Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/dma-fence-array.h>
  26#include <linux/irq_work.h>
  27#include <linux/prefetch.h>
  28#include <linux/sched.h>
  29#include <linux/sched/clock.h>
  30#include <linux/sched/signal.h>
  31
  32#include "gem/i915_gem_context.h"
  33#include "gt/intel_context.h"
  34
  35#include "i915_active.h"
  36#include "i915_drv.h"
  37#include "i915_globals.h"
  38#include "i915_trace.h"
  39#include "intel_pm.h"
  40
  41struct execute_cb {
  42	struct list_head link;
  43	struct irq_work work;
  44	struct i915_sw_fence *fence;
  45	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
  46	struct i915_request *signal;
  47};
  48
  49static struct i915_global_request {
  50	struct i915_global base;
  51	struct kmem_cache *slab_requests;
  52	struct kmem_cache *slab_dependencies;
  53	struct kmem_cache *slab_execute_cbs;
  54} global;
  55
  56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  57{
  58	return "i915";
  59}
  60
  61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  62{
  63	/*
  64	 * The timeline struct (as part of the ppgtt underneath a context)
  65	 * may be freed when the request is no longer in use by the GPU.
  66	 * We could extend the life of a context to beyond that of all
  67	 * fences, possibly keeping the hw resource around indefinitely,
  68	 * or we just give them a false name. Since
  69	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  70	 * lie seems justifiable.
  71	 */
  72	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  73		return "signaled";
  74
  75	return to_request(fence)->gem_context->name ?: "[i915]";
  76}
  77
  78static bool i915_fence_signaled(struct dma_fence *fence)
  79{
  80	return i915_request_completed(to_request(fence));
  81}
  82
  83static bool i915_fence_enable_signaling(struct dma_fence *fence)
  84{
  85	return i915_request_enable_breadcrumb(to_request(fence));
  86}
  87
  88static signed long i915_fence_wait(struct dma_fence *fence,
  89				   bool interruptible,
  90				   signed long timeout)
  91{
  92	return i915_request_wait(to_request(fence),
  93				 interruptible | I915_WAIT_PRIORITY,
  94				 timeout);
  95}
  96
  97static void i915_fence_release(struct dma_fence *fence)
  98{
  99	struct i915_request *rq = to_request(fence);
 100
 101	/*
 102	 * The request is put onto a RCU freelist (i.e. the address
 103	 * is immediately reused), mark the fences as being freed now.
 104	 * Otherwise the debugobjects for the fences are only marked as
 105	 * freed when the slab cache itself is freed, and so we would get
 106	 * caught trying to reuse dead objects.
 107	 */
 108	i915_sw_fence_fini(&rq->submit);
 109	i915_sw_fence_fini(&rq->semaphore);
 110
 111	kmem_cache_free(global.slab_requests, rq);
 112}
 113
 114const struct dma_fence_ops i915_fence_ops = {
 115	.get_driver_name = i915_fence_get_driver_name,
 116	.get_timeline_name = i915_fence_get_timeline_name,
 117	.enable_signaling = i915_fence_enable_signaling,
 118	.signaled = i915_fence_signaled,
 119	.wait = i915_fence_wait,
 120	.release = i915_fence_release,
 121};
 122
 123static void irq_execute_cb(struct irq_work *wrk)
 124{
 125	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 126
 127	i915_sw_fence_complete(cb->fence);
 128	kmem_cache_free(global.slab_execute_cbs, cb);
 129}
 130
 131static void irq_execute_cb_hook(struct irq_work *wrk)
 132{
 133	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 134
 135	cb->hook(container_of(cb->fence, struct i915_request, submit),
 136		 &cb->signal->fence);
 137	i915_request_put(cb->signal);
 138
 139	irq_execute_cb(wrk);
 140}
 141
 142static void __notify_execute_cb(struct i915_request *rq)
 143{
 144	struct execute_cb *cb;
 145
 146	lockdep_assert_held(&rq->lock);
 147
 148	if (list_empty(&rq->execute_cb))
 149		return;
 150
 151	list_for_each_entry(cb, &rq->execute_cb, link)
 152		irq_work_queue(&cb->work);
 153
 154	/*
 155	 * XXX Rollback on __i915_request_unsubmit()
 156	 *
 157	 * In the future, perhaps when we have an active time-slicing scheduler,
 158	 * it will be interesting to unsubmit parallel execution and remove
 159	 * busywaits from the GPU until their master is restarted. This is
 160	 * quite hairy, we have to carefully rollback the fence and do a
 161	 * preempt-to-idle cycle on the target engine, all the while the
 162	 * master execute_cb may refire.
 163	 */
 164	INIT_LIST_HEAD(&rq->execute_cb);
 165}
 166
 167static inline void
 168remove_from_client(struct i915_request *request)
 169{
 170	struct drm_i915_file_private *file_priv;
 171
 172	file_priv = READ_ONCE(request->file_priv);
 173	if (!file_priv)
 174		return;
 175
 176	spin_lock(&file_priv->mm.lock);
 177	if (request->file_priv) {
 178		list_del(&request->client_link);
 179		request->file_priv = NULL;
 180	}
 181	spin_unlock(&file_priv->mm.lock);
 182}
 183
 184static void free_capture_list(struct i915_request *request)
 185{
 186	struct i915_capture_list *capture;
 187
 188	capture = request->capture_list;
 189	while (capture) {
 190		struct i915_capture_list *next = capture->next;
 191
 192		kfree(capture);
 193		capture = next;
 194	}
 195}
 196
 197static void remove_from_engine(struct i915_request *rq)
 198{
 199	struct intel_engine_cs *engine, *locked;
 200
 201	/*
 202	 * Virtual engines complicate acquiring the engine timeline lock,
 203	 * as their rq->engine pointer is not stable until under that
 204	 * engine lock. The simple ploy we use is to take the lock then
 205	 * check that the rq still belongs to the newly locked engine.
 206	 */
 207	locked = READ_ONCE(rq->engine);
 208	spin_lock(&locked->active.lock);
 209	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
 210		spin_unlock(&locked->active.lock);
 211		spin_lock(&engine->active.lock);
 212		locked = engine;
 213	}
 214	list_del(&rq->sched.link);
 215	spin_unlock(&locked->active.lock);
 216}
 217
 218static bool i915_request_retire(struct i915_request *rq)
 219{
 220	struct i915_active_request *active, *next;
 221
 222	lockdep_assert_held(&rq->timeline->mutex);
 223	if (!i915_request_completed(rq))
 224		return false;
 225
 226	GEM_TRACE("%s fence %llx:%lld, current %d\n",
 227		  rq->engine->name,
 228		  rq->fence.context, rq->fence.seqno,
 229		  hwsp_seqno(rq));
 230
 231	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
 232	trace_i915_request_retire(rq);
 233
 234	/*
 235	 * We know the GPU must have read the request to have
 236	 * sent us the seqno + interrupt, so use the position
 237	 * of tail of the request to update the last known position
 238	 * of the GPU head.
 239	 *
 240	 * Note this requires that we are always called in request
 241	 * completion order.
 242	 */
 243	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
 244	rq->ring->head = rq->postfix;
 245
 246	/*
 247	 * Walk through the active list, calling retire on each. This allows
 248	 * objects to track their GPU activity and mark themselves as idle
 249	 * when their *last* active request is completed (updating state
 250	 * tracking lists for eviction, active references for GEM, etc).
 251	 *
 252	 * As the ->retire() may free the node, we decouple it first and
 253	 * pass along the auxiliary information (to avoid dereferencing
 254	 * the node after the callback).
 255	 */
 256	list_for_each_entry_safe(active, next, &rq->active_list, link) {
 257		/*
 258		 * In microbenchmarks or focusing upon time inside the kernel,
 259		 * we may spend an inordinate amount of time simply handling
 260		 * the retirement of requests and processing their callbacks.
 261		 * Of which, this loop itself is particularly hot due to the
 262		 * cache misses when jumping around the list of
 263		 * i915_active_request.  So we try to keep this loop as
 264		 * streamlined as possible and also prefetch the next
 265		 * i915_active_request to try and hide the likely cache miss.
 266		 */
 267		prefetchw(next);
 268
 269		INIT_LIST_HEAD(&active->link);
 270		RCU_INIT_POINTER(active->request, NULL);
 271
 272		active->retire(active, rq);
 273	}
 274
 275	local_irq_disable();
 276
 277	/*
 278	 * We only loosely track inflight requests across preemption,
 279	 * and so we may find ourselves attempting to retire a _completed_
 280	 * request that we have removed from the HW and put back on a run
 281	 * queue.
 282	 */
 283	remove_from_engine(rq);
 284
 285	spin_lock(&rq->lock);
 286	i915_request_mark_complete(rq);
 287	if (!i915_request_signaled(rq))
 288		dma_fence_signal_locked(&rq->fence);
 289	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
 290		i915_request_cancel_breadcrumb(rq);
 291	if (i915_request_has_waitboost(rq)) {
 292		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
 293		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
 294	}
 295	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
 296		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
 297		__notify_execute_cb(rq);
 298	}
 299	GEM_BUG_ON(!list_empty(&rq->execute_cb));
 300	spin_unlock(&rq->lock);
 301
 302	local_irq_enable();
 303
 304	remove_from_client(rq);
 305	list_del(&rq->link);
 306
 307	intel_context_exit(rq->hw_context);
 308	intel_context_unpin(rq->hw_context);
 309
 310	free_capture_list(rq);
 311	i915_sched_node_fini(&rq->sched);
 312	i915_request_put(rq);
 313
 314	return true;
 315}
 316
 317void i915_request_retire_upto(struct i915_request *rq)
 318{
 319	struct intel_timeline * const tl = rq->timeline;
 320	struct i915_request *tmp;
 321
 322	GEM_TRACE("%s fence %llx:%lld, current %d\n",
 323		  rq->engine->name,
 324		  rq->fence.context, rq->fence.seqno,
 325		  hwsp_seqno(rq));
 326
 327	lockdep_assert_held(&tl->mutex);
 328	GEM_BUG_ON(!i915_request_completed(rq));
 329
 330	do {
 331		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
 332	} while (i915_request_retire(tmp) && tmp != rq);
 333}
 334
 335static int
 336__i915_request_await_execution(struct i915_request *rq,
 337			       struct i915_request *signal,
 338			       void (*hook)(struct i915_request *rq,
 339					    struct dma_fence *signal),
 340			       gfp_t gfp)
 341{
 342	struct execute_cb *cb;
 343
 344	if (i915_request_is_active(signal)) {
 345		if (hook)
 346			hook(rq, &signal->fence);
 347		return 0;
 348	}
 349
 350	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
 351	if (!cb)
 352		return -ENOMEM;
 353
 354	cb->fence = &rq->submit;
 355	i915_sw_fence_await(cb->fence);
 356	init_irq_work(&cb->work, irq_execute_cb);
 357
 358	if (hook) {
 359		cb->hook = hook;
 360		cb->signal = i915_request_get(signal);
 361		cb->work.func = irq_execute_cb_hook;
 362	}
 363
 364	spin_lock_irq(&signal->lock);
 365	if (i915_request_is_active(signal)) {
 366		if (hook) {
 367			hook(rq, &signal->fence);
 368			i915_request_put(signal);
 369		}
 370		i915_sw_fence_complete(cb->fence);
 371		kmem_cache_free(global.slab_execute_cbs, cb);
 372	} else {
 373		list_add_tail(&cb->link, &signal->execute_cb);
 374	}
 375	spin_unlock_irq(&signal->lock);
 376
 377	return 0;
 378}
 379
 380bool __i915_request_submit(struct i915_request *request)
 381{
 382	struct intel_engine_cs *engine = request->engine;
 383	bool result = false;
 384
 385	GEM_TRACE("%s fence %llx:%lld, current %d\n",
 386		  engine->name,
 387		  request->fence.context, request->fence.seqno,
 388		  hwsp_seqno(request));
 389
 390	GEM_BUG_ON(!irqs_disabled());
 391	lockdep_assert_held(&engine->active.lock);
 392
 393	/*
 394	 * With the advent of preempt-to-busy, we frequently encounter
 395	 * requests that we have unsubmitted from HW, but left running
 396	 * until the next ack and so have completed in the meantime. On
 397	 * resubmission of that completed request, we can skip
 398	 * updating the payload, and execlists can even skip submitting
 399	 * the request.
 400	 *
 401	 * We must remove the request from the caller's priority queue,
 402	 * and the caller must only call us when the request is in their
 403	 * priority queue, under the active.lock. This ensures that the
 404	 * request has *not* yet been retired and we can safely move
 405	 * the request into the engine->active.list where it will be
 406	 * dropped upon retiring. (Otherwise if resubmit a *retired*
 407	 * request, this would be a horrible use-after-free.)
 408	 */
 409	if (i915_request_completed(request))
 410		goto xfer;
 411
 412	if (i915_gem_context_is_banned(request->gem_context))
 413		i915_request_skip(request, -EIO);
 414
 415	/*
 416	 * Are we using semaphores when the gpu is already saturated?
 417	 *
 418	 * Using semaphores incurs a cost in having the GPU poll a
 419	 * memory location, busywaiting for it to change. The continual
 420	 * memory reads can have a noticeable impact on the rest of the
 421	 * system with the extra bus traffic, stalling the cpu as it too
 422	 * tries to access memory across the bus (perf stat -e bus-cycles).
 423	 *
 424	 * If we installed a semaphore on this request and we only submit
 425	 * the request after the signaler completed, that indicates the
 426	 * system is overloaded and using semaphores at this time only
 427	 * increases the amount of work we are doing. If so, we disable
 428	 * further use of semaphores until we are idle again, whence we
 429	 * optimistically try again.
 430	 */
 431	if (request->sched.semaphores &&
 432	    i915_sw_fence_signaled(&request->semaphore))
 433		engine->saturated |= request->sched.semaphores;
 434
 435	engine->emit_fini_breadcrumb(request,
 436				     request->ring->vaddr + request->postfix);
 437
 438	trace_i915_request_execute(request);
 439	engine->serial++;
 440	result = true;
 441
 442xfer:	/* We may be recursing from the signal callback of another i915 fence */
 443	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 444
 445	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
 446		list_move_tail(&request->sched.link, &engine->active.requests);
 447
 448	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
 449	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
 450	    !i915_request_enable_breadcrumb(request))
 451		intel_engine_queue_breadcrumbs(engine);
 452
 453	__notify_execute_cb(request);
 454
 455	spin_unlock(&request->lock);
 456
 457	return result;
 458}
 459
 460void i915_request_submit(struct i915_request *request)
 461{
 462	struct intel_engine_cs *engine = request->engine;
 463	unsigned long flags;
 464
 465	/* Will be called from irq-context when using foreign fences. */
 466	spin_lock_irqsave(&engine->active.lock, flags);
 467
 468	__i915_request_submit(request);
 469
 470	spin_unlock_irqrestore(&engine->active.lock, flags);
 471}
 472
 473void __i915_request_unsubmit(struct i915_request *request)
 474{
 475	struct intel_engine_cs *engine = request->engine;
 476
 477	GEM_TRACE("%s fence %llx:%lld, current %d\n",
 478		  engine->name,
 479		  request->fence.context, request->fence.seqno,
 480		  hwsp_seqno(request));
 481
 482	GEM_BUG_ON(!irqs_disabled());
 483	lockdep_assert_held(&engine->active.lock);
 484
 485	/*
 486	 * Only unwind in reverse order, required so that the per-context list
 487	 * is kept in seqno/ring order.
 488	 */
 489
 490	/* We may be recursing from the signal callback of another i915 fence */
 491	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 492
 493	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 494		i915_request_cancel_breadcrumb(request);
 495
 496	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
 497	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
 498
 499	spin_unlock(&request->lock);
 500
 501	/* We've already spun, don't charge on resubmitting. */
 502	if (request->sched.semaphores && i915_request_started(request)) {
 503		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
 504		request->sched.semaphores = 0;
 505	}
 506
 507	/*
 508	 * We don't need to wake_up any waiters on request->execute, they
 509	 * will get woken by any other event or us re-adding this request
 510	 * to the engine timeline (__i915_request_submit()). The waiters
 511	 * should be quite adapt at finding that the request now has a new
 512	 * global_seqno to the one they went to sleep on.
 513	 */
 514}
 515
 516void i915_request_unsubmit(struct i915_request *request)
 517{
 518	struct intel_engine_cs *engine = request->engine;
 519	unsigned long flags;
 520
 521	/* Will be called from irq-context when using foreign fences. */
 522	spin_lock_irqsave(&engine->active.lock, flags);
 523
 524	__i915_request_unsubmit(request);
 525
 526	spin_unlock_irqrestore(&engine->active.lock, flags);
 527}
 528
 529static int __i915_sw_fence_call
 530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 531{
 532	struct i915_request *request =
 533		container_of(fence, typeof(*request), submit);
 534
 535	switch (state) {
 536	case FENCE_COMPLETE:
 537		trace_i915_request_submit(request);
 538
 539		if (unlikely(fence->error))
 540			i915_request_skip(request, fence->error);
 541
 542		/*
 543		 * We need to serialize use of the submit_request() callback
 544		 * with its hotplugging performed during an emergency
 545		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 546		 * critical section in order to force i915_gem_set_wedged() to
 547		 * wait until the submit_request() is completed before
 548		 * proceeding.
 549		 */
 550		rcu_read_lock();
 551		request->engine->submit_request(request);
 552		rcu_read_unlock();
 553		break;
 554
 555	case FENCE_FREE:
 556		i915_request_put(request);
 557		break;
 558	}
 559
 560	return NOTIFY_DONE;
 561}
 562
 563static int __i915_sw_fence_call
 564semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 565{
 566	struct i915_request *request =
 567		container_of(fence, typeof(*request), semaphore);
 568
 569	switch (state) {
 570	case FENCE_COMPLETE:
 571		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
 572		break;
 573
 574	case FENCE_FREE:
 575		i915_request_put(request);
 576		break;
 577	}
 578
 579	return NOTIFY_DONE;
 580}
 581
 582static void retire_requests(struct intel_timeline *tl)
 583{
 584	struct i915_request *rq, *rn;
 585
 586	list_for_each_entry_safe(rq, rn, &tl->requests, link)
 587		if (!i915_request_retire(rq))
 588			break;
 589}
 590
 591static noinline struct i915_request *
 592request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
 593{
 594	struct i915_request *rq;
 595
 596	if (list_empty(&tl->requests))
 597		goto out;
 598
 599	if (!gfpflags_allow_blocking(gfp))
 600		goto out;
 601
 602	/* Move our oldest request to the slab-cache (if not in use!) */
 603	rq = list_first_entry(&tl->requests, typeof(*rq), link);
 604	i915_request_retire(rq);
 605
 606	rq = kmem_cache_alloc(global.slab_requests,
 607			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 608	if (rq)
 609		return rq;
 610
 611	/* Ratelimit ourselves to prevent oom from malicious clients */
 612	rq = list_last_entry(&tl->requests, typeof(*rq), link);
 613	cond_synchronize_rcu(rq->rcustate);
 614
 615	/* Retire our old requests in the hope that we free some */
 616	retire_requests(tl);
 617
 618out:
 619	return kmem_cache_alloc(global.slab_requests, gfp);
 620}
 621
 622struct i915_request *
 623__i915_request_create(struct intel_context *ce, gfp_t gfp)
 624{
 625	struct intel_timeline *tl = ce->timeline;
 626	struct i915_request *rq;
 627	u32 seqno;
 628	int ret;
 629
 630	might_sleep_if(gfpflags_allow_blocking(gfp));
 631
 632	/* Check that the caller provided an already pinned context */
 633	__intel_context_pin(ce);
 634
 635	/*
 636	 * Beware: Dragons be flying overhead.
 637	 *
 638	 * We use RCU to look up requests in flight. The lookups may
 639	 * race with the request being allocated from the slab freelist.
 640	 * That is the request we are writing to here, may be in the process
 641	 * of being read by __i915_active_request_get_rcu(). As such,
 642	 * we have to be very careful when overwriting the contents. During
 643	 * the RCU lookup, we change chase the request->engine pointer,
 644	 * read the request->global_seqno and increment the reference count.
 645	 *
 646	 * The reference count is incremented atomically. If it is zero,
 647	 * the lookup knows the request is unallocated and complete. Otherwise,
 648	 * it is either still in use, or has been reallocated and reset
 649	 * with dma_fence_init(). This increment is safe for release as we
 650	 * check that the request we have a reference to and matches the active
 651	 * request.
 652	 *
 653	 * Before we increment the refcount, we chase the request->engine
 654	 * pointer. We must not call kmem_cache_zalloc() or else we set
 655	 * that pointer to NULL and cause a crash during the lookup. If
 656	 * we see the request is completed (based on the value of the
 657	 * old engine and seqno), the lookup is complete and reports NULL.
 658	 * If we decide the request is not completed (new engine or seqno),
 659	 * then we grab a reference and double check that it is still the
 660	 * active request - which it won't be and restart the lookup.
 661	 *
 662	 * Do not use kmem_cache_zalloc() here!
 663	 */
 664	rq = kmem_cache_alloc(global.slab_requests,
 665			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 666	if (unlikely(!rq)) {
 667		rq = request_alloc_slow(tl, gfp);
 668		if (!rq) {
 669			ret = -ENOMEM;
 670			goto err_unreserve;
 671		}
 672	}
 673
 674	ret = intel_timeline_get_seqno(tl, rq, &seqno);
 675	if (ret)
 676		goto err_free;
 677
 678	rq->i915 = ce->engine->i915;
 679	rq->hw_context = ce;
 680	rq->gem_context = ce->gem_context;
 681	rq->engine = ce->engine;
 682	rq->ring = ce->ring;
 683	rq->timeline = tl;
 684	rq->hwsp_seqno = tl->hwsp_seqno;
 685	rq->hwsp_cacheline = tl->hwsp_cacheline;
 686	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
 687
 688	spin_lock_init(&rq->lock);
 689	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
 690		       tl->fence_context, seqno);
 691
 692	/* We bump the ref for the fence chain */
 693	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
 694	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
 695
 696	i915_sched_node_init(&rq->sched);
 697
 698	/* No zalloc, must clear what we need by hand */
 699	rq->file_priv = NULL;
 700	rq->batch = NULL;
 701	rq->capture_list = NULL;
 702	rq->flags = 0;
 703	rq->execution_mask = ALL_ENGINES;
 704
 705	INIT_LIST_HEAD(&rq->active_list);
 706	INIT_LIST_HEAD(&rq->execute_cb);
 707
 708	/*
 709	 * Reserve space in the ring buffer for all the commands required to
 710	 * eventually emit this request. This is to guarantee that the
 711	 * i915_request_add() call can't fail. Note that the reserve may need
 712	 * to be redone if the request is not actually submitted straight
 713	 * away, e.g. because a GPU scheduler has deferred it.
 714	 *
 715	 * Note that due to how we add reserved_space to intel_ring_begin()
 716	 * we need to double our request to ensure that if we need to wrap
 717	 * around inside i915_request_add() there is sufficient space at
 718	 * the beginning of the ring as well.
 719	 */
 720	rq->reserved_space =
 721		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
 722
 723	/*
 724	 * Record the position of the start of the request so that
 725	 * should we detect the updated seqno part-way through the
 726	 * GPU processing the request, we never over-estimate the
 727	 * position of the head.
 728	 */
 729	rq->head = rq->ring->emit;
 730
 731	ret = rq->engine->request_alloc(rq);
 732	if (ret)
 733		goto err_unwind;
 734
 735	rq->infix = rq->ring->emit; /* end of header; start of user payload */
 736
 737	intel_context_mark_active(ce);
 738	return rq;
 739
 740err_unwind:
 741	ce->ring->emit = rq->head;
 742
 743	/* Make sure we didn't add ourselves to external state before freeing */
 744	GEM_BUG_ON(!list_empty(&rq->active_list));
 745	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
 746	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
 747
 748err_free:
 749	kmem_cache_free(global.slab_requests, rq);
 750err_unreserve:
 751	intel_context_unpin(ce);
 752	return ERR_PTR(ret);
 753}
 754
 755struct i915_request *
 756i915_request_create(struct intel_context *ce)
 757{
 758	struct i915_request *rq;
 759	struct intel_timeline *tl;
 760
 761	tl = intel_context_timeline_lock(ce);
 762	if (IS_ERR(tl))
 763		return ERR_CAST(tl);
 764
 765	/* Move our oldest request to the slab-cache (if not in use!) */
 766	rq = list_first_entry(&tl->requests, typeof(*rq), link);
 767	if (!list_is_last(&rq->link, &tl->requests))
 768		i915_request_retire(rq);
 769
 770	intel_context_enter(ce);
 771	rq = __i915_request_create(ce, GFP_KERNEL);
 772	intel_context_exit(ce); /* active reference transferred to request */
 773	if (IS_ERR(rq))
 774		goto err_unlock;
 775
 776	/* Check that we do not interrupt ourselves with a new request */
 777	rq->cookie = lockdep_pin_lock(&tl->mutex);
 778
 779	return rq;
 780
 781err_unlock:
 782	intel_context_timeline_unlock(tl);
 783	return rq;
 784}
 785
 786static int
 787i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
 788{
 789	if (list_is_first(&signal->link, &signal->timeline->requests))
 790		return 0;
 791
 792	signal = list_prev_entry(signal, link);
 793	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
 794		return 0;
 795
 796	return i915_sw_fence_await_dma_fence(&rq->submit,
 797					     &signal->fence, 0,
 798					     I915_FENCE_GFP);
 799}
 800
 801static intel_engine_mask_t
 802already_busywaiting(struct i915_request *rq)
 803{
 804	/*
 805	 * Polling a semaphore causes bus traffic, delaying other users of
 806	 * both the GPU and CPU. We want to limit the impact on others,
 807	 * while taking advantage of early submission to reduce GPU
 808	 * latency. Therefore we restrict ourselves to not using more
 809	 * than one semaphore from each source, and not using a semaphore
 810	 * if we have detected the engine is saturated (i.e. would not be
 811	 * submitted early and cause bus traffic reading an already passed
 812	 * semaphore).
 813	 *
 814	 * See the are-we-too-late? check in __i915_request_submit().
 815	 */
 816	return rq->sched.semaphores | rq->engine->saturated;
 817}
 818
 819static int
 820emit_semaphore_wait(struct i915_request *to,
 821		    struct i915_request *from,
 822		    gfp_t gfp)
 823{
 824	u32 hwsp_offset;
 825	u32 *cs;
 826	int err;
 827
 828	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
 829	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
 830
 831	/* Just emit the first semaphore we see as request space is limited. */
 832	if (already_busywaiting(to) & from->engine->mask)
 833		return i915_sw_fence_await_dma_fence(&to->submit,
 834						     &from->fence, 0,
 835						     I915_FENCE_GFP);
 836
 837	err = i915_request_await_start(to, from);
 838	if (err < 0)
 839		return err;
 840
 841	/* Only submit our spinner after the signaler is running! */
 842	err = __i915_request_await_execution(to, from, NULL, gfp);
 843	if (err)
 844		return err;
 845
 846	/* We need to pin the signaler's HWSP until we are finished reading. */
 847	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
 848	if (err)
 849		return err;
 850
 851	cs = intel_ring_begin(to, 4);
 852	if (IS_ERR(cs))
 853		return PTR_ERR(cs);
 854
 855	/*
 856	 * Using greater-than-or-equal here means we have to worry
 857	 * about seqno wraparound. To side step that issue, we swap
 858	 * the timeline HWSP upon wrapping, so that everyone listening
 859	 * for the old (pre-wrap) values do not see the much smaller
 860	 * (post-wrap) values than they were expecting (and so wait
 861	 * forever).
 862	 */
 863	*cs++ = MI_SEMAPHORE_WAIT |
 864		MI_SEMAPHORE_GLOBAL_GTT |
 865		MI_SEMAPHORE_POLL |
 866		MI_SEMAPHORE_SAD_GTE_SDD;
 867	*cs++ = from->fence.seqno;
 868	*cs++ = hwsp_offset;
 869	*cs++ = 0;
 870
 871	intel_ring_advance(to, cs);
 872	to->sched.semaphores |= from->engine->mask;
 873	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
 874	return 0;
 875}
 876
 877static int
 878i915_request_await_request(struct i915_request *to, struct i915_request *from)
 879{
 880	int ret;
 881
 882	GEM_BUG_ON(to == from);
 883	GEM_BUG_ON(to->timeline == from->timeline);
 884
 885	if (i915_request_completed(from))
 886		return 0;
 887
 888	if (to->engine->schedule) {
 889		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
 890		if (ret < 0)
 891			return ret;
 892	}
 893
 894	if (to->engine == from->engine) {
 895		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 896						       &from->submit,
 897						       I915_FENCE_GFP);
 898	} else if (intel_engine_has_semaphores(to->engine) &&
 899		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
 900		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
 901	} else {
 902		ret = i915_sw_fence_await_dma_fence(&to->submit,
 903						    &from->fence, 0,
 904						    I915_FENCE_GFP);
 905	}
 906	if (ret < 0)
 907		return ret;
 908
 909	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
 910		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
 911						    &from->fence, 0,
 912						    I915_FENCE_GFP);
 913		if (ret < 0)
 914			return ret;
 915	}
 916
 917	return 0;
 918}
 919
 920int
 921i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 922{
 923	struct dma_fence **child = &fence;
 924	unsigned int nchild = 1;
 925	int ret;
 926
 927	/*
 928	 * Note that if the fence-array was created in signal-on-any mode,
 929	 * we should *not* decompose it into its individual fences. However,
 930	 * we don't currently store which mode the fence-array is operating
 931	 * in. Fortunately, the only user of signal-on-any is private to
 932	 * amdgpu and we should not see any incoming fence-array from
 933	 * sync-file being in signal-on-any mode.
 934	 */
 935	if (dma_fence_is_array(fence)) {
 936		struct dma_fence_array *array = to_dma_fence_array(fence);
 937
 938		child = array->fences;
 939		nchild = array->num_fences;
 940		GEM_BUG_ON(!nchild);
 941	}
 942
 943	do {
 944		fence = *child++;
 945		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 946			continue;
 947
 948		/*
 949		 * Requests on the same timeline are explicitly ordered, along
 950		 * with their dependencies, by i915_request_add() which ensures
 951		 * that requests are submitted in-order through each ring.
 952		 */
 953		if (fence->context == rq->fence.context)
 954			continue;
 955
 956		/* Squash repeated waits to the same timelines */
 957		if (fence->context &&
 958		    intel_timeline_sync_is_later(rq->timeline, fence))
 959			continue;
 960
 961		if (dma_fence_is_i915(fence))
 962			ret = i915_request_await_request(rq, to_request(fence));
 963		else
 964			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
 965							    I915_FENCE_TIMEOUT,
 966							    I915_FENCE_GFP);
 967		if (ret < 0)
 968			return ret;
 969
 970		/* Record the latest fence used against each timeline */
 971		if (fence->context)
 972			intel_timeline_sync_set(rq->timeline, fence);
 973	} while (--nchild);
 974
 975	return 0;
 976}
 977
 978int
 979i915_request_await_execution(struct i915_request *rq,
 980			     struct dma_fence *fence,
 981			     void (*hook)(struct i915_request *rq,
 982					  struct dma_fence *signal))
 983{
 984	struct dma_fence **child = &fence;
 985	unsigned int nchild = 1;
 986	int ret;
 987
 988	if (dma_fence_is_array(fence)) {
 989		struct dma_fence_array *array = to_dma_fence_array(fence);
 990
 991		/* XXX Error for signal-on-any fence arrays */
 992
 993		child = array->fences;
 994		nchild = array->num_fences;
 995		GEM_BUG_ON(!nchild);
 996	}
 997
 998	do {
 999		fence = *child++;
1000		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001			continue;
1002
1003		/*
1004		 * We don't squash repeated fence dependencies here as we
1005		 * want to run our callback in all cases.
1006		 */
1007
1008		if (dma_fence_is_i915(fence))
1009			ret = __i915_request_await_execution(rq,
1010							     to_request(fence),
1011							     hook,
1012							     I915_FENCE_GFP);
1013		else
1014			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015							    I915_FENCE_TIMEOUT,
1016							    GFP_KERNEL);
1017		if (ret < 0)
1018			return ret;
1019	} while (--nchild);
1020
1021	return 0;
1022}
1023
1024/**
1025 * i915_request_await_object - set this request to (async) wait upon a bo
1026 * @to: request we are wishing to use
1027 * @obj: object which may be in use on another ring.
1028 * @write: whether the wait is on behalf of a writer
1029 *
1030 * This code is meant to abstract object synchronization with the GPU.
1031 * Conceptually we serialise writes between engines inside the GPU.
1032 * We only allow one engine to write into a buffer at any time, but
1033 * multiple readers. To ensure each has a coherent view of memory, we must:
1034 *
1035 * - If there is an outstanding write request to the object, the new
1036 *   request must wait for it to complete (either CPU or in hw, requests
1037 *   on the same ring will be naturally ordered).
1038 *
1039 * - If we are a write request (pending_write_domain is set), the new
1040 *   request must wait for outstanding read requests to complete.
1041 *
1042 * Returns 0 if successful, else propagates up the lower layer error.
1043 */
1044int
1045i915_request_await_object(struct i915_request *to,
1046			  struct drm_i915_gem_object *obj,
1047			  bool write)
1048{
1049	struct dma_fence *excl;
1050	int ret = 0;
1051
1052	if (write) {
1053		struct dma_fence **shared;
1054		unsigned int count, i;
1055
1056		ret = dma_resv_get_fences_rcu(obj->base.resv,
1057							&excl, &count, &shared);
1058		if (ret)
1059			return ret;
1060
1061		for (i = 0; i < count; i++) {
1062			ret = i915_request_await_dma_fence(to, shared[i]);
1063			if (ret)
1064				break;
1065
1066			dma_fence_put(shared[i]);
1067		}
1068
1069		for (; i < count; i++)
1070			dma_fence_put(shared[i]);
1071		kfree(shared);
1072	} else {
1073		excl = dma_resv_get_excl_rcu(obj->base.resv);
1074	}
1075
1076	if (excl) {
1077		if (ret == 0)
1078			ret = i915_request_await_dma_fence(to, excl);
1079
1080		dma_fence_put(excl);
1081	}
1082
1083	return ret;
1084}
1085
1086void i915_request_skip(struct i915_request *rq, int error)
1087{
1088	void *vaddr = rq->ring->vaddr;
1089	u32 head;
1090
1091	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092	dma_fence_set_error(&rq->fence, error);
1093
1094	if (rq->infix == rq->postfix)
1095		return;
1096
1097	/*
1098	 * As this request likely depends on state from the lost
1099	 * context, clear out all the user operations leaving the
1100	 * breadcrumb at the end (so we get the fence notifications).
1101	 */
1102	head = rq->infix;
1103	if (rq->postfix < head) {
1104		memset(vaddr + head, 0, rq->ring->size - head);
1105		head = 0;
1106	}
1107	memset(vaddr + head, 0, rq->postfix - head);
1108	rq->infix = rq->postfix;
1109}
1110
1111static struct i915_request *
1112__i915_request_add_to_timeline(struct i915_request *rq)
1113{
1114	struct intel_timeline *timeline = rq->timeline;
1115	struct i915_request *prev;
1116
1117	/*
1118	 * Dependency tracking and request ordering along the timeline
1119	 * is special cased so that we can eliminate redundant ordering
1120	 * operations while building the request (we know that the timeline
1121	 * itself is ordered, and here we guarantee it).
1122	 *
1123	 * As we know we will need to emit tracking along the timeline,
1124	 * we embed the hooks into our request struct -- at the cost of
1125	 * having to have specialised no-allocation interfaces (which will
1126	 * be beneficial elsewhere).
1127	 *
1128	 * A second benefit to open-coding i915_request_await_request is
1129	 * that we can apply a slight variant of the rules specialised
1130	 * for timelines that jump between engines (such as virtual engines).
1131	 * If we consider the case of virtual engine, we must emit a dma-fence
1132	 * to prevent scheduling of the second request until the first is
1133	 * complete (to maximise our greedy late load balancing) and this
1134	 * precludes optimising to use semaphores serialisation of a single
1135	 * timeline across engines.
1136	 */
1137	prev = rcu_dereference_protected(timeline->last_request.request,
1138					 lockdep_is_held(&timeline->mutex));
1139	if (prev && !i915_request_completed(prev)) {
1140		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141			i915_sw_fence_await_sw_fence(&rq->submit,
1142						     &prev->submit,
1143						     &rq->submitq);
1144		else
1145			__i915_sw_fence_await_dma_fence(&rq->submit,
1146							&prev->fence,
1147							&rq->dmaq);
1148		if (rq->engine->schedule)
1149			__i915_sched_node_add_dependency(&rq->sched,
1150							 &prev->sched,
1151							 &rq->dep,
1152							 0);
1153	}
1154
1155	list_add_tail(&rq->link, &timeline->requests);
1156
1157	/*
1158	 * Make sure that no request gazumped us - if it was allocated after
1159	 * our i915_request_alloc() and called __i915_request_add() before
1160	 * us, the timeline will hold its seqno which is later than ours.
1161	 */
1162	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163	__i915_active_request_set(&timeline->last_request, rq);
1164
1165	return prev;
1166}
1167
1168/*
1169 * NB: This function is not allowed to fail. Doing so would mean the the
1170 * request is not being tracked for completion but the work itself is
1171 * going to happen on the hardware. This would be a Bad Thing(tm).
1172 */
1173struct i915_request *__i915_request_commit(struct i915_request *rq)
1174{
1175	struct intel_engine_cs *engine = rq->engine;
1176	struct intel_ring *ring = rq->ring;
1177	u32 *cs;
1178
1179	GEM_TRACE("%s fence %llx:%lld\n",
1180		  engine->name, rq->fence.context, rq->fence.seqno);
1181
1182	/*
1183	 * To ensure that this call will not fail, space for its emissions
1184	 * should already have been reserved in the ring buffer. Let the ring
1185	 * know that it is time to use that space up.
1186	 */
1187	GEM_BUG_ON(rq->reserved_space > ring->space);
1188	rq->reserved_space = 0;
1189	rq->emitted_jiffies = jiffies;
1190
1191	/*
1192	 * Record the position of the start of the breadcrumb so that
1193	 * should we detect the updated seqno part-way through the
1194	 * GPU processing the request, we never over-estimate the
1195	 * position of the ring's HEAD.
1196	 */
1197	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198	GEM_BUG_ON(IS_ERR(cs));
1199	rq->postfix = intel_ring_offset(rq, cs);
1200
1201	return __i915_request_add_to_timeline(rq);
1202}
1203
1204void __i915_request_queue(struct i915_request *rq,
1205			  const struct i915_sched_attr *attr)
1206{
1207	/*
1208	 * Let the backend know a new request has arrived that may need
1209	 * to adjust the existing execution schedule due to a high priority
1210	 * request - i.e. we may want to preempt the current request in order
1211	 * to run a high priority dependency chain *before* we can execute this
1212	 * request.
1213	 *
1214	 * This is called before the request is ready to run so that we can
1215	 * decide whether to preempt the entire chain so that it is ready to
1216	 * run at the earliest possible convenience.
1217	 */
1218	i915_sw_fence_commit(&rq->semaphore);
1219	if (attr && rq->engine->schedule)
1220		rq->engine->schedule(rq, attr);
1221	i915_sw_fence_commit(&rq->submit);
1222}
1223
1224void i915_request_add(struct i915_request *rq)
1225{
1226	struct i915_sched_attr attr = rq->gem_context->sched;
1227	struct intel_timeline * const tl = rq->timeline;
1228	struct i915_request *prev;
1229
1230	lockdep_assert_held(&tl->mutex);
1231	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232
1233	trace_i915_request_add(rq);
1234
1235	prev = __i915_request_commit(rq);
1236
1237	/*
1238	 * Boost actual workloads past semaphores!
1239	 *
1240	 * With semaphores we spin on one engine waiting for another,
1241	 * simply to reduce the latency of starting our work when
1242	 * the signaler completes. However, if there is any other
1243	 * work that we could be doing on this engine instead, that
1244	 * is better utilisation and will reduce the overall duration
1245	 * of the current work. To avoid PI boosting a semaphore
1246	 * far in the distance past over useful work, we keep a history
1247	 * of any semaphore use along our dependency chain.
1248	 */
1249	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251
1252	/*
1253	 * Boost priorities to new clients (new request flows).
1254	 *
1255	 * Allow interactive/synchronous clients to jump ahead of
1256	 * the bulk clients. (FQ_CODEL)
1257	 */
1258	if (list_empty(&rq->sched.signalers_list))
1259		attr.priority |= I915_PRIORITY_WAIT;
1260
1261	local_bh_disable();
1262	__i915_request_queue(rq, &attr);
1263	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264
1265	/*
1266	 * In typical scenarios, we do not expect the previous request on
1267	 * the timeline to be still tracked by timeline->last_request if it
1268	 * has been completed. If the completed request is still here, that
1269	 * implies that request retirement is a long way behind submission,
1270	 * suggesting that we haven't been retiring frequently enough from
1271	 * the combination of retire-before-alloc, waiters and the background
1272	 * retirement worker. So if the last request on this timeline was
1273	 * already completed, do a catch up pass, flushing the retirement queue
1274	 * up to this client. Since we have now moved the heaviest operations
1275	 * during retirement onto secondary workers, such as freeing objects
1276	 * or contexts, retiring a bunch of requests is mostly list management
1277	 * (and cache misses), and so we should not be overly penalizing this
1278	 * client by performing excess work, though we may still performing
1279	 * work on behalf of others -- but instead we should benefit from
1280	 * improved resource management. (Well, that's the theory at least.)
1281	 */
1282	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283		i915_request_retire_upto(prev);
1284
1285	mutex_unlock(&tl->mutex);
1286}
1287
1288static unsigned long local_clock_us(unsigned int *cpu)
1289{
1290	unsigned long t;
1291
1292	/*
1293	 * Cheaply and approximately convert from nanoseconds to microseconds.
1294	 * The result and subsequent calculations are also defined in the same
1295	 * approximate microseconds units. The principal source of timing
1296	 * error here is from the simple truncation.
1297	 *
1298	 * Note that local_clock() is only defined wrt to the current CPU;
1299	 * the comparisons are no longer valid if we switch CPUs. Instead of
1300	 * blocking preemption for the entire busywait, we can detect the CPU
1301	 * switch and use that as indicator of system load and a reason to
1302	 * stop busywaiting, see busywait_stop().
1303	 */
1304	*cpu = get_cpu();
1305	t = local_clock() >> 10;
1306	put_cpu();
1307
1308	return t;
1309}
1310
1311static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312{
1313	unsigned int this_cpu;
1314
1315	if (time_after(local_clock_us(&this_cpu), timeout))
1316		return true;
1317
1318	return this_cpu != cpu;
1319}
1320
1321static bool __i915_spin_request(const struct i915_request * const rq,
1322				int state, unsigned long timeout_us)
1323{
1324	unsigned int cpu;
1325
1326	/*
1327	 * Only wait for the request if we know it is likely to complete.
1328	 *
1329	 * We don't track the timestamps around requests, nor the average
1330	 * request length, so we do not have a good indicator that this
1331	 * request will complete within the timeout. What we do know is the
1332	 * order in which requests are executed by the context and so we can
1333	 * tell if the request has been started. If the request is not even
1334	 * running yet, it is a fair assumption that it will not complete
1335	 * within our relatively short timeout.
1336	 */
1337	if (!i915_request_is_running(rq))
1338		return false;
1339
1340	/*
1341	 * When waiting for high frequency requests, e.g. during synchronous
1342	 * rendering split between the CPU and GPU, the finite amount of time
1343	 * required to set up the irq and wait upon it limits the response
1344	 * rate. By busywaiting on the request completion for a short while we
1345	 * can service the high frequency waits as quick as possible. However,
1346	 * if it is a slow request, we want to sleep as quickly as possible.
1347	 * The tradeoff between waiting and sleeping is roughly the time it
1348	 * takes to sleep on a request, on the order of a microsecond.
1349	 */
1350
1351	timeout_us += local_clock_us(&cpu);
1352	do {
1353		if (i915_request_completed(rq))
1354			return true;
1355
1356		if (signal_pending_state(state, current))
1357			break;
1358
1359		if (busywait_stop(timeout_us, cpu))
1360			break;
1361
1362		cpu_relax();
1363	} while (!need_resched());
1364
1365	return false;
1366}
1367
1368struct request_wait {
1369	struct dma_fence_cb cb;
1370	struct task_struct *tsk;
1371};
1372
1373static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374{
1375	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376
1377	wake_up_process(wait->tsk);
1378}
1379
1380/**
1381 * i915_request_wait - wait until execution of request has finished
1382 * @rq: the request to wait upon
1383 * @flags: how to wait
1384 * @timeout: how long to wait in jiffies
1385 *
1386 * i915_request_wait() waits for the request to be completed, for a
1387 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388 * unbounded wait).
1389 *
1390 * Returns the remaining time (in jiffies) if the request completed, which may
1391 * be zero or -ETIME if the request is unfinished after the timeout expires.
1392 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393 * pending before the request completes.
1394 */
1395long i915_request_wait(struct i915_request *rq,
1396		       unsigned int flags,
1397		       long timeout)
1398{
1399	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401	struct request_wait wait;
1402
1403	might_sleep();
1404	GEM_BUG_ON(timeout < 0);
1405
1406	if (dma_fence_is_signaled(&rq->fence))
1407		return timeout;
1408
1409	if (!timeout)
1410		return -ETIME;
1411
1412	trace_i915_request_wait_begin(rq, flags);
1413
1414	/*
1415	 * We must never wait on the GPU while holding a lock as we
1416	 * may need to perform a GPU reset. So while we don't need to
1417	 * serialise wait/reset with an explicit lock, we do want
1418	 * lockdep to detect potential dependency cycles.
1419	 */
1420	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421
1422	/*
1423	 * Optimistic spin before touching IRQs.
1424	 *
1425	 * We may use a rather large value here to offset the penalty of
1426	 * switching away from the active task. Frequently, the client will
1427	 * wait upon an old swapbuffer to throttle itself to remain within a
1428	 * frame of the gpu. If the client is running in lockstep with the gpu,
1429	 * then it should not be waiting long at all, and a sleep now will incur
1430	 * extra scheduler latency in producing the next frame. To try to
1431	 * avoid adding the cost of enabling/disabling the interrupt to the
1432	 * short wait, we first spin to see if the request would have completed
1433	 * in the time taken to setup the interrupt.
1434	 *
1435	 * We need upto 5us to enable the irq, and upto 20us to hide the
1436	 * scheduler latency of a context switch, ignoring the secondary
1437	 * impacts from a context switch such as cache eviction.
1438	 *
1439	 * The scheme used for low-latency IO is called "hybrid interrupt
1440	 * polling". The suggestion there is to sleep until just before you
1441	 * expect to be woken by the device interrupt and then poll for its
1442	 * completion. That requires having a good predictor for the request
1443	 * duration, which we currently lack.
1444	 */
1445	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447		dma_fence_signal(&rq->fence);
1448		goto out;
1449	}
1450
1451	/*
1452	 * This client is about to stall waiting for the GPU. In many cases
1453	 * this is undesirable and limits the throughput of the system, as
1454	 * many clients cannot continue processing user input/output whilst
1455	 * blocked. RPS autotuning may take tens of milliseconds to respond
1456	 * to the GPU load and thus incurs additional latency for the client.
1457	 * We can circumvent that by promoting the GPU frequency to maximum
1458	 * before we sleep. This makes the GPU throttle up much more quickly
1459	 * (good for benchmarks and user experience, e.g. window animations),
1460	 * but at a cost of spending more power processing the workload
1461	 * (bad for battery).
1462	 */
1463	if (flags & I915_WAIT_PRIORITY) {
1464		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465			gen6_rps_boost(rq);
1466		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467	}
1468
1469	wait.tsk = current;
1470	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471		goto out;
1472
1473	for (;;) {
1474		set_current_state(state);
1475
1476		if (i915_request_completed(rq)) {
1477			dma_fence_signal(&rq->fence);
1478			break;
1479		}
1480
1481		if (signal_pending_state(state, current)) {
1482			timeout = -ERESTARTSYS;
1483			break;
1484		}
1485
1486		if (!timeout) {
1487			timeout = -ETIME;
1488			break;
1489		}
1490
1491		timeout = io_schedule_timeout(timeout);
1492	}
1493	__set_current_state(TASK_RUNNING);
1494
1495	dma_fence_remove_callback(&rq->fence, &wait.cb);
1496
1497out:
1498	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499	trace_i915_request_wait_end(rq);
1500	return timeout;
1501}
1502
1503bool i915_retire_requests(struct drm_i915_private *i915)
1504{
1505	struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506	struct intel_timeline *tl, *tn;
1507	unsigned long flags;
1508	LIST_HEAD(free);
1509
1510	spin_lock_irqsave(&timelines->lock, flags);
1511	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512		if (!mutex_trylock(&tl->mutex))
1513			continue;
1514
1515		intel_timeline_get(tl);
1516		GEM_BUG_ON(!tl->active_count);
1517		tl->active_count++; /* pin the list element */
1518		spin_unlock_irqrestore(&timelines->lock, flags);
1519
1520		retire_requests(tl);
1521
1522		spin_lock_irqsave(&timelines->lock, flags);
1523
1524		/* Resume iteration after dropping lock */
1525		list_safe_reset_next(tl, tn, link);
1526		if (!--tl->active_count)
1527			list_del(&tl->link);
1528
1529		mutex_unlock(&tl->mutex);
1530
1531		/* Defer the final release to after the spinlock */
1532		if (refcount_dec_and_test(&tl->kref.refcount)) {
1533			GEM_BUG_ON(tl->active_count);
1534			list_add(&tl->link, &free);
1535		}
1536	}
1537	spin_unlock_irqrestore(&timelines->lock, flags);
1538
1539	list_for_each_entry_safe(tl, tn, &free, link)
1540		__intel_timeline_free(&tl->kref);
1541
1542	return !list_empty(&timelines->active_list);
1543}
1544
1545#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546#include "selftests/mock_request.c"
1547#include "selftests/i915_request.c"
1548#endif
1549
1550static void i915_global_request_shrink(void)
1551{
1552	kmem_cache_shrink(global.slab_dependencies);
1553	kmem_cache_shrink(global.slab_execute_cbs);
1554	kmem_cache_shrink(global.slab_requests);
1555}
1556
1557static void i915_global_request_exit(void)
1558{
1559	kmem_cache_destroy(global.slab_dependencies);
1560	kmem_cache_destroy(global.slab_execute_cbs);
1561	kmem_cache_destroy(global.slab_requests);
1562}
1563
1564static struct i915_global_request global = { {
1565	.shrink = i915_global_request_shrink,
1566	.exit = i915_global_request_exit,
1567} };
1568
1569int __init i915_global_request_init(void)
1570{
1571	global.slab_requests = KMEM_CACHE(i915_request,
1572					  SLAB_HWCACHE_ALIGN |
1573					  SLAB_RECLAIM_ACCOUNT |
1574					  SLAB_TYPESAFE_BY_RCU);
1575	if (!global.slab_requests)
1576		return -ENOMEM;
1577
1578	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579					     SLAB_HWCACHE_ALIGN |
1580					     SLAB_RECLAIM_ACCOUNT |
1581					     SLAB_TYPESAFE_BY_RCU);
1582	if (!global.slab_execute_cbs)
1583		goto err_requests;
1584
1585	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586					      SLAB_HWCACHE_ALIGN |
1587					      SLAB_RECLAIM_ACCOUNT);
1588	if (!global.slab_dependencies)
1589		goto err_execute_cbs;
1590
1591	i915_global_register(&global.base);
1592	return 0;
1593
1594err_execute_cbs:
1595	kmem_cache_destroy(global.slab_execute_cbs);
1596err_requests:
1597	kmem_cache_destroy(global.slab_requests);
1598	return -ENOMEM;
1599}