys;
 909		mc_filter[1] = mc_filter[0] = 0;
 910		netdev_for_each_mc_addr(ha, dev) {
 911			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
 912
 913			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
 914			rx_mode |= AcceptMulticast;
 915		}
 916	}
 917
 918	/* We can safely update without stopping the chip. */
 919	cp->rx_config = cp_rx_config | rx_mode;
 920	cpw32_f(RxConfig, cp->rx_config);
 921
 922	cpw32_f (MAR0 + 0, mc_filter[0]);
 923	cpw32_f (MAR0 + 4, mc_filter[1]);
 924}
 925
 926static void cp_set_rx_mode (struct net_device *dev)
 927{
 928	unsigned long flags;
 929	struct cp_private *cp = netdev_priv(dev);
 930
 931	spin_lock_irqsave (&cp->lock, flags);
 932	__cp_set_rx_mode(dev);
 933	spin_unlock_irqrestore (&cp->lock, flags);
 934}
 935
 936static void __cp_get_stats(struct cp_private *cp)
 937{
 938	/* only lower 24 bits valid; write any value to clear */
 939	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
 940	cpw32 (RxMissed, 0);
 941}
 942
 943static struct net_device_stats *cp_get_stats(struct net_device *dev)
 944{
 945	struct cp_private *cp = netdev_priv(dev);
 946	unsigned long flags;
 947
 948	/* The chip only need report frame silently dropped. */
 949	spin_lock_irqsave(&cp->lock, flags);
 950 	if (netif_running(dev) && netif_device_present(dev))
 951 		__cp_get_stats(cp);
 952	spin_unlock_irqrestore(&cp->lock, flags);
 953
 954	return &dev->stats;
 955}
 956
 957static void cp_stop_hw (struct cp_private *cp)
 958{
 959	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
 960	cpw16_f(IntrMask, 0);
 961	cpw8(Cmd, 0);
 962	cpw16_f(CpCmd, 0);
 963	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
 964
 965	cp->rx_tail = 0;
 966	cp->tx_head = cp->tx_tail = 0;
 967
 968	netdev_reset_queue(cp->dev);
 969}
 970
 971static void cp_reset_hw (struct cp_private *cp)
 972{
 973	unsigned work = 1000;
 974
 975	cpw8(Cmd, CmdReset);
 976
 977	while (work--) {
 978		if (!(cpr8(Cmd) & CmdReset))
 979			return;
 980
 981		schedule_timeout_uninterruptible(10);
 982	}
 983
 984	netdev_err(cp->dev, "hardware reset timeout\n");
 985}
 986
 987static inline void cp_start_hw (struct cp_private *cp)
 988{
 989	dma_addr_t ring_dma;
 990
 991	cpw16(CpCmd, cp->cpcmd);
 992
 993	/*
 994	 * These (at least TxRingAddr) need to be configured after the
 995	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
 996	 * (C+ Command Register) recommends that these and more be configured
 997	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
 998	 * it's been observed that the TxRingAddr is actually reset to garbage
 999	 * when C+ mode Tx is enabled in CpCmd.
1000	 */
1001	cpw32_f(HiTxRingAddr, 0);
1002	cpw32_f(HiTxRingAddr + 4, 0);
1003
1004	ring_dma = cp->ring_dma;
1005	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007
1008	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011
1012	/*
1013	 * Strictly speaking, the datasheet says this should be enabled
1014	 * *before* setting the descriptor addresses. But what, then, would
1015	 * prevent it from doing DMA to random unconfigured addresses?
1016	 * This variant appears to work fine.
1017	 */
1018	cpw8(Cmd, RxOn | TxOn);
1019
1020	netdev_reset_queue(cp->dev);
1021}
1022
1023static void cp_enable_irq(struct cp_private *cp)
1024{
1025	cpw16_f(IntrMask, cp_intr_mask);
1026}
1027
1028static void cp_init_hw (struct cp_private *cp)
1029{
1030	struct net_device *dev = cp->dev;
1031
1032	cp_reset_hw(cp);
1033
1034	cpw8_f (Cfg9346, Cfg9346_Unlock);
1035
1036	/* Restore our idea of the MAC address. */
1037	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039
1040	cp_start_hw(cp);
1041	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042
1043	__cp_set_rx_mode(dev);
1044	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045
1046	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048	cpw8(Config3, PARMEnable);
1049	cp->wol_enabled = 0;
1050
1051	cpw8(Config5, cpr8(Config5) & PMEStatus);
1052
1053	cpw16(MultiIntr, 0);
1054
1055	cpw8_f(Cfg9346, Cfg9346_Lock);
1056}
1057
1058static int cp_refill_rx(struct cp_private *cp)
1059{
1060	struct net_device *dev = cp->dev;
1061	unsigned i;
1062
1063	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064		struct sk_buff *skb;
1065		dma_addr_t mapping;
1066
1067		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068		if (!skb)
1069			goto err_out;
1070
1071		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1073		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074			kfree_skb(skb);
1075			goto err_out;
1076		}
1077		cp->rx_skb[i] = skb;
1078
1079		cp->rx_ring[i].opts2 = 0;
1080		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081		if (i == (CP_RX_RING_SIZE - 1))
1082			cp->rx_ring[i].opts1 =
1083				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084		else
1085			cp->rx_ring[i].opts1 =
1086				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087	}
1088
1089	return 0;
1090
1091err_out:
1092	cp_clean_rings(cp);
1093	return -ENOMEM;
1094}
1095
1096static void cp_init_rings_index (struct cp_private *cp)
1097{
1098	cp->rx_tail = 0;
1099	cp->tx_head = cp->tx_tail = 0;
1100}
1101
1102static int cp_init_rings (struct cp_private *cp)
1103{
1104	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107
1108	cp_init_rings_index(cp);
1109
1110	return cp_refill_rx (cp);
1111}
1112
1113static int cp_alloc_rings (struct cp_private *cp)
1114{
1115	struct device *d = &cp->pdev->dev;
1116	void *mem;
1117	int rc;
1118
1119	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120	if (!mem)
1121		return -ENOMEM;
1122
1123	cp->rx_ring = mem;
1124	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125
1126	rc = cp_init_rings(cp);
1127	if (rc < 0)
1128		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129
1130	return rc;
1131}
1132
1133static void cp_clean_rings (struct cp_private *cp)
1134{
1135	struct cp_desc *desc;
1136	unsigned i;
1137
1138	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139		if (cp->rx_skb[i]) {
1140			desc = cp->rx_ring + i;
1141			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1143			dev_kfree_skb_any(cp->rx_skb[i]);
1144		}
1145	}
1146
1147	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148		if (cp->tx_skb[i]) {
1149			struct sk_buff *skb = cp->tx_skb[i];
1150
1151			desc = cp->tx_ring + i;
1152			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153					 le32_to_cpu(desc->opts1) & 0xffff,
1154					 PCI_DMA_TODEVICE);
1155			if (le32_to_cpu(desc->opts1) & LastFrag)
1156				dev_kfree_skb_any(skb);
1157			cp->dev->stats.tx_dropped++;
1158		}
1159	}
1160	netdev_reset_queue(cp->dev);
1161
1162	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165
1166	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168}
1169
1170static void cp_free_rings (struct cp_private *cp)
1171{
1172	cp_clean_rings(cp);
1173	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174			  cp->ring_dma);
1175	cp->rx_ring = NULL;
1176	cp->tx_ring = NULL;
1177}
1178
1179static int cp_open (struct net_device *dev)
1180{
1181	struct cp_private *cp = netdev_priv(dev);
1182	const int irq = cp->pdev->irq;
1183	int rc;
1184
1185	netif_dbg(cp, ifup, dev, "enabling interface\n");
1186
1187	rc = cp_alloc_rings(cp);
1188	if (rc)
1189		return rc;
1190
1191	napi_enable(&cp->napi);
1192
1193	cp_init_hw(cp);
1194
1195	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196	if (rc)
1197		goto err_out_hw;
1198
1199	cp_enable_irq(cp);
1200
1201	netif_carrier_off(dev);
1202	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203	netif_start_queue(dev);
1204
1205	return 0;
1206
1207err_out_hw:
1208	napi_disable(&cp->napi);
1209	cp_stop_hw(cp);
1210	cp_free_rings(cp);
1211	return rc;
1212}
1213
1214static int cp_close (struct net_device *dev)
1215{
1216	struct cp_private *cp = netdev_priv(dev);
1217	unsigned long flags;
1218
1219	napi_disable(&cp->napi);
1220
1221	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222
1223	spin_lock_irqsave(&cp->lock, flags);
1224
1225	netif_stop_queue(dev);
1226	netif_carrier_off(dev);
1227
1228	cp_stop_hw(cp);
1229
1230	spin_unlock_irqrestore(&cp->lock, flags);
1231
1232	free_irq(cp->pdev->irq, dev);
1233
1234	cp_free_rings(cp);
1235	return 0;
1236}
1237
1238static void cp_tx_timeout(struct net_device *dev)
1239{
1240	struct cp_private *cp = netdev_priv(dev);
1241	unsigned long flags;
1242	int rc, i;
1243
1244	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245		    cpr8(Cmd), cpr16(CpCmd),
1246		    cpr16(IntrStatus), cpr16(IntrMask));
1247
1248	spin_lock_irqsave(&cp->lock, flags);
1249
1250	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253		netif_dbg(cp, tx_err, cp->dev,
1254			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257			  le64_to_cpu(cp->tx_ring[i].addr),
1258			  cp->tx_skb[i]);
1259	}
1260
1261	cp_stop_hw(cp);
1262	cp_clean_rings(cp);
1263	rc = cp_init_rings(cp);
1264	cp_start_hw(cp);
1265	__cp_set_rx_mode(dev);
1266	cpw16_f(IntrMask, cp_norx_intr_mask);
1267
1268	netif_wake_queue(dev);
1269	napi_schedule_irqoff(&cp->napi);
1270
1271	spin_unlock_irqrestore(&cp->lock, flags);
1272}
1273
1274static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275{
1276	struct cp_private *cp = netdev_priv(dev);
1277
1278	/* if network interface not up, no need for complexity */
1279	if (!netif_running(dev)) {
1280		dev->mtu = new_mtu;
1281		cp_set_rxbufsize(cp);	/* set new rx buf size */
1282		return 0;
1283	}
1284
1285	/* network IS up, close it, reset MTU, and come up again. */
1286	cp_close(dev);
1287	dev->mtu = new_mtu;
1288	cp_set_rxbufsize(cp);
1289	return cp_open(dev);
1290}
1291
1292static const char mii_2_8139_map[8] = {
1293	BasicModeCtrl,
1294	BasicModeStatus,
1295	0,
1296	0,
1297	NWayAdvert,
1298	NWayLPAR,
1299	NWayExpansion,
1300	0
1301};
1302
1303static int mdio_read(struct net_device *dev, int phy_id, int location)
1304{
1305	struct cp_private *cp = netdev_priv(dev);
1306
1307	return location < 8 && mii_2_8139_map[location] ?
1308	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1309}
1310
1311
1312static void mdio_write(struct net_device *dev, int phy_id, int location,
1313		       int value)
1314{
1315	struct cp_private *cp = netdev_priv(dev);
1316
1317	if (location == 0) {
1318		cpw8(Cfg9346, Cfg9346_Unlock);
1319		cpw16(BasicModeCtrl, value);
1320		cpw8(Cfg9346, Cfg9346_Lock);
1321	} else if (location < 8 && mii_2_8139_map[location])
1322		cpw16(mii_2_8139_map[location], value);
1323}
1324
1325/* Set the ethtool Wake-on-LAN settings */
1326static int netdev_set_wol (struct cp_private *cp,
1327			   const struct ethtool_wolinfo *wol)
1328{
1329	u8 options;
1330
1331	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332	/* If WOL is being disabled, no need for complexity */
1333	if (wol->wolopts) {
1334		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1335		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1336	}
1337
1338	cpw8 (Cfg9346, Cfg9346_Unlock);
1339	cpw8 (Config3, options);
1340	cpw8 (Cfg9346, Cfg9346_Lock);
1341
1342	options = 0; /* Paranoia setting */
1343	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344	/* If WOL is being disabled, no need for complexity */
1345	if (wol->wolopts) {
1346		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1348		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1349	}
1350
1351	cpw8 (Config5, options);
1352
1353	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354
1355	return 0;
1356}
1357
1358/* Get the ethtool Wake-on-LAN settings */
1359static void netdev_get_wol (struct cp_private *cp,
1360	             struct ethtool_wolinfo *wol)
1361{
1362	u8 options;
1363
1364	wol->wolopts   = 0; /* Start from scratch */
1365	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366		         WAKE_MCAST | WAKE_UCAST;
1367	/* We don't need to go on if WOL is disabled */
1368	if (!cp->wol_enabled) return;
1369
1370	options        = cpr8 (Config3);
1371	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373
1374	options        = 0; /* Paranoia setting */
1375	options        = cpr8 (Config5);
1376	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379}
1380
1381static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382{
1383	struct cp_private *cp = netdev_priv(dev);
1384
1385	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388}
1389
1390static void cp_get_ringparam(struct net_device *dev,
1391				struct ethtool_ringparam *ring)
1392{
1393	ring->rx_max_pending = CP_RX_RING_SIZE;
1394	ring->tx_max_pending = CP_TX_RING_SIZE;
1395	ring->rx_pending = CP_RX_RING_SIZE;
1396	ring->tx_pending = CP_TX_RING_SIZE;
1397}
1398
1399static int cp_get_regs_len(struct net_device *dev)
1400{
1401	return CP_REGS_SIZE;
1402}
1403
1404static int cp_get_sset_count (struct net_device *dev, int sset)
1405{
1406	switch (sset) {
1407	case ETH_SS_STATS:
1408		return CP_NUM_STATS;
1409	default:
1410		return -EOPNOTSUPP;
1411	}
1412}
1413
1414static int cp_get_link_ksettings(struct net_device *dev,
1415				 struct ethtool_link_ksettings *cmd)
1416{
1417	struct cp_private *cp = netdev_priv(dev);
1418	unsigned long flags;
1419
1420	spin_lock_irqsave(&cp->lock, flags);
1421	mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1422	spin_unlock_irqrestore(&cp->lock, flags);
1423
1424	return 0;
1425}
1426
1427static int cp_set_link_ksettings(struct net_device *dev,
1428				 const struct ethtool_link_ksettings *cmd)
1429{
1430	struct cp_private *cp = netdev_priv(dev);
1431	int rc;
1432	unsigned long flags;
1433
1434	spin_lock_irqsave(&cp->lock, flags);
1435	rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1436	spin_unlock_irqrestore(&cp->lock, flags);
1437
1438	return rc;
1439}
1440
1441static int cp_nway_reset(struct net_device *dev)
1442{
1443	struct cp_private *cp = netdev_priv(dev);
1444	return mii_nway_restart(&cp->mii_if);
1445}
1446
1447static u32 cp_get_msglevel(struct net_device *dev)
1448{
1449	struct cp_private *cp = netdev_priv(dev);
1450	return cp->msg_enable;
1451}
1452
1453static void cp_set_msglevel(struct net_device *dev, u32 value)
1454{
1455	struct cp_private *cp = netdev_priv(dev);
1456	cp->msg_enable = value;
1457}
1458
1459static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460{
1461	struct cp_private *cp = netdev_priv(dev);
1462	unsigned long flags;
1463
1464	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465		return 0;
1466
1467	spin_lock_irqsave(&cp->lock, flags);
1468
1469	if (features & NETIF_F_RXCSUM)
1470		cp->cpcmd |= RxChkSum;
1471	else
1472		cp->cpcmd &= ~RxChkSum;
1473
1474	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475		cp->cpcmd |= RxVlanOn;
1476	else
1477		cp->cpcmd &= ~RxVlanOn;
1478
1479	cpw16_f(CpCmd, cp->cpcmd);
1480	spin_unlock_irqrestore(&cp->lock, flags);
1481
1482	return 0;
1483}
1484
1485static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486		        void *p)
1487{
1488	struct cp_private *cp = netdev_priv(dev);
1489	unsigned long flags;
1490
1491	if (regs->len < CP_REGS_SIZE)
1492		return /* -EINVAL */;
1493
1494	regs->version = CP_REGS_VER;
1495
1496	spin_lock_irqsave(&cp->lock, flags);
1497	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498	spin_unlock_irqrestore(&cp->lock, flags);
1499}
1500
1501static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502{
1503	struct cp_private *cp = netdev_priv(dev);
1504	unsigned long flags;
1505
1506	spin_lock_irqsave (&cp->lock, flags);
1507	netdev_get_wol (cp, wol);
1508	spin_unlock_irqrestore (&cp->lock, flags);
1509}
1510
1511static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512{
1513	struct cp_private *cp = netdev_priv(dev);
1514	unsigned long flags;
1515	int rc;
1516
1517	spin_lock_irqsave (&cp->lock, flags);
1518	rc = netdev_set_wol (cp, wol);
1519	spin_unlock_irqrestore (&cp->lock, flags);
1520
1521	return rc;
1522}
1523
1524static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525{
1526	switch (stringset) {
1527	case ETH_SS_STATS:
1528		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529		break;
1530	default:
1531		BUG();
1532		break;
1533	}
1534}
1535
1536static void cp_get_ethtool_stats (struct net_device *dev,
1537				  struct ethtool_stats *estats, u64 *tmp_stats)
1538{
1539	struct cp_private *cp = netdev_priv(dev);
1540	struct cp_dma_stats *nic_stats;
1541	dma_addr_t dma;
1542	int i;
1543
1544	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545				       &dma, GFP_KERNEL);
1546	if (!nic_stats)
1547		return;
1548
1549	/* begin NIC statistics dump */
1550	cpw32(StatsAddr + 4, (u64)dma >> 32);
1551	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552	cpr32(StatsAddr);
1553
1554	for (i = 0; i < 1000; i++) {
1555		if ((cpr32(StatsAddr) & DumpStats) == 0)
1556			break;
1557		udelay(10);
1558	}
1559	cpw32(StatsAddr, 0);
1560	cpw32(StatsAddr + 4, 0);
1561	cpr32(StatsAddr);
1562
1563	i = 0;
1564	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577	tmp_stats[i++] = cp->cp_stats.rx_frags;
1578	BUG_ON(i != CP_NUM_STATS);
1579
1580	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581}
1582
1583static const struct ethtool_ops cp_ethtool_ops = {
1584	.get_drvinfo		= cp_get_drvinfo,
1585	.get_regs_len		= cp_get_regs_len,
1586	.get_sset_count		= cp_get_sset_count,
1587	.nway_reset		= cp_nway_reset,
1588	.get_link		= ethtool_op_get_link,
1589	.get_msglevel		= cp_get_msglevel,
1590	.set_msglevel		= cp_set_msglevel,
1591	.get_regs		= cp_get_regs,
1592	.get_wol		= cp_get_wol,
1593	.set_wol		= cp_set_wol,
1594	.get_strings		= cp_get_strings,
1595	.get_ethtool_stats	= cp_get_ethtool_stats,
1596	.get_eeprom_len		= cp_get_eeprom_len,
1597	.get_eeprom		= cp_get_eeprom,
1598	.set_eeprom		= cp_set_eeprom,
1599	.get_ringparam		= cp_get_ringparam,
1600	.get_link_ksettings	= cp_get_link_ksettings,
1601	.set_link_ksettings	= cp_set_link_ksettings,
1602};
1603
1604static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605{
1606	struct cp_private *cp = netdev_priv(dev);
1607	int rc;
1608	unsigned long flags;
1609
1610	if (!netif_running(dev))
1611		return -EINVAL;
1612
1613	spin_lock_irqsave(&cp->lock, flags);
1614	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615	spin_unlock_irqrestore(&cp->lock, flags);
1616	return rc;
1617}
1618
1619static int cp_set_mac_address(struct net_device *dev, void *p)
1620{
1621	struct cp_private *cp = netdev_priv(dev);
1622	struct sockaddr *addr = p;
1623
1624	if (!is_valid_ether_addr(addr->sa_data))
1625		return -EADDRNOTAVAIL;
1626
1627	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628
1629	spin_lock_irq(&cp->lock);
1630
1631	cpw8_f(Cfg9346, Cfg9346_Unlock);
1632	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634	cpw8_f(Cfg9346, Cfg9346_Lock);
1635
1636	spin_unlock_irq(&cp->lock);
1637
1638	return 0;
1639}
1640
1641/* Serial EEPROM section. */
1642
1643/*  EEPROM_Ctrl bits. */
1644#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1645#define EE_CS			0x08	/* EEPROM chip select. */
1646#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1647#define EE_WRITE_0		0x00
1648#define EE_WRITE_1		0x02
1649#define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1650#define EE_ENB			(0x80 | EE_CS)
1651
1652/* Delay between EEPROM clock transitions.
1653   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654 */
1655
1656#define eeprom_delay()	readb(ee_addr)
1657
1658/* The EEPROM commands include the alway-set leading bit. */
1659#define EE_EXTEND_CMD	(4)
1660#define EE_WRITE_CMD	(5)
1661#define EE_READ_CMD		(6)
1662#define EE_ERASE_CMD	(7)
1663
1664#define EE_EWDS_ADDR	(0)
1665#define EE_WRAL_ADDR	(1)
1666#define EE_ERAL_ADDR	(2)
1667#define EE_EWEN_ADDR	(3)
1668
1669#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670
1671static void eeprom_cmd_start(void __iomem *ee_addr)
1672{
1673	writeb (EE_ENB & ~EE_CS, ee_addr);
1674	writeb (EE_ENB, ee_addr);
1675	eeprom_delay ();
1676}
1677
1678static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679{
1680	int i;
1681
1682	/* Shift the command bits out. */
1683	for (i = cmd_len - 1; i >= 0; i--) {
1684		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685		writeb (EE_ENB | dataval, ee_addr);
1686		eeprom_delay ();
1687		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688		eeprom_delay ();
1689	}
1690	writeb (EE_ENB, ee_addr);
1691	eeprom_delay ();
1692}
1693
1694static void eeprom_cmd_end(void __iomem *ee_addr)
1695{
1696	writeb(0, ee_addr);
1697	eeprom_delay ();
1698}
1699
1700static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701			      int addr_len)
1702{
1703	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704
1705	eeprom_cmd_start(ee_addr);
1706	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707	eeprom_cmd_end(ee_addr);
1708}
1709
1710static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711{
1712	int i;
1713	u16 retval = 0;
1714	void __iomem *ee_addr = ioaddr + Cfg9346;
1715	int read_cmd = location | (EE_READ_CMD << addr_len);
1716
1717	eeprom_cmd_start(ee_addr);
1718	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719
1720	for (i = 16; i > 0; i--) {
1721		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722		eeprom_delay ();
1723		retval =
1724		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725				     0);
1726		writeb (EE_ENB, ee_addr);
1727		eeprom_delay ();
1728	}
1729
1730	eeprom_cmd_end(ee_addr);
1731
1732	return retval;
1733}
1734
1735static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736			 int addr_len)
1737{
1738	int i;
1739	void __iomem *ee_addr = ioaddr + Cfg9346;
1740	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741
1742	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743
1744	eeprom_cmd_start(ee_addr);
1745	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746	eeprom_cmd(ee_addr, val, 16);
1747	eeprom_cmd_end(ee_addr);
1748
1749	eeprom_cmd_start(ee_addr);
1750	for (i = 0; i < 20000; i++)
1751		if (readb(ee_addr) & EE_DATA_READ)
1752			break;
1753	eeprom_cmd_end(ee_addr);
1754
1755	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756}
1757
1758static int cp_get_eeprom_len(struct net_device *dev)
1759{
1760	struct cp_private *cp = netdev_priv(dev);
1761	int size;
1762
1763	spin_lock_irq(&cp->lock);
1764	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765	spin_unlock_irq(&cp->lock);
1766
1767	return size;
1768}
1769
1770static int cp_get_eeprom(struct net_device *dev,
1771			 struct ethtool_eeprom *eeprom, u8 *data)
1772{
1773	struct cp_private *cp = netdev_priv(dev);
1774	unsigned int addr_len;
1775	u16 val;
1776	u32 offset = eeprom->offset >> 1;
1777	u32 len = eeprom->len;
1778	u32 i = 0;
1779
1780	eeprom->magic = CP_EEPROM_MAGIC;
1781
1782	spin_lock_irq(&cp->lock);
1783
1784	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785
1786	if (eeprom->offset & 1) {
1787		val = read_eeprom(cp->regs, offset, addr_len);
1788		data[i++] = (u8)(val >> 8);
1789		offset++;
1790	}
1791
1792	while (i < len - 1) {
1793		val = read_eeprom(cp->regs, offset, addr_len);
1794		data[i++] = (u8)val;
1795		data[i++] = (u8)(val >> 8);
1796		offset++;
1797	}
1798
1799	if (i < len) {
1800		val = read_eeprom(cp->regs, offset, addr_len);
1801		data[i] = (u8)val;
1802	}
1803
1804	spin_unlock_irq(&cp->lock);
1805	return 0;
1806}
1807
1808static int cp_set_eeprom(struct net_device *dev,
1809			 struct ethtool_eeprom *eeprom, u8 *data)
1810{
1811	struct cp_private *cp = netdev_priv(dev);
1812	unsigned int addr_len;
1813	u16 val;
1814	u32 offset = eeprom->offset >> 1;
1815	u32 len = eeprom->len;
1816	u32 i = 0;
1817
1818	if (eeprom->magic != CP_EEPROM_MAGIC)
1819		return -EINVAL;
1820
1821	spin_lock_irq(&cp->lock);
1822
1823	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824
1825	if (eeprom->offset & 1) {
1826		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827		val |= (u16)data[i++] << 8;
1828		write_eeprom(cp->regs, offset, val, addr_len);
1829		offset++;
1830	}
1831
1832	while (i < len - 1) {
1833		val = (u16)data[i++];
1834		val |= (u16)data[i++] << 8;
1835		write_eeprom(cp->regs, offset, val, addr_len);
1836		offset++;
1837	}
1838
1839	if (i < len) {
1840		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841		val |= (u16)data[i];
1842		write_eeprom(cp->regs, offset, val, addr_len);
1843	}
1844
1845	spin_unlock_irq(&cp->lock);
1846	return 0;
1847}
1848
1849/* Put the board into D3cold state and wait for WakeUp signal */
1850static void cp_set_d3_state (struct cp_private *cp)
1851{
1852	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853	pci_set_power_state (cp->pdev, PCI_D3hot);
1854}
1855
1856static netdev_features_t cp_features_check(struct sk_buff *skb,
1857					   struct net_device *dev,
1858					   netdev_features_t features)
1859{
1860	if (skb_shinfo(skb)->gso_size > MSSMask)
1861		features &= ~NETIF_F_TSO;
1862
1863	return vlan_features_check(skb, features);
1864}
1865static const struct net_device_ops cp_netdev_ops = {
1866	.ndo_open		= cp_open,
1867	.ndo_stop		= cp_close,
1868	.ndo_validate_addr	= eth_validate_addr,
1869	.ndo_set_mac_address 	= cp_set_mac_address,
1870	.ndo_set_rx_mode	= cp_set_rx_mode,
1871	.ndo_get_stats		= cp_get_stats,
1872	.ndo_do_ioctl		= cp_ioctl,
1873	.ndo_start_xmit		= cp_start_xmit,
1874	.ndo_tx_timeout		= cp_tx_timeout,
1875	.ndo_set_features	= cp_set_features,
1876	.ndo_change_mtu		= cp_change_mtu,
1877	.ndo_features_check	= cp_features_check,
1878
1879#ifdef CONFIG_NET_POLL_CONTROLLER
1880	.ndo_poll_controller	= cp_poll_controller,
1881#endif
1882};
1883
1884static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1885{
1886	struct net_device *dev;
1887	struct cp_private *cp;
1888	int rc;
1889	void __iomem *regs;
1890	resource_size_t pciaddr;
1891	unsigned int addr_len, i, pci_using_dac;
1892
1893	pr_info_once("%s", version);
1894
1895	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1896	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1897		dev_info(&pdev->dev,
1898			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1899			 pdev->vendor, pdev->device, pdev->revision);
1900		return -ENODEV;
1901	}
1902
1903	dev = alloc_etherdev(sizeof(struct cp_private));
1904	if (!dev)
1905		return -ENOMEM;
1906	SET_NETDEV_DEV(dev, &pdev->dev);
1907
1908	cp = netdev_priv(dev);
1909	cp->pdev = pdev;
1910	cp->dev = dev;
1911	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1912	spin_lock_init (&cp->lock);
1913	cp->mii_if.dev = dev;
1914	cp->mii_if.mdio_read = mdio_read;
1915	cp->mii_if.mdio_write = mdio_write;
1916	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1917	cp->mii_if.phy_id_mask = 0x1f;
1918	cp->mii_if.reg_num_mask = 0x1f;
1919	cp_set_rxbufsize(cp);
1920
1921	rc = pci_enable_device(pdev);
1922	if (rc)
1923		goto err_out_free;
1924
1925	rc = pci_set_mwi(pdev);
1926	if (rc)
1927		goto err_out_disable;
1928
1929	rc = pci_request_regions(pdev, DRV_NAME);
1930	if (rc)
1931		goto err_out_mwi;
1932
1933	pciaddr = pci_resource_start(pdev, 1);
1934	if (!pciaddr) {
1935		rc = -EIO;
1936		dev_err(&pdev->dev, "no MMIO resource\n");
1937		goto err_out_res;
1938	}
1939	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1940		rc = -EIO;
1941		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1942		       (unsigned long long)pci_resource_len(pdev, 1));
1943		goto err_out_res;
1944	}
1945
1946	/* Configure DMA attributes. */
1947	if ((sizeof(dma_addr_t) > 4) &&
1948	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1949	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1950		pci_using_dac = 1;
1951	} else {
1952		pci_using_dac = 0;
1953
1954		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1955		if (rc) {
1956			dev_err(&pdev->dev,
1957				"No usable DMA configuration, aborting\n");
1958			goto err_out_res;
1959		}
1960		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1961		if (rc) {
1962			dev_err(&pdev->dev,
1963				"No usable consistent DMA configuration, aborting\n");
1964			goto err_out_res;
1965		}
1966	}
1967
1968	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1969		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1970
1971	dev->features |= NETIF_F_RXCSUM;
1972	dev->hw_features |= NETIF_F_RXCSUM;
1973
1974	regs = ioremap(pciaddr, CP_REGS_SIZE);
1975	if (!regs) {
1976		rc = -EIO;
1977		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1978			(unsigned long long)pci_resource_len(pdev, 1),
1979		       (unsigned long long)pciaddr);
1980		goto err_out_res;
1981	}
1982	cp->regs = regs;
1983
1984	cp_stop_hw(cp);
1985
1986	/* read MAC address from EEPROM */
1987	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1988	for (i = 0; i < 3; i++)
1989		((__le16 *) (dev->dev_addr))[i] =
1990		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1991
1992	dev->netdev_ops = &cp_netdev_ops;
1993	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1994	dev->ethtool_ops = &cp_ethtool_ops;
1995	dev->watchdog_timeo = TX_TIMEOUT;
1996
1997	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1998		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1999
2000	if (pci_using_dac)
2001		dev->features |= NETIF_F_HIGHDMA;
2002
2003	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2004		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2005	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2006		NETIF_F_HIGHDMA;
2007
2008	/* MTU range: 60 - 4096 */
2009	dev->min_mtu = CP_MIN_MTU;
2010	dev->max_mtu = CP_MAX_MTU;
2011
2012	rc = register_netdev(dev);
2013	if (rc)
2014		goto err_out_iomap;
2015
2016	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2017		    regs, dev->dev_addr, pdev->irq);
2018
2019	pci_set_drvdata(pdev, dev);
2020
2021	/* enable busmastering and memory-write-invalidate */
2022	pci_set_master(pdev);
2023
2024	if (cp->wol_enabled)
2025		cp_set_d3_state (cp);
2026
2027	return 0;
2028
2029err_out_iomap:
2030	iounmap(regs);
2031err_out_res:
2032	pci_release_regions(pdev);
2033err_out_mwi:
2034	pci_clear_mwi(pdev);
2035err_out_disable:
2036	pci_disable_device(pdev);
2037err_out_free:
2038	free_netdev(dev);
2039	return rc;
2040}
2041
2042static void cp_remove_one (struct pci_dev *pdev)
2043{
2044	struct net_device *dev = pci_get_drvdata(pdev);
2045	struct cp_private *cp = netdev_priv(dev);
2046
2047	unregister_netdev(dev);
2048	iounmap(cp->regs);
2049	if (cp->wol_enabled)
2050		pci_set_power_state (pdev, PCI_D0);
2051	pci_release_regions(pdev);
2052	pci_clear_mwi(pdev);
2053	pci_disable_device(pdev);
2054	free_netdev(dev);
2055}
2056
2057#ifdef CONFIG_PM
2058static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2059{
2060	struct net_device *dev = pci_get_drvdata(pdev);
2061	struct cp_private *cp = netdev_priv(dev);
2062	unsigned long flags;
2063
2064	if (!netif_running(dev))
2065		return 0;
2066
2067	netif_device_detach (dev);
2068	netif_stop_queue (dev);
2069
2070	spin_lock_irqsave (&cp->lock, flags);
2071
2072	/* Disable Rx and Tx */
2073	cpw16 (IntrMask, 0);
2074	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2075
2076	spin_unlock_irqrestore (&cp->lock, flags);
2077
2078	pci_save_state(pdev);
2079	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2080	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2081
2082	return 0;
2083}
2084
2085static int cp_resume (struct pci_dev *pdev)
2086{
2087	struct net_device *dev = pci_get_drvdata (pdev);
2088	struct cp_private *cp = netdev_priv(dev);
2089	unsigned long flags;
2090
2091	if (!netif_running(dev))
2092		return 0;
2093
2094	netif_device_attach (dev);
2095
2096	pci_set_power_state(pdev, PCI_D0);
2097	pci_restore_state(pdev);
2098	pci_enable_wake(pdev, PCI_D0, 0);
2099
2100	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2101	cp_init_rings_index (cp);
2102	cp_init_hw (cp);
2103	cp_enable_irq(cp);
2104	netif_start_queue (dev);
2105
2106	spin_lock_irqsave (&cp->lock, flags);
2107
2108	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2109
2110	spin_unlock_irqrestore (&cp->lock, flags);
2111
2112	return 0;
2113}
2114#endif /* CONFIG_PM */
2115
2116static const struct pci_device_id cp_pci_tbl[] = {
2117        { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2118        { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2119        { },
2120};
2121MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2122
2123static struct pci_driver cp_driver = {
2124	.name         = DRV_NAME,
2125	.id_table     = cp_pci_tbl,
2126	.probe        =	cp_init_one,
2127	.remove       = cp_remove_one,
2128#ifdef CONFIG_PM
2129	.resume       = cp_resume,
2130	.suspend      = cp_suspend,
2131#endif
2132};
2133
2134module_pci_driver(cp_driver);