Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 
 30
 31static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 32					size_t *retlen, u_char *buf);
 33static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 34				size_t len, size_t *retlen, const u_char *buf);
 35static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 36				unsigned long count, loff_t to, size_t *retlen);
 37static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 38static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 39static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 41			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 42static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 43static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 44static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 45static void put_chip(struct map_info *map, struct flchip *chip);
 46
 47struct mtd_info *lpddr_cmdset(struct map_info *map)
 48{
 49	struct lpddr_private *lpddr = map->fldrv_priv;
 50	struct flchip_shared *shared;
 51	struct flchip *chip;
 52	struct mtd_info *mtd;
 53	int numchips;
 54	int i, j;
 55
 56	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 57	if (!mtd) {
 58		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 59		return NULL;
 60	}
 61	mtd->priv = map;
 62	mtd->type = MTD_NORFLASH;
 63
 64	/* Fill in the default mtd operations */
 65	mtd->read = lpddr_read;
 66	mtd->type = MTD_NORFLASH;
 67	mtd->flags = MTD_CAP_NORFLASH;
 68	mtd->flags &= ~MTD_BIT_WRITEABLE;
 69	mtd->erase = lpddr_erase;
 70	mtd->write = lpddr_write_buffers;
 71	mtd->writev = lpddr_writev;
 72	mtd->read_oob = NULL;
 73	mtd->write_oob = NULL;
 74	mtd->sync = NULL;
 75	mtd->lock = lpddr_lock;
 76	mtd->unlock = lpddr_unlock;
 77	mtd->suspend = NULL;
 78	mtd->resume = NULL;
 79	if (map_is_linear(map)) {
 80		mtd->point = lpddr_point;
 81		mtd->unpoint = lpddr_unpoint;
 82	}
 83	mtd->block_isbad = NULL;
 84	mtd->block_markbad = NULL;
 85	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 86	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 87	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 88
 89	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 90						GFP_KERNEL);
 91	if (!shared) {
 92		kfree(lpddr);
 93		kfree(mtd);
 94		return NULL;
 95	}
 96
 97	chip = &lpddr->chips[0];
 98	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 99	for (i = 0; i < numchips; i++) {
100		shared[i].writing = shared[i].erasing = NULL;
101		mutex_init(&shared[i].lock);
102		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103			*chip = lpddr->chips[i];
104			chip->start += j << lpddr->chipshift;
105			chip->oldstate = chip->state = FL_READY;
106			chip->priv = &shared[i];
107			/* those should be reset too since
108			   they create memory references. */
109			init_waitqueue_head(&chip->wq);
110			mutex_init(&chip->mutex);
111			chip++;
112		}
113	}
114
115	return mtd;
116}
117EXPORT_SYMBOL(lpddr_cmdset);
118
119static int wait_for_ready(struct map_info *map, struct flchip *chip,
120		unsigned int chip_op_time)
121{
122	unsigned int timeo, reset_timeo, sleep_time;
123	unsigned int dsr;
124	flstate_t chip_state = chip->state;
125	int ret = 0;
126
127	/* set our timeout to 8 times the expected delay */
128	timeo = chip_op_time * 8;
129	if (!timeo)
130		timeo = 500000;
131	reset_timeo = timeo;
132	sleep_time = chip_op_time / 2;
133
134	for (;;) {
135		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136		if (dsr & DSR_READY_STATUS)
137			break;
138		if (!timeo) {
139			printk(KERN_ERR "%s: Flash timeout error state %d \n",
140							map->name, chip_state);
141			ret = -ETIME;
142			break;
143		}
144
145		/* OK Still waiting. Drop the lock, wait a while and retry. */
146		mutex_unlock(&chip->mutex);
147		if (sleep_time >= 1000000/HZ) {
148			/*
149			 * Half of the normal delay still remaining
150			 * can be performed with a sleeping delay instead
151			 * of busy waiting.
152			 */
153			msleep(sleep_time/1000);
154			timeo -= sleep_time;
155			sleep_time = 1000000/HZ;
156		} else {
157			udelay(1);
158			cond_resched();
159			timeo--;
160		}
161		mutex_lock(&chip->mutex);
162
163		while (chip->state != chip_state) {
164			/* Someone's suspended the operation: sleep */
165			DECLARE_WAITQUEUE(wait, current);
166			set_current_state(TASK_UNINTERRUPTIBLE);
167			add_wait_queue(&chip->wq, &wait);
168			mutex_unlock(&chip->mutex);
169			schedule();
170			remove_wait_queue(&chip->wq, &wait);
171			mutex_lock(&chip->mutex);
172		}
173		if (chip->erase_suspended || chip->write_suspended)  {
174			/* Suspend has occurred while sleep: reset timeout */
175			timeo = reset_timeo;
176			chip->erase_suspended = chip->write_suspended = 0;
177		}
178	}
179	/* check status for errors */
180	if (dsr & DSR_ERR) {
181		/* Clear DSR*/
182		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184				map->name, dsr);
185		print_drs_error(dsr);
186		ret = -EIO;
187	}
188	chip->state = FL_READY;
189	return ret;
190}
191
192static int get_chip(struct map_info *map, struct flchip *chip, int mode)
193{
194	int ret;
195	DECLARE_WAITQUEUE(wait, current);
196
197 retry:
198	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199		&& chip->state != FL_SYNCING) {
200		/*
201		 * OK. We have possibility for contension on the write/erase
202		 * operations which are global to the real chip and not per
203		 * partition.  So let's fight it over in the partition which
204		 * currently has authority on the operation.
205		 *
206		 * The rules are as follows:
207		 *
208		 * - any write operation must own shared->writing.
209		 *
210		 * - any erase operation must own _both_ shared->writing and
211		 *   shared->erasing.
212		 *
213		 * - contension arbitration is handled in the owner's context.
214		 *
215		 * The 'shared' struct can be read and/or written only when
216		 * its lock is taken.
217		 */
218		struct flchip_shared *shared = chip->priv;
219		struct flchip *contender;
220		mutex_lock(&shared->lock);
221		contender = shared->writing;
222		if (contender && contender != chip) {
223			/*
224			 * The engine to perform desired operation on this
225			 * partition is already in use by someone else.
226			 * Let's fight over it in the context of the chip
227			 * currently using it.  If it is possible to suspend,
228			 * that other partition will do just that, otherwise
229			 * it'll happily send us to sleep.  In any case, when
230			 * get_chip returns success we're clear to go ahead.
231			 */
232			ret = mutex_trylock(&contender->mutex);
233			mutex_unlock(&shared->lock);
234			if (!ret)
235				goto retry;
236			mutex_unlock(&chip->mutex);
237			ret = chip_ready(map, contender, mode);
238			mutex_lock(&chip->mutex);
239
240			if (ret == -EAGAIN) {
241				mutex_unlock(&contender->mutex);
242				goto retry;
243			}
244			if (ret) {
245				mutex_unlock(&contender->mutex);
246				return ret;
247			}
248			mutex_lock(&shared->lock);
249
250			/* We should not own chip if it is already in FL_SYNCING
251			 * state. Put contender and retry. */
252			if (chip->state == FL_SYNCING) {
253				put_chip(map, contender);
254				mutex_unlock(&contender->mutex);
255				goto retry;
256			}
257			mutex_unlock(&contender->mutex);
258		}
259
260		/* Check if we have suspended erase on this chip.
261		   Must sleep in such a case. */
262		if (mode == FL_ERASING && shared->erasing
263		    && shared->erasing->oldstate == FL_ERASING) {
264			mutex_unlock(&shared->lock);
265			set_current_state(TASK_UNINTERRUPTIBLE);
266			add_wait_queue(&chip->wq, &wait);
267			mutex_unlock(&chip->mutex);
268			schedule();
269			remove_wait_queue(&chip->wq, &wait);
270			mutex_lock(&chip->mutex);
271			goto retry;
272		}
273
274		/* We now own it */
275		shared->writing = chip;
276		if (mode == FL_ERASING)
277			shared->erasing = chip;
278		mutex_unlock(&shared->lock);
279	}
280
281	ret = chip_ready(map, chip, mode);
282	if (ret == -EAGAIN)
283		goto retry;
284
285	return ret;
286}
287
288static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
289{
290	struct lpddr_private *lpddr = map->fldrv_priv;
291	int ret = 0;
292	DECLARE_WAITQUEUE(wait, current);
293
294	/* Prevent setting state FL_SYNCING for chip in suspended state. */
295	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296		goto sleep;
297
298	switch (chip->state) {
299	case FL_READY:
300	case FL_JEDEC_QUERY:
301		return 0;
302
303	case FL_ERASING:
304		if (!lpddr->qinfo->SuspEraseSupp ||
305			!(mode == FL_READY || mode == FL_POINT))
306			goto sleep;
307
308		map_write(map, CMD(LPDDR_SUSPEND),
309			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310		chip->oldstate = FL_ERASING;
311		chip->state = FL_ERASE_SUSPENDING;
312		ret = wait_for_ready(map, chip, 0);
313		if (ret) {
314			/* Oops. something got wrong. */
315			/* Resume and pretend we weren't here.  */
316			put_chip(map, chip);
317			printk(KERN_ERR "%s: suspend operation failed."
318					"State may be wrong \n", map->name);
319			return -EIO;
320		}
321		chip->erase_suspended = 1;
322		chip->state = FL_READY;
323		return 0;
324		/* Erase suspend */
325	case FL_POINT:
326		/* Only if there's no operation suspended... */
327		if (mode == FL_READY && chip->oldstate == FL_READY)
328			return 0;
 
329
330	default:
331sleep:
332		set_current_state(TASK_UNINTERRUPTIBLE);
333		add_wait_queue(&chip->wq, &wait);
334		mutex_unlock(&chip->mutex);
335		schedule();
336		remove_wait_queue(&chip->wq, &wait);
337		mutex_lock(&chip->mutex);
338		return -EAGAIN;
339	}
340}
341
342static void put_chip(struct map_info *map, struct flchip *chip)
343{
344	if (chip->priv) {
345		struct flchip_shared *shared = chip->priv;
346		mutex_lock(&shared->lock);
347		if (shared->writing == chip && chip->oldstate == FL_READY) {
348			/* We own the ability to write, but we're done */
349			shared->writing = shared->erasing;
350			if (shared->writing && shared->writing != chip) {
351				/* give back the ownership */
352				struct flchip *loaner = shared->writing;
353				mutex_lock(&loaner->mutex);
354				mutex_unlock(&shared->lock);
355				mutex_unlock(&chip->mutex);
356				put_chip(map, loaner);
357				mutex_lock(&chip->mutex);
358				mutex_unlock(&loaner->mutex);
359				wake_up(&chip->wq);
360				return;
361			}
362			shared->erasing = NULL;
363			shared->writing = NULL;
364		} else if (shared->erasing == chip && shared->writing != chip) {
365			/*
366			 * We own the ability to erase without the ability
367			 * to write, which means the erase was suspended
368			 * and some other partition is currently writing.
369			 * Don't let the switch below mess things up since
370			 * we don't have ownership to resume anything.
371			 */
372			mutex_unlock(&shared->lock);
373			wake_up(&chip->wq);
374			return;
375		}
376		mutex_unlock(&shared->lock);
377	}
378
379	switch (chip->oldstate) {
380	case FL_ERASING:
381		map_write(map, CMD(LPDDR_RESUME),
382				map->pfow_base + PFOW_COMMAND_CODE);
383		map_write(map, CMD(LPDDR_START_EXECUTION),
384				map->pfow_base + PFOW_COMMAND_EXECUTE);
385		chip->oldstate = FL_READY;
386		chip->state = FL_ERASING;
387		break;
388	case FL_READY:
389		break;
390	default:
391		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
392				map->name, chip->oldstate);
393	}
394	wake_up(&chip->wq);
395}
396
397int do_write_buffer(struct map_info *map, struct flchip *chip,
398			unsigned long adr, const struct kvec **pvec,
399			unsigned long *pvec_seek, int len)
400{
401	struct lpddr_private *lpddr = map->fldrv_priv;
402	map_word datum;
403	int ret, wbufsize, word_gap, words;
404	const struct kvec *vec;
405	unsigned long vec_seek;
406	unsigned long prog_buf_ofs;
407
408	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
409
410	mutex_lock(&chip->mutex);
411	ret = get_chip(map, chip, FL_WRITING);
412	if (ret) {
413		mutex_unlock(&chip->mutex);
414		return ret;
415	}
416	/* Figure out the number of words to write */
417	word_gap = (-adr & (map_bankwidth(map)-1));
418	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
419	if (!word_gap) {
420		words--;
421	} else {
422		word_gap = map_bankwidth(map) - word_gap;
423		adr -= word_gap;
424		datum = map_word_ff(map);
425	}
426	/* Write data */
427	/* Get the program buffer offset from PFOW register data first*/
428	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
429				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
430	vec = *pvec;
431	vec_seek = *pvec_seek;
432	do {
433		int n = map_bankwidth(map) - word_gap;
434
435		if (n > vec->iov_len - vec_seek)
436			n = vec->iov_len - vec_seek;
437		if (n > len)
438			n = len;
439
440		if (!word_gap && (len < map_bankwidth(map)))
441			datum = map_word_ff(map);
442
443		datum = map_word_load_partial(map, datum,
444				vec->iov_base + vec_seek, word_gap, n);
445
446		len -= n;
447		word_gap += n;
448		if (!len || word_gap == map_bankwidth(map)) {
449			map_write(map, datum, prog_buf_ofs);
450			prog_buf_ofs += map_bankwidth(map);
451			word_gap = 0;
452		}
453
454		vec_seek += n;
455		if (vec_seek == vec->iov_len) {
456			vec++;
457			vec_seek = 0;
458		}
459	} while (len);
460	*pvec = vec;
461	*pvec_seek = vec_seek;
462
463	/* GO GO GO */
464	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
465	chip->state = FL_WRITING;
466	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
467	if (ret)	{
468		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
469			map->name, ret, adr);
470		goto out;
471	}
472
473 out:	put_chip(map, chip);
474	mutex_unlock(&chip->mutex);
475	return ret;
476}
477
478int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
479{
480	struct map_info *map = mtd->priv;
481	struct lpddr_private *lpddr = map->fldrv_priv;
482	int chipnum = adr >> lpddr->chipshift;
483	struct flchip *chip = &lpddr->chips[chipnum];
484	int ret;
485
486	mutex_lock(&chip->mutex);
487	ret = get_chip(map, chip, FL_ERASING);
488	if (ret) {
489		mutex_unlock(&chip->mutex);
490		return ret;
491	}
492	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
493	chip->state = FL_ERASING;
494	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
495	if (ret) {
496		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
497			map->name, ret, adr);
498		goto out;
499	}
500 out:	put_chip(map, chip);
501	mutex_unlock(&chip->mutex);
502	return ret;
503}
504
505static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
506			size_t *retlen, u_char *buf)
507{
508	struct map_info *map = mtd->priv;
509	struct lpddr_private *lpddr = map->fldrv_priv;
510	int chipnum = adr >> lpddr->chipshift;
511	struct flchip *chip = &lpddr->chips[chipnum];
512	int ret = 0;
513
514	mutex_lock(&chip->mutex);
515	ret = get_chip(map, chip, FL_READY);
516	if (ret) {
517		mutex_unlock(&chip->mutex);
518		return ret;
519	}
520
521	map_copy_from(map, buf, adr, len);
522	*retlen = len;
523
524	put_chip(map, chip);
525	mutex_unlock(&chip->mutex);
526	return ret;
527}
528
529static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
530			size_t *retlen, void **mtdbuf, resource_size_t *phys)
531{
532	struct map_info *map = mtd->priv;
533	struct lpddr_private *lpddr = map->fldrv_priv;
534	int chipnum = adr >> lpddr->chipshift;
535	unsigned long ofs, last_end = 0;
536	struct flchip *chip = &lpddr->chips[chipnum];
537	int ret = 0;
538
539	if (!map->virt || (adr + len > mtd->size))
540		return -EINVAL;
541
542	/* ofs: offset within the first chip that the first read should start */
543	ofs = adr - (chipnum << lpddr->chipshift);
544
545	*mtdbuf = (void *)map->virt + chip->start + ofs;
546	*retlen = 0;
547
548	while (len) {
549		unsigned long thislen;
550
551		if (chipnum >= lpddr->numchips)
552			break;
553
554		/* We cannot point across chips that are virtually disjoint */
555		if (!last_end)
556			last_end = chip->start;
557		else if (chip->start != last_end)
558			break;
559
560		if ((len + ofs - 1) >> lpddr->chipshift)
561			thislen = (1<<lpddr->chipshift) - ofs;
562		else
563			thislen = len;
564		/* get the chip */
565		mutex_lock(&chip->mutex);
566		ret = get_chip(map, chip, FL_POINT);
567		mutex_unlock(&chip->mutex);
568		if (ret)
569			break;
570
571		chip->state = FL_POINT;
572		chip->ref_point_counter++;
573		*retlen += thislen;
574		len -= thislen;
575
576		ofs = 0;
577		last_end += 1 << lpddr->chipshift;
578		chipnum++;
579		chip = &lpddr->chips[chipnum];
580	}
581	return 0;
582}
583
584static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
585{
586	struct map_info *map = mtd->priv;
587	struct lpddr_private *lpddr = map->fldrv_priv;
588	int chipnum = adr >> lpddr->chipshift;
589	unsigned long ofs;
590
591	/* ofs: offset within the first chip that the first read should start */
592	ofs = adr - (chipnum << lpddr->chipshift);
593
594	while (len) {
595		unsigned long thislen;
596		struct flchip *chip;
597
598		chip = &lpddr->chips[chipnum];
599		if (chipnum >= lpddr->numchips)
600			break;
601
602		if ((len + ofs - 1) >> lpddr->chipshift)
603			thislen = (1<<lpddr->chipshift) - ofs;
604		else
605			thislen = len;
606
607		mutex_lock(&chip->mutex);
608		if (chip->state == FL_POINT) {
609			chip->ref_point_counter--;
610			if (chip->ref_point_counter == 0)
611				chip->state = FL_READY;
612		} else
613			printk(KERN_WARNING "%s: Warning: unpoint called on non"
614					"pointed region\n", map->name);
 
 
615
616		put_chip(map, chip);
617		mutex_unlock(&chip->mutex);
618
619		len -= thislen;
620		ofs = 0;
621		chipnum++;
622	}
 
 
623}
624
625static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
626				size_t *retlen, const u_char *buf)
627{
628	struct kvec vec;
629
630	vec.iov_base = (void *) buf;
631	vec.iov_len = len;
632
633	return lpddr_writev(mtd, &vec, 1, to, retlen);
634}
635
636
637static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
638				unsigned long count, loff_t to, size_t *retlen)
639{
640	struct map_info *map = mtd->priv;
641	struct lpddr_private *lpddr = map->fldrv_priv;
642	int ret = 0;
643	int chipnum;
644	unsigned long ofs, vec_seek, i;
645	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
646
647	size_t len = 0;
648
649	for (i = 0; i < count; i++)
650		len += vecs[i].iov_len;
651
652	*retlen = 0;
653	if (!len)
654		return 0;
655
656	chipnum = to >> lpddr->chipshift;
657
658	ofs = to;
659	vec_seek = 0;
660
661	do {
662		/* We must not cross write block boundaries */
663		int size = wbufsize - (ofs & (wbufsize-1));
664
665		if (size > len)
666			size = len;
667
668		ret = do_write_buffer(map, &lpddr->chips[chipnum],
669					  ofs, &vecs, &vec_seek, size);
670		if (ret)
671			return ret;
672
673		ofs += size;
674		(*retlen) += size;
675		len -= size;
676
677		/* Be nice and reschedule with the chip in a usable
678		 * state for other processes */
679		cond_resched();
680
681	} while (len);
682
683	return 0;
684}
685
686static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
687{
688	unsigned long ofs, len;
689	int ret;
690	struct map_info *map = mtd->priv;
691	struct lpddr_private *lpddr = map->fldrv_priv;
692	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
693
694	ofs = instr->addr;
695	len = instr->len;
696
697	if (ofs > mtd->size || (len + ofs) > mtd->size)
698		return -EINVAL;
699
700	while (len > 0) {
701		ret = do_erase_oneblock(mtd, ofs);
702		if (ret)
703			return ret;
704		ofs += size;
705		len -= size;
706	}
707	instr->state = MTD_ERASE_DONE;
708	mtd_erase_callback(instr);
709
710	return 0;
711}
712
713#define DO_XXLOCK_LOCK		1
714#define DO_XXLOCK_UNLOCK	2
715int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
716{
717	int ret = 0;
718	struct map_info *map = mtd->priv;
719	struct lpddr_private *lpddr = map->fldrv_priv;
720	int chipnum = adr >> lpddr->chipshift;
721	struct flchip *chip = &lpddr->chips[chipnum];
722
723	mutex_lock(&chip->mutex);
724	ret = get_chip(map, chip, FL_LOCKING);
725	if (ret) {
726		mutex_unlock(&chip->mutex);
727		return ret;
728	}
729
730	if (thunk == DO_XXLOCK_LOCK) {
731		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
732		chip->state = FL_LOCKING;
733	} else if (thunk == DO_XXLOCK_UNLOCK) {
734		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
735		chip->state = FL_UNLOCKING;
736	} else
737		BUG();
738
739	ret = wait_for_ready(map, chip, 1);
740	if (ret)	{
741		printk(KERN_ERR "%s: block unlock error status %d \n",
742				map->name, ret);
743		goto out;
744	}
745out:	put_chip(map, chip);
746	mutex_unlock(&chip->mutex);
747	return ret;
748}
749
750static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
751{
752	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
753}
754
755static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
756{
757	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
758}
759
760int word_program(struct map_info *map, loff_t adr, uint32_t curval)
761{
762    int ret;
763	struct lpddr_private *lpddr = map->fldrv_priv;
764	int chipnum = adr >> lpddr->chipshift;
765	struct flchip *chip = &lpddr->chips[chipnum];
766
767	mutex_lock(&chip->mutex);
768	ret = get_chip(map, chip, FL_WRITING);
769	if (ret) {
770		mutex_unlock(&chip->mutex);
771		return ret;
772	}
773
774	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
775
776	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
777	if (ret)	{
778		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
779			map->name, adr, curval);
780		goto out;
781	}
782
783out:	put_chip(map, chip);
784	mutex_unlock(&chip->mutex);
785	return ret;
786}
787
788MODULE_LICENSE("GPL");
789MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
790MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 
 46		return NULL;
 
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 
 
 
 
 
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 
 
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 71		kfree(lpddr);
 72		kfree(mtd);
 73		return NULL;
 74	}
 75
 76	chip = &lpddr->chips[0];
 77	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 78	for (i = 0; i < numchips; i++) {
 79		shared[i].writing = shared[i].erasing = NULL;
 80		mutex_init(&shared[i].lock);
 81		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 82			*chip = lpddr->chips[i];
 83			chip->start += j << lpddr->chipshift;
 84			chip->oldstate = chip->state = FL_READY;
 85			chip->priv = &shared[i];
 86			/* those should be reset too since
 87			   they create memory references. */
 88			init_waitqueue_head(&chip->wq);
 89			mutex_init(&chip->mutex);
 90			chip++;
 91		}
 92	}
 93
 94	return mtd;
 95}
 96EXPORT_SYMBOL(lpddr_cmdset);
 97
 98static int wait_for_ready(struct map_info *map, struct flchip *chip,
 99		unsigned int chip_op_time)
100{
101	unsigned int timeo, reset_timeo, sleep_time;
102	unsigned int dsr;
103	flstate_t chip_state = chip->state;
104	int ret = 0;
105
106	/* set our timeout to 8 times the expected delay */
107	timeo = chip_op_time * 8;
108	if (!timeo)
109		timeo = 500000;
110	reset_timeo = timeo;
111	sleep_time = chip_op_time / 2;
112
113	for (;;) {
114		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115		if (dsr & DSR_READY_STATUS)
116			break;
117		if (!timeo) {
118			printk(KERN_ERR "%s: Flash timeout error state %d \n",
119							map->name, chip_state);
120			ret = -ETIME;
121			break;
122		}
123
124		/* OK Still waiting. Drop the lock, wait a while and retry. */
125		mutex_unlock(&chip->mutex);
126		if (sleep_time >= 1000000/HZ) {
127			/*
128			 * Half of the normal delay still remaining
129			 * can be performed with a sleeping delay instead
130			 * of busy waiting.
131			 */
132			msleep(sleep_time/1000);
133			timeo -= sleep_time;
134			sleep_time = 1000000/HZ;
135		} else {
136			udelay(1);
137			cond_resched();
138			timeo--;
139		}
140		mutex_lock(&chip->mutex);
141
142		while (chip->state != chip_state) {
143			/* Someone's suspended the operation: sleep */
144			DECLARE_WAITQUEUE(wait, current);
145			set_current_state(TASK_UNINTERRUPTIBLE);
146			add_wait_queue(&chip->wq, &wait);
147			mutex_unlock(&chip->mutex);
148			schedule();
149			remove_wait_queue(&chip->wq, &wait);
150			mutex_lock(&chip->mutex);
151		}
152		if (chip->erase_suspended || chip->write_suspended)  {
153			/* Suspend has occurred while sleep: reset timeout */
154			timeo = reset_timeo;
155			chip->erase_suspended = chip->write_suspended = 0;
156		}
157	}
158	/* check status for errors */
159	if (dsr & DSR_ERR) {
160		/* Clear DSR*/
161		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163				map->name, dsr);
164		print_drs_error(dsr);
165		ret = -EIO;
166	}
167	chip->state = FL_READY;
168	return ret;
169}
170
171static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172{
173	int ret;
174	DECLARE_WAITQUEUE(wait, current);
175
176 retry:
177	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178		&& chip->state != FL_SYNCING) {
179		/*
180		 * OK. We have possibility for contension on the write/erase
181		 * operations which are global to the real chip and not per
182		 * partition.  So let's fight it over in the partition which
183		 * currently has authority on the operation.
184		 *
185		 * The rules are as follows:
186		 *
187		 * - any write operation must own shared->writing.
188		 *
189		 * - any erase operation must own _both_ shared->writing and
190		 *   shared->erasing.
191		 *
192		 * - contension arbitration is handled in the owner's context.
193		 *
194		 * The 'shared' struct can be read and/or written only when
195		 * its lock is taken.
196		 */
197		struct flchip_shared *shared = chip->priv;
198		struct flchip *contender;
199		mutex_lock(&shared->lock);
200		contender = shared->writing;
201		if (contender && contender != chip) {
202			/*
203			 * The engine to perform desired operation on this
204			 * partition is already in use by someone else.
205			 * Let's fight over it in the context of the chip
206			 * currently using it.  If it is possible to suspend,
207			 * that other partition will do just that, otherwise
208			 * it'll happily send us to sleep.  In any case, when
209			 * get_chip returns success we're clear to go ahead.
210			 */
211			ret = mutex_trylock(&contender->mutex);
212			mutex_unlock(&shared->lock);
213			if (!ret)
214				goto retry;
215			mutex_unlock(&chip->mutex);
216			ret = chip_ready(map, contender, mode);
217			mutex_lock(&chip->mutex);
218
219			if (ret == -EAGAIN) {
220				mutex_unlock(&contender->mutex);
221				goto retry;
222			}
223			if (ret) {
224				mutex_unlock(&contender->mutex);
225				return ret;
226			}
227			mutex_lock(&shared->lock);
228
229			/* We should not own chip if it is already in FL_SYNCING
230			 * state. Put contender and retry. */
231			if (chip->state == FL_SYNCING) {
232				put_chip(map, contender);
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			mutex_unlock(&contender->mutex);
237		}
238
239		/* Check if we have suspended erase on this chip.
240		   Must sleep in such a case. */
241		if (mode == FL_ERASING && shared->erasing
242		    && shared->erasing->oldstate == FL_ERASING) {
243			mutex_unlock(&shared->lock);
244			set_current_state(TASK_UNINTERRUPTIBLE);
245			add_wait_queue(&chip->wq, &wait);
246			mutex_unlock(&chip->mutex);
247			schedule();
248			remove_wait_queue(&chip->wq, &wait);
249			mutex_lock(&chip->mutex);
250			goto retry;
251		}
252
253		/* We now own it */
254		shared->writing = chip;
255		if (mode == FL_ERASING)
256			shared->erasing = chip;
257		mutex_unlock(&shared->lock);
258	}
259
260	ret = chip_ready(map, chip, mode);
261	if (ret == -EAGAIN)
262		goto retry;
263
264	return ret;
265}
266
267static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268{
269	struct lpddr_private *lpddr = map->fldrv_priv;
270	int ret = 0;
271	DECLARE_WAITQUEUE(wait, current);
272
273	/* Prevent setting state FL_SYNCING for chip in suspended state. */
274	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275		goto sleep;
276
277	switch (chip->state) {
278	case FL_READY:
279	case FL_JEDEC_QUERY:
280		return 0;
281
282	case FL_ERASING:
283		if (!lpddr->qinfo->SuspEraseSupp ||
284			!(mode == FL_READY || mode == FL_POINT))
285			goto sleep;
286
287		map_write(map, CMD(LPDDR_SUSPEND),
288			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289		chip->oldstate = FL_ERASING;
290		chip->state = FL_ERASE_SUSPENDING;
291		ret = wait_for_ready(map, chip, 0);
292		if (ret) {
293			/* Oops. something got wrong. */
294			/* Resume and pretend we weren't here.  */
295			put_chip(map, chip);
296			printk(KERN_ERR "%s: suspend operation failed."
297					"State may be wrong \n", map->name);
298			return -EIO;
299		}
300		chip->erase_suspended = 1;
301		chip->state = FL_READY;
302		return 0;
303		/* Erase suspend */
304	case FL_POINT:
305		/* Only if there's no operation suspended... */
306		if (mode == FL_READY && chip->oldstate == FL_READY)
307			return 0;
308		/* fall through */
309
310	default:
311sleep:
312		set_current_state(TASK_UNINTERRUPTIBLE);
313		add_wait_queue(&chip->wq, &wait);
314		mutex_unlock(&chip->mutex);
315		schedule();
316		remove_wait_queue(&chip->wq, &wait);
317		mutex_lock(&chip->mutex);
318		return -EAGAIN;
319	}
320}
321
322static void put_chip(struct map_info *map, struct flchip *chip)
323{
324	if (chip->priv) {
325		struct flchip_shared *shared = chip->priv;
326		mutex_lock(&shared->lock);
327		if (shared->writing == chip && chip->oldstate == FL_READY) {
328			/* We own the ability to write, but we're done */
329			shared->writing = shared->erasing;
330			if (shared->writing && shared->writing != chip) {
331				/* give back the ownership */
332				struct flchip *loaner = shared->writing;
333				mutex_lock(&loaner->mutex);
334				mutex_unlock(&shared->lock);
335				mutex_unlock(&chip->mutex);
336				put_chip(map, loaner);
337				mutex_lock(&chip->mutex);
338				mutex_unlock(&loaner->mutex);
339				wake_up(&chip->wq);
340				return;
341			}
342			shared->erasing = NULL;
343			shared->writing = NULL;
344		} else if (shared->erasing == chip && shared->writing != chip) {
345			/*
346			 * We own the ability to erase without the ability
347			 * to write, which means the erase was suspended
348			 * and some other partition is currently writing.
349			 * Don't let the switch below mess things up since
350			 * we don't have ownership to resume anything.
351			 */
352			mutex_unlock(&shared->lock);
353			wake_up(&chip->wq);
354			return;
355		}
356		mutex_unlock(&shared->lock);
357	}
358
359	switch (chip->oldstate) {
360	case FL_ERASING:
361		map_write(map, CMD(LPDDR_RESUME),
362				map->pfow_base + PFOW_COMMAND_CODE);
363		map_write(map, CMD(LPDDR_START_EXECUTION),
364				map->pfow_base + PFOW_COMMAND_EXECUTE);
365		chip->oldstate = FL_READY;
366		chip->state = FL_ERASING;
367		break;
368	case FL_READY:
369		break;
370	default:
371		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372				map->name, chip->oldstate);
373	}
374	wake_up(&chip->wq);
375}
376
377static int do_write_buffer(struct map_info *map, struct flchip *chip,
378			unsigned long adr, const struct kvec **pvec,
379			unsigned long *pvec_seek, int len)
380{
381	struct lpddr_private *lpddr = map->fldrv_priv;
382	map_word datum;
383	int ret, wbufsize, word_gap, words;
384	const struct kvec *vec;
385	unsigned long vec_seek;
386	unsigned long prog_buf_ofs;
387
388	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390	mutex_lock(&chip->mutex);
391	ret = get_chip(map, chip, FL_WRITING);
392	if (ret) {
393		mutex_unlock(&chip->mutex);
394		return ret;
395	}
396	/* Figure out the number of words to write */
397	word_gap = (-adr & (map_bankwidth(map)-1));
398	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399	if (!word_gap) {
400		words--;
401	} else {
402		word_gap = map_bankwidth(map) - word_gap;
403		adr -= word_gap;
404		datum = map_word_ff(map);
405	}
406	/* Write data */
407	/* Get the program buffer offset from PFOW register data first*/
408	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410	vec = *pvec;
411	vec_seek = *pvec_seek;
412	do {
413		int n = map_bankwidth(map) - word_gap;
414
415		if (n > vec->iov_len - vec_seek)
416			n = vec->iov_len - vec_seek;
417		if (n > len)
418			n = len;
419
420		if (!word_gap && (len < map_bankwidth(map)))
421			datum = map_word_ff(map);
422
423		datum = map_word_load_partial(map, datum,
424				vec->iov_base + vec_seek, word_gap, n);
425
426		len -= n;
427		word_gap += n;
428		if (!len || word_gap == map_bankwidth(map)) {
429			map_write(map, datum, prog_buf_ofs);
430			prog_buf_ofs += map_bankwidth(map);
431			word_gap = 0;
432		}
433
434		vec_seek += n;
435		if (vec_seek == vec->iov_len) {
436			vec++;
437			vec_seek = 0;
438		}
439	} while (len);
440	*pvec = vec;
441	*pvec_seek = vec_seek;
442
443	/* GO GO GO */
444	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445	chip->state = FL_WRITING;
446	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447	if (ret)	{
448		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449			map->name, ret, adr);
450		goto out;
451	}
452
453 out:	put_chip(map, chip);
454	mutex_unlock(&chip->mutex);
455	return ret;
456}
457
458static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459{
460	struct map_info *map = mtd->priv;
461	struct lpddr_private *lpddr = map->fldrv_priv;
462	int chipnum = adr >> lpddr->chipshift;
463	struct flchip *chip = &lpddr->chips[chipnum];
464	int ret;
465
466	mutex_lock(&chip->mutex);
467	ret = get_chip(map, chip, FL_ERASING);
468	if (ret) {
469		mutex_unlock(&chip->mutex);
470		return ret;
471	}
472	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473	chip->state = FL_ERASING;
474	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475	if (ret) {
476		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477			map->name, ret, adr);
478		goto out;
479	}
480 out:	put_chip(map, chip);
481	mutex_unlock(&chip->mutex);
482	return ret;
483}
484
485static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486			size_t *retlen, u_char *buf)
487{
488	struct map_info *map = mtd->priv;
489	struct lpddr_private *lpddr = map->fldrv_priv;
490	int chipnum = adr >> lpddr->chipshift;
491	struct flchip *chip = &lpddr->chips[chipnum];
492	int ret = 0;
493
494	mutex_lock(&chip->mutex);
495	ret = get_chip(map, chip, FL_READY);
496	if (ret) {
497		mutex_unlock(&chip->mutex);
498		return ret;
499	}
500
501	map_copy_from(map, buf, adr, len);
502	*retlen = len;
503
504	put_chip(map, chip);
505	mutex_unlock(&chip->mutex);
506	return ret;
507}
508
509static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510			size_t *retlen, void **mtdbuf, resource_size_t *phys)
511{
512	struct map_info *map = mtd->priv;
513	struct lpddr_private *lpddr = map->fldrv_priv;
514	int chipnum = adr >> lpddr->chipshift;
515	unsigned long ofs, last_end = 0;
516	struct flchip *chip = &lpddr->chips[chipnum];
517	int ret = 0;
518
519	if (!map->virt)
520		return -EINVAL;
521
522	/* ofs: offset within the first chip that the first read should start */
523	ofs = adr - (chipnum << lpddr->chipshift);
 
524	*mtdbuf = (void *)map->virt + chip->start + ofs;
 
525
526	while (len) {
527		unsigned long thislen;
528
529		if (chipnum >= lpddr->numchips)
530			break;
531
532		/* We cannot point across chips that are virtually disjoint */
533		if (!last_end)
534			last_end = chip->start;
535		else if (chip->start != last_end)
536			break;
537
538		if ((len + ofs - 1) >> lpddr->chipshift)
539			thislen = (1<<lpddr->chipshift) - ofs;
540		else
541			thislen = len;
542		/* get the chip */
543		mutex_lock(&chip->mutex);
544		ret = get_chip(map, chip, FL_POINT);
545		mutex_unlock(&chip->mutex);
546		if (ret)
547			break;
548
549		chip->state = FL_POINT;
550		chip->ref_point_counter++;
551		*retlen += thislen;
552		len -= thislen;
553
554		ofs = 0;
555		last_end += 1 << lpddr->chipshift;
556		chipnum++;
557		chip = &lpddr->chips[chipnum];
558	}
559	return 0;
560}
561
562static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563{
564	struct map_info *map = mtd->priv;
565	struct lpddr_private *lpddr = map->fldrv_priv;
566	int chipnum = adr >> lpddr->chipshift, err = 0;
567	unsigned long ofs;
568
569	/* ofs: offset within the first chip that the first read should start */
570	ofs = adr - (chipnum << lpddr->chipshift);
571
572	while (len) {
573		unsigned long thislen;
574		struct flchip *chip;
575
576		chip = &lpddr->chips[chipnum];
577		if (chipnum >= lpddr->numchips)
578			break;
579
580		if ((len + ofs - 1) >> lpddr->chipshift)
581			thislen = (1<<lpddr->chipshift) - ofs;
582		else
583			thislen = len;
584
585		mutex_lock(&chip->mutex);
586		if (chip->state == FL_POINT) {
587			chip->ref_point_counter--;
588			if (chip->ref_point_counter == 0)
589				chip->state = FL_READY;
590		} else {
591			printk(KERN_WARNING "%s: Warning: unpoint called on non"
592					"pointed region\n", map->name);
593			err = -EINVAL;
594		}
595
596		put_chip(map, chip);
597		mutex_unlock(&chip->mutex);
598
599		len -= thislen;
600		ofs = 0;
601		chipnum++;
602	}
603
604	return err;
605}
606
607static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608				size_t *retlen, const u_char *buf)
609{
610	struct kvec vec;
611
612	vec.iov_base = (void *) buf;
613	vec.iov_len = len;
614
615	return lpddr_writev(mtd, &vec, 1, to, retlen);
616}
617
618
619static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620				unsigned long count, loff_t to, size_t *retlen)
621{
622	struct map_info *map = mtd->priv;
623	struct lpddr_private *lpddr = map->fldrv_priv;
624	int ret = 0;
625	int chipnum;
626	unsigned long ofs, vec_seek, i;
627	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 
628	size_t len = 0;
629
630	for (i = 0; i < count; i++)
631		len += vecs[i].iov_len;
632
 
633	if (!len)
634		return 0;
635
636	chipnum = to >> lpddr->chipshift;
637
638	ofs = to;
639	vec_seek = 0;
640
641	do {
642		/* We must not cross write block boundaries */
643		int size = wbufsize - (ofs & (wbufsize-1));
644
645		if (size > len)
646			size = len;
647
648		ret = do_write_buffer(map, &lpddr->chips[chipnum],
649					  ofs, &vecs, &vec_seek, size);
650		if (ret)
651			return ret;
652
653		ofs += size;
654		(*retlen) += size;
655		len -= size;
656
657		/* Be nice and reschedule with the chip in a usable
658		 * state for other processes */
659		cond_resched();
660
661	} while (len);
662
663	return 0;
664}
665
666static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667{
668	unsigned long ofs, len;
669	int ret;
670	struct map_info *map = mtd->priv;
671	struct lpddr_private *lpddr = map->fldrv_priv;
672	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674	ofs = instr->addr;
675	len = instr->len;
676
 
 
 
677	while (len > 0) {
678		ret = do_erase_oneblock(mtd, ofs);
679		if (ret)
680			return ret;
681		ofs += size;
682		len -= size;
683	}
 
 
684
685	return 0;
686}
687
688#define DO_XXLOCK_LOCK		1
689#define DO_XXLOCK_UNLOCK	2
690static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691{
692	int ret = 0;
693	struct map_info *map = mtd->priv;
694	struct lpddr_private *lpddr = map->fldrv_priv;
695	int chipnum = adr >> lpddr->chipshift;
696	struct flchip *chip = &lpddr->chips[chipnum];
697
698	mutex_lock(&chip->mutex);
699	ret = get_chip(map, chip, FL_LOCKING);
700	if (ret) {
701		mutex_unlock(&chip->mutex);
702		return ret;
703	}
704
705	if (thunk == DO_XXLOCK_LOCK) {
706		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707		chip->state = FL_LOCKING;
708	} else if (thunk == DO_XXLOCK_UNLOCK) {
709		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710		chip->state = FL_UNLOCKING;
711	} else
712		BUG();
713
714	ret = wait_for_ready(map, chip, 1);
715	if (ret)	{
716		printk(KERN_ERR "%s: block unlock error status %d \n",
717				map->name, ret);
718		goto out;
719	}
720out:	put_chip(map, chip);
721	mutex_unlock(&chip->mutex);
722	return ret;
723}
724
725static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726{
727	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728}
729
730static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731{
732	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733}
734
735MODULE_LICENSE("GPL");
736MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");