Linux Audio

Check our new training course

Loading...
v3.1
  1/**************************************************************************
  2 *
  3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
 
  4 * All Rights Reserved.
  5 *
  6 * Permission is hereby granted, free of charge, to any person obtaining a
  7 * copy of this software and associated documentation files (the
  8 * "Software"), to deal in the Software without restriction, including
  9 * without limitation the rights to use, copy, modify, merge, publish,
 10 * distribute, sub license, and/or sell copies of the Software, and to
 11 * permit persons to whom the Software is furnished to do so, subject to
 12 * the following conditions:
 13 *
 14 * The above copyright notice and this permission notice (including the
 15 * next paragraph) shall be included in all copies or substantial portions
 16 * of the Software.
 17 *
 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 25 *
 26 *
 27 **************************************************************************/
 28
 29/*
 30 * Generic simple memory manager implementation. Intended to be used as a base
 31 * class implementation for more advanced memory managers.
 32 *
 33 * Note that the algorithm used is quite simple and there might be substantial
 34 * performance gains if a smarter free list is implemented. Currently it is just an
 35 * unordered stack of free regions. This could easily be improved if an RB-tree
 36 * is used instead. At least if we expect heavy fragmentation.
 37 *
 38 * Aligned allocations can also see improvement.
 39 *
 40 * Authors:
 41 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
 42 */
 43
 44#include "drmP.h"
 45#include "drm_mm.h"
 46#include <linux/slab.h>
 47#include <linux/seq_file.h>
 
 
 48
 49#define MM_UNUSED_TARGET 4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51static struct drm_mm_node *drm_mm_kmalloc(struct drm_mm *mm, int atomic)
 
 
 
 
 
 
 52{
 53	struct drm_mm_node *child;
 
 54
 55	if (atomic)
 56		child = kzalloc(sizeof(*child), GFP_ATOMIC);
 57	else
 58		child = kzalloc(sizeof(*child), GFP_KERNEL);
 59
 60	if (unlikely(child == NULL)) {
 61		spin_lock(&mm->unused_lock);
 62		if (list_empty(&mm->unused_nodes))
 63			child = NULL;
 64		else {
 65			child =
 66			    list_entry(mm->unused_nodes.next,
 67				       struct drm_mm_node, node_list);
 68			list_del(&child->node_list);
 69			--mm->num_unused;
 70		}
 71		spin_unlock(&mm->unused_lock);
 72	}
 73	return child;
 74}
 75
 76/* drm_mm_pre_get() - pre allocate drm_mm_node structure
 77 * drm_mm:	memory manager struct we are pre-allocating for
 78 *
 79 * Returns 0 on success or -ENOMEM if allocation fails.
 80 */
 81int drm_mm_pre_get(struct drm_mm *mm)
 82{
 83	struct drm_mm_node *node;
 
 
 
 
 
 
 
 84
 85	spin_lock(&mm->unused_lock);
 86	while (mm->num_unused < MM_UNUSED_TARGET) {
 87		spin_unlock(&mm->unused_lock);
 88		node = kzalloc(sizeof(*node), GFP_KERNEL);
 89		spin_lock(&mm->unused_lock);
 90
 91		if (unlikely(node == NULL)) {
 92			int ret = (mm->num_unused < 2) ? -ENOMEM : 0;
 93			spin_unlock(&mm->unused_lock);
 94			return ret;
 95		}
 96		++mm->num_unused;
 97		list_add_tail(&node->node_list, &mm->unused_nodes);
 
 
 
 98	}
 99	spin_unlock(&mm->unused_lock);
100	return 0;
101}
102EXPORT_SYMBOL(drm_mm_pre_get);
103
104static inline unsigned long drm_mm_hole_node_start(struct drm_mm_node *hole_node)
105{
106	return hole_node->start + hole_node->size;
107}
108
109static inline unsigned long drm_mm_hole_node_end(struct drm_mm_node *hole_node)
110{
111	struct drm_mm_node *next_node =
112		list_entry(hole_node->node_list.next, struct drm_mm_node,
113			   node_list);
 
114
115	return next_node->start;
 
 
 
 
 
 
 
 
 
 
 
116}
 
117
118static void drm_mm_insert_helper(struct drm_mm_node *hole_node,
119				 struct drm_mm_node *node,
120				 unsigned long size, unsigned alignment)
121{
122	struct drm_mm *mm = hole_node->mm;
123	unsigned long tmp = 0, wasted = 0;
124	unsigned long hole_start = drm_mm_hole_node_start(hole_node);
125	unsigned long hole_end = drm_mm_hole_node_end(hole_node);
126
127	BUG_ON(!hole_node->hole_follows || node->allocated);
128
129	if (alignment)
130		tmp = hole_start % alignment;
131
132	if (!tmp) {
133		hole_node->hole_follows = 0;
134		list_del_init(&hole_node->hole_stack);
135	} else
136		wasted = alignment - tmp;
137
138	node->start = hole_start + wasted;
139	node->size = size;
140	node->mm = mm;
141	node->allocated = 1;
142
143	INIT_LIST_HEAD(&node->hole_stack);
144	list_add(&node->node_list, &hole_node->node_list);
 
 
 
 
 
 
145
146	BUG_ON(node->start + node->size > hole_end);
 
 
 
 
 
 
 
 
 
 
 
147
148	if (node->start + node->size < hole_end) {
149		list_add(&node->hole_stack, &mm->hole_stack);
150		node->hole_follows = 1;
151	} else {
152		node->hole_follows = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153	}
 
 
 
154}
155
156struct drm_mm_node *drm_mm_get_block_generic(struct drm_mm_node *hole_node,
157					     unsigned long size,
158					     unsigned alignment,
159					     int atomic)
160{
161	struct drm_mm_node *node;
162
163	node = drm_mm_kmalloc(hole_node->mm, atomic);
164	if (unlikely(node == NULL))
165		return NULL;
166
167	drm_mm_insert_helper(hole_node, node, size, alignment);
 
168
169	return node;
170}
171EXPORT_SYMBOL(drm_mm_get_block_generic);
172
173/**
174 * Search for free space and insert a preallocated memory node. Returns
175 * -ENOSPC if no suitable free area is available. The preallocated memory node
176 * must be cleared.
177 */
178int drm_mm_insert_node(struct drm_mm *mm, struct drm_mm_node *node,
179		       unsigned long size, unsigned alignment)
180{
181	struct drm_mm_node *hole_node;
182
183	hole_node = drm_mm_search_free(mm, size, alignment, 0);
184	if (!hole_node)
185		return -ENOSPC;
 
186
187	drm_mm_insert_helper(hole_node, node, size, alignment);
 
188
189	return 0;
 
 
190}
191EXPORT_SYMBOL(drm_mm_insert_node);
192
193static void drm_mm_insert_helper_range(struct drm_mm_node *hole_node,
194				       struct drm_mm_node *node,
195				       unsigned long size, unsigned alignment,
196				       unsigned long start, unsigned long end)
197{
198	struct drm_mm *mm = hole_node->mm;
199	unsigned long tmp = 0, wasted = 0;
200	unsigned long hole_start = drm_mm_hole_node_start(hole_node);
201	unsigned long hole_end = drm_mm_hole_node_end(hole_node);
202
203	BUG_ON(!hole_node->hole_follows || node->allocated);
 
 
 
204
205	if (hole_start < start)
206		wasted += start - hole_start;
207	if (alignment)
208		tmp = (hole_start + wasted) % alignment;
209
210	if (tmp)
211		wasted += alignment - tmp;
 
212
213	if (!wasted) {
214		hole_node->hole_follows = 0;
215		list_del_init(&hole_node->hole_stack);
216	}
 
 
 
217
218	node->start = hole_start + wasted;
219	node->size = size;
220	node->mm = mm;
221	node->allocated = 1;
222
223	INIT_LIST_HEAD(&node->hole_stack);
224	list_add(&node->node_list, &hole_node->node_list);
 
 
225
226	BUG_ON(node->start + node->size > hole_end);
227	BUG_ON(node->start + node->size > end);
228
229	if (node->start + node->size < hole_end) {
230		list_add(&node->hole_stack, &mm->hole_stack);
231		node->hole_follows = 1;
232	} else {
233		node->hole_follows = 0;
 
 
 
 
234	}
 
 
235}
236
237struct drm_mm_node *drm_mm_get_block_range_generic(struct drm_mm_node *hole_node,
238						unsigned long size,
239						unsigned alignment,
240						unsigned long start,
241						unsigned long end,
242						int atomic)
243{
244	struct drm_mm_node *node;
 
 
 
245
246	node = drm_mm_kmalloc(hole_node->mm, atomic);
247	if (unlikely(node == NULL))
248		return NULL;
249
250	drm_mm_insert_helper_range(hole_node, node, size, alignment,
251				   start, end);
252
253	return node;
 
 
 
 
254}
255EXPORT_SYMBOL(drm_mm_get_block_range_generic);
256
257/**
258 * Search for free space and insert a preallocated memory node. Returns
259 * -ENOSPC if no suitable free area is available. This is for range
260 * restricted allocations. The preallocated memory node must be cleared.
261 */
262int drm_mm_insert_node_in_range(struct drm_mm *mm, struct drm_mm_node *node,
263				unsigned long size, unsigned alignment,
264				unsigned long start, unsigned long end)
265{
266	struct drm_mm_node *hole_node;
 
 
 
267
268	hole_node = drm_mm_search_free_in_range(mm, size, alignment,
269						start, end, 0);
270	if (!hole_node)
271		return -ENOSPC;
272
273	drm_mm_insert_helper_range(hole_node, node, size, alignment,
274				   start, end);
275
276	return 0;
 
 
 
277}
278EXPORT_SYMBOL(drm_mm_insert_node_in_range);
279
280/**
281 * Remove a memory node from the allocator.
282 */
283void drm_mm_remove_node(struct drm_mm_node *node)
284{
285	struct drm_mm *mm = node->mm;
286	struct drm_mm_node *prev_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
287
288	BUG_ON(node->scanned_block || node->scanned_prev_free
289				   || node->scanned_next_free);
 
290
291	prev_node =
292	    list_entry(node->node_list.prev, struct drm_mm_node, node_list);
 
 
293
294	if (node->hole_follows) {
295		BUG_ON(drm_mm_hole_node_start(node)
296				== drm_mm_hole_node_end(node));
297		list_del(&node->hole_stack);
298	} else
299		BUG_ON(drm_mm_hole_node_start(node)
300				!= drm_mm_hole_node_end(node));
301
302	if (!prev_node->hole_follows) {
303		prev_node->hole_follows = 1;
304		list_add(&prev_node->hole_stack, &mm->hole_stack);
305	} else
306		list_move(&prev_node->hole_stack, &mm->hole_stack);
307
308	list_del(&node->node_list);
309	node->allocated = 0;
310}
311EXPORT_SYMBOL(drm_mm_remove_node);
312
313/*
314 * Remove a memory node from the allocator and free the allocated struct
315 * drm_mm_node. Only to be used on a struct drm_mm_node obtained by one of the
316 * drm_mm_get_block functions.
317 */
318void drm_mm_put_block(struct drm_mm_node *node)
319{
320
321	struct drm_mm *mm = node->mm;
322
323	drm_mm_remove_node(node);
 
 
 
 
 
 
 
 
 
324
325	spin_lock(&mm->unused_lock);
326	if (mm->num_unused < MM_UNUSED_TARGET) {
327		list_add(&node->node_list, &mm->unused_nodes);
328		++mm->num_unused;
329	} else
330		kfree(node);
331	spin_unlock(&mm->unused_lock);
332}
333EXPORT_SYMBOL(drm_mm_put_block);
334
335static int check_free_hole(unsigned long start, unsigned long end,
336			   unsigned long size, unsigned alignment)
337{
338	unsigned wasted = 0;
 
339
340	if (end - start < size)
341		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343	if (alignment) {
344		unsigned tmp = start % alignment;
345		if (tmp)
346			wasted = alignment - tmp;
347	}
348
349	if (end >= start + size + wasted) {
350		return 1;
351	}
352
353	return 0;
354}
 
 
 
 
 
 
355
356struct drm_mm_node *drm_mm_search_free(const struct drm_mm *mm,
357				       unsigned long size,
358				       unsigned alignment, int best_match)
359{
360	struct drm_mm_node *entry;
361	struct drm_mm_node *best;
362	unsigned long best_size;
363
364	BUG_ON(mm->scanned_blocks);
365
366	best = NULL;
367	best_size = ~0UL;
368
369	list_for_each_entry(entry, &mm->hole_stack, hole_stack) {
370		BUG_ON(!entry->hole_follows);
371		if (!check_free_hole(drm_mm_hole_node_start(entry),
372				     drm_mm_hole_node_end(entry),
373				     size, alignment))
 
 
 
 
 
 
374			continue;
375
376		if (!best_match)
377			return entry;
 
 
 
378
379		if (entry->size < best_size) {
380			best = entry;
381			best_size = entry->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383	}
384
385	return best;
386}
387EXPORT_SYMBOL(drm_mm_search_free);
388
389struct drm_mm_node *drm_mm_search_free_in_range(const struct drm_mm *mm,
390						unsigned long size,
391						unsigned alignment,
392						unsigned long start,
393						unsigned long end,
394						int best_match)
395{
396	struct drm_mm_node *entry;
397	struct drm_mm_node *best;
398	unsigned long best_size;
399
400	BUG_ON(mm->scanned_blocks);
401
402	best = NULL;
403	best_size = ~0UL;
404
405	list_for_each_entry(entry, &mm->hole_stack, hole_stack) {
406		unsigned long adj_start = drm_mm_hole_node_start(entry) < start ?
407			start : drm_mm_hole_node_start(entry);
408		unsigned long adj_end = drm_mm_hole_node_end(entry) > end ?
409			end : drm_mm_hole_node_end(entry);
410
411		BUG_ON(!entry->hole_follows);
412		if (!check_free_hole(adj_start, adj_end, size, alignment))
413			continue;
414
415		if (!best_match)
416			return entry;
417
418		if (entry->size < best_size) {
419			best = entry;
420			best_size = entry->size;
421		}
422	}
423
424	return best;
 
 
 
 
 
 
425}
426EXPORT_SYMBOL(drm_mm_search_free_in_range);
427
428/**
429 * Moves an allocation. To be used with embedded struct drm_mm_node.
 
 
 
 
 
 
430 */
431void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
432{
 
 
 
 
 
 
433	list_replace(&old->node_list, &new->node_list);
434	list_replace(&old->hole_stack, &new->hole_stack);
435	new->hole_follows = old->hole_follows;
436	new->mm = old->mm;
437	new->start = old->start;
438	new->size = old->size;
 
 
 
 
 
 
439
440	old->allocated = 0;
441	new->allocated = 1;
442}
443EXPORT_SYMBOL(drm_mm_replace_node);
444
445/**
446 * Initializa lru scanning.
447 *
448 * This simply sets up the scanning routines with the parameters for the desired
449 * hole.
450 *
451 * Warning: As long as the scan list is non-empty, no other operations than
452 * adding/removing nodes to/from the scan list are allowed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453 */
454void drm_mm_init_scan(struct drm_mm *mm, unsigned long size,
455		      unsigned alignment)
456{
457	mm->scan_alignment = alignment;
458	mm->scan_size = size;
459	mm->scanned_blocks = 0;
460	mm->scan_hit_start = 0;
461	mm->scan_hit_size = 0;
462	mm->scan_check_range = 0;
463	mm->prev_scanned_node = NULL;
464}
465EXPORT_SYMBOL(drm_mm_init_scan);
466
467/**
468 * Initializa lru scanning.
 
 
 
 
 
 
 
 
469 *
470 * This simply sets up the scanning routines with the parameters for the desired
471 * hole. This version is for range-restricted scans.
472 *
473 * Warning: As long as the scan list is non-empty, no other operations than
 
474 * adding/removing nodes to/from the scan list are allowed.
475 */
476void drm_mm_init_scan_with_range(struct drm_mm *mm, unsigned long size,
477				 unsigned alignment,
478				 unsigned long start,
479				 unsigned long end)
480{
481	mm->scan_alignment = alignment;
482	mm->scan_size = size;
483	mm->scanned_blocks = 0;
484	mm->scan_hit_start = 0;
485	mm->scan_hit_size = 0;
486	mm->scan_start = start;
487	mm->scan_end = end;
488	mm->scan_check_range = 1;
489	mm->prev_scanned_node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490}
491EXPORT_SYMBOL(drm_mm_init_scan_with_range);
492
493/**
 
 
 
 
494 * Add a node to the scan list that might be freed to make space for the desired
495 * hole.
496 *
497 * Returns non-zero, if a hole has been found, zero otherwise.
 
498 */
499int drm_mm_scan_add_block(struct drm_mm_node *node)
 
500{
501	struct drm_mm *mm = node->mm;
502	struct drm_mm_node *prev_node;
503	unsigned long hole_start, hole_end;
504	unsigned long adj_start;
505	unsigned long adj_end;
506
507	mm->scanned_blocks++;
508
509	BUG_ON(node->scanned_block);
510	node->scanned_block = 1;
511
512	prev_node = list_entry(node->node_list.prev, struct drm_mm_node,
513			       node_list);
514
515	node->scanned_preceeds_hole = prev_node->hole_follows;
516	prev_node->hole_follows = 1;
517	list_del(&node->node_list);
518	node->node_list.prev = &prev_node->node_list;
519	node->node_list.next = &mm->prev_scanned_node->node_list;
520	mm->prev_scanned_node = node;
521
522	hole_start = drm_mm_hole_node_start(prev_node);
523	hole_end = drm_mm_hole_node_end(prev_node);
524	if (mm->scan_check_range) {
525		adj_start = hole_start < mm->scan_start ?
526			mm->scan_start : hole_start;
527		adj_end = hole_end > mm->scan_end ?
528			mm->scan_end : hole_end;
529	} else {
530		adj_start = hole_start;
531		adj_end = hole_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532	}
533
534	if (check_free_hole(adj_start , adj_end,
535			    mm->scan_size, mm->scan_alignment)) {
536		mm->scan_hit_start = hole_start;
537		mm->scan_hit_size = hole_end;
538
539		return 1;
540	}
 
541
542	return 0;
543}
544EXPORT_SYMBOL(drm_mm_scan_add_block);
545
546/**
547 * Remove a node from the scan list.
548 *
549 * Nodes _must_ be removed in the exact same order from the scan list as they
550 * have been added, otherwise the internal state of the memory manager will be
551 * corrupted.
 
 
 
552 *
553 * When the scan list is empty, the selected memory nodes can be freed. An
554 * immediately following drm_mm_search_free with best_match = 0 will then return
555 * the just freed block (because its at the top of the free_stack list).
556 *
557 * Returns one if this block should be evicted, zero otherwise. Will always
558 * return zero when no hole has been found.
 
 
559 */
560int drm_mm_scan_remove_block(struct drm_mm_node *node)
 
561{
562	struct drm_mm *mm = node->mm;
563	struct drm_mm_node *prev_node;
564
565	mm->scanned_blocks--;
566
567	BUG_ON(!node->scanned_block);
568	node->scanned_block = 0;
569
570	prev_node = list_entry(node->node_list.prev, struct drm_mm_node,
571			       node_list);
572
573	prev_node->hole_follows = node->scanned_preceeds_hole;
574	INIT_LIST_HEAD(&node->node_list);
 
 
 
 
 
 
 
 
575	list_add(&node->node_list, &prev_node->node_list);
576
577	/* Only need to check for containement because start&size for the
578	 * complete resulting free block (not just the desired part) is
579	 * stored. */
580	if (node->start >= mm->scan_hit_start &&
581	    node->start + node->size
582	    		<= mm->scan_hit_start + mm->scan_hit_size) {
583		return 1;
584	}
585
586	return 0;
587}
588EXPORT_SYMBOL(drm_mm_scan_remove_block);
589
590int drm_mm_clean(struct drm_mm * mm)
 
 
 
 
 
 
 
 
 
 
 
591{
592	struct list_head *head = &mm->head_node.node_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593
594	return (head->next->next == head);
595}
596EXPORT_SYMBOL(drm_mm_clean);
597
598int drm_mm_init(struct drm_mm * mm, unsigned long start, unsigned long size)
 
 
 
 
 
 
 
 
599{
 
 
 
 
600	INIT_LIST_HEAD(&mm->hole_stack);
601	INIT_LIST_HEAD(&mm->unused_nodes);
602	mm->num_unused = 0;
603	mm->scanned_blocks = 0;
604	spin_lock_init(&mm->unused_lock);
605
606	/* Clever trick to avoid a special case in the free hole tracking. */
607	INIT_LIST_HEAD(&mm->head_node.node_list);
608	INIT_LIST_HEAD(&mm->head_node.hole_stack);
609	mm->head_node.hole_follows = 1;
610	mm->head_node.scanned_block = 0;
611	mm->head_node.scanned_prev_free = 0;
612	mm->head_node.scanned_next_free = 0;
613	mm->head_node.mm = mm;
614	mm->head_node.start = start + size;
615	mm->head_node.size = start - mm->head_node.start;
616	list_add_tail(&mm->head_node.hole_stack, &mm->hole_stack);
617
618	return 0;
619}
620EXPORT_SYMBOL(drm_mm_init);
621
622void drm_mm_takedown(struct drm_mm * mm)
 
 
 
 
 
 
 
623{
624	struct drm_mm_node *entry, *next;
625
626	if (!list_empty(&mm->head_node.node_list)) {
627		DRM_ERROR("Memory manager not clean. Delaying takedown\n");
628		return;
629	}
630
631	spin_lock(&mm->unused_lock);
632	list_for_each_entry_safe(entry, next, &mm->unused_nodes, node_list) {
633		list_del(&entry->node_list);
634		kfree(entry);
635		--mm->num_unused;
636	}
637	spin_unlock(&mm->unused_lock);
638
639	BUG_ON(mm->num_unused != 0);
640}
641EXPORT_SYMBOL(drm_mm_takedown);
642
643void drm_mm_debug_table(struct drm_mm *mm, const char *prefix)
644{
645	struct drm_mm_node *entry;
646	unsigned long total_used = 0, total_free = 0, total = 0;
647	unsigned long hole_start, hole_end, hole_size;
648
649	hole_start = drm_mm_hole_node_start(&mm->head_node);
650	hole_end = drm_mm_hole_node_end(&mm->head_node);
651	hole_size = hole_end - hole_start;
652	if (hole_size)
653		printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8lu: free\n",
654			prefix, hole_start, hole_end,
655			hole_size);
656	total_free += hole_size;
657
658	drm_mm_for_each_node(entry, mm) {
659		printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8lu: used\n",
660			prefix, entry->start, entry->start + entry->size,
661			entry->size);
662		total_used += entry->size;
663
664		if (entry->hole_follows) {
665			hole_start = drm_mm_hole_node_start(entry);
666			hole_end = drm_mm_hole_node_end(entry);
667			hole_size = hole_end - hole_start;
668			printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8lu: free\n",
669				prefix, hole_start, hole_end,
670				hole_size);
671			total_free += hole_size;
672		}
673	}
674	total = total_free + total_used;
675
676	printk(KERN_DEBUG "%s total: %lu, used %lu free %lu\n", prefix, total,
677		total_used, total_free);
678}
679EXPORT_SYMBOL(drm_mm_debug_table);
680
681#if defined(CONFIG_DEBUG_FS)
682int drm_mm_dump_table(struct seq_file *m, struct drm_mm *mm)
 
 
683{
684	struct drm_mm_node *entry;
685	unsigned long total_used = 0, total_free = 0, total = 0;
686	unsigned long hole_start, hole_end, hole_size;
687
688	hole_start = drm_mm_hole_node_start(&mm->head_node);
689	hole_end = drm_mm_hole_node_end(&mm->head_node);
690	hole_size = hole_end - hole_start;
691	if (hole_size)
692		seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: free\n",
693				hole_start, hole_end, hole_size);
694	total_free += hole_size;
695
696	drm_mm_for_each_node(entry, mm) {
697		seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: used\n",
698				entry->start, entry->start + entry->size,
699				entry->size);
700		total_used += entry->size;
701		if (entry->hole_follows) {
702			hole_start = drm_mm_hole_node_start(entry);
703			hole_end = drm_mm_hole_node_end(entry);
704			hole_size = hole_end - hole_start;
705			seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: free\n",
706					hole_start, hole_end, hole_size);
707			total_free += hole_size;
708		}
709	}
710	total = total_free + total_used;
711
712	seq_printf(m, "total: %lu, used %lu free %lu\n", total, total_used, total_free);
713	return 0;
714}
715EXPORT_SYMBOL(drm_mm_dump_table);
716#endif
v5.4
  1/**************************************************************************
  2 *
  3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
  4 * Copyright 2016 Intel Corporation
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 *
 28 **************************************************************************/
 29
 30/*
 31 * Generic simple memory manager implementation. Intended to be used as a base
 32 * class implementation for more advanced memory managers.
 33 *
 34 * Note that the algorithm used is quite simple and there might be substantial
 35 * performance gains if a smarter free list is implemented. Currently it is
 36 * just an unordered stack of free regions. This could easily be improved if
 37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
 38 *
 39 * Aligned allocations can also see improvement.
 40 *
 41 * Authors:
 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
 43 */
 44
 45#include <linux/export.h>
 46#include <linux/interval_tree_generic.h>
 
 47#include <linux/seq_file.h>
 48#include <linux/slab.h>
 49#include <linux/stacktrace.h>
 50
 51#include <drm/drm_mm.h>
 52
 53/**
 54 * DOC: Overview
 55 *
 56 * drm_mm provides a simple range allocator. The drivers are free to use the
 57 * resource allocator from the linux core if it suits them, the upside of drm_mm
 58 * is that it's in the DRM core. Which means that it's easier to extend for
 59 * some of the crazier special purpose needs of gpus.
 60 *
 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
 62 * Drivers are free to embed either of them into their own suitable
 63 * datastructures. drm_mm itself will not do any memory allocations of its own,
 64 * so if drivers choose not to embed nodes they need to still allocate them
 65 * themselves.
 66 *
 67 * The range allocator also supports reservation of preallocated blocks. This is
 68 * useful for taking over initial mode setting configurations from the firmware,
 69 * where an object needs to be created which exactly matches the firmware's
 70 * scanout target. As long as the range is still free it can be inserted anytime
 71 * after the allocator is initialized, which helps with avoiding looped
 72 * dependencies in the driver load sequence.
 73 *
 74 * drm_mm maintains a stack of most recently freed holes, which of all
 75 * simplistic datastructures seems to be a fairly decent approach to clustering
 76 * allocations and avoiding too much fragmentation. This means free space
 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
 78 * something better would be fairly complex and since gfx thrashing is a fairly
 79 * steep cliff not a real concern. Removing a node again is O(1).
 80 *
 81 * drm_mm supports a few features: Alignment and range restrictions can be
 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
 83 * opaque unsigned long) which in conjunction with a driver callback can be used
 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
 85 * this to implement guard pages between incompatible caching domains in the
 86 * graphics TT.
 87 *
 88 * Two behaviors are supported for searching and allocating: bottom-up and
 89 * top-down. The default is bottom-up. Top-down allocation can be used if the
 90 * memory area has different restrictions, or just to reduce fragmentation.
 91 *
 92 * Finally iteration helpers to walk all nodes and all holes are provided as are
 93 * some basic allocator dumpers for debugging.
 94 *
 95 * Note that this range allocator is not thread-safe, drivers need to protect
 96 * modifications with their own locking. The idea behind this is that for a full
 97 * memory manager additional data needs to be protected anyway, hence internal
 98 * locking would be fully redundant.
 99 */
100
101#ifdef CONFIG_DRM_DEBUG_MM
102#include <linux/stackdepot.h>
103
104#define STACKDEPTH 32
105#define BUFSZ 4096
106
107static noinline void save_stack(struct drm_mm_node *node)
108{
109	unsigned long entries[STACKDEPTH];
110	unsigned int n;
111
112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113
114	/* May be called under spinlock, so avoid sleeping */
115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116}
117
118static void show_leaks(struct drm_mm *mm)
 
 
 
 
 
119{
120	struct drm_mm_node *node;
121	unsigned long *entries;
122	unsigned int nr_entries;
123	char *buf;
124
125	buf = kmalloc(BUFSZ, GFP_KERNEL);
126	if (!buf)
127		return;
128
129	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130		if (!node->stack) {
131			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132				  node->start, node->size);
133			continue;
 
 
 
 
 
134		}
135
136		nr_entries = stack_depot_fetch(node->stack, &entries);
137		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139			  node->start, node->size, buf);
140	}
 
 
 
 
141
142	kfree(buf);
 
 
143}
144
145#undef STACKDEPTH
146#undef BUFSZ
147#else
148static void save_stack(struct drm_mm_node *node) { }
149static void show_leaks(struct drm_mm *mm) { }
150#endif
151
152#define START(node) ((node)->start)
153#define LAST(node)  ((node)->start + (node)->size - 1)
154
155INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
156		     u64, __subtree_last,
157		     START, LAST, static inline, drm_mm_interval_tree)
158
159struct drm_mm_node *
160__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161{
162	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
164}
165EXPORT_SYMBOL(__drm_mm_interval_first);
166
167static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168					  struct drm_mm_node *node)
 
169{
170	struct drm_mm *mm = hole_node->mm;
171	struct rb_node **link, *rb;
172	struct drm_mm_node *parent;
173	bool leftmost;
174
175	node->__subtree_last = LAST(node);
176
177	if (hole_node->allocated) {
178		rb = &hole_node->rb;
179		while (rb) {
180			parent = rb_entry(rb, struct drm_mm_node, rb);
181			if (parent->__subtree_last >= node->__subtree_last)
182				break;
 
 
183
184			parent->__subtree_last = node->__subtree_last;
185			rb = rb_parent(rb);
186		}
 
187
188		rb = &hole_node->rb;
189		link = &hole_node->rb.rb_right;
190		leftmost = false;
191	} else {
192		rb = NULL;
193		link = &mm->interval_tree.rb_root.rb_node;
194		leftmost = true;
195	}
196
197	while (*link) {
198		rb = *link;
199		parent = rb_entry(rb, struct drm_mm_node, rb);
200		if (parent->__subtree_last < node->__subtree_last)
201			parent->__subtree_last = node->__subtree_last;
202		if (node->start < parent->start) {
203			link = &parent->rb.rb_left;
204		} else {
205			link = &parent->rb.rb_right;
206			leftmost = false;
207		}
208	}
209
210	rb_link_node(&node->rb, rb, link);
211	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212				   &drm_mm_interval_tree_augment);
213}
214
215#define RB_INSERT(root, member, expr) do { \
216	struct rb_node **link = &root.rb_node, *rb = NULL; \
217	u64 x = expr(node); \
218	while (*link) { \
219		rb = *link; \
220		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
221			link = &rb->rb_left; \
222		else \
223			link = &rb->rb_right; \
224	} \
225	rb_link_node(&node->member, rb, link); \
226	rb_insert_color(&node->member, &root); \
227} while (0)
228
229#define HOLE_SIZE(NODE) ((NODE)->hole_size)
230#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
231
232static u64 rb_to_hole_size(struct rb_node *rb)
233{
234	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
235}
236
237static void insert_hole_size(struct rb_root_cached *root,
238			     struct drm_mm_node *node)
239{
240	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
241	u64 x = node->hole_size;
242	bool first = true;
243
244	while (*link) {
245		rb = *link;
246		if (x > rb_to_hole_size(rb)) {
247			link = &rb->rb_left;
248		} else {
249			link = &rb->rb_right;
250			first = false;
251		}
252	}
253
254	rb_link_node(&node->rb_hole_size, rb, link);
255	rb_insert_color_cached(&node->rb_hole_size, root, first);
256}
257
258static void add_hole(struct drm_mm_node *node)
 
 
 
259{
260	struct drm_mm *mm = node->mm;
261
262	node->hole_size =
263		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
264	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
265
266	insert_hole_size(&mm->holes_size, node);
267	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
268
269	list_add(&node->hole_stack, &mm->hole_stack);
270}
 
271
272static void rm_hole(struct drm_mm_node *node)
 
 
 
 
 
 
273{
274	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
275
276	list_del(&node->hole_stack);
277	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
278	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
279	node->hole_size = 0;
280
281	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
282}
283
284static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
285{
286	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
287}
 
288
289static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 
 
 
290{
291	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
292}
 
 
293
294static inline u64 rb_hole_size(struct rb_node *rb)
295{
296	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
297}
298
299static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
300{
301	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
302	struct drm_mm_node *best = NULL;
303
304	do {
305		struct drm_mm_node *node =
306			rb_entry(rb, struct drm_mm_node, rb_hole_size);
307
308		if (size <= node->hole_size) {
309			best = node;
310			rb = rb->rb_right;
311		} else {
312			rb = rb->rb_left;
313		}
314	} while (rb);
315
316	return best;
317}
 
 
318
319static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
320{
321	struct rb_node *rb = mm->holes_addr.rb_node;
322	struct drm_mm_node *node = NULL;
323
324	while (rb) {
325		u64 hole_start;
326
327		node = rb_hole_addr_to_node(rb);
328		hole_start = __drm_mm_hole_node_start(node);
329
330		if (addr < hole_start)
331			rb = node->rb_hole_addr.rb_left;
332		else if (addr > hole_start + node->hole_size)
333			rb = node->rb_hole_addr.rb_right;
334		else
335			break;
336	}
337
338	return node;
339}
340
341static struct drm_mm_node *
342first_hole(struct drm_mm *mm,
343	   u64 start, u64 end, u64 size,
344	   enum drm_mm_insert_mode mode)
 
 
345{
346	switch (mode) {
347	default:
348	case DRM_MM_INSERT_BEST:
349		return best_hole(mm, size);
350
351	case DRM_MM_INSERT_LOW:
352		return find_hole(mm, start);
 
353
354	case DRM_MM_INSERT_HIGH:
355		return find_hole(mm, end);
356
357	case DRM_MM_INSERT_EVICT:
358		return list_first_entry_or_null(&mm->hole_stack,
359						struct drm_mm_node,
360						hole_stack);
361	}
362}
 
363
364static struct drm_mm_node *
365next_hole(struct drm_mm *mm,
366	  struct drm_mm_node *node,
367	  enum drm_mm_insert_mode mode)
 
 
 
 
368{
369	switch (mode) {
370	default:
371	case DRM_MM_INSERT_BEST:
372		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
373
374	case DRM_MM_INSERT_LOW:
375		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
 
 
376
377	case DRM_MM_INSERT_HIGH:
378		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
379
380	case DRM_MM_INSERT_EVICT:
381		node = list_next_entry(node, hole_stack);
382		return &node->hole_stack == &mm->hole_stack ? NULL : node;
383	}
384}
 
385
386/**
387 * drm_mm_reserve_node - insert an pre-initialized node
388 * @mm: drm_mm allocator to insert @node into
389 * @node: drm_mm_node to insert
390 *
391 * This functions inserts an already set-up &drm_mm_node into the allocator,
392 * meaning that start, size and color must be set by the caller. All other
393 * fields must be cleared to 0. This is useful to initialize the allocator with
394 * preallocated objects which must be set-up before the range allocator can be
395 * set-up, e.g. when taking over a firmware framebuffer.
396 *
397 * Returns:
398 * 0 on success, -ENOSPC if there's no hole where @node is.
399 */
400int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
401{
402	u64 end = node->start + node->size;
403	struct drm_mm_node *hole;
404	u64 hole_start, hole_end;
405	u64 adj_start, adj_end;
406
407	end = node->start + node->size;
408	if (unlikely(end <= node->start))
409		return -ENOSPC;
410
411	/* Find the relevant hole to add our node to */
412	hole = find_hole(mm, node->start);
413	if (!hole)
414		return -ENOSPC;
415
416	adj_start = hole_start = __drm_mm_hole_node_start(hole);
417	adj_end = hole_end = hole_start + hole->hole_size;
 
 
 
 
 
 
 
 
 
 
 
418
419	if (mm->color_adjust)
420		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 
 
421
422	if (adj_start > node->start || adj_end < end)
423		return -ENOSPC;
 
 
 
 
 
424
425	node->mm = mm;
426
427	list_add(&node->node_list, &hole->node_list);
428	drm_mm_interval_tree_add_node(hole, node);
429	node->allocated = true;
430	node->hole_size = 0;
431
432	rm_hole(hole);
433	if (node->start > hole_start)
434		add_hole(hole);
435	if (end < hole_end)
436		add_hole(node);
437
438	save_stack(node);
439	return 0;
 
 
 
 
 
440}
441EXPORT_SYMBOL(drm_mm_reserve_node);
442
443static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
 
444{
445	return rb ? rb_to_hole_size(rb) : 0;
446}
447
448/**
449 * drm_mm_insert_node_in_range - ranged search for space and insert @node
450 * @mm: drm_mm to allocate from
451 * @node: preallocate node to insert
452 * @size: size of the allocation
453 * @alignment: alignment of the allocation
454 * @color: opaque tag value to use for this node
455 * @range_start: start of the allowed range for this node
456 * @range_end: end of the allowed range for this node
457 * @mode: fine-tune the allocation search and placement
458 *
459 * The preallocated @node must be cleared to 0.
460 *
461 * Returns:
462 * 0 on success, -ENOSPC if there's no suitable hole.
463 */
464int drm_mm_insert_node_in_range(struct drm_mm * const mm,
465				struct drm_mm_node * const node,
466				u64 size, u64 alignment,
467				unsigned long color,
468				u64 range_start, u64 range_end,
469				enum drm_mm_insert_mode mode)
470{
471	struct drm_mm_node *hole;
472	u64 remainder_mask;
473	bool once;
474
475	DRM_MM_BUG_ON(range_start > range_end);
 
 
 
 
476
477	if (unlikely(size == 0 || range_end - range_start < size))
478		return -ENOSPC;
 
479
480	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
481		return -ENOSPC;
482
483	if (alignment <= 1)
484		alignment = 0;
485
486	once = mode & DRM_MM_INSERT_ONCE;
487	mode &= ~DRM_MM_INSERT_ONCE;
488
489	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
490	for (hole = first_hole(mm, range_start, range_end, size, mode);
491	     hole;
492	     hole = once ? NULL : next_hole(mm, hole, mode)) {
493		u64 hole_start = __drm_mm_hole_node_start(hole);
494		u64 hole_end = hole_start + hole->hole_size;
495		u64 adj_start, adj_end;
496		u64 col_start, col_end;
497
498		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
499			break;
500
501		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
502			break;
503
504		col_start = hole_start;
505		col_end = hole_end;
506		if (mm->color_adjust)
507			mm->color_adjust(hole, color, &col_start, &col_end);
508
509		adj_start = max(col_start, range_start);
510		adj_end = min(col_end, range_end);
511
512		if (adj_end <= adj_start || adj_end - adj_start < size)
513			continue;
514
515		if (mode == DRM_MM_INSERT_HIGH)
516			adj_start = adj_end - size;
517
518		if (alignment) {
519			u64 rem;
520
521			if (likely(remainder_mask))
522				rem = adj_start & remainder_mask;
523			else
524				div64_u64_rem(adj_start, alignment, &rem);
525			if (rem) {
526				adj_start -= rem;
527				if (mode != DRM_MM_INSERT_HIGH)
528					adj_start += alignment;
529
530				if (adj_start < max(col_start, range_start) ||
531				    min(col_end, range_end) - adj_start < size)
532					continue;
533
534				if (adj_end <= adj_start ||
535				    adj_end - adj_start < size)
536					continue;
537			}
538		}
539
540		node->mm = mm;
541		node->size = size;
542		node->start = adj_start;
543		node->color = color;
544		node->hole_size = 0;
545
546		list_add(&node->node_list, &hole->node_list);
547		drm_mm_interval_tree_add_node(hole, node);
548		node->allocated = true;
549
550		rm_hole(hole);
551		if (adj_start > hole_start)
552			add_hole(hole);
553		if (adj_start + size < hole_end)
554			add_hole(node);
555
556		save_stack(node);
557		return 0;
558	}
559
560	return -ENOSPC;
561}
562EXPORT_SYMBOL(drm_mm_insert_node_in_range);
563
564/**
565 * drm_mm_remove_node - Remove a memory node from the allocator.
566 * @node: drm_mm_node to remove
567 *
568 * This just removes a node from its drm_mm allocator. The node does not need to
569 * be cleared again before it can be re-inserted into this or any other drm_mm
570 * allocator. It is a bug to call this function on a unallocated node.
571 */
572void drm_mm_remove_node(struct drm_mm_node *node)
573{
574	struct drm_mm *mm = node->mm;
575	struct drm_mm_node *prev_node;
 
 
 
 
 
 
 
 
 
576
577	DRM_MM_BUG_ON(!node->allocated);
578	DRM_MM_BUG_ON(node->scanned_block);
 
579
580	prev_node = list_prev_entry(node, node_list);
 
581
582	if (drm_mm_hole_follows(node))
583		rm_hole(node);
 
 
 
584
585	drm_mm_interval_tree_remove(node, &mm->interval_tree);
586	list_del(&node->node_list);
587	node->allocated = false;
588
589	if (drm_mm_hole_follows(prev_node))
590		rm_hole(prev_node);
591	add_hole(prev_node);
592}
593EXPORT_SYMBOL(drm_mm_remove_node);
594
595/**
596 * drm_mm_replace_node - move an allocation from @old to @new
597 * @old: drm_mm_node to remove from the allocator
598 * @new: drm_mm_node which should inherit @old's allocation
599 *
600 * This is useful for when drivers embed the drm_mm_node structure and hence
601 * can't move allocations by reassigning pointers. It's a combination of remove
602 * and insert with the guarantee that the allocation start will match.
603 */
604void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
605{
606	struct drm_mm *mm = old->mm;
607
608	DRM_MM_BUG_ON(!old->allocated);
609
610	*new = *old;
611
612	list_replace(&old->node_list, &new->node_list);
613	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
614
615	if (drm_mm_hole_follows(old)) {
616		list_replace(&old->hole_stack, &new->hole_stack);
617		rb_replace_node_cached(&old->rb_hole_size,
618				       &new->rb_hole_size,
619				       &mm->holes_size);
620		rb_replace_node(&old->rb_hole_addr,
621				&new->rb_hole_addr,
622				&mm->holes_addr);
623	}
624
625	old->allocated = false;
626	new->allocated = true;
627}
628EXPORT_SYMBOL(drm_mm_replace_node);
629
630/**
631 * DOC: lru scan roster
632 *
633 * Very often GPUs need to have continuous allocations for a given object. When
634 * evicting objects to make space for a new one it is therefore not most
635 * efficient when we simply start to select all objects from the tail of an LRU
636 * until there's a suitable hole: Especially for big objects or nodes that
637 * otherwise have special allocation constraints there's a good chance we evict
638 * lots of (smaller) objects unnecessarily.
639 *
640 * The DRM range allocator supports this use-case through the scanning
641 * interfaces. First a scan operation needs to be initialized with
642 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
643 * objects to the roster, probably by walking an LRU list, but this can be
644 * freely implemented. Eviction candiates are added using
645 * drm_mm_scan_add_block() until a suitable hole is found or there are no
646 * further evictable objects. Eviction roster metadata is tracked in &struct
647 * drm_mm_scan.
648 *
649 * The driver must walk through all objects again in exactly the reverse
650 * order to restore the allocator state. Note that while the allocator is used
651 * in the scan mode no other operation is allowed.
652 *
653 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
654 * reported true) in the scan, and any overlapping nodes after color adjustment
655 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
656 * since freeing a node is also O(1) the overall complexity is
657 * O(scanned_objects). So like the free stack which needs to be walked before a
658 * scan operation even begins this is linear in the number of objects. It
659 * doesn't seem to hurt too badly.
660 */
 
 
 
 
 
 
 
 
 
 
 
 
661
662/**
663 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
664 * @scan: scan state
665 * @mm: drm_mm to scan
666 * @size: size of the allocation
667 * @alignment: alignment of the allocation
668 * @color: opaque tag value to use for the allocation
669 * @start: start of the allowed range for the allocation
670 * @end: end of the allowed range for the allocation
671 * @mode: fine-tune the allocation search and placement
672 *
673 * This simply sets up the scanning routines with the parameters for the desired
674 * hole.
675 *
676 * Warning:
677 * As long as the scan list is non-empty, no other operations than
678 * adding/removing nodes to/from the scan list are allowed.
679 */
680void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
681				 struct drm_mm *mm,
682				 u64 size,
683				 u64 alignment,
684				 unsigned long color,
685				 u64 start,
686				 u64 end,
687				 enum drm_mm_insert_mode mode)
688{
689	DRM_MM_BUG_ON(start >= end);
690	DRM_MM_BUG_ON(!size || size > end - start);
691	DRM_MM_BUG_ON(mm->scan_active);
692
693	scan->mm = mm;
694
695	if (alignment <= 1)
696		alignment = 0;
697
698	scan->color = color;
699	scan->alignment = alignment;
700	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
701	scan->size = size;
702	scan->mode = mode;
703
704	DRM_MM_BUG_ON(end <= start);
705	scan->range_start = start;
706	scan->range_end = end;
707
708	scan->hit_start = U64_MAX;
709	scan->hit_end = 0;
710}
711EXPORT_SYMBOL(drm_mm_scan_init_with_range);
712
713/**
714 * drm_mm_scan_add_block - add a node to the scan list
715 * @scan: the active drm_mm scanner
716 * @node: drm_mm_node to add
717 *
718 * Add a node to the scan list that might be freed to make space for the desired
719 * hole.
720 *
721 * Returns:
722 * True if a hole has been found, false otherwise.
723 */
724bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
725			   struct drm_mm_node *node)
726{
727	struct drm_mm *mm = scan->mm;
728	struct drm_mm_node *hole;
729	u64 hole_start, hole_end;
730	u64 col_start, col_end;
731	u64 adj_start, adj_end;
732
733	DRM_MM_BUG_ON(node->mm != mm);
734	DRM_MM_BUG_ON(!node->allocated);
735	DRM_MM_BUG_ON(node->scanned_block);
736	node->scanned_block = true;
737	mm->scan_active++;
738
739	/* Remove this block from the node_list so that we enlarge the hole
740	 * (distance between the end of our previous node and the start of
741	 * or next), without poisoning the link so that we can restore it
742	 * later in drm_mm_scan_remove_block().
743	 */
744	hole = list_prev_entry(node, node_list);
745	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
746	__list_del_entry(&node->node_list);
747
748	hole_start = __drm_mm_hole_node_start(hole);
749	hole_end = __drm_mm_hole_node_end(hole);
750
751	col_start = hole_start;
752	col_end = hole_end;
753	if (mm->color_adjust)
754		mm->color_adjust(hole, scan->color, &col_start, &col_end);
755
756	adj_start = max(col_start, scan->range_start);
757	adj_end = min(col_end, scan->range_end);
758	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
759		return false;
760
761	if (scan->mode == DRM_MM_INSERT_HIGH)
762		adj_start = adj_end - scan->size;
763
764	if (scan->alignment) {
765		u64 rem;
766
767		if (likely(scan->remainder_mask))
768			rem = adj_start & scan->remainder_mask;
769		else
770			div64_u64_rem(adj_start, scan->alignment, &rem);
771		if (rem) {
772			adj_start -= rem;
773			if (scan->mode != DRM_MM_INSERT_HIGH)
774				adj_start += scan->alignment;
775			if (adj_start < max(col_start, scan->range_start) ||
776			    min(col_end, scan->range_end) - adj_start < scan->size)
777				return false;
778
779			if (adj_end <= adj_start ||
780			    adj_end - adj_start < scan->size)
781				return false;
782		}
783	}
784
785	scan->hit_start = adj_start;
786	scan->hit_end = adj_start + scan->size;
 
 
787
788	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
789	DRM_MM_BUG_ON(scan->hit_start < hole_start);
790	DRM_MM_BUG_ON(scan->hit_end > hole_end);
791
792	return true;
793}
794EXPORT_SYMBOL(drm_mm_scan_add_block);
795
796/**
797 * drm_mm_scan_remove_block - remove a node from the scan list
798 * @scan: the active drm_mm scanner
799 * @node: drm_mm_node to remove
800 *
801 * Nodes **must** be removed in exactly the reverse order from the scan list as
802 * they have been added (e.g. using list_add() as they are added and then
803 * list_for_each() over that eviction list to remove), otherwise the internal
804 * state of the memory manager will be corrupted.
805 *
806 * When the scan list is empty, the selected memory nodes can be freed. An
807 * immediately following drm_mm_insert_node_in_range_generic() or one of the
808 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
809 * the just freed block (because it's at the top of the free_stack list).
810 *
811 * Returns:
812 * True if this block should be evicted, false otherwise. Will always
813 * return false when no hole has been found.
814 */
815bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
816			      struct drm_mm_node *node)
817{
 
818	struct drm_mm_node *prev_node;
819
820	DRM_MM_BUG_ON(node->mm != scan->mm);
821	DRM_MM_BUG_ON(!node->scanned_block);
822	node->scanned_block = false;
823
824	DRM_MM_BUG_ON(!node->mm->scan_active);
825	node->mm->scan_active--;
826
827	/* During drm_mm_scan_add_block() we decoupled this node leaving
828	 * its pointers intact. Now that the caller is walking back along
829	 * the eviction list we can restore this block into its rightful
830	 * place on the full node_list. To confirm that the caller is walking
831	 * backwards correctly we check that prev_node->next == node->next,
832	 * i.e. both believe the same node should be on the other side of the
833	 * hole.
834	 */
835	prev_node = list_prev_entry(node, node_list);
836	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
837		      list_next_entry(node, node_list));
838	list_add(&node->node_list, &prev_node->node_list);
839
840	return (node->start + node->size > scan->hit_start &&
841		node->start < scan->hit_end);
 
 
 
 
 
 
 
 
842}
843EXPORT_SYMBOL(drm_mm_scan_remove_block);
844
845/**
846 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
847 * @scan: drm_mm scan with target hole
848 *
849 * After completing an eviction scan and removing the selected nodes, we may
850 * need to remove a few more nodes from either side of the target hole if
851 * mm.color_adjust is being used.
852 *
853 * Returns:
854 * A node to evict, or NULL if there are no overlapping nodes.
855 */
856struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
857{
858	struct drm_mm *mm = scan->mm;
859	struct drm_mm_node *hole;
860	u64 hole_start, hole_end;
861
862	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
863
864	if (!mm->color_adjust)
865		return NULL;
866
867	/*
868	 * The hole found during scanning should ideally be the first element
869	 * in the hole_stack list, but due to side-effects in the driver it
870	 * may not be.
871	 */
872	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
873		hole_start = __drm_mm_hole_node_start(hole);
874		hole_end = hole_start + hole->hole_size;
875
876		if (hole_start <= scan->hit_start &&
877		    hole_end >= scan->hit_end)
878			break;
879	}
880
881	/* We should only be called after we found the hole previously */
882	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
883	if (unlikely(&hole->hole_stack == &mm->hole_stack))
884		return NULL;
885
886	DRM_MM_BUG_ON(hole_start > scan->hit_start);
887	DRM_MM_BUG_ON(hole_end < scan->hit_end);
888
889	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
890	if (hole_start > scan->hit_start)
891		return hole;
892	if (hole_end < scan->hit_end)
893		return list_next_entry(hole, node_list);
894
895	return NULL;
896}
897EXPORT_SYMBOL(drm_mm_scan_color_evict);
898
899/**
900 * drm_mm_init - initialize a drm-mm allocator
901 * @mm: the drm_mm structure to initialize
902 * @start: start of the range managed by @mm
903 * @size: end of the range managed by @mm
904 *
905 * Note that @mm must be cleared to 0 before calling this function.
906 */
907void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
908{
909	DRM_MM_BUG_ON(start + size <= start);
910
911	mm->color_adjust = NULL;
912
913	INIT_LIST_HEAD(&mm->hole_stack);
914	mm->interval_tree = RB_ROOT_CACHED;
915	mm->holes_size = RB_ROOT_CACHED;
916	mm->holes_addr = RB_ROOT;
 
917
918	/* Clever trick to avoid a special case in the free hole tracking. */
919	INIT_LIST_HEAD(&mm->head_node.node_list);
920	mm->head_node.allocated = false;
 
 
 
 
921	mm->head_node.mm = mm;
922	mm->head_node.start = start + size;
923	mm->head_node.size = -size;
924	add_hole(&mm->head_node);
925
926	mm->scan_active = 0;
927}
928EXPORT_SYMBOL(drm_mm_init);
929
930/**
931 * drm_mm_takedown - clean up a drm_mm allocator
932 * @mm: drm_mm allocator to clean up
933 *
934 * Note that it is a bug to call this function on an allocator which is not
935 * clean.
936 */
937void drm_mm_takedown(struct drm_mm *mm)
938{
939	if (WARN(!drm_mm_clean(mm),
940		 "Memory manager not clean during takedown.\n"))
941		show_leaks(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
942}
943EXPORT_SYMBOL(drm_mm_takedown);
944
945static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
946{
947	u64 start, size;
 
 
 
 
 
 
 
 
 
 
 
948
949	size = entry->hole_size;
950	if (size) {
951		start = drm_mm_hole_node_start(entry);
952		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
953			   start, start + size, size);
 
 
 
 
 
 
 
 
 
 
954	}
 
955
956	return size;
 
957}
958/**
959 * drm_mm_print - print allocator state
960 * @mm: drm_mm allocator to print
961 * @p: DRM printer to use
962 */
963void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
964{
965	const struct drm_mm_node *entry;
966	u64 total_used = 0, total_free = 0, total = 0;
967
968	total_free += drm_mm_dump_hole(p, &mm->head_node);
 
 
 
 
 
 
 
969
970	drm_mm_for_each_node(entry, mm) {
971		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
972			   entry->start + entry->size, entry->size);
 
973		total_used += entry->size;
974		total_free += drm_mm_dump_hole(p, entry);
 
 
 
 
 
 
 
975	}
976	total = total_free + total_used;
977
978	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
979		   total_used, total_free);
980}
981EXPORT_SYMBOL(drm_mm_print);