Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
  18#include <linux/anon_inodes.h>
  19#include <linux/export.h>
  20#include <linux/debugfs.h>
  21#include <linux/module.h>
  22#include <linux/seq_file.h>
  23#include <linux/poll.h>
  24#include <linux/dma-resv.h>
  25#include <linux/mm.h>
  26#include <linux/mount.h>
  27#include <linux/pseudo_fs.h>
  28
  29#include <uapi/linux/dma-buf.h>
  30#include <uapi/linux/magic.h>
  31
  32static inline int is_dma_buf_file(struct file *);
  33
  34struct dma_buf_list {
  35	struct list_head head;
  36	struct mutex lock;
  37};
  38
  39static struct dma_buf_list db_list;
  40
  41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  42{
  43	struct dma_buf *dmabuf;
  44	char name[DMA_BUF_NAME_LEN];
  45	size_t ret = 0;
  46
  47	dmabuf = dentry->d_fsdata;
  48	mutex_lock(&dmabuf->lock);
  49	if (dmabuf->name)
  50		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
  51	mutex_unlock(&dmabuf->lock);
  52
  53	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
  54			     dentry->d_name.name, ret > 0 ? name : "");
  55}
  56
  57static const struct dentry_operations dma_buf_dentry_ops = {
  58	.d_dname = dmabuffs_dname,
  59};
  60
  61static struct vfsmount *dma_buf_mnt;
  62
  63static int dma_buf_fs_init_context(struct fs_context *fc)
  64{
  65	struct pseudo_fs_context *ctx;
  66
  67	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
  68	if (!ctx)
  69		return -ENOMEM;
  70	ctx->dops = &dma_buf_dentry_ops;
  71	return 0;
  72}
  73
  74static struct file_system_type dma_buf_fs_type = {
  75	.name = "dmabuf",
  76	.init_fs_context = dma_buf_fs_init_context,
  77	.kill_sb = kill_anon_super,
  78};
  79
  80static int dma_buf_release(struct inode *inode, struct file *file)
  81{
  82	struct dma_buf *dmabuf;
  83
  84	if (!is_dma_buf_file(file))
  85		return -EINVAL;
  86
  87	dmabuf = file->private_data;
  88
  89	BUG_ON(dmabuf->vmapping_counter);
  90
  91	/*
  92	 * Any fences that a dma-buf poll can wait on should be signaled
  93	 * before releasing dma-buf. This is the responsibility of each
  94	 * driver that uses the reservation objects.
  95	 *
  96	 * If you hit this BUG() it means someone dropped their ref to the
  97	 * dma-buf while still having pending operation to the buffer.
  98	 */
  99	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
 100
 101	dmabuf->ops->release(dmabuf);
 102
 103	mutex_lock(&db_list.lock);
 104	list_del(&dmabuf->list_node);
 105	mutex_unlock(&db_list.lock);
 106
 107	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
 108		dma_resv_fini(dmabuf->resv);
 109
 110	module_put(dmabuf->owner);
 111	kfree(dmabuf);
 112	return 0;
 113}
 114
 115static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 116{
 117	struct dma_buf *dmabuf;
 118
 119	if (!is_dma_buf_file(file))
 120		return -EINVAL;
 121
 122	dmabuf = file->private_data;
 123
 124	/* check if buffer supports mmap */
 125	if (!dmabuf->ops->mmap)
 126		return -EINVAL;
 127
 128	/* check for overflowing the buffer's size */
 129	if (vma->vm_pgoff + vma_pages(vma) >
 130	    dmabuf->size >> PAGE_SHIFT)
 131		return -EINVAL;
 132
 133	return dmabuf->ops->mmap(dmabuf, vma);
 134}
 135
 136static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 137{
 138	struct dma_buf *dmabuf;
 139	loff_t base;
 140
 141	if (!is_dma_buf_file(file))
 142		return -EBADF;
 143
 144	dmabuf = file->private_data;
 145
 146	/* only support discovering the end of the buffer,
 147	   but also allow SEEK_SET to maintain the idiomatic
 148	   SEEK_END(0), SEEK_CUR(0) pattern */
 149	if (whence == SEEK_END)
 150		base = dmabuf->size;
 151	else if (whence == SEEK_SET)
 152		base = 0;
 153	else
 154		return -EINVAL;
 155
 156	if (offset != 0)
 157		return -EINVAL;
 158
 159	return base + offset;
 160}
 161
 162/**
 163 * DOC: fence polling
 164 *
 165 * To support cross-device and cross-driver synchronization of buffer access
 166 * implicit fences (represented internally in the kernel with &struct fence) can
 167 * be attached to a &dma_buf. The glue for that and a few related things are
 168 * provided in the &dma_resv structure.
 169 *
 170 * Userspace can query the state of these implicitly tracked fences using poll()
 171 * and related system calls:
 172 *
 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 174 *   most recent write or exclusive fence.
 175 *
 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 177 *   all attached fences, shared and exclusive ones.
 178 *
 179 * Note that this only signals the completion of the respective fences, i.e. the
 180 * DMA transfers are complete. Cache flushing and any other necessary
 181 * preparations before CPU access can begin still need to happen.
 182 */
 183
 184static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 185{
 186	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 187	unsigned long flags;
 188
 189	spin_lock_irqsave(&dcb->poll->lock, flags);
 190	wake_up_locked_poll(dcb->poll, dcb->active);
 191	dcb->active = 0;
 192	spin_unlock_irqrestore(&dcb->poll->lock, flags);
 193}
 194
 195static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 196{
 197	struct dma_buf *dmabuf;
 198	struct dma_resv *resv;
 199	struct dma_resv_list *fobj;
 200	struct dma_fence *fence_excl;
 201	__poll_t events;
 202	unsigned shared_count, seq;
 203
 204	dmabuf = file->private_data;
 205	if (!dmabuf || !dmabuf->resv)
 206		return EPOLLERR;
 207
 208	resv = dmabuf->resv;
 209
 210	poll_wait(file, &dmabuf->poll, poll);
 211
 212	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 213	if (!events)
 214		return 0;
 215
 216retry:
 217	seq = read_seqcount_begin(&resv->seq);
 218	rcu_read_lock();
 219
 220	fobj = rcu_dereference(resv->fence);
 221	if (fobj)
 222		shared_count = fobj->shared_count;
 223	else
 224		shared_count = 0;
 225	fence_excl = rcu_dereference(resv->fence_excl);
 226	if (read_seqcount_retry(&resv->seq, seq)) {
 227		rcu_read_unlock();
 228		goto retry;
 229	}
 230
 231	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 232		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 233		__poll_t pevents = EPOLLIN;
 234
 235		if (shared_count == 0)
 236			pevents |= EPOLLOUT;
 237
 238		spin_lock_irq(&dmabuf->poll.lock);
 239		if (dcb->active) {
 240			dcb->active |= pevents;
 241			events &= ~pevents;
 242		} else
 243			dcb->active = pevents;
 244		spin_unlock_irq(&dmabuf->poll.lock);
 245
 246		if (events & pevents) {
 247			if (!dma_fence_get_rcu(fence_excl)) {
 248				/* force a recheck */
 249				events &= ~pevents;
 250				dma_buf_poll_cb(NULL, &dcb->cb);
 251			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 252							   dma_buf_poll_cb)) {
 253				events &= ~pevents;
 254				dma_fence_put(fence_excl);
 255			} else {
 256				/*
 257				 * No callback queued, wake up any additional
 258				 * waiters.
 259				 */
 260				dma_fence_put(fence_excl);
 261				dma_buf_poll_cb(NULL, &dcb->cb);
 262			}
 263		}
 264	}
 265
 266	if ((events & EPOLLOUT) && shared_count > 0) {
 267		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 268		int i;
 269
 270		/* Only queue a new callback if no event has fired yet */
 271		spin_lock_irq(&dmabuf->poll.lock);
 272		if (dcb->active)
 273			events &= ~EPOLLOUT;
 274		else
 275			dcb->active = EPOLLOUT;
 276		spin_unlock_irq(&dmabuf->poll.lock);
 277
 278		if (!(events & EPOLLOUT))
 279			goto out;
 280
 281		for (i = 0; i < shared_count; ++i) {
 282			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 283
 284			if (!dma_fence_get_rcu(fence)) {
 285				/*
 286				 * fence refcount dropped to zero, this means
 287				 * that fobj has been freed
 288				 *
 289				 * call dma_buf_poll_cb and force a recheck!
 290				 */
 291				events &= ~EPOLLOUT;
 292				dma_buf_poll_cb(NULL, &dcb->cb);
 293				break;
 294			}
 295			if (!dma_fence_add_callback(fence, &dcb->cb,
 296						    dma_buf_poll_cb)) {
 297				dma_fence_put(fence);
 298				events &= ~EPOLLOUT;
 299				break;
 300			}
 301			dma_fence_put(fence);
 302		}
 303
 304		/* No callback queued, wake up any additional waiters. */
 305		if (i == shared_count)
 306			dma_buf_poll_cb(NULL, &dcb->cb);
 307	}
 308
 309out:
 310	rcu_read_unlock();
 311	return events;
 312}
 313
 314/**
 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 316 * The name of the dma-buf buffer can only be set when the dma-buf is not
 317 * attached to any devices. It could theoritically support changing the
 318 * name of the dma-buf if the same piece of memory is used for multiple
 319 * purpose between different devices.
 320 *
 321 * @dmabuf [in]     dmabuf buffer that will be renamed.
 322 * @buf:   [in]     A piece of userspace memory that contains the name of
 323 *                  the dma-buf.
 324 *
 325 * Returns 0 on success. If the dma-buf buffer is already attached to
 326 * devices, return -EBUSY.
 327 *
 328 */
 329static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 330{
 331	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 332	long ret = 0;
 333
 334	if (IS_ERR(name))
 335		return PTR_ERR(name);
 336
 337	mutex_lock(&dmabuf->lock);
 338	if (!list_empty(&dmabuf->attachments)) {
 339		ret = -EBUSY;
 340		kfree(name);
 341		goto out_unlock;
 342	}
 343	kfree(dmabuf->name);
 344	dmabuf->name = name;
 345
 346out_unlock:
 347	mutex_unlock(&dmabuf->lock);
 348	return ret;
 349}
 350
 351static long dma_buf_ioctl(struct file *file,
 352			  unsigned int cmd, unsigned long arg)
 353{
 354	struct dma_buf *dmabuf;
 355	struct dma_buf_sync sync;
 356	enum dma_data_direction direction;
 357	int ret;
 358
 359	dmabuf = file->private_data;
 360
 361	switch (cmd) {
 362	case DMA_BUF_IOCTL_SYNC:
 363		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 364			return -EFAULT;
 365
 366		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 367			return -EINVAL;
 368
 369		switch (sync.flags & DMA_BUF_SYNC_RW) {
 370		case DMA_BUF_SYNC_READ:
 371			direction = DMA_FROM_DEVICE;
 372			break;
 373		case DMA_BUF_SYNC_WRITE:
 374			direction = DMA_TO_DEVICE;
 375			break;
 376		case DMA_BUF_SYNC_RW:
 377			direction = DMA_BIDIRECTIONAL;
 378			break;
 379		default:
 380			return -EINVAL;
 381		}
 382
 383		if (sync.flags & DMA_BUF_SYNC_END)
 384			ret = dma_buf_end_cpu_access(dmabuf, direction);
 385		else
 386			ret = dma_buf_begin_cpu_access(dmabuf, direction);
 387
 388		return ret;
 389
 390	case DMA_BUF_SET_NAME:
 391		return dma_buf_set_name(dmabuf, (const char __user *)arg);
 392
 393	default:
 394		return -ENOTTY;
 395	}
 396}
 397
 398static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 399{
 400	struct dma_buf *dmabuf = file->private_data;
 401
 402	seq_printf(m, "size:\t%zu\n", dmabuf->size);
 403	/* Don't count the temporary reference taken inside procfs seq_show */
 404	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 405	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 406	mutex_lock(&dmabuf->lock);
 407	if (dmabuf->name)
 408		seq_printf(m, "name:\t%s\n", dmabuf->name);
 409	mutex_unlock(&dmabuf->lock);
 410}
 411
 412static const struct file_operations dma_buf_fops = {
 413	.release	= dma_buf_release,
 414	.mmap		= dma_buf_mmap_internal,
 415	.llseek		= dma_buf_llseek,
 416	.poll		= dma_buf_poll,
 417	.unlocked_ioctl	= dma_buf_ioctl,
 418#ifdef CONFIG_COMPAT
 419	.compat_ioctl	= dma_buf_ioctl,
 420#endif
 421	.show_fdinfo	= dma_buf_show_fdinfo,
 422};
 423
 424/*
 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 426 */
 427static inline int is_dma_buf_file(struct file *file)
 428{
 429	return file->f_op == &dma_buf_fops;
 430}
 431
 432static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
 433{
 434	struct file *file;
 435	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 436
 437	if (IS_ERR(inode))
 438		return ERR_CAST(inode);
 439
 440	inode->i_size = dmabuf->size;
 441	inode_set_bytes(inode, dmabuf->size);
 442
 443	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 444				 flags, &dma_buf_fops);
 445	if (IS_ERR(file))
 446		goto err_alloc_file;
 447	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
 448	file->private_data = dmabuf;
 449	file->f_path.dentry->d_fsdata = dmabuf;
 450
 451	return file;
 452
 453err_alloc_file:
 454	iput(inode);
 455	return file;
 456}
 457
 458/**
 459 * DOC: dma buf device access
 460 *
 461 * For device DMA access to a shared DMA buffer the usual sequence of operations
 462 * is fairly simple:
 463 *
 464 * 1. The exporter defines his exporter instance using
 465 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 466 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 467 *    as a file descriptor by calling dma_buf_fd().
 468 *
 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 470 *    to share with: First the filedescriptor is converted to a &dma_buf using
 471 *    dma_buf_get(). Then the buffer is attached to the device using
 472 *    dma_buf_attach().
 473 *
 474 *    Up to this stage the exporter is still free to migrate or reallocate the
 475 *    backing storage.
 476 *
 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 478 *    access to the shared buffer. In the kernel this is done by calling
 479 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 480 *
 481 * 4. Once a driver is done with a shared buffer it needs to call
 482 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 483 *    reference acquired with dma_buf_get by calling dma_buf_put().
 484 *
 485 * For the detailed semantics exporters are expected to implement see
 486 * &dma_buf_ops.
 487 */
 488
 489/**
 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 491 * with this buffer, so it can be exported.
 492 * Also connect the allocator specific data and ops to the buffer.
 493 * Additionally, provide a name string for exporter; useful in debugging.
 494 *
 495 * @exp_info:	[in]	holds all the export related information provided
 496 *			by the exporter. see &struct dma_buf_export_info
 497 *			for further details.
 498 *
 499 * Returns, on success, a newly created dma_buf object, which wraps the
 500 * supplied private data and operations for dma_buf_ops. On either missing
 501 * ops, or error in allocating struct dma_buf, will return negative error.
 502 *
 503 * For most cases the easiest way to create @exp_info is through the
 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 505 */
 506struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 507{
 508	struct dma_buf *dmabuf;
 509	struct dma_resv *resv = exp_info->resv;
 510	struct file *file;
 511	size_t alloc_size = sizeof(struct dma_buf);
 512	int ret;
 513
 514	if (!exp_info->resv)
 515		alloc_size += sizeof(struct dma_resv);
 516	else
 517		/* prevent &dma_buf[1] == dma_buf->resv */
 518		alloc_size += 1;
 519
 520	if (WARN_ON(!exp_info->priv
 521			  || !exp_info->ops
 522			  || !exp_info->ops->map_dma_buf
 523			  || !exp_info->ops->unmap_dma_buf
 524			  || !exp_info->ops->release)) {
 525		return ERR_PTR(-EINVAL);
 526	}
 527
 528	if (!try_module_get(exp_info->owner))
 529		return ERR_PTR(-ENOENT);
 530
 531	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 532	if (!dmabuf) {
 533		ret = -ENOMEM;
 534		goto err_module;
 535	}
 536
 537	dmabuf->priv = exp_info->priv;
 538	dmabuf->ops = exp_info->ops;
 539	dmabuf->size = exp_info->size;
 540	dmabuf->exp_name = exp_info->exp_name;
 541	dmabuf->owner = exp_info->owner;
 542	init_waitqueue_head(&dmabuf->poll);
 543	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 544	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 545
 546	if (!resv) {
 547		resv = (struct dma_resv *)&dmabuf[1];
 548		dma_resv_init(resv);
 549	}
 550	dmabuf->resv = resv;
 551
 552	file = dma_buf_getfile(dmabuf, exp_info->flags);
 553	if (IS_ERR(file)) {
 554		ret = PTR_ERR(file);
 555		goto err_dmabuf;
 556	}
 557
 558	file->f_mode |= FMODE_LSEEK;
 559	dmabuf->file = file;
 560
 561	mutex_init(&dmabuf->lock);
 562	INIT_LIST_HEAD(&dmabuf->attachments);
 563
 564	mutex_lock(&db_list.lock);
 565	list_add(&dmabuf->list_node, &db_list.head);
 566	mutex_unlock(&db_list.lock);
 567
 568	return dmabuf;
 569
 570err_dmabuf:
 571	kfree(dmabuf);
 572err_module:
 573	module_put(exp_info->owner);
 574	return ERR_PTR(ret);
 575}
 576EXPORT_SYMBOL_GPL(dma_buf_export);
 577
 578/**
 579 * dma_buf_fd - returns a file descriptor for the given dma_buf
 580 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
 581 * @flags:      [in]    flags to give to fd
 582 *
 583 * On success, returns an associated 'fd'. Else, returns error.
 584 */
 585int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 586{
 587	int fd;
 588
 589	if (!dmabuf || !dmabuf->file)
 590		return -EINVAL;
 591
 592	fd = get_unused_fd_flags(flags);
 593	if (fd < 0)
 594		return fd;
 595
 596	fd_install(fd, dmabuf->file);
 597
 598	return fd;
 599}
 600EXPORT_SYMBOL_GPL(dma_buf_fd);
 601
 602/**
 603 * dma_buf_get - returns the dma_buf structure related to an fd
 604 * @fd:	[in]	fd associated with the dma_buf to be returned
 605 *
 606 * On success, returns the dma_buf structure associated with an fd; uses
 607 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 608 * otherwise.
 609 */
 610struct dma_buf *dma_buf_get(int fd)
 611{
 612	struct file *file;
 613
 614	file = fget(fd);
 615
 616	if (!file)
 617		return ERR_PTR(-EBADF);
 618
 619	if (!is_dma_buf_file(file)) {
 620		fput(file);
 621		return ERR_PTR(-EINVAL);
 622	}
 623
 624	return file->private_data;
 625}
 626EXPORT_SYMBOL_GPL(dma_buf_get);
 627
 628/**
 629 * dma_buf_put - decreases refcount of the buffer
 630 * @dmabuf:	[in]	buffer to reduce refcount of
 631 *
 632 * Uses file's refcounting done implicitly by fput().
 633 *
 634 * If, as a result of this call, the refcount becomes 0, the 'release' file
 635 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 636 * in turn, and frees the memory allocated for dmabuf when exported.
 637 */
 638void dma_buf_put(struct dma_buf *dmabuf)
 639{
 640	if (WARN_ON(!dmabuf || !dmabuf->file))
 641		return;
 642
 643	fput(dmabuf->file);
 644}
 645EXPORT_SYMBOL_GPL(dma_buf_put);
 646
 647/**
 648 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 649 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 650 * @dmabuf:	[in]	buffer to attach device to.
 651 * @dev:	[in]	device to be attached.
 652 *
 653 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 654 * must be cleaned up by calling dma_buf_detach().
 655 *
 656 * Returns:
 657 *
 658 * A pointer to newly created &dma_buf_attachment on success, or a negative
 659 * error code wrapped into a pointer on failure.
 660 *
 661 * Note that this can fail if the backing storage of @dmabuf is in a place not
 662 * accessible to @dev, and cannot be moved to a more suitable place. This is
 663 * indicated with the error code -EBUSY.
 664 */
 665struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 666					  struct device *dev)
 667{
 668	struct dma_buf_attachment *attach;
 669	int ret;
 670
 671	if (WARN_ON(!dmabuf || !dev))
 672		return ERR_PTR(-EINVAL);
 673
 674	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 675	if (!attach)
 676		return ERR_PTR(-ENOMEM);
 677
 678	attach->dev = dev;
 679	attach->dmabuf = dmabuf;
 680
 681	mutex_lock(&dmabuf->lock);
 682
 683	if (dmabuf->ops->attach) {
 684		ret = dmabuf->ops->attach(dmabuf, attach);
 685		if (ret)
 686			goto err_attach;
 687	}
 688	list_add(&attach->node, &dmabuf->attachments);
 689
 690	mutex_unlock(&dmabuf->lock);
 691
 692	return attach;
 693
 694err_attach:
 695	kfree(attach);
 696	mutex_unlock(&dmabuf->lock);
 697	return ERR_PTR(ret);
 698}
 699EXPORT_SYMBOL_GPL(dma_buf_attach);
 700
 701/**
 702 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 703 * optionally calls detach() of dma_buf_ops for device-specific detach
 704 * @dmabuf:	[in]	buffer to detach from.
 705 * @attach:	[in]	attachment to be detached; is free'd after this call.
 706 *
 707 * Clean up a device attachment obtained by calling dma_buf_attach().
 708 */
 709void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 710{
 711	if (WARN_ON(!dmabuf || !attach))
 712		return;
 713
 714	if (attach->sgt)
 715		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
 716
 717	mutex_lock(&dmabuf->lock);
 718	list_del(&attach->node);
 719	if (dmabuf->ops->detach)
 720		dmabuf->ops->detach(dmabuf, attach);
 721
 722	mutex_unlock(&dmabuf->lock);
 723	kfree(attach);
 724}
 725EXPORT_SYMBOL_GPL(dma_buf_detach);
 726
 727/**
 728 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 729 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 730 * dma_buf_ops.
 731 * @attach:	[in]	attachment whose scatterlist is to be returned
 732 * @direction:	[in]	direction of DMA transfer
 733 *
 734 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 735 * on error. May return -EINTR if it is interrupted by a signal.
 736 *
 737 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 738 * the underlying backing storage is pinned for as long as a mapping exists,
 739 * therefore users/importers should not hold onto a mapping for undue amounts of
 740 * time.
 741 */
 742struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 743					enum dma_data_direction direction)
 744{
 745	struct sg_table *sg_table;
 746
 747	might_sleep();
 748
 749	if (WARN_ON(!attach || !attach->dmabuf))
 750		return ERR_PTR(-EINVAL);
 751
 752	if (attach->sgt) {
 753		/*
 754		 * Two mappings with different directions for the same
 755		 * attachment are not allowed.
 756		 */
 757		if (attach->dir != direction &&
 758		    attach->dir != DMA_BIDIRECTIONAL)
 759			return ERR_PTR(-EBUSY);
 760
 761		return attach->sgt;
 762	}
 763
 764	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 765	if (!sg_table)
 766		sg_table = ERR_PTR(-ENOMEM);
 767
 768	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
 769		attach->sgt = sg_table;
 770		attach->dir = direction;
 771	}
 772
 773	return sg_table;
 774}
 775EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 776
 777/**
 778 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 779 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 780 * dma_buf_ops.
 781 * @attach:	[in]	attachment to unmap buffer from
 782 * @sg_table:	[in]	scatterlist info of the buffer to unmap
 783 * @direction:  [in]    direction of DMA transfer
 784 *
 785 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 786 */
 787void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 788				struct sg_table *sg_table,
 789				enum dma_data_direction direction)
 790{
 791	might_sleep();
 792
 793	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 794		return;
 795
 796	if (attach->sgt == sg_table)
 797		return;
 798
 799	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 800}
 801EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 802
 803/**
 804 * DOC: cpu access
 805 *
 806 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 807 *
 808 * - Fallback operations in the kernel, for example when a device is connected
 809 *   over USB and the kernel needs to shuffle the data around first before
 810 *   sending it away. Cache coherency is handled by braketing any transactions
 811 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 812 *   access.
 813 *
 814 *   To support dma_buf objects residing in highmem cpu access is page-based
 815 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 816 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 817 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 818 *   needs to be unmapped again. There is no limit on how often a given chunk
 819 *   can be mapped and unmapped, i.e. the importer does not need to call
 820 *   begin_cpu_access again before mapping the same chunk again.
 821 *
 822 *   Interfaces::
 823 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 824 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 825 *
 826 *   Implementing the functions is optional for exporters and for importers all
 827 *   the restrictions of using kmap apply.
 828 *
 829 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 830 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 831 *   the partial chunks at the beginning and end but may return stale or bogus
 832 *   data outside of the range (in these partial chunks).
 833 *
 834 *   For some cases the overhead of kmap can be too high, a vmap interface
 835 *   is introduced. This interface should be used very carefully, as vmalloc
 836 *   space is a limited resources on many architectures.
 837 *
 838 *   Interfaces::
 839 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 840 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 841 *
 842 *   The vmap call can fail if there is no vmap support in the exporter, or if
 843 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 844 *   that the dma-buf layer keeps a reference count for all vmap access and
 845 *   calls down into the exporter's vmap function only when no vmapping exists,
 846 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 847 *   provided by taking the dma_buf->lock mutex.
 848 *
 849 * - For full compatibility on the importer side with existing userspace
 850 *   interfaces, which might already support mmap'ing buffers. This is needed in
 851 *   many processing pipelines (e.g. feeding a software rendered image into a
 852 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 853 *   framework already supported this and for DMA buffer file descriptors to
 854 *   replace ION buffers mmap support was needed.
 855 *
 856 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 857 *   fd. But like for CPU access there's a need to braket the actual access,
 858 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 859 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 860 *   be restarted.
 861 *
 862 *   Some systems might need some sort of cache coherency management e.g. when
 863 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 864 *   To circumvent this problem there are begin/end coherency markers, that
 865 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 866 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 867 *   sequence would be used like following:
 868 *
 869 *     - mmap dma-buf fd
 870 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 871 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 872 *       want (with the new data being consumed by say the GPU or the scanout
 873 *       device)
 874 *     - munmap once you don't need the buffer any more
 875 *
 876 *    For correctness and optimal performance, it is always required to use
 877 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 878 *    mapped address. Userspace cannot rely on coherent access, even when there
 879 *    are systems where it just works without calling these ioctls.
 880 *
 881 * - And as a CPU fallback in userspace processing pipelines.
 882 *
 883 *   Similar to the motivation for kernel cpu access it is again important that
 884 *   the userspace code of a given importing subsystem can use the same
 885 *   interfaces with a imported dma-buf buffer object as with a native buffer
 886 *   object. This is especially important for drm where the userspace part of
 887 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 888 *   use a different way to mmap a buffer rather invasive.
 889 *
 890 *   The assumption in the current dma-buf interfaces is that redirecting the
 891 *   initial mmap is all that's needed. A survey of some of the existing
 892 *   subsystems shows that no driver seems to do any nefarious thing like
 893 *   syncing up with outstanding asynchronous processing on the device or
 894 *   allocating special resources at fault time. So hopefully this is good
 895 *   enough, since adding interfaces to intercept pagefaults and allow pte
 896 *   shootdowns would increase the complexity quite a bit.
 897 *
 898 *   Interface::
 899 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 900 *		       unsigned long);
 901 *
 902 *   If the importing subsystem simply provides a special-purpose mmap call to
 903 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 904 *   equally achieve that for a dma-buf object.
 905 */
 906
 907static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 908				      enum dma_data_direction direction)
 909{
 910	bool write = (direction == DMA_BIDIRECTIONAL ||
 911		      direction == DMA_TO_DEVICE);
 912	struct dma_resv *resv = dmabuf->resv;
 913	long ret;
 914
 915	/* Wait on any implicit rendering fences */
 916	ret = dma_resv_wait_timeout_rcu(resv, write, true,
 917						  MAX_SCHEDULE_TIMEOUT);
 918	if (ret < 0)
 919		return ret;
 920
 921	return 0;
 922}
 923
 924/**
 925 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 926 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 927 * preparations. Coherency is only guaranteed in the specified range for the
 928 * specified access direction.
 929 * @dmabuf:	[in]	buffer to prepare cpu access for.
 930 * @direction:	[in]	length of range for cpu access.
 931 *
 932 * After the cpu access is complete the caller should call
 933 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 934 * it guaranteed to be coherent with other DMA access.
 935 *
 936 * Can return negative error values, returns 0 on success.
 937 */
 938int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 939			     enum dma_data_direction direction)
 940{
 941	int ret = 0;
 942
 943	if (WARN_ON(!dmabuf))
 944		return -EINVAL;
 945
 946	if (dmabuf->ops->begin_cpu_access)
 947		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 948
 949	/* Ensure that all fences are waited upon - but we first allow
 950	 * the native handler the chance to do so more efficiently if it
 951	 * chooses. A double invocation here will be reasonably cheap no-op.
 952	 */
 953	if (ret == 0)
 954		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 955
 956	return ret;
 957}
 958EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 959
 960/**
 961 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 962 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 963 * actions. Coherency is only guaranteed in the specified range for the
 964 * specified access direction.
 965 * @dmabuf:	[in]	buffer to complete cpu access for.
 966 * @direction:	[in]	length of range for cpu access.
 967 *
 968 * This terminates CPU access started with dma_buf_begin_cpu_access().
 969 *
 970 * Can return negative error values, returns 0 on success.
 971 */
 972int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 973			   enum dma_data_direction direction)
 974{
 975	int ret = 0;
 976
 977	WARN_ON(!dmabuf);
 978
 979	if (dmabuf->ops->end_cpu_access)
 980		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 981
 982	return ret;
 983}
 984EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 985
 986/**
 987 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 988 * same restrictions as for kmap and friends apply.
 989 * @dmabuf:	[in]	buffer to map page from.
 990 * @page_num:	[in]	page in PAGE_SIZE units to map.
 991 *
 992 * This call must always succeed, any necessary preparations that might fail
 993 * need to be done in begin_cpu_access.
 994 */
 995void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 996{
 997	WARN_ON(!dmabuf);
 998
 999	if (!dmabuf->ops->map)
1000		return NULL;
1001	return dmabuf->ops->map(dmabuf, page_num);
1002}
1003EXPORT_SYMBOL_GPL(dma_buf_kmap);
1004
1005/**
1006 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1007 * @dmabuf:	[in]	buffer to unmap page from.
1008 * @page_num:	[in]	page in PAGE_SIZE units to unmap.
1009 * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
1010 *
1011 * This call must always succeed.
1012 */
1013void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1014		    void *vaddr)
1015{
1016	WARN_ON(!dmabuf);
1017
1018	if (dmabuf->ops->unmap)
1019		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1020}
1021EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1022
1023
1024/**
1025 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1026 * @dmabuf:	[in]	buffer that should back the vma
1027 * @vma:	[in]	vma for the mmap
1028 * @pgoff:	[in]	offset in pages where this mmap should start within the
1029 *			dma-buf buffer.
1030 *
1031 * This function adjusts the passed in vma so that it points at the file of the
1032 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1033 * checking on the size of the vma. Then it calls the exporters mmap function to
1034 * set up the mapping.
1035 *
1036 * Can return negative error values, returns 0 on success.
1037 */
1038int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1039		 unsigned long pgoff)
1040{
1041	struct file *oldfile;
1042	int ret;
1043
1044	if (WARN_ON(!dmabuf || !vma))
1045		return -EINVAL;
1046
1047	/* check if buffer supports mmap */
1048	if (!dmabuf->ops->mmap)
1049		return -EINVAL;
1050
1051	/* check for offset overflow */
1052	if (pgoff + vma_pages(vma) < pgoff)
1053		return -EOVERFLOW;
1054
1055	/* check for overflowing the buffer's size */
1056	if (pgoff + vma_pages(vma) >
1057	    dmabuf->size >> PAGE_SHIFT)
1058		return -EINVAL;
1059
1060	/* readjust the vma */
1061	get_file(dmabuf->file);
1062	oldfile = vma->vm_file;
1063	vma->vm_file = dmabuf->file;
1064	vma->vm_pgoff = pgoff;
1065
1066	ret = dmabuf->ops->mmap(dmabuf, vma);
1067	if (ret) {
1068		/* restore old parameters on failure */
1069		vma->vm_file = oldfile;
1070		fput(dmabuf->file);
1071	} else {
1072		if (oldfile)
1073			fput(oldfile);
1074	}
1075	return ret;
1076
1077}
1078EXPORT_SYMBOL_GPL(dma_buf_mmap);
1079
1080/**
1081 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1082 * address space. Same restrictions as for vmap and friends apply.
1083 * @dmabuf:	[in]	buffer to vmap
1084 *
1085 * This call may fail due to lack of virtual mapping address space.
1086 * These calls are optional in drivers. The intended use for them
1087 * is for mapping objects linear in kernel space for high use objects.
1088 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1089 *
1090 * Returns NULL on error.
1091 */
1092void *dma_buf_vmap(struct dma_buf *dmabuf)
1093{
1094	void *ptr;
1095
1096	if (WARN_ON(!dmabuf))
1097		return NULL;
1098
1099	if (!dmabuf->ops->vmap)
1100		return NULL;
1101
1102	mutex_lock(&dmabuf->lock);
1103	if (dmabuf->vmapping_counter) {
1104		dmabuf->vmapping_counter++;
1105		BUG_ON(!dmabuf->vmap_ptr);
1106		ptr = dmabuf->vmap_ptr;
1107		goto out_unlock;
1108	}
1109
1110	BUG_ON(dmabuf->vmap_ptr);
1111
1112	ptr = dmabuf->ops->vmap(dmabuf);
1113	if (WARN_ON_ONCE(IS_ERR(ptr)))
1114		ptr = NULL;
1115	if (!ptr)
1116		goto out_unlock;
1117
1118	dmabuf->vmap_ptr = ptr;
1119	dmabuf->vmapping_counter = 1;
1120
1121out_unlock:
1122	mutex_unlock(&dmabuf->lock);
1123	return ptr;
1124}
1125EXPORT_SYMBOL_GPL(dma_buf_vmap);
1126
1127/**
1128 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1129 * @dmabuf:	[in]	buffer to vunmap
1130 * @vaddr:	[in]	vmap to vunmap
1131 */
1132void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1133{
1134	if (WARN_ON(!dmabuf))
1135		return;
1136
1137	BUG_ON(!dmabuf->vmap_ptr);
1138	BUG_ON(dmabuf->vmapping_counter == 0);
1139	BUG_ON(dmabuf->vmap_ptr != vaddr);
1140
1141	mutex_lock(&dmabuf->lock);
1142	if (--dmabuf->vmapping_counter == 0) {
1143		if (dmabuf->ops->vunmap)
1144			dmabuf->ops->vunmap(dmabuf, vaddr);
1145		dmabuf->vmap_ptr = NULL;
1146	}
1147	mutex_unlock(&dmabuf->lock);
1148}
1149EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1150
1151#ifdef CONFIG_DEBUG_FS
1152static int dma_buf_debug_show(struct seq_file *s, void *unused)
1153{
1154	int ret;
1155	struct dma_buf *buf_obj;
1156	struct dma_buf_attachment *attach_obj;
1157	struct dma_resv *robj;
1158	struct dma_resv_list *fobj;
1159	struct dma_fence *fence;
1160	unsigned seq;
1161	int count = 0, attach_count, shared_count, i;
1162	size_t size = 0;
1163
1164	ret = mutex_lock_interruptible(&db_list.lock);
1165
1166	if (ret)
1167		return ret;
1168
1169	seq_puts(s, "\nDma-buf Objects:\n");
1170	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1171		   "size", "flags", "mode", "count", "ino");
1172
1173	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1174		ret = mutex_lock_interruptible(&buf_obj->lock);
1175
1176		if (ret) {
1177			seq_puts(s,
1178				 "\tERROR locking buffer object: skipping\n");
1179			continue;
1180		}
1181
1182		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1183				buf_obj->size,
1184				buf_obj->file->f_flags, buf_obj->file->f_mode,
1185				file_count(buf_obj->file),
1186				buf_obj->exp_name,
1187				file_inode(buf_obj->file)->i_ino,
1188				buf_obj->name ?: "");
1189
1190		robj = buf_obj->resv;
1191		while (true) {
1192			seq = read_seqcount_begin(&robj->seq);
1193			rcu_read_lock();
1194			fobj = rcu_dereference(robj->fence);
1195			shared_count = fobj ? fobj->shared_count : 0;
1196			fence = rcu_dereference(robj->fence_excl);
1197			if (!read_seqcount_retry(&robj->seq, seq))
1198				break;
1199			rcu_read_unlock();
1200		}
1201
1202		if (fence)
1203			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1204				   fence->ops->get_driver_name(fence),
1205				   fence->ops->get_timeline_name(fence),
1206				   dma_fence_is_signaled(fence) ? "" : "un");
1207		for (i = 0; i < shared_count; i++) {
1208			fence = rcu_dereference(fobj->shared[i]);
1209			if (!dma_fence_get_rcu(fence))
1210				continue;
1211			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1212				   fence->ops->get_driver_name(fence),
1213				   fence->ops->get_timeline_name(fence),
1214				   dma_fence_is_signaled(fence) ? "" : "un");
1215			dma_fence_put(fence);
1216		}
1217		rcu_read_unlock();
1218
1219		seq_puts(s, "\tAttached Devices:\n");
1220		attach_count = 0;
1221
1222		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1223			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1224			attach_count++;
1225		}
1226
1227		seq_printf(s, "Total %d devices attached\n\n",
1228				attach_count);
1229
1230		count++;
1231		size += buf_obj->size;
1232		mutex_unlock(&buf_obj->lock);
1233	}
1234
1235	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1236
1237	mutex_unlock(&db_list.lock);
1238	return 0;
1239}
1240
1241DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1242
1243static struct dentry *dma_buf_debugfs_dir;
1244
1245static int dma_buf_init_debugfs(void)
1246{
1247	struct dentry *d;
1248	int err = 0;
1249
1250	d = debugfs_create_dir("dma_buf", NULL);
1251	if (IS_ERR(d))
1252		return PTR_ERR(d);
1253
1254	dma_buf_debugfs_dir = d;
1255
1256	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1257				NULL, &dma_buf_debug_fops);
1258	if (IS_ERR(d)) {
1259		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1260		debugfs_remove_recursive(dma_buf_debugfs_dir);
1261		dma_buf_debugfs_dir = NULL;
1262		err = PTR_ERR(d);
1263	}
1264
1265	return err;
1266}
1267
1268static void dma_buf_uninit_debugfs(void)
1269{
1270	debugfs_remove_recursive(dma_buf_debugfs_dir);
1271}
1272#else
1273static inline int dma_buf_init_debugfs(void)
1274{
1275	return 0;
1276}
1277static inline void dma_buf_uninit_debugfs(void)
1278{
1279}
1280#endif
1281
1282static int __init dma_buf_init(void)
1283{
1284	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1285	if (IS_ERR(dma_buf_mnt))
1286		return PTR_ERR(dma_buf_mnt);
1287
1288	mutex_init(&db_list.lock);
1289	INIT_LIST_HEAD(&db_list.head);
1290	dma_buf_init_debugfs();
1291	return 0;
1292}
1293subsys_initcall(dma_buf_init);
1294
1295static void __exit dma_buf_deinit(void)
1296{
1297	dma_buf_uninit_debugfs();
1298	kern_unmount(dma_buf_mnt);
1299}
1300__exitcall(dma_buf_deinit);