Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_crtc.h>
  18#include <drm/drm_device.h>
  19#include <drm/drm_fb_cma_helper.h>
  20#include <drm/drm_gem_cma_helper.h>
  21#include <drm/drm_plane_helper.h>
  22#include <drm/drm_vblank.h>
  23
  24#include "rcar_du_crtc.h"
  25#include "rcar_du_drv.h"
  26#include "rcar_du_encoder.h"
  27#include "rcar_du_kms.h"
  28#include "rcar_du_plane.h"
  29#include "rcar_du_regs.h"
  30#include "rcar_du_vsp.h"
  31#include "rcar_lvds.h"
  32
  33static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  34{
  35	struct rcar_du_device *rcdu = rcrtc->dev;
  36
  37	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  38}
  39
  40static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  41{
  42	struct rcar_du_device *rcdu = rcrtc->dev;
  43
  44	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  45}
  46
  47static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  48{
  49	struct rcar_du_device *rcdu = rcrtc->dev;
  50
  51	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  52		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  53}
  54
  55static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  56{
  57	struct rcar_du_device *rcdu = rcrtc->dev;
  58
  59	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  60		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  61}
  62
  63void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  64{
  65	struct rcar_du_device *rcdu = rcrtc->dev;
  66
  67	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  68	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  69}
  70
  71/* -----------------------------------------------------------------------------
  72 * Hardware Setup
  73 */
  74
  75struct dpll_info {
  76	unsigned int output;
  77	unsigned int fdpll;
  78	unsigned int n;
  79	unsigned int m;
  80};
  81
  82static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  83				 struct dpll_info *dpll,
  84				 unsigned long input,
  85				 unsigned long target)
  86{
  87	unsigned long best_diff = (unsigned long)-1;
  88	unsigned long diff;
  89	unsigned int fdpll;
  90	unsigned int m;
  91	unsigned int n;
  92
  93	/*
  94	 *   fin                                 fvco        fout       fclkout
  95	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  96	 *              +-> |  |                             |
  97	 *              |                                    |
  98	 *              +---------------- [1/N] <------------+
  99	 *
 100	 *	fclkout = fvco / P / FDPLL -- (1)
 101	 *
 102	 * fin/M = fvco/P/N
 103	 *
 104	 *	fvco = fin * P *  N / M -- (2)
 105	 *
 106	 * (1) + (2) indicates
 107	 *
 108	 *	fclkout = fin * N / M / FDPLL
 109	 *
 110	 * NOTES
 111	 *	N	: (n + 1)
 112	 *	M	: (m + 1)
 113	 *	FDPLL	: (fdpll + 1)
 114	 *	P	: 2
 115	 *	2kHz < fvco < 4096MHz
 116	 *
 117	 * To minimize the jitter,
 118	 * N : as large as possible
 119	 * M : as small as possible
 120	 */
 121	for (m = 0; m < 4; m++) {
 122		for (n = 119; n > 38; n--) {
 123			/*
 124			 * This code only runs on 64-bit architectures, the
 125			 * unsigned long type can thus be used for 64-bit
 126			 * computation. It will still compile without any
 127			 * warning on 32-bit architectures.
 128			 *
 129			 * To optimize calculations, use fout instead of fvco
 130			 * to verify the VCO frequency constraint.
 131			 */
 132			unsigned long fout = input * (n + 1) / (m + 1);
 133
 134			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 135				continue;
 136
 137			for (fdpll = 1; fdpll < 32; fdpll++) {
 138				unsigned long output;
 139
 140				output = fout / (fdpll + 1);
 141				if (output >= 400 * 1000 * 1000)
 142					continue;
 143
 144				diff = abs((long)output - (long)target);
 145				if (best_diff > diff) {
 146					best_diff = diff;
 147					dpll->n = n;
 148					dpll->m = m;
 149					dpll->fdpll = fdpll;
 150					dpll->output = output;
 151				}
 152
 153				if (diff == 0)
 154					goto done;
 155			}
 156		}
 157	}
 158
 159done:
 160	dev_dbg(rcrtc->dev->dev,
 161		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 162		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 163}
 164
 165struct du_clk_params {
 166	struct clk *clk;
 167	unsigned long rate;
 168	unsigned long diff;
 169	u32 escr;
 170};
 171
 172static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 173				 u32 escr, struct du_clk_params *params)
 174{
 175	unsigned long rate;
 176	unsigned long diff;
 177	u32 div;
 178
 179	/*
 180	 * If the target rate has already been achieved perfectly we can't do
 181	 * better.
 182	 */
 183	if (params->diff == 0)
 184		return;
 185
 186	/*
 187	 * Compute the input clock rate and internal divisor values to obtain
 188	 * the clock rate closest to the target frequency.
 189	 */
 190	rate = clk_round_rate(clk, target);
 191	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 192	diff = abs(rate / (div + 1) - target);
 193
 194	/*
 195	 * Store the parameters if the resulting frequency is better than any
 196	 * previously calculated value.
 197	 */
 198	if (diff < params->diff) {
 199		params->clk = clk;
 200		params->rate = rate;
 201		params->diff = diff;
 202		params->escr = escr | div;
 203	}
 204}
 205
 206static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 207	{ .soc_id = "r8a7795", .revision = "ES1.*" },
 208	{ /* sentinel */ }
 209};
 210
 211static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 212{
 213	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 214	struct rcar_du_device *rcdu = rcrtc->dev;
 215	unsigned long mode_clock = mode->clock * 1000;
 216	u32 dsmr;
 217	u32 escr;
 218
 219	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 220		unsigned long target = mode_clock;
 221		struct dpll_info dpll = { 0 };
 222		unsigned long extclk;
 223		u32 dpllcr;
 224		u32 div = 0;
 225
 226		/*
 227		 * DU channels that have a display PLL can't use the internal
 228		 * system clock, and have no internal clock divider.
 229		 */
 230
 231		/*
 232		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 233		 * We can work around them by configuring the DPLL to twice the
 234		 * desired frequency, coupled with a /2 post-divider. Restrict
 235		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 236		 * no post-divider when a display PLL is present (as shown by
 237		 * the workaround breaking HDMI output on M3-W during testing).
 238		 */
 239		if (soc_device_match(rcar_du_r8a7795_es1)) {
 240			target *= 2;
 241			div = 1;
 242		}
 243
 244		extclk = clk_get_rate(rcrtc->extclock);
 245		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 246
 247		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 248		       | DPLLCR_FDPLL(dpll.fdpll)
 249		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 250		       | DPLLCR_STBY;
 251
 252		if (rcrtc->index == 1)
 253			dpllcr |= DPLLCR_PLCS1
 254			       |  DPLLCR_INCS_DOTCLKIN1;
 255		else
 256			dpllcr |= DPLLCR_PLCS0
 257			       |  DPLLCR_INCS_DOTCLKIN0;
 258
 259		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 260
 261		escr = ESCR_DCLKSEL_DCLKIN | div;
 262	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
 263		/*
 264		 * Use the LVDS PLL output as the dot clock when outputting to
 265		 * the LVDS encoder on an SoC that supports this clock routing
 266		 * option. We use the clock directly in that case, without any
 267		 * additional divider.
 268		 */
 269		escr = ESCR_DCLKSEL_DCLKIN;
 270	} else {
 271		struct du_clk_params params = { .diff = (unsigned long)-1 };
 272
 273		rcar_du_escr_divider(rcrtc->clock, mode_clock,
 274				     ESCR_DCLKSEL_CLKS, &params);
 275		if (rcrtc->extclock)
 276			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 277					     ESCR_DCLKSEL_DCLKIN, &params);
 278
 279		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 280			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 281			params.rate);
 282
 283		clk_set_rate(params.clk, params.rate);
 284		escr = params.escr;
 285	}
 286
 287	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 288
 289	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 290	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 291
 292	/* Signal polarities */
 293	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 294	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 295	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 296	     | DSMR_DIPM_DISP | DSMR_CSPM;
 297	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 298
 299	/* Display timings */
 300	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
 301	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 302					mode->hdisplay - 19);
 303	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 304					mode->hsync_start - 1);
 305	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 306
 307	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 308					mode->crtc_vsync_end - 2);
 309	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 310					mode->crtc_vsync_end +
 311					mode->crtc_vdisplay - 2);
 312	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 313					mode->crtc_vsync_end +
 314					mode->crtc_vsync_start - 1);
 315	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 316
 317	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 318	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 319}
 320
 321static unsigned int plane_zpos(struct rcar_du_plane *plane)
 322{
 323	return plane->plane.state->normalized_zpos;
 324}
 325
 326static const struct rcar_du_format_info *
 327plane_format(struct rcar_du_plane *plane)
 328{
 329	return to_rcar_plane_state(plane->plane.state)->format;
 330}
 331
 332static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 333{
 334	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 335	struct rcar_du_device *rcdu = rcrtc->dev;
 336	unsigned int num_planes = 0;
 337	unsigned int dptsr_planes;
 338	unsigned int hwplanes = 0;
 339	unsigned int prio = 0;
 340	unsigned int i;
 341	u32 dspr = 0;
 342
 343	for (i = 0; i < rcrtc->group->num_planes; ++i) {
 344		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 345		unsigned int j;
 346
 347		if (plane->plane.state->crtc != &rcrtc->crtc ||
 348		    !plane->plane.state->visible)
 349			continue;
 350
 351		/* Insert the plane in the sorted planes array. */
 352		for (j = num_planes++; j > 0; --j) {
 353			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 354				break;
 355			planes[j] = planes[j-1];
 356		}
 357
 358		planes[j] = plane;
 359		prio += plane_format(plane)->planes * 4;
 360	}
 361
 362	for (i = 0; i < num_planes; ++i) {
 363		struct rcar_du_plane *plane = planes[i];
 364		struct drm_plane_state *state = plane->plane.state;
 365		unsigned int index = to_rcar_plane_state(state)->hwindex;
 366
 367		prio -= 4;
 368		dspr |= (index + 1) << prio;
 369		hwplanes |= 1 << index;
 370
 371		if (plane_format(plane)->planes == 2) {
 372			index = (index + 1) % 8;
 373
 374			prio -= 4;
 375			dspr |= (index + 1) << prio;
 376			hwplanes |= 1 << index;
 377		}
 378	}
 379
 380	/* If VSP+DU integration is enabled the plane assignment is fixed. */
 381	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 382		if (rcdu->info->gen < 3) {
 383			dspr = (rcrtc->index % 2) + 1;
 384			hwplanes = 1 << (rcrtc->index % 2);
 385		} else {
 386			dspr = (rcrtc->index % 2) ? 3 : 1;
 387			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 388		}
 389	}
 390
 391	/*
 392	 * Update the planes to display timing and dot clock generator
 393	 * associations.
 394	 *
 395	 * Updating the DPTSR register requires restarting the CRTC group,
 396	 * resulting in visible flicker. To mitigate the issue only update the
 397	 * association if needed by enabled planes. Planes being disabled will
 398	 * keep their current association.
 399	 */
 400	mutex_lock(&rcrtc->group->lock);
 401
 402	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 403		     : rcrtc->group->dptsr_planes & ~hwplanes;
 404
 405	if (dptsr_planes != rcrtc->group->dptsr_planes) {
 406		rcar_du_group_write(rcrtc->group, DPTSR,
 407				    (dptsr_planes << 16) | dptsr_planes);
 408		rcrtc->group->dptsr_planes = dptsr_planes;
 409
 410		if (rcrtc->group->used_crtcs)
 411			rcar_du_group_restart(rcrtc->group);
 412	}
 413
 414	/* Restart the group if plane sources have changed. */
 415	if (rcrtc->group->need_restart)
 416		rcar_du_group_restart(rcrtc->group);
 417
 418	mutex_unlock(&rcrtc->group->lock);
 419
 420	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 421			    dspr);
 422}
 423
 424/* -----------------------------------------------------------------------------
 425 * Page Flip
 426 */
 427
 428void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 429{
 430	struct drm_pending_vblank_event *event;
 431	struct drm_device *dev = rcrtc->crtc.dev;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(&dev->event_lock, flags);
 435	event = rcrtc->event;
 436	rcrtc->event = NULL;
 437	spin_unlock_irqrestore(&dev->event_lock, flags);
 438
 439	if (event == NULL)
 440		return;
 441
 442	spin_lock_irqsave(&dev->event_lock, flags);
 443	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 444	wake_up(&rcrtc->flip_wait);
 445	spin_unlock_irqrestore(&dev->event_lock, flags);
 446
 447	drm_crtc_vblank_put(&rcrtc->crtc);
 448}
 449
 450static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 451{
 452	struct drm_device *dev = rcrtc->crtc.dev;
 453	unsigned long flags;
 454	bool pending;
 455
 456	spin_lock_irqsave(&dev->event_lock, flags);
 457	pending = rcrtc->event != NULL;
 458	spin_unlock_irqrestore(&dev->event_lock, flags);
 459
 460	return pending;
 461}
 462
 463static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 464{
 465	struct rcar_du_device *rcdu = rcrtc->dev;
 466
 467	if (wait_event_timeout(rcrtc->flip_wait,
 468			       !rcar_du_crtc_page_flip_pending(rcrtc),
 469			       msecs_to_jiffies(50)))
 470		return;
 471
 472	dev_warn(rcdu->dev, "page flip timeout\n");
 473
 474	rcar_du_crtc_finish_page_flip(rcrtc);
 475}
 476
 477/* -----------------------------------------------------------------------------
 478 * Start/Stop and Suspend/Resume
 479 */
 480
 481static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 482{
 483	/* Set display off and background to black */
 484	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 485	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 486
 487	/* Configure display timings and output routing */
 488	rcar_du_crtc_set_display_timing(rcrtc);
 489	rcar_du_group_set_routing(rcrtc->group);
 490
 491	/* Start with all planes disabled. */
 492	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 493
 494	/* Enable the VSP compositor. */
 495	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 496		rcar_du_vsp_enable(rcrtc);
 497
 498	/* Turn vertical blanking interrupt reporting on. */
 499	drm_crtc_vblank_on(&rcrtc->crtc);
 500}
 501
 502static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 503{
 504	int ret;
 505
 506	/*
 507	 * Guard against double-get, as the function is called from both the
 508	 * .atomic_enable() and .atomic_begin() handlers.
 509	 */
 510	if (rcrtc->initialized)
 511		return 0;
 512
 513	ret = clk_prepare_enable(rcrtc->clock);
 514	if (ret < 0)
 515		return ret;
 516
 517	ret = clk_prepare_enable(rcrtc->extclock);
 518	if (ret < 0)
 519		goto error_clock;
 520
 521	ret = rcar_du_group_get(rcrtc->group);
 522	if (ret < 0)
 523		goto error_group;
 524
 525	rcar_du_crtc_setup(rcrtc);
 526	rcrtc->initialized = true;
 527
 528	return 0;
 529
 530error_group:
 531	clk_disable_unprepare(rcrtc->extclock);
 532error_clock:
 533	clk_disable_unprepare(rcrtc->clock);
 534	return ret;
 535}
 536
 537static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 538{
 539	rcar_du_group_put(rcrtc->group);
 540
 541	clk_disable_unprepare(rcrtc->extclock);
 542	clk_disable_unprepare(rcrtc->clock);
 543
 544	rcrtc->initialized = false;
 545}
 546
 547static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 548{
 549	bool interlaced;
 550
 551	/*
 552	 * Select master sync mode. This enables display operation in master
 553	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 554	 * actively driven).
 555	 */
 556	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 557	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 558				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 559				   DSYSR_TVM_MASTER);
 560
 561	rcar_du_group_start_stop(rcrtc->group, true);
 562}
 563
 564static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 565{
 566	struct rcar_du_device *rcdu = rcrtc->dev;
 567	struct drm_crtc *crtc = &rcrtc->crtc;
 568	u32 status;
 569
 570	/* Make sure vblank interrupts are enabled. */
 571	drm_crtc_vblank_get(crtc);
 572
 573	/*
 574	 * Disable planes and calculate how many vertical blanking interrupts we
 575	 * have to wait for. If a vertical blanking interrupt has been triggered
 576	 * but not processed yet, we don't know whether it occurred before or
 577	 * after the planes got disabled. We thus have to wait for two vblank
 578	 * interrupts in that case.
 579	 */
 580	spin_lock_irq(&rcrtc->vblank_lock);
 581	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 582	status = rcar_du_crtc_read(rcrtc, DSSR);
 583	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 584	spin_unlock_irq(&rcrtc->vblank_lock);
 585
 586	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 587				msecs_to_jiffies(100)))
 588		dev_warn(rcdu->dev, "vertical blanking timeout\n");
 589
 590	drm_crtc_vblank_put(crtc);
 591}
 592
 593static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 594{
 595	struct drm_crtc *crtc = &rcrtc->crtc;
 596
 597	/*
 598	 * Disable all planes and wait for the change to take effect. This is
 599	 * required as the plane enable registers are updated on vblank, and no
 600	 * vblank will occur once the CRTC is stopped. Disabling planes when
 601	 * starting the CRTC thus wouldn't be enough as it would start scanning
 602	 * out immediately from old frame buffers until the next vblank.
 603	 *
 604	 * This increases the CRTC stop delay, especially when multiple CRTCs
 605	 * are stopped in one operation as we now wait for one vblank per CRTC.
 606	 * Whether this can be improved needs to be researched.
 607	 */
 608	rcar_du_crtc_disable_planes(rcrtc);
 609
 610	/*
 611	 * Disable vertical blanking interrupt reporting. We first need to wait
 612	 * for page flip completion before stopping the CRTC as userspace
 613	 * expects page flips to eventually complete.
 614	 */
 615	rcar_du_crtc_wait_page_flip(rcrtc);
 616	drm_crtc_vblank_off(crtc);
 617
 618	/* Disable the VSP compositor. */
 619	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 620		rcar_du_vsp_disable(rcrtc);
 621
 622	/*
 623	 * Select switch sync mode. This stops display operation and configures
 624	 * the HSYNC and VSYNC signals as inputs.
 625	 *
 626	 * TODO: Find another way to stop the display for DUs that don't support
 627	 * TVM sync.
 628	 */
 629	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 630		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 631					   DSYSR_TVM_SWITCH);
 632
 633	rcar_du_group_start_stop(rcrtc->group, false);
 634}
 635
 636/* -----------------------------------------------------------------------------
 637 * CRTC Functions
 638 */
 639
 640static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 641				     struct drm_crtc_state *state)
 642{
 643	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
 644	struct drm_encoder *encoder;
 645
 646	/* Store the routes from the CRTC output to the DU outputs. */
 647	rstate->outputs = 0;
 648
 649	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
 650		struct rcar_du_encoder *renc;
 651
 652		/* Skip the writeback encoder. */
 653		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 654			continue;
 655
 656		renc = to_rcar_encoder(encoder);
 657		rstate->outputs |= BIT(renc->output);
 658	}
 659
 660	return 0;
 661}
 662
 663static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 664				       struct drm_crtc_state *old_state)
 665{
 666	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 667	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 668	struct rcar_du_device *rcdu = rcrtc->dev;
 669
 670	rcar_du_crtc_get(rcrtc);
 671
 672	/*
 673	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 674	 * the DU channel. We need to enable its clock output explicitly if
 675	 * the LVDS output is disabled.
 676	 */
 677	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 678	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 679		struct rcar_du_encoder *encoder =
 680			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 681		const struct drm_display_mode *mode =
 682			&crtc->state->adjusted_mode;
 683
 684		rcar_lvds_clk_enable(encoder->base.bridge,
 685				     mode->clock * 1000);
 686	}
 687
 688	rcar_du_crtc_start(rcrtc);
 689}
 690
 691static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 692					struct drm_crtc_state *old_state)
 693{
 694	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 695	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 696	struct rcar_du_device *rcdu = rcrtc->dev;
 697
 698	rcar_du_crtc_stop(rcrtc);
 699	rcar_du_crtc_put(rcrtc);
 700
 701	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 702	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 703		struct rcar_du_encoder *encoder =
 704			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 705
 706		/*
 707		 * Disable the LVDS clock output, see
 708		 * rcar_du_crtc_atomic_enable().
 709		 */
 710		rcar_lvds_clk_disable(encoder->base.bridge);
 711	}
 712
 713	spin_lock_irq(&crtc->dev->event_lock);
 714	if (crtc->state->event) {
 715		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 716		crtc->state->event = NULL;
 717	}
 718	spin_unlock_irq(&crtc->dev->event_lock);
 719}
 720
 721static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 722				      struct drm_crtc_state *old_crtc_state)
 723{
 724	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 725
 726	WARN_ON(!crtc->state->enable);
 727
 728	/*
 729	 * If a mode set is in progress we can be called with the CRTC disabled.
 730	 * We thus need to first get and setup the CRTC in order to configure
 731	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 732	 * kept awake until the .atomic_enable() call that will follow. The get
 733	 * operation in .atomic_enable() will in that case be a no-op, and the
 734	 * CRTC will be put later in .atomic_disable().
 735	 *
 736	 * If a mode set is not in progress the CRTC is enabled, and the
 737	 * following get call will be a no-op. There is thus no need to balance
 738	 * it in .atomic_flush() either.
 739	 */
 740	rcar_du_crtc_get(rcrtc);
 741
 742	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 743		rcar_du_vsp_atomic_begin(rcrtc);
 744}
 745
 746static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 747				      struct drm_crtc_state *old_crtc_state)
 748{
 749	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 750	struct drm_device *dev = rcrtc->crtc.dev;
 751	unsigned long flags;
 752
 753	rcar_du_crtc_update_planes(rcrtc);
 754
 755	if (crtc->state->event) {
 756		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 757
 758		spin_lock_irqsave(&dev->event_lock, flags);
 759		rcrtc->event = crtc->state->event;
 760		crtc->state->event = NULL;
 761		spin_unlock_irqrestore(&dev->event_lock, flags);
 762	}
 763
 764	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 765		rcar_du_vsp_atomic_flush(rcrtc);
 766}
 767
 768static enum drm_mode_status
 769rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 770			const struct drm_display_mode *mode)
 771{
 772	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 773	struct rcar_du_device *rcdu = rcrtc->dev;
 774	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 775	unsigned int vbp;
 776
 777	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 778		return MODE_NO_INTERLACE;
 779
 780	/*
 781	 * The hardware requires a minimum combined horizontal sync and back
 782	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
 783	 */
 784	if (mode->htotal - mode->hsync_start < 20)
 785		return MODE_HBLANK_NARROW;
 786
 787	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 788	if (vbp < 3)
 789		return MODE_VBLANK_NARROW;
 790
 791	return MODE_OK;
 792}
 793
 794static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 795	.atomic_check = rcar_du_crtc_atomic_check,
 796	.atomic_begin = rcar_du_crtc_atomic_begin,
 797	.atomic_flush = rcar_du_crtc_atomic_flush,
 798	.atomic_enable = rcar_du_crtc_atomic_enable,
 799	.atomic_disable = rcar_du_crtc_atomic_disable,
 800	.mode_valid = rcar_du_crtc_mode_valid,
 801};
 802
 803static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 804{
 805	struct rcar_du_device *rcdu = rcrtc->dev;
 806	const char **sources;
 807	unsigned int count;
 808	int i = -1;
 809
 810	/* CRC available only on Gen3 HW. */
 811	if (rcdu->info->gen < 3)
 812		return;
 813
 814	/* Reserve 1 for "auto" source. */
 815	count = rcrtc->vsp->num_planes + 1;
 816
 817	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 818	if (!sources)
 819		return;
 820
 821	sources[0] = kstrdup("auto", GFP_KERNEL);
 822	if (!sources[0])
 823		goto error;
 824
 825	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 826		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 827		char name[16];
 828
 829		sprintf(name, "plane%u", plane->base.id);
 830		sources[i + 1] = kstrdup(name, GFP_KERNEL);
 831		if (!sources[i + 1])
 832			goto error;
 833	}
 834
 835	rcrtc->sources = sources;
 836	rcrtc->sources_count = count;
 837	return;
 838
 839error:
 840	while (i >= 0) {
 841		kfree(sources[i]);
 842		i--;
 843	}
 844	kfree(sources);
 845}
 846
 847static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 848{
 849	unsigned int i;
 850
 851	if (!rcrtc->sources)
 852		return;
 853
 854	for (i = 0; i < rcrtc->sources_count; i++)
 855		kfree(rcrtc->sources[i]);
 856	kfree(rcrtc->sources);
 857
 858	rcrtc->sources = NULL;
 859	rcrtc->sources_count = 0;
 860}
 861
 862static struct drm_crtc_state *
 863rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 864{
 865	struct rcar_du_crtc_state *state;
 866	struct rcar_du_crtc_state *copy;
 867
 868	if (WARN_ON(!crtc->state))
 869		return NULL;
 870
 871	state = to_rcar_crtc_state(crtc->state);
 872	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 873	if (copy == NULL)
 874		return NULL;
 875
 876	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 877
 878	return &copy->state;
 879}
 880
 881static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 882					      struct drm_crtc_state *state)
 883{
 884	__drm_atomic_helper_crtc_destroy_state(state);
 885	kfree(to_rcar_crtc_state(state));
 886}
 887
 888static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 889{
 890	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 891
 892	rcar_du_crtc_crc_cleanup(rcrtc);
 893
 894	return drm_crtc_cleanup(crtc);
 895}
 896
 897static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 898{
 899	struct rcar_du_crtc_state *state;
 900
 901	if (crtc->state) {
 902		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 903		crtc->state = NULL;
 904	}
 905
 906	state = kzalloc(sizeof(*state), GFP_KERNEL);
 907	if (state == NULL)
 908		return;
 909
 910	state->crc.source = VSP1_DU_CRC_NONE;
 911	state->crc.index = 0;
 912
 913	crtc->state = &state->state;
 914	crtc->state->crtc = crtc;
 915}
 916
 917static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 918{
 919	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 920
 921	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 922	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 923	rcrtc->vblank_enable = true;
 924
 925	return 0;
 926}
 927
 928static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
 929{
 930	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 931
 932	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
 933	rcrtc->vblank_enable = false;
 934}
 935
 936static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
 937					 const char *source_name,
 938					 enum vsp1_du_crc_source *source)
 939{
 940	unsigned int index;
 941	int ret;
 942
 943	/*
 944	 * Parse the source name. Supported values are "plane%u" to compute the
 945	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
 946	 * CRC on the composer (VSP) output.
 947	 */
 948
 949	if (!source_name) {
 950		*source = VSP1_DU_CRC_NONE;
 951		return 0;
 952	} else if (!strcmp(source_name, "auto")) {
 953		*source = VSP1_DU_CRC_OUTPUT;
 954		return 0;
 955	} else if (strstarts(source_name, "plane")) {
 956		unsigned int i;
 957
 958		*source = VSP1_DU_CRC_PLANE;
 959
 960		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
 961		if (ret < 0)
 962			return ret;
 963
 964		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 965			if (index == rcrtc->vsp->planes[i].plane.base.id)
 966				return i;
 967		}
 968	}
 969
 970	return -EINVAL;
 971}
 972
 973static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
 974					  const char *source_name,
 975					  size_t *values_cnt)
 976{
 977	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 978	enum vsp1_du_crc_source source;
 979
 980	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
 981		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
 982		return -EINVAL;
 983	}
 984
 985	*values_cnt = 1;
 986	return 0;
 987}
 988
 989static const char *const *
 990rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
 991{
 992	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 993
 994	*count = rcrtc->sources_count;
 995	return rcrtc->sources;
 996}
 997
 998static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
 999				       const char *source_name)
1000{
1001	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1002	struct drm_modeset_acquire_ctx ctx;
1003	struct drm_crtc_state *crtc_state;
1004	struct drm_atomic_state *state;
1005	enum vsp1_du_crc_source source;
1006	unsigned int index;
1007	int ret;
1008
1009	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1010	if (ret < 0)
1011		return ret;
1012
1013	index = ret;
1014
1015	/* Perform an atomic commit to set the CRC source. */
1016	drm_modeset_acquire_init(&ctx, 0);
1017
1018	state = drm_atomic_state_alloc(crtc->dev);
1019	if (!state) {
1020		ret = -ENOMEM;
1021		goto unlock;
1022	}
1023
1024	state->acquire_ctx = &ctx;
1025
1026retry:
1027	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1028	if (!IS_ERR(crtc_state)) {
1029		struct rcar_du_crtc_state *rcrtc_state;
1030
1031		rcrtc_state = to_rcar_crtc_state(crtc_state);
1032		rcrtc_state->crc.source = source;
1033		rcrtc_state->crc.index = index;
1034
1035		ret = drm_atomic_commit(state);
1036	} else {
1037		ret = PTR_ERR(crtc_state);
1038	}
1039
1040	if (ret == -EDEADLK) {
1041		drm_atomic_state_clear(state);
1042		drm_modeset_backoff(&ctx);
1043		goto retry;
1044	}
1045
1046	drm_atomic_state_put(state);
1047
1048unlock:
1049	drm_modeset_drop_locks(&ctx);
1050	drm_modeset_acquire_fini(&ctx);
1051
1052	return ret;
1053}
1054
1055static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1056	.reset = rcar_du_crtc_reset,
1057	.destroy = drm_crtc_cleanup,
1058	.set_config = drm_atomic_helper_set_config,
1059	.page_flip = drm_atomic_helper_page_flip,
1060	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1061	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1062	.enable_vblank = rcar_du_crtc_enable_vblank,
1063	.disable_vblank = rcar_du_crtc_disable_vblank,
1064};
1065
1066static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1067	.reset = rcar_du_crtc_reset,
1068	.destroy = rcar_du_crtc_cleanup,
1069	.set_config = drm_atomic_helper_set_config,
1070	.page_flip = drm_atomic_helper_page_flip,
1071	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1072	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1073	.enable_vblank = rcar_du_crtc_enable_vblank,
1074	.disable_vblank = rcar_du_crtc_disable_vblank,
1075	.set_crc_source = rcar_du_crtc_set_crc_source,
1076	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1077	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1078};
1079
1080/* -----------------------------------------------------------------------------
1081 * Interrupt Handling
1082 */
1083
1084static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1085{
1086	struct rcar_du_crtc *rcrtc = arg;
1087	struct rcar_du_device *rcdu = rcrtc->dev;
1088	irqreturn_t ret = IRQ_NONE;
1089	u32 status;
1090
1091	spin_lock(&rcrtc->vblank_lock);
1092
1093	status = rcar_du_crtc_read(rcrtc, DSSR);
1094	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1095
1096	if (status & DSSR_VBK) {
1097		/*
1098		 * Wake up the vblank wait if the counter reaches 0. This must
1099		 * be protected by the vblank_lock to avoid races in
1100		 * rcar_du_crtc_disable_planes().
1101		 */
1102		if (rcrtc->vblank_count) {
1103			if (--rcrtc->vblank_count == 0)
1104				wake_up(&rcrtc->vblank_wait);
1105		}
1106	}
1107
1108	spin_unlock(&rcrtc->vblank_lock);
1109
1110	if (status & DSSR_VBK) {
1111		if (rcdu->info->gen < 3) {
1112			drm_crtc_handle_vblank(&rcrtc->crtc);
1113			rcar_du_crtc_finish_page_flip(rcrtc);
1114		}
1115
1116		ret = IRQ_HANDLED;
1117	}
1118
1119	return ret;
1120}
1121
1122/* -----------------------------------------------------------------------------
1123 * Initialization
1124 */
1125
1126int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1127			unsigned int hwindex)
1128{
1129	static const unsigned int mmio_offsets[] = {
1130		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1131	};
1132
1133	struct rcar_du_device *rcdu = rgrp->dev;
1134	struct platform_device *pdev = to_platform_device(rcdu->dev);
1135	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1136	struct drm_crtc *crtc = &rcrtc->crtc;
1137	struct drm_plane *primary;
1138	unsigned int irqflags;
1139	struct clk *clk;
1140	char clk_name[9];
1141	char *name;
1142	int irq;
1143	int ret;
1144
1145	/* Get the CRTC clock and the optional external clock. */
1146	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1147		sprintf(clk_name, "du.%u", hwindex);
1148		name = clk_name;
1149	} else {
1150		name = NULL;
1151	}
1152
1153	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1154	if (IS_ERR(rcrtc->clock)) {
1155		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1156		return PTR_ERR(rcrtc->clock);
1157	}
1158
1159	sprintf(clk_name, "dclkin.%u", hwindex);
1160	clk = devm_clk_get(rcdu->dev, clk_name);
1161	if (!IS_ERR(clk)) {
1162		rcrtc->extclock = clk;
1163	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1164		return -EPROBE_DEFER;
1165	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1166		/*
1167		 * DU channels that have a display PLL can't use the internal
1168		 * system clock and thus require an external clock.
1169		 */
1170		ret = PTR_ERR(clk);
1171		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1172		return ret;
1173	}
1174
1175	init_waitqueue_head(&rcrtc->flip_wait);
1176	init_waitqueue_head(&rcrtc->vblank_wait);
1177	spin_lock_init(&rcrtc->vblank_lock);
1178
1179	rcrtc->dev = rcdu;
1180	rcrtc->group = rgrp;
1181	rcrtc->mmio_offset = mmio_offsets[hwindex];
1182	rcrtc->index = hwindex;
1183	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1184
1185	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1186		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1187	else
1188		primary = &rgrp->planes[swindex % 2].plane;
1189
1190	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1191					rcdu->info->gen <= 2 ?
1192					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1193					NULL);
1194	if (ret < 0)
1195		return ret;
1196
1197	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1198
1199	/* Start with vertical blanking interrupt reporting disabled. */
1200	drm_crtc_vblank_off(crtc);
1201
1202	/* Register the interrupt handler. */
1203	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1204		/* The IRQ's are associated with the CRTC (sw)index. */
1205		irq = platform_get_irq(pdev, swindex);
1206		irqflags = 0;
1207	} else {
1208		irq = platform_get_irq(pdev, 0);
1209		irqflags = IRQF_SHARED;
1210	}
1211
1212	if (irq < 0) {
1213		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1214		return irq;
1215	}
1216
1217	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1218			       dev_name(rcdu->dev), rcrtc);
1219	if (ret < 0) {
1220		dev_err(rcdu->dev,
1221			"failed to register IRQ for CRTC %u\n", swindex);
1222		return ret;
1223	}
1224
1225	rcar_du_crtc_crc_init(rcrtc);
1226
1227	return 0;
1228}