Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 *    Disk Array driver for HP Smart Array controllers.
   3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12 *    General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17 *    02111-1307, USA.
  18 *
  19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20 *
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/types.h>
  26#include <linux/pci.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/delay.h>
  30#include <linux/major.h>
  31#include <linux/fs.h>
  32#include <linux/bio.h>
  33#include <linux/blkpg.h>
  34#include <linux/timer.h>
  35#include <linux/proc_fs.h>
  36#include <linux/seq_file.h>
  37#include <linux/init.h>
  38#include <linux/jiffies.h>
  39#include <linux/hdreg.h>
  40#include <linux/spinlock.h>
  41#include <linux/compat.h>
  42#include <linux/mutex.h>
  43#include <asm/uaccess.h>
  44#include <asm/io.h>
  45
  46#include <linux/dma-mapping.h>
  47#include <linux/blkdev.h>
  48#include <linux/genhd.h>
  49#include <linux/completion.h>
  50#include <scsi/scsi.h>
  51#include <scsi/sg.h>
  52#include <scsi/scsi_ioctl.h>
  53#include <linux/cdrom.h>
  54#include <linux/scatterlist.h>
  55#include <linux/kthread.h>
  56
  57#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  58#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
  59#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
  60
  61/* Embedded module documentation macros - see modules.h */
  62MODULE_AUTHOR("Hewlett-Packard Company");
  63MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  64MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  65MODULE_VERSION("3.6.26");
  66MODULE_LICENSE("GPL");
  67static int cciss_tape_cmds = 6;
  68module_param(cciss_tape_cmds, int, 0644);
  69MODULE_PARM_DESC(cciss_tape_cmds,
  70	"number of commands to allocate for tape devices (default: 6)");
  71
  72static DEFINE_MUTEX(cciss_mutex);
  73static struct proc_dir_entry *proc_cciss;
  74
  75#include "cciss_cmd.h"
  76#include "cciss.h"
  77#include <linux/cciss_ioctl.h>
  78
  79/* define the PCI info for the cards we can control */
  80static const struct pci_device_id cciss_pci_device_id[] = {
  81	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
  82	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  83	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  84	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  85	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  86	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  87	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  88	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  89	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
  91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
  92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
  93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
  94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
  95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
  96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
  97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
  98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
  99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
 100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
 101	{0,}
 102};
 103
 104MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
 105
 106/*  board_id = Subsystem Device ID & Vendor ID
 107 *  product = Marketing Name for the board
 108 *  access = Address of the struct of function pointers
 109 */
 110static struct board_type products[] = {
 111	{0x40700E11, "Smart Array 5300", &SA5_access},
 112	{0x40800E11, "Smart Array 5i", &SA5B_access},
 113	{0x40820E11, "Smart Array 532", &SA5B_access},
 114	{0x40830E11, "Smart Array 5312", &SA5B_access},
 115	{0x409A0E11, "Smart Array 641", &SA5_access},
 116	{0x409B0E11, "Smart Array 642", &SA5_access},
 117	{0x409C0E11, "Smart Array 6400", &SA5_access},
 118	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
 119	{0x40910E11, "Smart Array 6i", &SA5_access},
 120	{0x3225103C, "Smart Array P600", &SA5_access},
 121	{0x3223103C, "Smart Array P800", &SA5_access},
 122	{0x3234103C, "Smart Array P400", &SA5_access},
 123	{0x3235103C, "Smart Array P400i", &SA5_access},
 124	{0x3211103C, "Smart Array E200i", &SA5_access},
 125	{0x3212103C, "Smart Array E200", &SA5_access},
 126	{0x3213103C, "Smart Array E200i", &SA5_access},
 127	{0x3214103C, "Smart Array E200i", &SA5_access},
 128	{0x3215103C, "Smart Array E200i", &SA5_access},
 129	{0x3237103C, "Smart Array E500", &SA5_access},
 130	{0x3223103C, "Smart Array P800", &SA5_access},
 131	{0x3234103C, "Smart Array P400", &SA5_access},
 132	{0x323D103C, "Smart Array P700m", &SA5_access},
 133};
 134
 135/* How long to wait (in milliseconds) for board to go into simple mode */
 136#define MAX_CONFIG_WAIT 30000
 137#define MAX_IOCTL_CONFIG_WAIT 1000
 138
 139/*define how many times we will try a command because of bus resets */
 140#define MAX_CMD_RETRIES 3
 141
 142#define MAX_CTLR	32
 143
 144/* Originally cciss driver only supports 8 major numbers */
 145#define MAX_CTLR_ORIG 	8
 146
 147static ctlr_info_t *hba[MAX_CTLR];
 148
 149static struct task_struct *cciss_scan_thread;
 150static DEFINE_MUTEX(scan_mutex);
 151static LIST_HEAD(scan_q);
 152
 153static void do_cciss_request(struct request_queue *q);
 154static irqreturn_t do_cciss_intx(int irq, void *dev_id);
 155static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
 156static int cciss_open(struct block_device *bdev, fmode_t mode);
 157static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
 158static int cciss_release(struct gendisk *disk, fmode_t mode);
 159static int do_ioctl(struct block_device *bdev, fmode_t mode,
 160		    unsigned int cmd, unsigned long arg);
 161static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
 162		       unsigned int cmd, unsigned long arg);
 163static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
 164
 165static int cciss_revalidate(struct gendisk *disk);
 166static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
 167static int deregister_disk(ctlr_info_t *h, int drv_index,
 168			   int clear_all, int via_ioctl);
 169
 170static void cciss_read_capacity(ctlr_info_t *h, int logvol,
 171			sector_t *total_size, unsigned int *block_size);
 172static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
 173			sector_t *total_size, unsigned int *block_size);
 174static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
 175			sector_t total_size,
 176			unsigned int block_size, InquiryData_struct *inq_buff,
 177				   drive_info_struct *drv);
 178static void __devinit cciss_interrupt_mode(ctlr_info_t *);
 179static void start_io(ctlr_info_t *h);
 180static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
 181			__u8 page_code, unsigned char scsi3addr[],
 182			int cmd_type);
 183static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
 184	int attempt_retry);
 185static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
 186
 187static int add_to_scan_list(struct ctlr_info *h);
 188static int scan_thread(void *data);
 189static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
 190static void cciss_hba_release(struct device *dev);
 191static void cciss_device_release(struct device *dev);
 192static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
 193static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
 194static inline u32 next_command(ctlr_info_t *h);
 195static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
 196	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 197	u64 *cfg_offset);
 198static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
 199	unsigned long *memory_bar);
 200static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
 201static __devinit int write_driver_ver_to_cfgtable(
 202	CfgTable_struct __iomem *cfgtable);
 203
 204/* performant mode helper functions */
 205static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
 206				int *bucket_map);
 207static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
 208
 209#ifdef CONFIG_PROC_FS
 210static void cciss_procinit(ctlr_info_t *h);
 211#else
 212static void cciss_procinit(ctlr_info_t *h)
 213{
 214}
 215#endif				/* CONFIG_PROC_FS */
 216
 217#ifdef CONFIG_COMPAT
 218static int cciss_compat_ioctl(struct block_device *, fmode_t,
 219			      unsigned, unsigned long);
 220#endif
 221
 222static const struct block_device_operations cciss_fops = {
 223	.owner = THIS_MODULE,
 224	.open = cciss_unlocked_open,
 225	.release = cciss_release,
 226	.ioctl = do_ioctl,
 227	.getgeo = cciss_getgeo,
 228#ifdef CONFIG_COMPAT
 229	.compat_ioctl = cciss_compat_ioctl,
 230#endif
 231	.revalidate_disk = cciss_revalidate,
 232};
 233
 234/* set_performant_mode: Modify the tag for cciss performant
 235 * set bit 0 for pull model, bits 3-1 for block fetch
 236 * register number
 237 */
 238static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
 239{
 240	if (likely(h->transMethod & CFGTBL_Trans_Performant))
 241		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 242}
 243
 244/*
 245 * Enqueuing and dequeuing functions for cmdlists.
 246 */
 247static inline void addQ(struct list_head *list, CommandList_struct *c)
 248{
 249	list_add_tail(&c->list, list);
 250}
 251
 252static inline void removeQ(CommandList_struct *c)
 253{
 254	/*
 255	 * After kexec/dump some commands might still
 256	 * be in flight, which the firmware will try
 257	 * to complete. Resetting the firmware doesn't work
 258	 * with old fw revisions, so we have to mark
 259	 * them off as 'stale' to prevent the driver from
 260	 * falling over.
 261	 */
 262	if (WARN_ON(list_empty(&c->list))) {
 263		c->cmd_type = CMD_MSG_STALE;
 264		return;
 265	}
 266
 267	list_del_init(&c->list);
 268}
 269
 270static void enqueue_cmd_and_start_io(ctlr_info_t *h,
 271	CommandList_struct *c)
 272{
 273	unsigned long flags;
 274	set_performant_mode(h, c);
 275	spin_lock_irqsave(&h->lock, flags);
 276	addQ(&h->reqQ, c);
 277	h->Qdepth++;
 278	if (h->Qdepth > h->maxQsinceinit)
 279		h->maxQsinceinit = h->Qdepth;
 280	start_io(h);
 281	spin_unlock_irqrestore(&h->lock, flags);
 282}
 283
 284static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
 285	int nr_cmds)
 286{
 287	int i;
 288
 289	if (!cmd_sg_list)
 290		return;
 291	for (i = 0; i < nr_cmds; i++) {
 292		kfree(cmd_sg_list[i]);
 293		cmd_sg_list[i] = NULL;
 294	}
 295	kfree(cmd_sg_list);
 296}
 297
 298static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
 299	ctlr_info_t *h, int chainsize, int nr_cmds)
 300{
 301	int j;
 302	SGDescriptor_struct **cmd_sg_list;
 303
 304	if (chainsize <= 0)
 305		return NULL;
 306
 307	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
 308	if (!cmd_sg_list)
 309		return NULL;
 310
 311	/* Build up chain blocks for each command */
 312	for (j = 0; j < nr_cmds; j++) {
 313		/* Need a block of chainsized s/g elements. */
 314		cmd_sg_list[j] = kmalloc((chainsize *
 315			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
 316		if (!cmd_sg_list[j]) {
 317			dev_err(&h->pdev->dev, "Cannot get memory "
 318				"for s/g chains.\n");
 319			goto clean;
 320		}
 321	}
 322	return cmd_sg_list;
 323clean:
 324	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
 325	return NULL;
 326}
 327
 328static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
 329{
 330	SGDescriptor_struct *chain_sg;
 331	u64bit temp64;
 332
 333	if (c->Header.SGTotal <= h->max_cmd_sgentries)
 334		return;
 335
 336	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 337	temp64.val32.lower = chain_sg->Addr.lower;
 338	temp64.val32.upper = chain_sg->Addr.upper;
 339	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
 340}
 341
 342static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
 343	SGDescriptor_struct *chain_block, int len)
 344{
 345	SGDescriptor_struct *chain_sg;
 346	u64bit temp64;
 347
 348	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 349	chain_sg->Ext = CCISS_SG_CHAIN;
 350	chain_sg->Len = len;
 351	temp64.val = pci_map_single(h->pdev, chain_block, len,
 352				PCI_DMA_TODEVICE);
 353	chain_sg->Addr.lower = temp64.val32.lower;
 354	chain_sg->Addr.upper = temp64.val32.upper;
 355}
 356
 357#include "cciss_scsi.c"		/* For SCSI tape support */
 358
 359static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 360	"UNKNOWN"
 361};
 362#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
 363
 364#ifdef CONFIG_PROC_FS
 365
 366/*
 367 * Report information about this controller.
 368 */
 369#define ENG_GIG 1000000000
 370#define ENG_GIG_FACTOR (ENG_GIG/512)
 371#define ENGAGE_SCSI	"engage scsi"
 372
 373static void cciss_seq_show_header(struct seq_file *seq)
 374{
 375	ctlr_info_t *h = seq->private;
 376
 377	seq_printf(seq, "%s: HP %s Controller\n"
 378		"Board ID: 0x%08lx\n"
 379		"Firmware Version: %c%c%c%c\n"
 380		"IRQ: %d\n"
 381		"Logical drives: %d\n"
 382		"Current Q depth: %d\n"
 383		"Current # commands on controller: %d\n"
 384		"Max Q depth since init: %d\n"
 385		"Max # commands on controller since init: %d\n"
 386		"Max SG entries since init: %d\n",
 387		h->devname,
 388		h->product_name,
 389		(unsigned long)h->board_id,
 390		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
 391		h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
 392		h->num_luns,
 393		h->Qdepth, h->commands_outstanding,
 394		h->maxQsinceinit, h->max_outstanding, h->maxSG);
 395
 396#ifdef CONFIG_CISS_SCSI_TAPE
 397	cciss_seq_tape_report(seq, h);
 398#endif /* CONFIG_CISS_SCSI_TAPE */
 399}
 400
 401static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
 402{
 403	ctlr_info_t *h = seq->private;
 404	unsigned long flags;
 405
 406	/* prevent displaying bogus info during configuration
 407	 * or deconfiguration of a logical volume
 408	 */
 409	spin_lock_irqsave(&h->lock, flags);
 410	if (h->busy_configuring) {
 411		spin_unlock_irqrestore(&h->lock, flags);
 412		return ERR_PTR(-EBUSY);
 413	}
 414	h->busy_configuring = 1;
 415	spin_unlock_irqrestore(&h->lock, flags);
 416
 417	if (*pos == 0)
 418		cciss_seq_show_header(seq);
 419
 420	return pos;
 421}
 422
 423static int cciss_seq_show(struct seq_file *seq, void *v)
 424{
 425	sector_t vol_sz, vol_sz_frac;
 426	ctlr_info_t *h = seq->private;
 427	unsigned ctlr = h->ctlr;
 428	loff_t *pos = v;
 429	drive_info_struct *drv = h->drv[*pos];
 430
 431	if (*pos > h->highest_lun)
 432		return 0;
 433
 434	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
 435		return 0;
 436
 437	if (drv->heads == 0)
 438		return 0;
 439
 440	vol_sz = drv->nr_blocks;
 441	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
 442	vol_sz_frac *= 100;
 443	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
 444
 445	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
 446		drv->raid_level = RAID_UNKNOWN;
 447	seq_printf(seq, "cciss/c%dd%d:"
 448			"\t%4u.%02uGB\tRAID %s\n",
 449			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
 450			raid_label[drv->raid_level]);
 451	return 0;
 452}
 453
 454static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 455{
 456	ctlr_info_t *h = seq->private;
 457
 458	if (*pos > h->highest_lun)
 459		return NULL;
 460	*pos += 1;
 461
 462	return pos;
 463}
 464
 465static void cciss_seq_stop(struct seq_file *seq, void *v)
 466{
 467	ctlr_info_t *h = seq->private;
 468
 469	/* Only reset h->busy_configuring if we succeeded in setting
 470	 * it during cciss_seq_start. */
 471	if (v == ERR_PTR(-EBUSY))
 472		return;
 473
 474	h->busy_configuring = 0;
 475}
 476
 477static const struct seq_operations cciss_seq_ops = {
 478	.start = cciss_seq_start,
 479	.show  = cciss_seq_show,
 480	.next  = cciss_seq_next,
 481	.stop  = cciss_seq_stop,
 482};
 483
 484static int cciss_seq_open(struct inode *inode, struct file *file)
 485{
 486	int ret = seq_open(file, &cciss_seq_ops);
 487	struct seq_file *seq = file->private_data;
 488
 489	if (!ret)
 490		seq->private = PDE(inode)->data;
 491
 492	return ret;
 493}
 494
 495static ssize_t
 496cciss_proc_write(struct file *file, const char __user *buf,
 497		 size_t length, loff_t *ppos)
 498{
 499	int err;
 500	char *buffer;
 501
 502#ifndef CONFIG_CISS_SCSI_TAPE
 503	return -EINVAL;
 504#endif
 505
 506	if (!buf || length > PAGE_SIZE - 1)
 507		return -EINVAL;
 508
 509	buffer = (char *)__get_free_page(GFP_KERNEL);
 510	if (!buffer)
 511		return -ENOMEM;
 512
 513	err = -EFAULT;
 514	if (copy_from_user(buffer, buf, length))
 515		goto out;
 516	buffer[length] = '\0';
 517
 518#ifdef CONFIG_CISS_SCSI_TAPE
 519	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
 520		struct seq_file *seq = file->private_data;
 521		ctlr_info_t *h = seq->private;
 522
 523		err = cciss_engage_scsi(h);
 524		if (err == 0)
 525			err = length;
 526	} else
 527#endif /* CONFIG_CISS_SCSI_TAPE */
 528		err = -EINVAL;
 529	/* might be nice to have "disengage" too, but it's not
 530	   safely possible. (only 1 module use count, lock issues.) */
 531
 532out:
 533	free_page((unsigned long)buffer);
 534	return err;
 535}
 536
 537static const struct file_operations cciss_proc_fops = {
 538	.owner	 = THIS_MODULE,
 539	.open    = cciss_seq_open,
 540	.read    = seq_read,
 541	.llseek  = seq_lseek,
 542	.release = seq_release,
 543	.write	 = cciss_proc_write,
 544};
 545
 546static void __devinit cciss_procinit(ctlr_info_t *h)
 547{
 548	struct proc_dir_entry *pde;
 549
 550	if (proc_cciss == NULL)
 551		proc_cciss = proc_mkdir("driver/cciss", NULL);
 552	if (!proc_cciss)
 553		return;
 554	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
 555					S_IROTH, proc_cciss,
 556					&cciss_proc_fops, h);
 557}
 558#endif				/* CONFIG_PROC_FS */
 559
 560#define MAX_PRODUCT_NAME_LEN 19
 561
 562#define to_hba(n) container_of(n, struct ctlr_info, dev)
 563#define to_drv(n) container_of(n, drive_info_struct, dev)
 564
 565/* List of controllers which cannot be hard reset on kexec with reset_devices */
 566static u32 unresettable_controller[] = {
 567	0x324a103C, /* Smart Array P712m */
 568	0x324b103C, /* SmartArray P711m */
 569	0x3223103C, /* Smart Array P800 */
 570	0x3234103C, /* Smart Array P400 */
 571	0x3235103C, /* Smart Array P400i */
 572	0x3211103C, /* Smart Array E200i */
 573	0x3212103C, /* Smart Array E200 */
 574	0x3213103C, /* Smart Array E200i */
 575	0x3214103C, /* Smart Array E200i */
 576	0x3215103C, /* Smart Array E200i */
 577	0x3237103C, /* Smart Array E500 */
 578	0x323D103C, /* Smart Array P700m */
 579	0x409C0E11, /* Smart Array 6400 */
 580	0x409D0E11, /* Smart Array 6400 EM */
 581};
 582
 583/* List of controllers which cannot even be soft reset */
 584static u32 soft_unresettable_controller[] = {
 585	0x409C0E11, /* Smart Array 6400 */
 586	0x409D0E11, /* Smart Array 6400 EM */
 587};
 588
 589static int ctlr_is_hard_resettable(u32 board_id)
 590{
 591	int i;
 592
 593	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 594		if (unresettable_controller[i] == board_id)
 595			return 0;
 596	return 1;
 597}
 598
 599static int ctlr_is_soft_resettable(u32 board_id)
 600{
 601	int i;
 602
 603	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 604		if (soft_unresettable_controller[i] == board_id)
 605			return 0;
 606	return 1;
 607}
 608
 609static int ctlr_is_resettable(u32 board_id)
 610{
 611	return ctlr_is_hard_resettable(board_id) ||
 612		ctlr_is_soft_resettable(board_id);
 613}
 614
 615static ssize_t host_show_resettable(struct device *dev,
 616				    struct device_attribute *attr,
 617				    char *buf)
 618{
 619	struct ctlr_info *h = to_hba(dev);
 620
 621	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 622}
 623static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
 624
 625static ssize_t host_store_rescan(struct device *dev,
 626				 struct device_attribute *attr,
 627				 const char *buf, size_t count)
 628{
 629	struct ctlr_info *h = to_hba(dev);
 630
 631	add_to_scan_list(h);
 632	wake_up_process(cciss_scan_thread);
 633	wait_for_completion_interruptible(&h->scan_wait);
 634
 635	return count;
 636}
 637static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 638
 639static ssize_t dev_show_unique_id(struct device *dev,
 640				 struct device_attribute *attr,
 641				 char *buf)
 642{
 643	drive_info_struct *drv = to_drv(dev);
 644	struct ctlr_info *h = to_hba(drv->dev.parent);
 645	__u8 sn[16];
 646	unsigned long flags;
 647	int ret = 0;
 648
 649	spin_lock_irqsave(&h->lock, flags);
 650	if (h->busy_configuring)
 651		ret = -EBUSY;
 652	else
 653		memcpy(sn, drv->serial_no, sizeof(sn));
 654	spin_unlock_irqrestore(&h->lock, flags);
 655
 656	if (ret)
 657		return ret;
 658	else
 659		return snprintf(buf, 16 * 2 + 2,
 660				"%02X%02X%02X%02X%02X%02X%02X%02X"
 661				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 662				sn[0], sn[1], sn[2], sn[3],
 663				sn[4], sn[5], sn[6], sn[7],
 664				sn[8], sn[9], sn[10], sn[11],
 665				sn[12], sn[13], sn[14], sn[15]);
 666}
 667static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
 668
 669static ssize_t dev_show_vendor(struct device *dev,
 670			       struct device_attribute *attr,
 671			       char *buf)
 672{
 673	drive_info_struct *drv = to_drv(dev);
 674	struct ctlr_info *h = to_hba(drv->dev.parent);
 675	char vendor[VENDOR_LEN + 1];
 676	unsigned long flags;
 677	int ret = 0;
 678
 679	spin_lock_irqsave(&h->lock, flags);
 680	if (h->busy_configuring)
 681		ret = -EBUSY;
 682	else
 683		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
 684	spin_unlock_irqrestore(&h->lock, flags);
 685
 686	if (ret)
 687		return ret;
 688	else
 689		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
 690}
 691static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
 692
 693static ssize_t dev_show_model(struct device *dev,
 694			      struct device_attribute *attr,
 695			      char *buf)
 696{
 697	drive_info_struct *drv = to_drv(dev);
 698	struct ctlr_info *h = to_hba(drv->dev.parent);
 699	char model[MODEL_LEN + 1];
 700	unsigned long flags;
 701	int ret = 0;
 702
 703	spin_lock_irqsave(&h->lock, flags);
 704	if (h->busy_configuring)
 705		ret = -EBUSY;
 706	else
 707		memcpy(model, drv->model, MODEL_LEN + 1);
 708	spin_unlock_irqrestore(&h->lock, flags);
 709
 710	if (ret)
 711		return ret;
 712	else
 713		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
 714}
 715static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
 716
 717static ssize_t dev_show_rev(struct device *dev,
 718			    struct device_attribute *attr,
 719			    char *buf)
 720{
 721	drive_info_struct *drv = to_drv(dev);
 722	struct ctlr_info *h = to_hba(drv->dev.parent);
 723	char rev[REV_LEN + 1];
 724	unsigned long flags;
 725	int ret = 0;
 726
 727	spin_lock_irqsave(&h->lock, flags);
 728	if (h->busy_configuring)
 729		ret = -EBUSY;
 730	else
 731		memcpy(rev, drv->rev, REV_LEN + 1);
 732	spin_unlock_irqrestore(&h->lock, flags);
 733
 734	if (ret)
 735		return ret;
 736	else
 737		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
 738}
 739static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
 740
 741static ssize_t cciss_show_lunid(struct device *dev,
 742				struct device_attribute *attr, char *buf)
 743{
 744	drive_info_struct *drv = to_drv(dev);
 745	struct ctlr_info *h = to_hba(drv->dev.parent);
 746	unsigned long flags;
 747	unsigned char lunid[8];
 748
 749	spin_lock_irqsave(&h->lock, flags);
 750	if (h->busy_configuring) {
 751		spin_unlock_irqrestore(&h->lock, flags);
 752		return -EBUSY;
 753	}
 754	if (!drv->heads) {
 755		spin_unlock_irqrestore(&h->lock, flags);
 756		return -ENOTTY;
 757	}
 758	memcpy(lunid, drv->LunID, sizeof(lunid));
 759	spin_unlock_irqrestore(&h->lock, flags);
 760	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 761		lunid[0], lunid[1], lunid[2], lunid[3],
 762		lunid[4], lunid[5], lunid[6], lunid[7]);
 763}
 764static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
 765
 766static ssize_t cciss_show_raid_level(struct device *dev,
 767				     struct device_attribute *attr, char *buf)
 768{
 769	drive_info_struct *drv = to_drv(dev);
 770	struct ctlr_info *h = to_hba(drv->dev.parent);
 771	int raid;
 772	unsigned long flags;
 773
 774	spin_lock_irqsave(&h->lock, flags);
 775	if (h->busy_configuring) {
 776		spin_unlock_irqrestore(&h->lock, flags);
 777		return -EBUSY;
 778	}
 779	raid = drv->raid_level;
 780	spin_unlock_irqrestore(&h->lock, flags);
 781	if (raid < 0 || raid > RAID_UNKNOWN)
 782		raid = RAID_UNKNOWN;
 783
 784	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
 785			raid_label[raid]);
 786}
 787static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
 788
 789static ssize_t cciss_show_usage_count(struct device *dev,
 790				      struct device_attribute *attr, char *buf)
 791{
 792	drive_info_struct *drv = to_drv(dev);
 793	struct ctlr_info *h = to_hba(drv->dev.parent);
 794	unsigned long flags;
 795	int count;
 796
 797	spin_lock_irqsave(&h->lock, flags);
 798	if (h->busy_configuring) {
 799		spin_unlock_irqrestore(&h->lock, flags);
 800		return -EBUSY;
 801	}
 802	count = drv->usage_count;
 803	spin_unlock_irqrestore(&h->lock, flags);
 804	return snprintf(buf, 20, "%d\n", count);
 805}
 806static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
 807
 808static struct attribute *cciss_host_attrs[] = {
 809	&dev_attr_rescan.attr,
 810	&dev_attr_resettable.attr,
 811	NULL
 812};
 813
 814static struct attribute_group cciss_host_attr_group = {
 815	.attrs = cciss_host_attrs,
 816};
 817
 818static const struct attribute_group *cciss_host_attr_groups[] = {
 819	&cciss_host_attr_group,
 820	NULL
 821};
 822
 823static struct device_type cciss_host_type = {
 824	.name		= "cciss_host",
 825	.groups		= cciss_host_attr_groups,
 826	.release	= cciss_hba_release,
 827};
 828
 829static struct attribute *cciss_dev_attrs[] = {
 830	&dev_attr_unique_id.attr,
 831	&dev_attr_model.attr,
 832	&dev_attr_vendor.attr,
 833	&dev_attr_rev.attr,
 834	&dev_attr_lunid.attr,
 835	&dev_attr_raid_level.attr,
 836	&dev_attr_usage_count.attr,
 837	NULL
 838};
 839
 840static struct attribute_group cciss_dev_attr_group = {
 841	.attrs = cciss_dev_attrs,
 842};
 843
 844static const struct attribute_group *cciss_dev_attr_groups[] = {
 845	&cciss_dev_attr_group,
 846	NULL
 847};
 848
 849static struct device_type cciss_dev_type = {
 850	.name		= "cciss_device",
 851	.groups		= cciss_dev_attr_groups,
 852	.release	= cciss_device_release,
 853};
 854
 855static struct bus_type cciss_bus_type = {
 856	.name		= "cciss",
 857};
 858
 859/*
 860 * cciss_hba_release is called when the reference count
 861 * of h->dev goes to zero.
 862 */
 863static void cciss_hba_release(struct device *dev)
 864{
 865	/*
 866	 * nothing to do, but need this to avoid a warning
 867	 * about not having a release handler from lib/kref.c.
 868	 */
 869}
 870
 871/*
 872 * Initialize sysfs entry for each controller.  This sets up and registers
 873 * the 'cciss#' directory for each individual controller under
 874 * /sys/bus/pci/devices/<dev>/.
 875 */
 876static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
 877{
 878	device_initialize(&h->dev);
 879	h->dev.type = &cciss_host_type;
 880	h->dev.bus = &cciss_bus_type;
 881	dev_set_name(&h->dev, "%s", h->devname);
 882	h->dev.parent = &h->pdev->dev;
 883
 884	return device_add(&h->dev);
 885}
 886
 887/*
 888 * Remove sysfs entries for an hba.
 889 */
 890static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
 891{
 892	device_del(&h->dev);
 893	put_device(&h->dev); /* final put. */
 894}
 895
 896/* cciss_device_release is called when the reference count
 897 * of h->drv[x]dev goes to zero.
 898 */
 899static void cciss_device_release(struct device *dev)
 900{
 901	drive_info_struct *drv = to_drv(dev);
 902	kfree(drv);
 903}
 904
 905/*
 906 * Initialize sysfs for each logical drive.  This sets up and registers
 907 * the 'c#d#' directory for each individual logical drive under
 908 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
 909 * /sys/block/cciss!c#d# to this entry.
 910 */
 911static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
 912				       int drv_index)
 913{
 914	struct device *dev;
 915
 916	if (h->drv[drv_index]->device_initialized)
 917		return 0;
 918
 919	dev = &h->drv[drv_index]->dev;
 920	device_initialize(dev);
 921	dev->type = &cciss_dev_type;
 922	dev->bus = &cciss_bus_type;
 923	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
 924	dev->parent = &h->dev;
 925	h->drv[drv_index]->device_initialized = 1;
 926	return device_add(dev);
 927}
 928
 929/*
 930 * Remove sysfs entries for a logical drive.
 931 */
 932static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
 933	int ctlr_exiting)
 934{
 935	struct device *dev = &h->drv[drv_index]->dev;
 936
 937	/* special case for c*d0, we only destroy it on controller exit */
 938	if (drv_index == 0 && !ctlr_exiting)
 939		return;
 940
 941	device_del(dev);
 942	put_device(dev); /* the "final" put. */
 943	h->drv[drv_index] = NULL;
 944}
 945
 946/*
 947 * For operations that cannot sleep, a command block is allocated at init,
 948 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 949 * which ones are free or in use.
 950 */
 951static CommandList_struct *cmd_alloc(ctlr_info_t *h)
 952{
 953	CommandList_struct *c;
 954	int i;
 955	u64bit temp64;
 956	dma_addr_t cmd_dma_handle, err_dma_handle;
 957
 958	do {
 959		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
 960		if (i == h->nr_cmds)
 961			return NULL;
 962	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
 963		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
 964	c = h->cmd_pool + i;
 965	memset(c, 0, sizeof(CommandList_struct));
 966	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
 967	c->err_info = h->errinfo_pool + i;
 968	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
 969	err_dma_handle = h->errinfo_pool_dhandle
 970	    + i * sizeof(ErrorInfo_struct);
 971	h->nr_allocs++;
 972
 973	c->cmdindex = i;
 974
 975	INIT_LIST_HEAD(&c->list);
 976	c->busaddr = (__u32) cmd_dma_handle;
 977	temp64.val = (__u64) err_dma_handle;
 978	c->ErrDesc.Addr.lower = temp64.val32.lower;
 979	c->ErrDesc.Addr.upper = temp64.val32.upper;
 980	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
 981
 982	c->ctlr = h->ctlr;
 983	return c;
 984}
 985
 986/* allocate a command using pci_alloc_consistent, used for ioctls,
 987 * etc., not for the main i/o path.
 988 */
 989static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
 990{
 991	CommandList_struct *c;
 992	u64bit temp64;
 993	dma_addr_t cmd_dma_handle, err_dma_handle;
 994
 995	c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
 996		sizeof(CommandList_struct), &cmd_dma_handle);
 997	if (c == NULL)
 998		return NULL;
 999	memset(c, 0, sizeof(CommandList_struct));
1000
1001	c->cmdindex = -1;
1002
1003	c->err_info = (ErrorInfo_struct *)
1004	    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1005		    &err_dma_handle);
1006
1007	if (c->err_info == NULL) {
1008		pci_free_consistent(h->pdev,
1009			sizeof(CommandList_struct), c, cmd_dma_handle);
1010		return NULL;
1011	}
1012	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1013
1014	INIT_LIST_HEAD(&c->list);
1015	c->busaddr = (__u32) cmd_dma_handle;
1016	temp64.val = (__u64) err_dma_handle;
1017	c->ErrDesc.Addr.lower = temp64.val32.lower;
1018	c->ErrDesc.Addr.upper = temp64.val32.upper;
1019	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1020
1021	c->ctlr = h->ctlr;
1022	return c;
1023}
1024
1025static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1026{
1027	int i;
1028
1029	i = c - h->cmd_pool;
1030	clear_bit(i & (BITS_PER_LONG - 1),
1031		  h->cmd_pool_bits + (i / BITS_PER_LONG));
1032	h->nr_frees++;
1033}
1034
1035static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1036{
1037	u64bit temp64;
1038
1039	temp64.val32.lower = c->ErrDesc.Addr.lower;
1040	temp64.val32.upper = c->ErrDesc.Addr.upper;
1041	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1042			    c->err_info, (dma_addr_t) temp64.val);
1043	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1044		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1045}
1046
1047static inline ctlr_info_t *get_host(struct gendisk *disk)
1048{
1049	return disk->queue->queuedata;
1050}
1051
1052static inline drive_info_struct *get_drv(struct gendisk *disk)
1053{
1054	return disk->private_data;
1055}
1056
1057/*
1058 * Open.  Make sure the device is really there.
1059 */
1060static int cciss_open(struct block_device *bdev, fmode_t mode)
1061{
1062	ctlr_info_t *h = get_host(bdev->bd_disk);
1063	drive_info_struct *drv = get_drv(bdev->bd_disk);
1064
1065	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1066	if (drv->busy_configuring)
1067		return -EBUSY;
1068	/*
1069	 * Root is allowed to open raw volume zero even if it's not configured
1070	 * so array config can still work. Root is also allowed to open any
1071	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1072	 * disk information.  I don't think I really like this
1073	 * but I'm already using way to many device nodes to claim another one
1074	 * for "raw controller".
1075	 */
1076	if (drv->heads == 0) {
1077		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1078			/* if not node 0 make sure it is a partition = 0 */
1079			if (MINOR(bdev->bd_dev) & 0x0f) {
1080				return -ENXIO;
1081				/* if it is, make sure we have a LUN ID */
1082			} else if (memcmp(drv->LunID, CTLR_LUNID,
1083				sizeof(drv->LunID))) {
1084				return -ENXIO;
1085			}
1086		}
1087		if (!capable(CAP_SYS_ADMIN))
1088			return -EPERM;
1089	}
1090	drv->usage_count++;
1091	h->usage_count++;
1092	return 0;
1093}
1094
1095static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1096{
1097	int ret;
1098
1099	mutex_lock(&cciss_mutex);
1100	ret = cciss_open(bdev, mode);
1101	mutex_unlock(&cciss_mutex);
1102
1103	return ret;
1104}
1105
1106/*
1107 * Close.  Sync first.
1108 */
1109static int cciss_release(struct gendisk *disk, fmode_t mode)
1110{
1111	ctlr_info_t *h;
1112	drive_info_struct *drv;
1113
1114	mutex_lock(&cciss_mutex);
1115	h = get_host(disk);
1116	drv = get_drv(disk);
1117	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1118	drv->usage_count--;
1119	h->usage_count--;
1120	mutex_unlock(&cciss_mutex);
1121	return 0;
1122}
1123
1124static int do_ioctl(struct block_device *bdev, fmode_t mode,
1125		    unsigned cmd, unsigned long arg)
1126{
1127	int ret;
1128	mutex_lock(&cciss_mutex);
1129	ret = cciss_ioctl(bdev, mode, cmd, arg);
1130	mutex_unlock(&cciss_mutex);
1131	return ret;
1132}
1133
1134#ifdef CONFIG_COMPAT
1135
1136static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1137				  unsigned cmd, unsigned long arg);
1138static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1139				      unsigned cmd, unsigned long arg);
1140
1141static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1142			      unsigned cmd, unsigned long arg)
1143{
1144	switch (cmd) {
1145	case CCISS_GETPCIINFO:
1146	case CCISS_GETINTINFO:
1147	case CCISS_SETINTINFO:
1148	case CCISS_GETNODENAME:
1149	case CCISS_SETNODENAME:
1150	case CCISS_GETHEARTBEAT:
1151	case CCISS_GETBUSTYPES:
1152	case CCISS_GETFIRMVER:
1153	case CCISS_GETDRIVVER:
1154	case CCISS_REVALIDVOLS:
1155	case CCISS_DEREGDISK:
1156	case CCISS_REGNEWDISK:
1157	case CCISS_REGNEWD:
1158	case CCISS_RESCANDISK:
1159	case CCISS_GETLUNINFO:
1160		return do_ioctl(bdev, mode, cmd, arg);
1161
1162	case CCISS_PASSTHRU32:
1163		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1164	case CCISS_BIG_PASSTHRU32:
1165		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1166
1167	default:
1168		return -ENOIOCTLCMD;
1169	}
1170}
1171
1172static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1173				  unsigned cmd, unsigned long arg)
1174{
1175	IOCTL32_Command_struct __user *arg32 =
1176	    (IOCTL32_Command_struct __user *) arg;
1177	IOCTL_Command_struct arg64;
1178	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1179	int err;
1180	u32 cp;
1181
1182	err = 0;
1183	err |=
1184	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1185			   sizeof(arg64.LUN_info));
1186	err |=
1187	    copy_from_user(&arg64.Request, &arg32->Request,
1188			   sizeof(arg64.Request));
1189	err |=
1190	    copy_from_user(&arg64.error_info, &arg32->error_info,
1191			   sizeof(arg64.error_info));
1192	err |= get_user(arg64.buf_size, &arg32->buf_size);
1193	err |= get_user(cp, &arg32->buf);
1194	arg64.buf = compat_ptr(cp);
1195	err |= copy_to_user(p, &arg64, sizeof(arg64));
1196
1197	if (err)
1198		return -EFAULT;
1199
1200	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1201	if (err)
1202		return err;
1203	err |=
1204	    copy_in_user(&arg32->error_info, &p->error_info,
1205			 sizeof(arg32->error_info));
1206	if (err)
1207		return -EFAULT;
1208	return err;
1209}
1210
1211static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1212				      unsigned cmd, unsigned long arg)
1213{
1214	BIG_IOCTL32_Command_struct __user *arg32 =
1215	    (BIG_IOCTL32_Command_struct __user *) arg;
1216	BIG_IOCTL_Command_struct arg64;
1217	BIG_IOCTL_Command_struct __user *p =
1218	    compat_alloc_user_space(sizeof(arg64));
1219	int err;
1220	u32 cp;
1221
1222	memset(&arg64, 0, sizeof(arg64));
1223	err = 0;
1224	err |=
1225	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1226			   sizeof(arg64.LUN_info));
1227	err |=
1228	    copy_from_user(&arg64.Request, &arg32->Request,
1229			   sizeof(arg64.Request));
1230	err |=
1231	    copy_from_user(&arg64.error_info, &arg32->error_info,
1232			   sizeof(arg64.error_info));
1233	err |= get_user(arg64.buf_size, &arg32->buf_size);
1234	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1235	err |= get_user(cp, &arg32->buf);
1236	arg64.buf = compat_ptr(cp);
1237	err |= copy_to_user(p, &arg64, sizeof(arg64));
1238
1239	if (err)
1240		return -EFAULT;
1241
1242	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1243	if (err)
1244		return err;
1245	err |=
1246	    copy_in_user(&arg32->error_info, &p->error_info,
1247			 sizeof(arg32->error_info));
1248	if (err)
1249		return -EFAULT;
1250	return err;
1251}
1252#endif
1253
1254static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1255{
1256	drive_info_struct *drv = get_drv(bdev->bd_disk);
1257
1258	if (!drv->cylinders)
1259		return -ENXIO;
1260
1261	geo->heads = drv->heads;
1262	geo->sectors = drv->sectors;
1263	geo->cylinders = drv->cylinders;
1264	return 0;
1265}
1266
1267static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1268{
1269	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1270			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1271		(void)check_for_unit_attention(h, c);
1272}
1273
1274static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1275{
1276	cciss_pci_info_struct pciinfo;
1277
1278	if (!argp)
1279		return -EINVAL;
1280	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1281	pciinfo.bus = h->pdev->bus->number;
1282	pciinfo.dev_fn = h->pdev->devfn;
1283	pciinfo.board_id = h->board_id;
1284	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1285		return -EFAULT;
1286	return 0;
1287}
1288
1289static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1290{
1291	cciss_coalint_struct intinfo;
1292
1293	if (!argp)
1294		return -EINVAL;
1295	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1296	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1297	if (copy_to_user
1298	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1299		return -EFAULT;
1300	return 0;
1301}
1302
1303static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1304{
1305	cciss_coalint_struct intinfo;
1306	unsigned long flags;
1307	int i;
1308
1309	if (!argp)
1310		return -EINVAL;
1311	if (!capable(CAP_SYS_ADMIN))
1312		return -EPERM;
1313	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1314		return -EFAULT;
1315	if ((intinfo.delay == 0) && (intinfo.count == 0))
1316		return -EINVAL;
1317	spin_lock_irqsave(&h->lock, flags);
1318	/* Update the field, and then ring the doorbell */
1319	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1320	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1321	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1322
1323	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1324		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1325			break;
1326		udelay(1000); /* delay and try again */
1327	}
1328	spin_unlock_irqrestore(&h->lock, flags);
1329	if (i >= MAX_IOCTL_CONFIG_WAIT)
1330		return -EAGAIN;
1331	return 0;
1332}
1333
1334static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1335{
1336	NodeName_type NodeName;
1337	int i;
1338
1339	if (!argp)
1340		return -EINVAL;
1341	for (i = 0; i < 16; i++)
1342		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1343	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1344		return -EFAULT;
1345	return 0;
1346}
1347
1348static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1349{
1350	NodeName_type NodeName;
1351	unsigned long flags;
1352	int i;
1353
1354	if (!argp)
1355		return -EINVAL;
1356	if (!capable(CAP_SYS_ADMIN))
1357		return -EPERM;
1358	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1359		return -EFAULT;
1360	spin_lock_irqsave(&h->lock, flags);
1361	/* Update the field, and then ring the doorbell */
1362	for (i = 0; i < 16; i++)
1363		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1364	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1365	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1366		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1367			break;
1368		udelay(1000); /* delay and try again */
1369	}
1370	spin_unlock_irqrestore(&h->lock, flags);
1371	if (i >= MAX_IOCTL_CONFIG_WAIT)
1372		return -EAGAIN;
1373	return 0;
1374}
1375
1376static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1377{
1378	Heartbeat_type heartbeat;
1379
1380	if (!argp)
1381		return -EINVAL;
1382	heartbeat = readl(&h->cfgtable->HeartBeat);
1383	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1384		return -EFAULT;
1385	return 0;
1386}
1387
1388static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1389{
1390	BusTypes_type BusTypes;
1391
1392	if (!argp)
1393		return -EINVAL;
1394	BusTypes = readl(&h->cfgtable->BusTypes);
1395	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1396		return -EFAULT;
1397	return 0;
1398}
1399
1400static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1401{
1402	FirmwareVer_type firmware;
1403
1404	if (!argp)
1405		return -EINVAL;
1406	memcpy(firmware, h->firm_ver, 4);
1407
1408	if (copy_to_user
1409	    (argp, firmware, sizeof(FirmwareVer_type)))
1410		return -EFAULT;
1411	return 0;
1412}
1413
1414static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1415{
1416	DriverVer_type DriverVer = DRIVER_VERSION;
1417
1418	if (!argp)
1419		return -EINVAL;
1420	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1421		return -EFAULT;
1422	return 0;
1423}
1424
1425static int cciss_getluninfo(ctlr_info_t *h,
1426	struct gendisk *disk, void __user *argp)
1427{
1428	LogvolInfo_struct luninfo;
1429	drive_info_struct *drv = get_drv(disk);
1430
1431	if (!argp)
1432		return -EINVAL;
1433	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1434	luninfo.num_opens = drv->usage_count;
1435	luninfo.num_parts = 0;
1436	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1437		return -EFAULT;
1438	return 0;
1439}
1440
1441static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1442{
1443	IOCTL_Command_struct iocommand;
1444	CommandList_struct *c;
1445	char *buff = NULL;
1446	u64bit temp64;
1447	DECLARE_COMPLETION_ONSTACK(wait);
1448
1449	if (!argp)
1450		return -EINVAL;
1451
1452	if (!capable(CAP_SYS_RAWIO))
1453		return -EPERM;
1454
1455	if (copy_from_user
1456	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1457		return -EFAULT;
1458	if ((iocommand.buf_size < 1) &&
1459	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1460		return -EINVAL;
1461	}
1462	if (iocommand.buf_size > 0) {
1463		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1464		if (buff == NULL)
1465			return -EFAULT;
1466	}
1467	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1468		/* Copy the data into the buffer we created */
1469		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1470			kfree(buff);
1471			return -EFAULT;
1472		}
1473	} else {
1474		memset(buff, 0, iocommand.buf_size);
1475	}
1476	c = cmd_special_alloc(h);
1477	if (!c) {
1478		kfree(buff);
1479		return -ENOMEM;
1480	}
1481	/* Fill in the command type */
1482	c->cmd_type = CMD_IOCTL_PEND;
1483	/* Fill in Command Header */
1484	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1485	if (iocommand.buf_size > 0) { /* buffer to fill */
1486		c->Header.SGList = 1;
1487		c->Header.SGTotal = 1;
1488	} else { /* no buffers to fill */
1489		c->Header.SGList = 0;
1490		c->Header.SGTotal = 0;
1491	}
1492	c->Header.LUN = iocommand.LUN_info;
1493	/* use the kernel address the cmd block for tag */
1494	c->Header.Tag.lower = c->busaddr;
1495
1496	/* Fill in Request block */
1497	c->Request = iocommand.Request;
1498
1499	/* Fill in the scatter gather information */
1500	if (iocommand.buf_size > 0) {
1501		temp64.val = pci_map_single(h->pdev, buff,
1502			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1503		c->SG[0].Addr.lower = temp64.val32.lower;
1504		c->SG[0].Addr.upper = temp64.val32.upper;
1505		c->SG[0].Len = iocommand.buf_size;
1506		c->SG[0].Ext = 0;  /* we are not chaining */
1507	}
1508	c->waiting = &wait;
1509
1510	enqueue_cmd_and_start_io(h, c);
1511	wait_for_completion(&wait);
1512
1513	/* unlock the buffers from DMA */
1514	temp64.val32.lower = c->SG[0].Addr.lower;
1515	temp64.val32.upper = c->SG[0].Addr.upper;
1516	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1517			 PCI_DMA_BIDIRECTIONAL);
1518	check_ioctl_unit_attention(h, c);
1519
1520	/* Copy the error information out */
1521	iocommand.error_info = *(c->err_info);
1522	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1523		kfree(buff);
1524		cmd_special_free(h, c);
1525		return -EFAULT;
1526	}
1527
1528	if (iocommand.Request.Type.Direction == XFER_READ) {
1529		/* Copy the data out of the buffer we created */
1530		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1531			kfree(buff);
1532			cmd_special_free(h, c);
1533			return -EFAULT;
1534		}
1535	}
1536	kfree(buff);
1537	cmd_special_free(h, c);
1538	return 0;
1539}
1540
1541static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1542{
1543	BIG_IOCTL_Command_struct *ioc;
1544	CommandList_struct *c;
1545	unsigned char **buff = NULL;
1546	int *buff_size = NULL;
1547	u64bit temp64;
1548	BYTE sg_used = 0;
1549	int status = 0;
1550	int i;
1551	DECLARE_COMPLETION_ONSTACK(wait);
1552	__u32 left;
1553	__u32 sz;
1554	BYTE __user *data_ptr;
1555
1556	if (!argp)
1557		return -EINVAL;
1558	if (!capable(CAP_SYS_RAWIO))
1559		return -EPERM;
1560	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1561	if (!ioc) {
1562		status = -ENOMEM;
1563		goto cleanup1;
1564	}
1565	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1566		status = -EFAULT;
1567		goto cleanup1;
1568	}
1569	if ((ioc->buf_size < 1) &&
1570	    (ioc->Request.Type.Direction != XFER_NONE)) {
1571		status = -EINVAL;
1572		goto cleanup1;
1573	}
1574	/* Check kmalloc limits  using all SGs */
1575	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1576		status = -EINVAL;
1577		goto cleanup1;
1578	}
1579	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1580		status = -EINVAL;
1581		goto cleanup1;
1582	}
1583	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1584	if (!buff) {
1585		status = -ENOMEM;
1586		goto cleanup1;
1587	}
1588	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1589	if (!buff_size) {
1590		status = -ENOMEM;
1591		goto cleanup1;
1592	}
1593	left = ioc->buf_size;
1594	data_ptr = ioc->buf;
1595	while (left) {
1596		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1597		buff_size[sg_used] = sz;
1598		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1599		if (buff[sg_used] == NULL) {
1600			status = -ENOMEM;
1601			goto cleanup1;
1602		}
1603		if (ioc->Request.Type.Direction == XFER_WRITE) {
1604			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1605				status = -EFAULT;
1606				goto cleanup1;
1607			}
1608		} else {
1609			memset(buff[sg_used], 0, sz);
1610		}
1611		left -= sz;
1612		data_ptr += sz;
1613		sg_used++;
1614	}
1615	c = cmd_special_alloc(h);
1616	if (!c) {
1617		status = -ENOMEM;
1618		goto cleanup1;
1619	}
1620	c->cmd_type = CMD_IOCTL_PEND;
1621	c->Header.ReplyQueue = 0;
1622	c->Header.SGList = sg_used;
1623	c->Header.SGTotal = sg_used;
1624	c->Header.LUN = ioc->LUN_info;
1625	c->Header.Tag.lower = c->busaddr;
1626
1627	c->Request = ioc->Request;
1628	for (i = 0; i < sg_used; i++) {
1629		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1630				    PCI_DMA_BIDIRECTIONAL);
1631		c->SG[i].Addr.lower = temp64.val32.lower;
1632		c->SG[i].Addr.upper = temp64.val32.upper;
1633		c->SG[i].Len = buff_size[i];
1634		c->SG[i].Ext = 0;	/* we are not chaining */
1635	}
1636	c->waiting = &wait;
1637	enqueue_cmd_and_start_io(h, c);
1638	wait_for_completion(&wait);
1639	/* unlock the buffers from DMA */
1640	for (i = 0; i < sg_used; i++) {
1641		temp64.val32.lower = c->SG[i].Addr.lower;
1642		temp64.val32.upper = c->SG[i].Addr.upper;
1643		pci_unmap_single(h->pdev,
1644			(dma_addr_t) temp64.val, buff_size[i],
1645			PCI_DMA_BIDIRECTIONAL);
1646	}
1647	check_ioctl_unit_attention(h, c);
1648	/* Copy the error information out */
1649	ioc->error_info = *(c->err_info);
1650	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1651		cmd_special_free(h, c);
1652		status = -EFAULT;
1653		goto cleanup1;
1654	}
1655	if (ioc->Request.Type.Direction == XFER_READ) {
1656		/* Copy the data out of the buffer we created */
1657		BYTE __user *ptr = ioc->buf;
1658		for (i = 0; i < sg_used; i++) {
1659			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1660				cmd_special_free(h, c);
1661				status = -EFAULT;
1662				goto cleanup1;
1663			}
1664			ptr += buff_size[i];
1665		}
1666	}
1667	cmd_special_free(h, c);
1668	status = 0;
1669cleanup1:
1670	if (buff) {
1671		for (i = 0; i < sg_used; i++)
1672			kfree(buff[i]);
1673		kfree(buff);
1674	}
1675	kfree(buff_size);
1676	kfree(ioc);
1677	return status;
1678}
1679
1680static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1681	unsigned int cmd, unsigned long arg)
1682{
1683	struct gendisk *disk = bdev->bd_disk;
1684	ctlr_info_t *h = get_host(disk);
1685	void __user *argp = (void __user *)arg;
1686
1687	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1688		cmd, arg);
1689	switch (cmd) {
1690	case CCISS_GETPCIINFO:
1691		return cciss_getpciinfo(h, argp);
1692	case CCISS_GETINTINFO:
1693		return cciss_getintinfo(h, argp);
1694	case CCISS_SETINTINFO:
1695		return cciss_setintinfo(h, argp);
1696	case CCISS_GETNODENAME:
1697		return cciss_getnodename(h, argp);
1698	case CCISS_SETNODENAME:
1699		return cciss_setnodename(h, argp);
1700	case CCISS_GETHEARTBEAT:
1701		return cciss_getheartbeat(h, argp);
1702	case CCISS_GETBUSTYPES:
1703		return cciss_getbustypes(h, argp);
1704	case CCISS_GETFIRMVER:
1705		return cciss_getfirmver(h, argp);
1706	case CCISS_GETDRIVVER:
1707		return cciss_getdrivver(h, argp);
1708	case CCISS_DEREGDISK:
1709	case CCISS_REGNEWD:
1710	case CCISS_REVALIDVOLS:
1711		return rebuild_lun_table(h, 0, 1);
1712	case CCISS_GETLUNINFO:
1713		return cciss_getluninfo(h, disk, argp);
1714	case CCISS_PASSTHRU:
1715		return cciss_passthru(h, argp);
1716	case CCISS_BIG_PASSTHRU:
1717		return cciss_bigpassthru(h, argp);
1718
1719	/* scsi_cmd_ioctl handles these, below, though some are not */
1720	/* very meaningful for cciss.  SG_IO is the main one people want. */
1721
1722	case SG_GET_VERSION_NUM:
1723	case SG_SET_TIMEOUT:
1724	case SG_GET_TIMEOUT:
1725	case SG_GET_RESERVED_SIZE:
1726	case SG_SET_RESERVED_SIZE:
1727	case SG_EMULATED_HOST:
1728	case SG_IO:
1729	case SCSI_IOCTL_SEND_COMMAND:
1730		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1731
1732	/* scsi_cmd_ioctl would normally handle these, below, but */
1733	/* they aren't a good fit for cciss, as CD-ROMs are */
1734	/* not supported, and we don't have any bus/target/lun */
1735	/* which we present to the kernel. */
1736
1737	case CDROM_SEND_PACKET:
1738	case CDROMCLOSETRAY:
1739	case CDROMEJECT:
1740	case SCSI_IOCTL_GET_IDLUN:
1741	case SCSI_IOCTL_GET_BUS_NUMBER:
1742	default:
1743		return -ENOTTY;
1744	}
1745}
1746
1747static void cciss_check_queues(ctlr_info_t *h)
1748{
1749	int start_queue = h->next_to_run;
1750	int i;
1751
1752	/* check to see if we have maxed out the number of commands that can
1753	 * be placed on the queue.  If so then exit.  We do this check here
1754	 * in case the interrupt we serviced was from an ioctl and did not
1755	 * free any new commands.
1756	 */
1757	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1758		return;
1759
1760	/* We have room on the queue for more commands.  Now we need to queue
1761	 * them up.  We will also keep track of the next queue to run so
1762	 * that every queue gets a chance to be started first.
1763	 */
1764	for (i = 0; i < h->highest_lun + 1; i++) {
1765		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1766		/* make sure the disk has been added and the drive is real
1767		 * because this can be called from the middle of init_one.
1768		 */
1769		if (!h->drv[curr_queue])
1770			continue;
1771		if (!(h->drv[curr_queue]->queue) ||
1772			!(h->drv[curr_queue]->heads))
1773			continue;
1774		blk_start_queue(h->gendisk[curr_queue]->queue);
1775
1776		/* check to see if we have maxed out the number of commands
1777		 * that can be placed on the queue.
1778		 */
1779		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1780			if (curr_queue == start_queue) {
1781				h->next_to_run =
1782				    (start_queue + 1) % (h->highest_lun + 1);
1783				break;
1784			} else {
1785				h->next_to_run = curr_queue;
1786				break;
1787			}
1788		}
1789	}
1790}
1791
1792static void cciss_softirq_done(struct request *rq)
1793{
1794	CommandList_struct *c = rq->completion_data;
1795	ctlr_info_t *h = hba[c->ctlr];
1796	SGDescriptor_struct *curr_sg = c->SG;
1797	u64bit temp64;
1798	unsigned long flags;
1799	int i, ddir;
1800	int sg_index = 0;
1801
1802	if (c->Request.Type.Direction == XFER_READ)
1803		ddir = PCI_DMA_FROMDEVICE;
1804	else
1805		ddir = PCI_DMA_TODEVICE;
1806
1807	/* command did not need to be retried */
1808	/* unmap the DMA mapping for all the scatter gather elements */
1809	for (i = 0; i < c->Header.SGList; i++) {
1810		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1811			cciss_unmap_sg_chain_block(h, c);
1812			/* Point to the next block */
1813			curr_sg = h->cmd_sg_list[c->cmdindex];
1814			sg_index = 0;
1815		}
1816		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1817		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1818		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1819				ddir);
1820		++sg_index;
1821	}
1822
1823	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1824
1825	/* set the residual count for pc requests */
1826	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1827		rq->resid_len = c->err_info->ResidualCnt;
1828
1829	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1830
1831	spin_lock_irqsave(&h->lock, flags);
1832	cmd_free(h, c);
1833	cciss_check_queues(h);
1834	spin_unlock_irqrestore(&h->lock, flags);
1835}
1836
1837static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1838	unsigned char scsi3addr[], uint32_t log_unit)
1839{
1840	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1841		sizeof(h->drv[log_unit]->LunID));
1842}
1843
1844/* This function gets the SCSI vendor, model, and revision of a logical drive
1845 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1846 * they cannot be read.
1847 */
1848static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1849				   char *vendor, char *model, char *rev)
1850{
1851	int rc;
1852	InquiryData_struct *inq_buf;
1853	unsigned char scsi3addr[8];
1854
1855	*vendor = '\0';
1856	*model = '\0';
1857	*rev = '\0';
1858
1859	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1860	if (!inq_buf)
1861		return;
1862
1863	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1864	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1865			scsi3addr, TYPE_CMD);
1866	if (rc == IO_OK) {
1867		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1868		vendor[VENDOR_LEN] = '\0';
1869		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1870		model[MODEL_LEN] = '\0';
1871		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1872		rev[REV_LEN] = '\0';
1873	}
1874
1875	kfree(inq_buf);
1876	return;
1877}
1878
1879/* This function gets the serial number of a logical drive via
1880 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1881 * number cannot be had, for whatever reason, 16 bytes of 0xff
1882 * are returned instead.
1883 */
1884static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1885				unsigned char *serial_no, int buflen)
1886{
1887#define PAGE_83_INQ_BYTES 64
1888	int rc;
1889	unsigned char *buf;
1890	unsigned char scsi3addr[8];
1891
1892	if (buflen > 16)
1893		buflen = 16;
1894	memset(serial_no, 0xff, buflen);
1895	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1896	if (!buf)
1897		return;
1898	memset(serial_no, 0, buflen);
1899	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1900	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1901		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1902	if (rc == IO_OK)
1903		memcpy(serial_no, &buf[8], buflen);
1904	kfree(buf);
1905	return;
1906}
1907
1908/*
1909 * cciss_add_disk sets up the block device queue for a logical drive
1910 */
1911static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1912				int drv_index)
1913{
1914	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1915	if (!disk->queue)
1916		goto init_queue_failure;
1917	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1918	disk->major = h->major;
1919	disk->first_minor = drv_index << NWD_SHIFT;
1920	disk->fops = &cciss_fops;
1921	if (cciss_create_ld_sysfs_entry(h, drv_index))
1922		goto cleanup_queue;
1923	disk->private_data = h->drv[drv_index];
1924	disk->driverfs_dev = &h->drv[drv_index]->dev;
1925
1926	/* Set up queue information */
1927	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1928
1929	/* This is a hardware imposed limit. */
1930	blk_queue_max_segments(disk->queue, h->maxsgentries);
1931
1932	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1933
1934	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1935
1936	disk->queue->queuedata = h;
1937
1938	blk_queue_logical_block_size(disk->queue,
1939				     h->drv[drv_index]->block_size);
1940
1941	/* Make sure all queue data is written out before */
1942	/* setting h->drv[drv_index]->queue, as setting this */
1943	/* allows the interrupt handler to start the queue */
1944	wmb();
1945	h->drv[drv_index]->queue = disk->queue;
1946	add_disk(disk);
1947	return 0;
1948
1949cleanup_queue:
1950	blk_cleanup_queue(disk->queue);
1951	disk->queue = NULL;
1952init_queue_failure:
1953	return -1;
1954}
1955
1956/* This function will check the usage_count of the drive to be updated/added.
1957 * If the usage_count is zero and it is a heretofore unknown drive, or,
1958 * the drive's capacity, geometry, or serial number has changed,
1959 * then the drive information will be updated and the disk will be
1960 * re-registered with the kernel.  If these conditions don't hold,
1961 * then it will be left alone for the next reboot.  The exception to this
1962 * is disk 0 which will always be left registered with the kernel since it
1963 * is also the controller node.  Any changes to disk 0 will show up on
1964 * the next reboot.
1965 */
1966static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1967	int first_time, int via_ioctl)
1968{
1969	struct gendisk *disk;
1970	InquiryData_struct *inq_buff = NULL;
1971	unsigned int block_size;
1972	sector_t total_size;
1973	unsigned long flags = 0;
1974	int ret = 0;
1975	drive_info_struct *drvinfo;
1976
1977	/* Get information about the disk and modify the driver structure */
1978	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1979	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1980	if (inq_buff == NULL || drvinfo == NULL)
1981		goto mem_msg;
1982
1983	/* testing to see if 16-byte CDBs are already being used */
1984	if (h->cciss_read == CCISS_READ_16) {
1985		cciss_read_capacity_16(h, drv_index,
1986			&total_size, &block_size);
1987
1988	} else {
1989		cciss_read_capacity(h, drv_index, &total_size, &block_size);
1990		/* if read_capacity returns all F's this volume is >2TB */
1991		/* in size so we switch to 16-byte CDB's for all */
1992		/* read/write ops */
1993		if (total_size == 0xFFFFFFFFULL) {
1994			cciss_read_capacity_16(h, drv_index,
1995			&total_size, &block_size);
1996			h->cciss_read = CCISS_READ_16;
1997			h->cciss_write = CCISS_WRITE_16;
1998		} else {
1999			h->cciss_read = CCISS_READ_10;
2000			h->cciss_write = CCISS_WRITE_10;
2001		}
2002	}
2003
2004	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2005			       inq_buff, drvinfo);
2006	drvinfo->block_size = block_size;
2007	drvinfo->nr_blocks = total_size + 1;
2008
2009	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2010				drvinfo->model, drvinfo->rev);
2011	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2012			sizeof(drvinfo->serial_no));
2013	/* Save the lunid in case we deregister the disk, below. */
2014	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2015		sizeof(drvinfo->LunID));
2016
2017	/* Is it the same disk we already know, and nothing's changed? */
2018	if (h->drv[drv_index]->raid_level != -1 &&
2019		((memcmp(drvinfo->serial_no,
2020				h->drv[drv_index]->serial_no, 16) == 0) &&
2021		drvinfo->block_size == h->drv[drv_index]->block_size &&
2022		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2023		drvinfo->heads == h->drv[drv_index]->heads &&
2024		drvinfo->sectors == h->drv[drv_index]->sectors &&
2025		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2026			/* The disk is unchanged, nothing to update */
2027			goto freeret;
2028
2029	/* If we get here it's not the same disk, or something's changed,
2030	 * so we need to * deregister it, and re-register it, if it's not
2031	 * in use.
2032	 * If the disk already exists then deregister it before proceeding
2033	 * (unless it's the first disk (for the controller node).
2034	 */
2035	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2036		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2037		spin_lock_irqsave(&h->lock, flags);
2038		h->drv[drv_index]->busy_configuring = 1;
2039		spin_unlock_irqrestore(&h->lock, flags);
2040
2041		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2042		 * which keeps the interrupt handler from starting
2043		 * the queue.
2044		 */
2045		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2046	}
2047
2048	/* If the disk is in use return */
2049	if (ret)
2050		goto freeret;
2051
2052	/* Save the new information from cciss_geometry_inquiry
2053	 * and serial number inquiry.  If the disk was deregistered
2054	 * above, then h->drv[drv_index] will be NULL.
2055	 */
2056	if (h->drv[drv_index] == NULL) {
2057		drvinfo->device_initialized = 0;
2058		h->drv[drv_index] = drvinfo;
2059		drvinfo = NULL; /* so it won't be freed below. */
2060	} else {
2061		/* special case for cxd0 */
2062		h->drv[drv_index]->block_size = drvinfo->block_size;
2063		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2064		h->drv[drv_index]->heads = drvinfo->heads;
2065		h->drv[drv_index]->sectors = drvinfo->sectors;
2066		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2067		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2068		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2069		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2070			VENDOR_LEN + 1);
2071		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2072		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2073	}
2074
2075	++h->num_luns;
2076	disk = h->gendisk[drv_index];
2077	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2078
2079	/* If it's not disk 0 (drv_index != 0)
2080	 * or if it was disk 0, but there was previously
2081	 * no actual corresponding configured logical drive
2082	 * (raid_leve == -1) then we want to update the
2083	 * logical drive's information.
2084	 */
2085	if (drv_index || first_time) {
2086		if (cciss_add_disk(h, disk, drv_index) != 0) {
2087			cciss_free_gendisk(h, drv_index);
2088			cciss_free_drive_info(h, drv_index);
2089			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2090				drv_index);
2091			--h->num_luns;
2092		}
2093	}
2094
2095freeret:
2096	kfree(inq_buff);
2097	kfree(drvinfo);
2098	return;
2099mem_msg:
2100	dev_err(&h->pdev->dev, "out of memory\n");
2101	goto freeret;
2102}
2103
2104/* This function will find the first index of the controllers drive array
2105 * that has a null drv pointer and allocate the drive info struct and
2106 * will return that index   This is where new drives will be added.
2107 * If the index to be returned is greater than the highest_lun index for
2108 * the controller then highest_lun is set * to this new index.
2109 * If there are no available indexes or if tha allocation fails, then -1
2110 * is returned.  * "controller_node" is used to know if this is a real
2111 * logical drive, or just the controller node, which determines if this
2112 * counts towards highest_lun.
2113 */
2114static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2115{
2116	int i;
2117	drive_info_struct *drv;
2118
2119	/* Search for an empty slot for our drive info */
2120	for (i = 0; i < CISS_MAX_LUN; i++) {
2121
2122		/* if not cxd0 case, and it's occupied, skip it. */
2123		if (h->drv[i] && i != 0)
2124			continue;
2125		/*
2126		 * If it's cxd0 case, and drv is alloc'ed already, and a
2127		 * disk is configured there, skip it.
2128		 */
2129		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2130			continue;
2131
2132		/*
2133		 * We've found an empty slot.  Update highest_lun
2134		 * provided this isn't just the fake cxd0 controller node.
2135		 */
2136		if (i > h->highest_lun && !controller_node)
2137			h->highest_lun = i;
2138
2139		/* If adding a real disk at cxd0, and it's already alloc'ed */
2140		if (i == 0 && h->drv[i] != NULL)
2141			return i;
2142
2143		/*
2144		 * Found an empty slot, not already alloc'ed.  Allocate it.
2145		 * Mark it with raid_level == -1, so we know it's new later on.
2146		 */
2147		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2148		if (!drv)
2149			return -1;
2150		drv->raid_level = -1; /* so we know it's new */
2151		h->drv[i] = drv;
2152		return i;
2153	}
2154	return -1;
2155}
2156
2157static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2158{
2159	kfree(h->drv[drv_index]);
2160	h->drv[drv_index] = NULL;
2161}
2162
2163static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2164{
2165	put_disk(h->gendisk[drv_index]);
2166	h->gendisk[drv_index] = NULL;
2167}
2168
2169/* cciss_add_gendisk finds a free hba[]->drv structure
2170 * and allocates a gendisk if needed, and sets the lunid
2171 * in the drvinfo structure.   It returns the index into
2172 * the ->drv[] array, or -1 if none are free.
2173 * is_controller_node indicates whether highest_lun should
2174 * count this disk, or if it's only being added to provide
2175 * a means to talk to the controller in case no logical
2176 * drives have yet been configured.
2177 */
2178static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2179	int controller_node)
2180{
2181	int drv_index;
2182
2183	drv_index = cciss_alloc_drive_info(h, controller_node);
2184	if (drv_index == -1)
2185		return -1;
2186
2187	/*Check if the gendisk needs to be allocated */
2188	if (!h->gendisk[drv_index]) {
2189		h->gendisk[drv_index] =
2190			alloc_disk(1 << NWD_SHIFT);
2191		if (!h->gendisk[drv_index]) {
2192			dev_err(&h->pdev->dev,
2193				"could not allocate a new disk %d\n",
2194				drv_index);
2195			goto err_free_drive_info;
2196		}
2197	}
2198	memcpy(h->drv[drv_index]->LunID, lunid,
2199		sizeof(h->drv[drv_index]->LunID));
2200	if (cciss_create_ld_sysfs_entry(h, drv_index))
2201		goto err_free_disk;
2202	/* Don't need to mark this busy because nobody */
2203	/* else knows about this disk yet to contend */
2204	/* for access to it. */
2205	h->drv[drv_index]->busy_configuring = 0;
2206	wmb();
2207	return drv_index;
2208
2209err_free_disk:
2210	cciss_free_gendisk(h, drv_index);
2211err_free_drive_info:
2212	cciss_free_drive_info(h, drv_index);
2213	return -1;
2214}
2215
2216/* This is for the special case of a controller which
2217 * has no logical drives.  In this case, we still need
2218 * to register a disk so the controller can be accessed
2219 * by the Array Config Utility.
2220 */
2221static void cciss_add_controller_node(ctlr_info_t *h)
2222{
2223	struct gendisk *disk;
2224	int drv_index;
2225
2226	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2227		return;
2228
2229	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2230	if (drv_index == -1)
2231		goto error;
2232	h->drv[drv_index]->block_size = 512;
2233	h->drv[drv_index]->nr_blocks = 0;
2234	h->drv[drv_index]->heads = 0;
2235	h->drv[drv_index]->sectors = 0;
2236	h->drv[drv_index]->cylinders = 0;
2237	h->drv[drv_index]->raid_level = -1;
2238	memset(h->drv[drv_index]->serial_no, 0, 16);
2239	disk = h->gendisk[drv_index];
2240	if (cciss_add_disk(h, disk, drv_index) == 0)
2241		return;
2242	cciss_free_gendisk(h, drv_index);
2243	cciss_free_drive_info(h, drv_index);
2244error:
2245	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2246	return;
2247}
2248
2249/* This function will add and remove logical drives from the Logical
2250 * drive array of the controller and maintain persistency of ordering
2251 * so that mount points are preserved until the next reboot.  This allows
2252 * for the removal of logical drives in the middle of the drive array
2253 * without a re-ordering of those drives.
2254 * INPUT
2255 * h		= The controller to perform the operations on
2256 */
2257static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2258	int via_ioctl)
2259{
2260	int num_luns;
2261	ReportLunData_struct *ld_buff = NULL;
2262	int return_code;
2263	int listlength = 0;
2264	int i;
2265	int drv_found;
2266	int drv_index = 0;
2267	unsigned char lunid[8] = CTLR_LUNID;
2268	unsigned long flags;
2269
2270	if (!capable(CAP_SYS_RAWIO))
2271		return -EPERM;
2272
2273	/* Set busy_configuring flag for this operation */
2274	spin_lock_irqsave(&h->lock, flags);
2275	if (h->busy_configuring) {
2276		spin_unlock_irqrestore(&h->lock, flags);
2277		return -EBUSY;
2278	}
2279	h->busy_configuring = 1;
2280	spin_unlock_irqrestore(&h->lock, flags);
2281
2282	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2283	if (ld_buff == NULL)
2284		goto mem_msg;
2285
2286	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2287				      sizeof(ReportLunData_struct),
2288				      0, CTLR_LUNID, TYPE_CMD);
2289
2290	if (return_code == IO_OK)
2291		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2292	else {	/* reading number of logical volumes failed */
2293		dev_warn(&h->pdev->dev,
2294			"report logical volume command failed\n");
2295		listlength = 0;
2296		goto freeret;
2297	}
2298
2299	num_luns = listlength / 8;	/* 8 bytes per entry */
2300	if (num_luns > CISS_MAX_LUN) {
2301		num_luns = CISS_MAX_LUN;
2302		dev_warn(&h->pdev->dev, "more luns configured"
2303		       " on controller than can be handled by"
2304		       " this driver.\n");
2305	}
2306
2307	if (num_luns == 0)
2308		cciss_add_controller_node(h);
2309
2310	/* Compare controller drive array to driver's drive array
2311	 * to see if any drives are missing on the controller due
2312	 * to action of Array Config Utility (user deletes drive)
2313	 * and deregister logical drives which have disappeared.
2314	 */
2315	for (i = 0; i <= h->highest_lun; i++) {
2316		int j;
2317		drv_found = 0;
2318
2319		/* skip holes in the array from already deleted drives */
2320		if (h->drv[i] == NULL)
2321			continue;
2322
2323		for (j = 0; j < num_luns; j++) {
2324			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2325			if (memcmp(h->drv[i]->LunID, lunid,
2326				sizeof(lunid)) == 0) {
2327				drv_found = 1;
2328				break;
2329			}
2330		}
2331		if (!drv_found) {
2332			/* Deregister it from the OS, it's gone. */
2333			spin_lock_irqsave(&h->lock, flags);
2334			h->drv[i]->busy_configuring = 1;
2335			spin_unlock_irqrestore(&h->lock, flags);
2336			return_code = deregister_disk(h, i, 1, via_ioctl);
2337			if (h->drv[i] != NULL)
2338				h->drv[i]->busy_configuring = 0;
2339		}
2340	}
2341
2342	/* Compare controller drive array to driver's drive array.
2343	 * Check for updates in the drive information and any new drives
2344	 * on the controller due to ACU adding logical drives, or changing
2345	 * a logical drive's size, etc.  Reregister any new/changed drives
2346	 */
2347	for (i = 0; i < num_luns; i++) {
2348		int j;
2349
2350		drv_found = 0;
2351
2352		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2353		/* Find if the LUN is already in the drive array
2354		 * of the driver.  If so then update its info
2355		 * if not in use.  If it does not exist then find
2356		 * the first free index and add it.
2357		 */
2358		for (j = 0; j <= h->highest_lun; j++) {
2359			if (h->drv[j] != NULL &&
2360				memcmp(h->drv[j]->LunID, lunid,
2361					sizeof(h->drv[j]->LunID)) == 0) {
2362				drv_index = j;
2363				drv_found = 1;
2364				break;
2365			}
2366		}
2367
2368		/* check if the drive was found already in the array */
2369		if (!drv_found) {
2370			drv_index = cciss_add_gendisk(h, lunid, 0);
2371			if (drv_index == -1)
2372				goto freeret;
2373		}
2374		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2375	}		/* end for */
2376
2377freeret:
2378	kfree(ld_buff);
2379	h->busy_configuring = 0;
2380	/* We return -1 here to tell the ACU that we have registered/updated
2381	 * all of the drives that we can and to keep it from calling us
2382	 * additional times.
2383	 */
2384	return -1;
2385mem_msg:
2386	dev_err(&h->pdev->dev, "out of memory\n");
2387	h->busy_configuring = 0;
2388	goto freeret;
2389}
2390
2391static void cciss_clear_drive_info(drive_info_struct *drive_info)
2392{
2393	/* zero out the disk size info */
2394	drive_info->nr_blocks = 0;
2395	drive_info->block_size = 0;
2396	drive_info->heads = 0;
2397	drive_info->sectors = 0;
2398	drive_info->cylinders = 0;
2399	drive_info->raid_level = -1;
2400	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2401	memset(drive_info->model, 0, sizeof(drive_info->model));
2402	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2403	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2404	/*
2405	 * don't clear the LUNID though, we need to remember which
2406	 * one this one is.
2407	 */
2408}
2409
2410/* This function will deregister the disk and it's queue from the
2411 * kernel.  It must be called with the controller lock held and the
2412 * drv structures busy_configuring flag set.  It's parameters are:
2413 *
2414 * disk = This is the disk to be deregistered
2415 * drv  = This is the drive_info_struct associated with the disk to be
2416 *        deregistered.  It contains information about the disk used
2417 *        by the driver.
2418 * clear_all = This flag determines whether or not the disk information
2419 *             is going to be completely cleared out and the highest_lun
2420 *             reset.  Sometimes we want to clear out information about
2421 *             the disk in preparation for re-adding it.  In this case
2422 *             the highest_lun should be left unchanged and the LunID
2423 *             should not be cleared.
2424 * via_ioctl
2425 *    This indicates whether we've reached this path via ioctl.
2426 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2427 *    If this path is reached via ioctl(), then the max_usage_count will
2428 *    be 1, as the process calling ioctl() has got to have the device open.
2429 *    If we get here via sysfs, then the max usage count will be zero.
2430*/
2431static int deregister_disk(ctlr_info_t *h, int drv_index,
2432			   int clear_all, int via_ioctl)
2433{
2434	int i;
2435	struct gendisk *disk;
2436	drive_info_struct *drv;
2437	int recalculate_highest_lun;
2438
2439	if (!capable(CAP_SYS_RAWIO))
2440		return -EPERM;
2441
2442	drv = h->drv[drv_index];
2443	disk = h->gendisk[drv_index];
2444
2445	/* make sure logical volume is NOT is use */
2446	if (clear_all || (h->gendisk[0] == disk)) {
2447		if (drv->usage_count > via_ioctl)
2448			return -EBUSY;
2449	} else if (drv->usage_count > 0)
2450		return -EBUSY;
2451
2452	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2453
2454	/* invalidate the devices and deregister the disk.  If it is disk
2455	 * zero do not deregister it but just zero out it's values.  This
2456	 * allows us to delete disk zero but keep the controller registered.
2457	 */
2458	if (h->gendisk[0] != disk) {
2459		struct request_queue *q = disk->queue;
2460		if (disk->flags & GENHD_FL_UP) {
2461			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2462			del_gendisk(disk);
2463		}
2464		if (q)
2465			blk_cleanup_queue(q);
2466		/* If clear_all is set then we are deleting the logical
2467		 * drive, not just refreshing its info.  For drives
2468		 * other than disk 0 we will call put_disk.  We do not
2469		 * do this for disk 0 as we need it to be able to
2470		 * configure the controller.
2471		 */
2472		if (clear_all){
2473			/* This isn't pretty, but we need to find the
2474			 * disk in our array and NULL our the pointer.
2475			 * This is so that we will call alloc_disk if
2476			 * this index is used again later.
2477			 */
2478			for (i=0; i < CISS_MAX_LUN; i++){
2479				if (h->gendisk[i] == disk) {
2480					h->gendisk[i] = NULL;
2481					break;
2482				}
2483			}
2484			put_disk(disk);
2485		}
2486	} else {
2487		set_capacity(disk, 0);
2488		cciss_clear_drive_info(drv);
2489	}
2490
2491	--h->num_luns;
2492
2493	/* if it was the last disk, find the new hightest lun */
2494	if (clear_all && recalculate_highest_lun) {
2495		int newhighest = -1;
2496		for (i = 0; i <= h->highest_lun; i++) {
2497			/* if the disk has size > 0, it is available */
2498			if (h->drv[i] && h->drv[i]->heads)
2499				newhighest = i;
2500		}
2501		h->highest_lun = newhighest;
2502	}
2503	return 0;
2504}
2505
2506static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2507		size_t size, __u8 page_code, unsigned char *scsi3addr,
2508		int cmd_type)
2509{
2510	u64bit buff_dma_handle;
2511	int status = IO_OK;
2512
2513	c->cmd_type = CMD_IOCTL_PEND;
2514	c->Header.ReplyQueue = 0;
2515	if (buff != NULL) {
2516		c->Header.SGList = 1;
2517		c->Header.SGTotal = 1;
2518	} else {
2519		c->Header.SGList = 0;
2520		c->Header.SGTotal = 0;
2521	}
2522	c->Header.Tag.lower = c->busaddr;
2523	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2524
2525	c->Request.Type.Type = cmd_type;
2526	if (cmd_type == TYPE_CMD) {
2527		switch (cmd) {
2528		case CISS_INQUIRY:
2529			/* are we trying to read a vital product page */
2530			if (page_code != 0) {
2531				c->Request.CDB[1] = 0x01;
2532				c->Request.CDB[2] = page_code;
2533			}
2534			c->Request.CDBLen = 6;
2535			c->Request.Type.Attribute = ATTR_SIMPLE;
2536			c->Request.Type.Direction = XFER_READ;
2537			c->Request.Timeout = 0;
2538			c->Request.CDB[0] = CISS_INQUIRY;
2539			c->Request.CDB[4] = size & 0xFF;
2540			break;
2541		case CISS_REPORT_LOG:
2542		case CISS_REPORT_PHYS:
2543			/* Talking to controller so It's a physical command
2544			   mode = 00 target = 0.  Nothing to write.
2545			 */
2546			c->Request.CDBLen = 12;
2547			c->Request.Type.Attribute = ATTR_SIMPLE;
2548			c->Request.Type.Direction = XFER_READ;
2549			c->Request.Timeout = 0;
2550			c->Request.CDB[0] = cmd;
2551			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2552			c->Request.CDB[7] = (size >> 16) & 0xFF;
2553			c->Request.CDB[8] = (size >> 8) & 0xFF;
2554			c->Request.CDB[9] = size & 0xFF;
2555			break;
2556
2557		case CCISS_READ_CAPACITY:
2558			c->Request.CDBLen = 10;
2559			c->Request.Type.Attribute = ATTR_SIMPLE;
2560			c->Request.Type.Direction = XFER_READ;
2561			c->Request.Timeout = 0;
2562			c->Request.CDB[0] = cmd;
2563			break;
2564		case CCISS_READ_CAPACITY_16:
2565			c->Request.CDBLen = 16;
2566			c->Request.Type.Attribute = ATTR_SIMPLE;
2567			c->Request.Type.Direction = XFER_READ;
2568			c->Request.Timeout = 0;
2569			c->Request.CDB[0] = cmd;
2570			c->Request.CDB[1] = 0x10;
2571			c->Request.CDB[10] = (size >> 24) & 0xFF;
2572			c->Request.CDB[11] = (size >> 16) & 0xFF;
2573			c->Request.CDB[12] = (size >> 8) & 0xFF;
2574			c->Request.CDB[13] = size & 0xFF;
2575			c->Request.Timeout = 0;
2576			c->Request.CDB[0] = cmd;
2577			break;
2578		case CCISS_CACHE_FLUSH:
2579			c->Request.CDBLen = 12;
2580			c->Request.Type.Attribute = ATTR_SIMPLE;
2581			c->Request.Type.Direction = XFER_WRITE;
2582			c->Request.Timeout = 0;
2583			c->Request.CDB[0] = BMIC_WRITE;
2584			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2585			break;
2586		case TEST_UNIT_READY:
2587			c->Request.CDBLen = 6;
2588			c->Request.Type.Attribute = ATTR_SIMPLE;
2589			c->Request.Type.Direction = XFER_NONE;
2590			c->Request.Timeout = 0;
2591			break;
2592		default:
2593			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2594			return IO_ERROR;
2595		}
2596	} else if (cmd_type == TYPE_MSG) {
2597		switch (cmd) {
2598		case CCISS_ABORT_MSG:
2599			c->Request.CDBLen = 12;
2600			c->Request.Type.Attribute = ATTR_SIMPLE;
2601			c->Request.Type.Direction = XFER_WRITE;
2602			c->Request.Timeout = 0;
2603			c->Request.CDB[0] = cmd;	/* abort */
2604			c->Request.CDB[1] = 0;	/* abort a command */
2605			/* buff contains the tag of the command to abort */
2606			memcpy(&c->Request.CDB[4], buff, 8);
2607			break;
2608		case CCISS_RESET_MSG:
2609			c->Request.CDBLen = 16;
2610			c->Request.Type.Attribute = ATTR_SIMPLE;
2611			c->Request.Type.Direction = XFER_NONE;
2612			c->Request.Timeout = 0;
2613			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2614			c->Request.CDB[0] = cmd;	/* reset */
2615			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2616			break;
2617		case CCISS_NOOP_MSG:
2618			c->Request.CDBLen = 1;
2619			c->Request.Type.Attribute = ATTR_SIMPLE;
2620			c->Request.Type.Direction = XFER_WRITE;
2621			c->Request.Timeout = 0;
2622			c->Request.CDB[0] = cmd;
2623			break;
2624		default:
2625			dev_warn(&h->pdev->dev,
2626				"unknown message type %d\n", cmd);
2627			return IO_ERROR;
2628		}
2629	} else {
2630		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2631		return IO_ERROR;
2632	}
2633	/* Fill in the scatter gather information */
2634	if (size > 0) {
2635		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2636							     buff, size,
2637							     PCI_DMA_BIDIRECTIONAL);
2638		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2639		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2640		c->SG[0].Len = size;
2641		c->SG[0].Ext = 0;	/* we are not chaining */
2642	}
2643	return status;
2644}
2645
2646static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2647	u8 reset_type)
2648{
2649	CommandList_struct *c;
2650	int return_status;
2651
2652	c = cmd_alloc(h);
2653	if (!c)
2654		return -ENOMEM;
2655	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2656		CTLR_LUNID, TYPE_MSG);
2657	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2658	if (return_status != IO_OK) {
2659		cmd_special_free(h, c);
2660		return return_status;
2661	}
2662	c->waiting = NULL;
2663	enqueue_cmd_and_start_io(h, c);
2664	/* Don't wait for completion, the reset won't complete.  Don't free
2665	 * the command either.  This is the last command we will send before
2666	 * re-initializing everything, so it doesn't matter and won't leak.
2667	 */
2668	return 0;
2669}
2670
2671static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2672{
2673	switch (c->err_info->ScsiStatus) {
2674	case SAM_STAT_GOOD:
2675		return IO_OK;
2676	case SAM_STAT_CHECK_CONDITION:
2677		switch (0xf & c->err_info->SenseInfo[2]) {
2678		case 0: return IO_OK; /* no sense */
2679		case 1: return IO_OK; /* recovered error */
2680		default:
2681			if (check_for_unit_attention(h, c))
2682				return IO_NEEDS_RETRY;
2683			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2684				"check condition, sense key = 0x%02x\n",
2685				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2686		}
2687		break;
2688	default:
2689		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2690			"scsi status = 0x%02x\n",
2691			c->Request.CDB[0], c->err_info->ScsiStatus);
2692		break;
2693	}
2694	return IO_ERROR;
2695}
2696
2697static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2698{
2699	int return_status = IO_OK;
2700
2701	if (c->err_info->CommandStatus == CMD_SUCCESS)
2702		return IO_OK;
2703
2704	switch (c->err_info->CommandStatus) {
2705	case CMD_TARGET_STATUS:
2706		return_status = check_target_status(h, c);
2707		break;
2708	case CMD_DATA_UNDERRUN:
2709	case CMD_DATA_OVERRUN:
2710		/* expected for inquiry and report lun commands */
2711		break;
2712	case CMD_INVALID:
2713		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2714		       "reported invalid\n", c->Request.CDB[0]);
2715		return_status = IO_ERROR;
2716		break;
2717	case CMD_PROTOCOL_ERR:
2718		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2719		       "protocol error\n", c->Request.CDB[0]);
2720		return_status = IO_ERROR;
2721		break;
2722	case CMD_HARDWARE_ERR:
2723		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2724		       " hardware error\n", c->Request.CDB[0]);
2725		return_status = IO_ERROR;
2726		break;
2727	case CMD_CONNECTION_LOST:
2728		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2729		       "connection lost\n", c->Request.CDB[0]);
2730		return_status = IO_ERROR;
2731		break;
2732	case CMD_ABORTED:
2733		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2734		       "aborted\n", c->Request.CDB[0]);
2735		return_status = IO_ERROR;
2736		break;
2737	case CMD_ABORT_FAILED:
2738		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2739		       "abort failed\n", c->Request.CDB[0]);
2740		return_status = IO_ERROR;
2741		break;
2742	case CMD_UNSOLICITED_ABORT:
2743		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2744			c->Request.CDB[0]);
2745		return_status = IO_NEEDS_RETRY;
2746		break;
2747	case CMD_UNABORTABLE:
2748		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2749		return_status = IO_ERROR;
2750		break;
2751	default:
2752		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2753		       "unknown status %x\n", c->Request.CDB[0],
2754		       c->err_info->CommandStatus);
2755		return_status = IO_ERROR;
2756	}
2757	return return_status;
2758}
2759
2760static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2761	int attempt_retry)
2762{
2763	DECLARE_COMPLETION_ONSTACK(wait);
2764	u64bit buff_dma_handle;
2765	int return_status = IO_OK;
2766
2767resend_cmd2:
2768	c->waiting = &wait;
2769	enqueue_cmd_and_start_io(h, c);
2770
2771	wait_for_completion(&wait);
2772
2773	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2774		goto command_done;
2775
2776	return_status = process_sendcmd_error(h, c);
2777
2778	if (return_status == IO_NEEDS_RETRY &&
2779		c->retry_count < MAX_CMD_RETRIES) {
2780		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2781			c->Request.CDB[0]);
2782		c->retry_count++;
2783		/* erase the old error information */
2784		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2785		return_status = IO_OK;
2786		INIT_COMPLETION(wait);
2787		goto resend_cmd2;
2788	}
2789
2790command_done:
2791	/* unlock the buffers from DMA */
2792	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2793	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2794	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2795			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2796	return return_status;
2797}
2798
2799static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2800			   __u8 page_code, unsigned char scsi3addr[],
2801			int cmd_type)
2802{
2803	CommandList_struct *c;
2804	int return_status;
2805
2806	c = cmd_special_alloc(h);
2807	if (!c)
2808		return -ENOMEM;
2809	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2810		scsi3addr, cmd_type);
2811	if (return_status == IO_OK)
2812		return_status = sendcmd_withirq_core(h, c, 1);
2813
2814	cmd_special_free(h, c);
2815	return return_status;
2816}
2817
2818static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2819				   sector_t total_size,
2820				   unsigned int block_size,
2821				   InquiryData_struct *inq_buff,
2822				   drive_info_struct *drv)
2823{
2824	int return_code;
2825	unsigned long t;
2826	unsigned char scsi3addr[8];
2827
2828	memset(inq_buff, 0, sizeof(InquiryData_struct));
2829	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2830	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2831			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2832	if (return_code == IO_OK) {
2833		if (inq_buff->data_byte[8] == 0xFF) {
2834			dev_warn(&h->pdev->dev,
2835			       "reading geometry failed, volume "
2836			       "does not support reading geometry\n");
2837			drv->heads = 255;
2838			drv->sectors = 32;	/* Sectors per track */
2839			drv->cylinders = total_size + 1;
2840			drv->raid_level = RAID_UNKNOWN;
2841		} else {
2842			drv->heads = inq_buff->data_byte[6];
2843			drv->sectors = inq_buff->data_byte[7];
2844			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2845			drv->cylinders += inq_buff->data_byte[5];
2846			drv->raid_level = inq_buff->data_byte[8];
2847		}
2848		drv->block_size = block_size;
2849		drv->nr_blocks = total_size + 1;
2850		t = drv->heads * drv->sectors;
2851		if (t > 1) {
2852			sector_t real_size = total_size + 1;
2853			unsigned long rem = sector_div(real_size, t);
2854			if (rem)
2855				real_size++;
2856			drv->cylinders = real_size;
2857		}
2858	} else {		/* Get geometry failed */
2859		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2860	}
2861}
2862
2863static void
2864cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2865		    unsigned int *block_size)
2866{
2867	ReadCapdata_struct *buf;
2868	int return_code;
2869	unsigned char scsi3addr[8];
2870
2871	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2872	if (!buf) {
2873		dev_warn(&h->pdev->dev, "out of memory\n");
2874		return;
2875	}
2876
2877	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2878	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2879		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2880	if (return_code == IO_OK) {
2881		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2882		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2883	} else {		/* read capacity command failed */
2884		dev_warn(&h->pdev->dev, "read capacity failed\n");
2885		*total_size = 0;
2886		*block_size = BLOCK_SIZE;
2887	}
2888	kfree(buf);
2889}
2890
2891static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2892	sector_t *total_size, unsigned int *block_size)
2893{
2894	ReadCapdata_struct_16 *buf;
2895	int return_code;
2896	unsigned char scsi3addr[8];
2897
2898	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2899	if (!buf) {
2900		dev_warn(&h->pdev->dev, "out of memory\n");
2901		return;
2902	}
2903
2904	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2905	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2906		buf, sizeof(ReadCapdata_struct_16),
2907			0, scsi3addr, TYPE_CMD);
2908	if (return_code == IO_OK) {
2909		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2910		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2911	} else {		/* read capacity command failed */
2912		dev_warn(&h->pdev->dev, "read capacity failed\n");
2913		*total_size = 0;
2914		*block_size = BLOCK_SIZE;
2915	}
2916	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2917	       (unsigned long long)*total_size+1, *block_size);
2918	kfree(buf);
2919}
2920
2921static int cciss_revalidate(struct gendisk *disk)
2922{
2923	ctlr_info_t *h = get_host(disk);
2924	drive_info_struct *drv = get_drv(disk);
2925	int logvol;
2926	int FOUND = 0;
2927	unsigned int block_size;
2928	sector_t total_size;
2929	InquiryData_struct *inq_buff = NULL;
2930
2931	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2932		if (!h->drv[logvol])
2933			continue;
2934		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2935			sizeof(drv->LunID)) == 0) {
2936			FOUND = 1;
2937			break;
2938		}
2939	}
2940
2941	if (!FOUND)
2942		return 1;
2943
2944	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2945	if (inq_buff == NULL) {
2946		dev_warn(&h->pdev->dev, "out of memory\n");
2947		return 1;
2948	}
2949	if (h->cciss_read == CCISS_READ_10) {
2950		cciss_read_capacity(h, logvol,
2951					&total_size, &block_size);
2952	} else {
2953		cciss_read_capacity_16(h, logvol,
2954					&total_size, &block_size);
2955	}
2956	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2957			       inq_buff, drv);
2958
2959	blk_queue_logical_block_size(drv->queue, drv->block_size);
2960	set_capacity(disk, drv->nr_blocks);
2961
2962	kfree(inq_buff);
2963	return 0;
2964}
2965
2966/*
2967 * Map (physical) PCI mem into (virtual) kernel space
2968 */
2969static void __iomem *remap_pci_mem(ulong base, ulong size)
2970{
2971	ulong page_base = ((ulong) base) & PAGE_MASK;
2972	ulong page_offs = ((ulong) base) - page_base;
2973	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2974
2975	return page_remapped ? (page_remapped + page_offs) : NULL;
2976}
2977
2978/*
2979 * Takes jobs of the Q and sends them to the hardware, then puts it on
2980 * the Q to wait for completion.
2981 */
2982static void start_io(ctlr_info_t *h)
2983{
2984	CommandList_struct *c;
2985
2986	while (!list_empty(&h->reqQ)) {
2987		c = list_entry(h->reqQ.next, CommandList_struct, list);
2988		/* can't do anything if fifo is full */
2989		if ((h->access.fifo_full(h))) {
2990			dev_warn(&h->pdev->dev, "fifo full\n");
2991			break;
2992		}
2993
2994		/* Get the first entry from the Request Q */
2995		removeQ(c);
2996		h->Qdepth--;
2997
2998		/* Tell the controller execute command */
2999		h->access.submit_command(h, c);
3000
3001		/* Put job onto the completed Q */
3002		addQ(&h->cmpQ, c);
3003	}
3004}
3005
3006/* Assumes that h->lock is held. */
3007/* Zeros out the error record and then resends the command back */
3008/* to the controller */
3009static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3010{
3011	/* erase the old error information */
3012	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3013
3014	/* add it to software queue and then send it to the controller */
3015	addQ(&h->reqQ, c);
3016	h->Qdepth++;
3017	if (h->Qdepth > h->maxQsinceinit)
3018		h->maxQsinceinit = h->Qdepth;
3019
3020	start_io(h);
3021}
3022
3023static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3024	unsigned int msg_byte, unsigned int host_byte,
3025	unsigned int driver_byte)
3026{
3027	/* inverse of macros in scsi.h */
3028	return (scsi_status_byte & 0xff) |
3029		((msg_byte & 0xff) << 8) |
3030		((host_byte & 0xff) << 16) |
3031		((driver_byte & 0xff) << 24);
3032}
3033
3034static inline int evaluate_target_status(ctlr_info_t *h,
3035			CommandList_struct *cmd, int *retry_cmd)
3036{
3037	unsigned char sense_key;
3038	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3039	int error_value;
3040
3041	*retry_cmd = 0;
3042	/* If we get in here, it means we got "target status", that is, scsi status */
3043	status_byte = cmd->err_info->ScsiStatus;
3044	driver_byte = DRIVER_OK;
3045	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3046
3047	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3048		host_byte = DID_PASSTHROUGH;
3049	else
3050		host_byte = DID_OK;
3051
3052	error_value = make_status_bytes(status_byte, msg_byte,
3053		host_byte, driver_byte);
3054
3055	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3056		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3057			dev_warn(&h->pdev->dev, "cmd %p "
3058			       "has SCSI Status 0x%x\n",
3059			       cmd, cmd->err_info->ScsiStatus);
3060		return error_value;
3061	}
3062
3063	/* check the sense key */
3064	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3065	/* no status or recovered error */
3066	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3067	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3068		error_value = 0;
3069
3070	if (check_for_unit_attention(h, cmd)) {
3071		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3072		return 0;
3073	}
3074
3075	/* Not SG_IO or similar? */
3076	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3077		if (error_value != 0)
3078			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3079			       " sense key = 0x%x\n", cmd, sense_key);
3080		return error_value;
3081	}
3082
3083	/* SG_IO or similar, copy sense data back */
3084	if (cmd->rq->sense) {
3085		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3086			cmd->rq->sense_len = cmd->err_info->SenseLen;
3087		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3088			cmd->rq->sense_len);
3089	} else
3090		cmd->rq->sense_len = 0;
3091
3092	return error_value;
3093}
3094
3095/* checks the status of the job and calls complete buffers to mark all
3096 * buffers for the completed job. Note that this function does not need
3097 * to hold the hba/queue lock.
3098 */
3099static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3100				    int timeout)
3101{
3102	int retry_cmd = 0;
3103	struct request *rq = cmd->rq;
3104
3105	rq->errors = 0;
3106
3107	if (timeout)
3108		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3109
3110	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3111		goto after_error_processing;
3112
3113	switch (cmd->err_info->CommandStatus) {
3114	case CMD_TARGET_STATUS:
3115		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3116		break;
3117	case CMD_DATA_UNDERRUN:
3118		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3119			dev_warn(&h->pdev->dev, "cmd %p has"
3120			       " completed with data underrun "
3121			       "reported\n", cmd);
3122			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3123		}
3124		break;
3125	case CMD_DATA_OVERRUN:
3126		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3127			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3128			       " completed with data overrun "
3129			       "reported\n", cmd);
3130		break;
3131	case CMD_INVALID:
3132		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3133		       "reported invalid\n", cmd);
3134		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3135			cmd->err_info->CommandStatus, DRIVER_OK,
3136			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3137				DID_PASSTHROUGH : DID_ERROR);
3138		break;
3139	case CMD_PROTOCOL_ERR:
3140		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3141		       "protocol error\n", cmd);
3142		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3143			cmd->err_info->CommandStatus, DRIVER_OK,
3144			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3145				DID_PASSTHROUGH : DID_ERROR);
3146		break;
3147	case CMD_HARDWARE_ERR:
3148		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3149		       " hardware error\n", cmd);
3150		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3151			cmd->err_info->CommandStatus, DRIVER_OK,
3152			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3153				DID_PASSTHROUGH : DID_ERROR);
3154		break;
3155	case CMD_CONNECTION_LOST:
3156		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3157		       "connection lost\n", cmd);
3158		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3159			cmd->err_info->CommandStatus, DRIVER_OK,
3160			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3161				DID_PASSTHROUGH : DID_ERROR);
3162		break;
3163	case CMD_ABORTED:
3164		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3165		       "aborted\n", cmd);
3166		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167			cmd->err_info->CommandStatus, DRIVER_OK,
3168			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3169				DID_PASSTHROUGH : DID_ABORT);
3170		break;
3171	case CMD_ABORT_FAILED:
3172		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3173		       "abort failed\n", cmd);
3174		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175			cmd->err_info->CommandStatus, DRIVER_OK,
3176			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3177				DID_PASSTHROUGH : DID_ERROR);
3178		break;
3179	case CMD_UNSOLICITED_ABORT:
3180		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3181		       "abort %p\n", h->ctlr, cmd);
3182		if (cmd->retry_count < MAX_CMD_RETRIES) {
3183			retry_cmd = 1;
3184			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3185			cmd->retry_count++;
3186		} else
3187			dev_warn(&h->pdev->dev,
3188				"%p retried too many times\n", cmd);
3189		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3190			cmd->err_info->CommandStatus, DRIVER_OK,
3191			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3192				DID_PASSTHROUGH : DID_ABORT);
3193		break;
3194	case CMD_TIMEOUT:
3195		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3196		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197			cmd->err_info->CommandStatus, DRIVER_OK,
3198			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199				DID_PASSTHROUGH : DID_ERROR);
3200		break;
3201	case CMD_UNABORTABLE:
3202		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3203		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3204			cmd->err_info->CommandStatus, DRIVER_OK,
3205			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3206				DID_PASSTHROUGH : DID_ERROR);
3207		break;
3208	default:
3209		dev_warn(&h->pdev->dev, "cmd %p returned "
3210		       "unknown status %x\n", cmd,
3211		       cmd->err_info->CommandStatus);
3212		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213			cmd->err_info->CommandStatus, DRIVER_OK,
3214			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3215				DID_PASSTHROUGH : DID_ERROR);
3216	}
3217
3218after_error_processing:
3219
3220	/* We need to return this command */
3221	if (retry_cmd) {
3222		resend_cciss_cmd(h, cmd);
3223		return;
3224	}
3225	cmd->rq->completion_data = cmd;
3226	blk_complete_request(cmd->rq);
3227}
3228
3229static inline u32 cciss_tag_contains_index(u32 tag)
3230{
3231#define DIRECT_LOOKUP_BIT 0x10
3232	return tag & DIRECT_LOOKUP_BIT;
3233}
3234
3235static inline u32 cciss_tag_to_index(u32 tag)
3236{
3237#define DIRECT_LOOKUP_SHIFT 5
3238	return tag >> DIRECT_LOOKUP_SHIFT;
3239}
3240
3241static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3242{
3243#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3244#define CCISS_SIMPLE_ERROR_BITS 0x03
3245	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3246		return tag & ~CCISS_PERF_ERROR_BITS;
3247	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3248}
3249
3250static inline void cciss_mark_tag_indexed(u32 *tag)
3251{
3252	*tag |= DIRECT_LOOKUP_BIT;
3253}
3254
3255static inline void cciss_set_tag_index(u32 *tag, u32 index)
3256{
3257	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3258}
3259
3260/*
3261 * Get a request and submit it to the controller.
3262 */
3263static void do_cciss_request(struct request_queue *q)
3264{
3265	ctlr_info_t *h = q->queuedata;
3266	CommandList_struct *c;
3267	sector_t start_blk;
3268	int seg;
3269	struct request *creq;
3270	u64bit temp64;
3271	struct scatterlist *tmp_sg;
3272	SGDescriptor_struct *curr_sg;
3273	drive_info_struct *drv;
3274	int i, dir;
3275	int sg_index = 0;
3276	int chained = 0;
3277
3278      queue:
3279	creq = blk_peek_request(q);
3280	if (!creq)
3281		goto startio;
3282
3283	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3284
3285	c = cmd_alloc(h);
3286	if (!c)
3287		goto full;
3288
3289	blk_start_request(creq);
3290
3291	tmp_sg = h->scatter_list[c->cmdindex];
3292	spin_unlock_irq(q->queue_lock);
3293
3294	c->cmd_type = CMD_RWREQ;
3295	c->rq = creq;
3296
3297	/* fill in the request */
3298	drv = creq->rq_disk->private_data;
3299	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3300	/* got command from pool, so use the command block index instead */
3301	/* for direct lookups. */
3302	/* The first 2 bits are reserved for controller error reporting. */
3303	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3304	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3305	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3306	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3307	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3308	c->Request.Type.Attribute = ATTR_SIMPLE;
3309	c->Request.Type.Direction =
3310	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3311	c->Request.Timeout = 0;	/* Don't time out */
3312	c->Request.CDB[0] =
3313	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3314	start_blk = blk_rq_pos(creq);
3315	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3316	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3317	sg_init_table(tmp_sg, h->maxsgentries);
3318	seg = blk_rq_map_sg(q, creq, tmp_sg);
3319
3320	/* get the DMA records for the setup */
3321	if (c->Request.Type.Direction == XFER_READ)
3322		dir = PCI_DMA_FROMDEVICE;
3323	else
3324		dir = PCI_DMA_TODEVICE;
3325
3326	curr_sg = c->SG;
3327	sg_index = 0;
3328	chained = 0;
3329
3330	for (i = 0; i < seg; i++) {
3331		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3332			!chained && ((seg - i) > 1)) {
3333			/* Point to next chain block. */
3334			curr_sg = h->cmd_sg_list[c->cmdindex];
3335			sg_index = 0;
3336			chained = 1;
3337		}
3338		curr_sg[sg_index].Len = tmp_sg[i].length;
3339		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3340						tmp_sg[i].offset,
3341						tmp_sg[i].length, dir);
3342		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3343		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3344		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3345		++sg_index;
3346	}
3347	if (chained)
3348		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3349			(seg - (h->max_cmd_sgentries - 1)) *
3350				sizeof(SGDescriptor_struct));
3351
3352	/* track how many SG entries we are using */
3353	if (seg > h->maxSG)
3354		h->maxSG = seg;
3355
3356	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3357			"chained[%d]\n",
3358			blk_rq_sectors(creq), seg, chained);
3359
3360	c->Header.SGTotal = seg + chained;
3361	if (seg <= h->max_cmd_sgentries)
3362		c->Header.SGList = c->Header.SGTotal;
3363	else
3364		c->Header.SGList = h->max_cmd_sgentries;
3365	set_performant_mode(h, c);
3366
3367	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3368		if(h->cciss_read == CCISS_READ_10) {
3369			c->Request.CDB[1] = 0;
3370			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3371			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3372			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3373			c->Request.CDB[5] = start_blk & 0xff;
3374			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3375			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3376			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3377			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3378		} else {
3379			u32 upper32 = upper_32_bits(start_blk);
3380
3381			c->Request.CDBLen = 16;
3382			c->Request.CDB[1]= 0;
3383			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3384			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3385			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3386			c->Request.CDB[5]= upper32 & 0xff;
3387			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3388			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3389			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3390			c->Request.CDB[9]= start_blk & 0xff;
3391			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3392			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3393			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3394			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3395			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3396		}
3397	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3398		c->Request.CDBLen = creq->cmd_len;
3399		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3400	} else {
3401		dev_warn(&h->pdev->dev, "bad request type %d\n",
3402			creq->cmd_type);
3403		BUG();
3404	}
3405
3406	spin_lock_irq(q->queue_lock);
3407
3408	addQ(&h->reqQ, c);
3409	h->Qdepth++;
3410	if (h->Qdepth > h->maxQsinceinit)
3411		h->maxQsinceinit = h->Qdepth;
3412
3413	goto queue;
3414full:
3415	blk_stop_queue(q);
3416startio:
3417	/* We will already have the driver lock here so not need
3418	 * to lock it.
3419	 */
3420	start_io(h);
3421}
3422
3423static inline unsigned long get_next_completion(ctlr_info_t *h)
3424{
3425	return h->access.command_completed(h);
3426}
3427
3428static inline int interrupt_pending(ctlr_info_t *h)
3429{
3430	return h->access.intr_pending(h);
3431}
3432
3433static inline long interrupt_not_for_us(ctlr_info_t *h)
3434{
3435	return ((h->access.intr_pending(h) == 0) ||
3436		(h->interrupts_enabled == 0));
3437}
3438
3439static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3440			u32 raw_tag)
3441{
3442	if (unlikely(tag_index >= h->nr_cmds)) {
3443		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3444		return 1;
3445	}
3446	return 0;
3447}
3448
3449static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3450				u32 raw_tag)
3451{
3452	removeQ(c);
3453	if (likely(c->cmd_type == CMD_RWREQ))
3454		complete_command(h, c, 0);
3455	else if (c->cmd_type == CMD_IOCTL_PEND)
3456		complete(c->waiting);
3457#ifdef CONFIG_CISS_SCSI_TAPE
3458	else if (c->cmd_type == CMD_SCSI)
3459		complete_scsi_command(c, 0, raw_tag);
3460#endif
3461}
3462
3463static inline u32 next_command(ctlr_info_t *h)
3464{
3465	u32 a;
3466
3467	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3468		return h->access.command_completed(h);
3469
3470	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3471		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3472		(h->reply_pool_head)++;
3473		h->commands_outstanding--;
3474	} else {
3475		a = FIFO_EMPTY;
3476	}
3477	/* Check for wraparound */
3478	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3479		h->reply_pool_head = h->reply_pool;
3480		h->reply_pool_wraparound ^= 1;
3481	}
3482	return a;
3483}
3484
3485/* process completion of an indexed ("direct lookup") command */
3486static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3487{
3488	u32 tag_index;
3489	CommandList_struct *c;
3490
3491	tag_index = cciss_tag_to_index(raw_tag);
3492	if (bad_tag(h, tag_index, raw_tag))
3493		return next_command(h);
3494	c = h->cmd_pool + tag_index;
3495	finish_cmd(h, c, raw_tag);
3496	return next_command(h);
3497}
3498
3499/* process completion of a non-indexed command */
3500static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3501{
3502	CommandList_struct *c = NULL;
3503	__u32 busaddr_masked, tag_masked;
3504
3505	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3506	list_for_each_entry(c, &h->cmpQ, list) {
3507		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3508		if (busaddr_masked == tag_masked) {
3509			finish_cmd(h, c, raw_tag);
3510			return next_command(h);
3511		}
3512	}
3513	bad_tag(h, h->nr_cmds + 1, raw_tag);
3514	return next_command(h);
3515}
3516
3517/* Some controllers, like p400, will give us one interrupt
3518 * after a soft reset, even if we turned interrupts off.
3519 * Only need to check for this in the cciss_xxx_discard_completions
3520 * functions.
3521 */
3522static int ignore_bogus_interrupt(ctlr_info_t *h)
3523{
3524	if (likely(!reset_devices))
3525		return 0;
3526
3527	if (likely(h->interrupts_enabled))
3528		return 0;
3529
3530	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3531		"(known firmware bug.)  Ignoring.\n");
3532
3533	return 1;
3534}
3535
3536static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3537{
3538	ctlr_info_t *h = dev_id;
3539	unsigned long flags;
3540	u32 raw_tag;
3541
3542	if (ignore_bogus_interrupt(h))
3543		return IRQ_NONE;
3544
3545	if (interrupt_not_for_us(h))
3546		return IRQ_NONE;
3547	spin_lock_irqsave(&h->lock, flags);
3548	while (interrupt_pending(h)) {
3549		raw_tag = get_next_completion(h);
3550		while (raw_tag != FIFO_EMPTY)
3551			raw_tag = next_command(h);
3552	}
3553	spin_unlock_irqrestore(&h->lock, flags);
3554	return IRQ_HANDLED;
3555}
3556
3557static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3558{
3559	ctlr_info_t *h = dev_id;
3560	unsigned long flags;
3561	u32 raw_tag;
3562
3563	if (ignore_bogus_interrupt(h))
3564		return IRQ_NONE;
3565
3566	spin_lock_irqsave(&h->lock, flags);
3567	raw_tag = get_next_completion(h);
3568	while (raw_tag != FIFO_EMPTY)
3569		raw_tag = next_command(h);
3570	spin_unlock_irqrestore(&h->lock, flags);
3571	return IRQ_HANDLED;
3572}
3573
3574static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3575{
3576	ctlr_info_t *h = dev_id;
3577	unsigned long flags;
3578	u32 raw_tag;
3579
3580	if (interrupt_not_for_us(h))
3581		return IRQ_NONE;
3582	spin_lock_irqsave(&h->lock, flags);
3583	while (interrupt_pending(h)) {
3584		raw_tag = get_next_completion(h);
3585		while (raw_tag != FIFO_EMPTY) {
3586			if (cciss_tag_contains_index(raw_tag))
3587				raw_tag = process_indexed_cmd(h, raw_tag);
3588			else
3589				raw_tag = process_nonindexed_cmd(h, raw_tag);
3590		}
3591	}
3592	spin_unlock_irqrestore(&h->lock, flags);
3593	return IRQ_HANDLED;
3594}
3595
3596/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3597 * check the interrupt pending register because it is not set.
3598 */
3599static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3600{
3601	ctlr_info_t *h = dev_id;
3602	unsigned long flags;
3603	u32 raw_tag;
3604
3605	spin_lock_irqsave(&h->lock, flags);
3606	raw_tag = get_next_completion(h);
3607	while (raw_tag != FIFO_EMPTY) {
3608		if (cciss_tag_contains_index(raw_tag))
3609			raw_tag = process_indexed_cmd(h, raw_tag);
3610		else
3611			raw_tag = process_nonindexed_cmd(h, raw_tag);
3612	}
3613	spin_unlock_irqrestore(&h->lock, flags);
3614	return IRQ_HANDLED;
3615}
3616
3617/**
3618 * add_to_scan_list() - add controller to rescan queue
3619 * @h:		      Pointer to the controller.
3620 *
3621 * Adds the controller to the rescan queue if not already on the queue.
3622 *
3623 * returns 1 if added to the queue, 0 if skipped (could be on the
3624 * queue already, or the controller could be initializing or shutting
3625 * down).
3626 **/
3627static int add_to_scan_list(struct ctlr_info *h)
3628{
3629	struct ctlr_info *test_h;
3630	int found = 0;
3631	int ret = 0;
3632
3633	if (h->busy_initializing)
3634		return 0;
3635
3636	if (!mutex_trylock(&h->busy_shutting_down))
3637		return 0;
3638
3639	mutex_lock(&scan_mutex);
3640	list_for_each_entry(test_h, &scan_q, scan_list) {
3641		if (test_h == h) {
3642			found = 1;
3643			break;
3644		}
3645	}
3646	if (!found && !h->busy_scanning) {
3647		INIT_COMPLETION(h->scan_wait);
3648		list_add_tail(&h->scan_list, &scan_q);
3649		ret = 1;
3650	}
3651	mutex_unlock(&scan_mutex);
3652	mutex_unlock(&h->busy_shutting_down);
3653
3654	return ret;
3655}
3656
3657/**
3658 * remove_from_scan_list() - remove controller from rescan queue
3659 * @h:			   Pointer to the controller.
3660 *
3661 * Removes the controller from the rescan queue if present. Blocks if
3662 * the controller is currently conducting a rescan.  The controller
3663 * can be in one of three states:
3664 * 1. Doesn't need a scan
3665 * 2. On the scan list, but not scanning yet (we remove it)
3666 * 3. Busy scanning (and not on the list). In this case we want to wait for
3667 *    the scan to complete to make sure the scanning thread for this
3668 *    controller is completely idle.
3669 **/
3670static void remove_from_scan_list(struct ctlr_info *h)
3671{
3672	struct ctlr_info *test_h, *tmp_h;
3673
3674	mutex_lock(&scan_mutex);
3675	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3676		if (test_h == h) { /* state 2. */
3677			list_del(&h->scan_list);
3678			complete_all(&h->scan_wait);
3679			mutex_unlock(&scan_mutex);
3680			return;
3681		}
3682	}
3683	if (h->busy_scanning) { /* state 3. */
3684		mutex_unlock(&scan_mutex);
3685		wait_for_completion(&h->scan_wait);
3686	} else { /* state 1, nothing to do. */
3687		mutex_unlock(&scan_mutex);
3688	}
3689}
3690
3691/**
3692 * scan_thread() - kernel thread used to rescan controllers
3693 * @data:	 Ignored.
3694 *
3695 * A kernel thread used scan for drive topology changes on
3696 * controllers. The thread processes only one controller at a time
3697 * using a queue.  Controllers are added to the queue using
3698 * add_to_scan_list() and removed from the queue either after done
3699 * processing or using remove_from_scan_list().
3700 *
3701 * returns 0.
3702 **/
3703static int scan_thread(void *data)
3704{
3705	struct ctlr_info *h;
3706
3707	while (1) {
3708		set_current_state(TASK_INTERRUPTIBLE);
3709		schedule();
3710		if (kthread_should_stop())
3711			break;
3712
3713		while (1) {
3714			mutex_lock(&scan_mutex);
3715			if (list_empty(&scan_q)) {
3716				mutex_unlock(&scan_mutex);
3717				break;
3718			}
3719
3720			h = list_entry(scan_q.next,
3721				       struct ctlr_info,
3722				       scan_list);
3723			list_del(&h->scan_list);
3724			h->busy_scanning = 1;
3725			mutex_unlock(&scan_mutex);
3726
3727			rebuild_lun_table(h, 0, 0);
3728			complete_all(&h->scan_wait);
3729			mutex_lock(&scan_mutex);
3730			h->busy_scanning = 0;
3731			mutex_unlock(&scan_mutex);
3732		}
3733	}
3734
3735	return 0;
3736}
3737
3738static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3739{
3740	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3741		return 0;
3742
3743	switch (c->err_info->SenseInfo[12]) {
3744	case STATE_CHANGED:
3745		dev_warn(&h->pdev->dev, "a state change "
3746			"detected, command retried\n");
3747		return 1;
3748	break;
3749	case LUN_FAILED:
3750		dev_warn(&h->pdev->dev, "LUN failure "
3751			"detected, action required\n");
3752		return 1;
3753	break;
3754	case REPORT_LUNS_CHANGED:
3755		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3756	/*
3757	 * Here, we could call add_to_scan_list and wake up the scan thread,
3758	 * except that it's quite likely that we will get more than one
3759	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3760	 * that those which occur after the first one will likely happen
3761	 * *during* the scan_thread's rescan.  And the rescan code is not
3762	 * robust enough to restart in the middle, undoing what it has already
3763	 * done, and it's not clear that it's even possible to do this, since
3764	 * part of what it does is notify the block layer, which starts
3765	 * doing it's own i/o to read partition tables and so on, and the
3766	 * driver doesn't have visibility to know what might need undoing.
3767	 * In any event, if possible, it is horribly complicated to get right
3768	 * so we just don't do it for now.
3769	 *
3770	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3771	 */
3772		return 1;
3773	break;
3774	case POWER_OR_RESET:
3775		dev_warn(&h->pdev->dev,
3776			"a power on or device reset detected\n");
3777		return 1;
3778	break;
3779	case UNIT_ATTENTION_CLEARED:
3780		dev_warn(&h->pdev->dev,
3781			"unit attention cleared by another initiator\n");
3782		return 1;
3783	break;
3784	default:
3785		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3786		return 1;
3787	}
3788}
3789
3790/*
3791 *  We cannot read the structure directly, for portability we must use
3792 *   the io functions.
3793 *   This is for debug only.
3794 */
3795static void print_cfg_table(ctlr_info_t *h)
3796{
3797	int i;
3798	char temp_name[17];
3799	CfgTable_struct *tb = h->cfgtable;
3800
3801	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3802	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3803	for (i = 0; i < 4; i++)
3804		temp_name[i] = readb(&(tb->Signature[i]));
3805	temp_name[4] = '\0';
3806	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3807	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3808		readl(&(tb->SpecValence)));
3809	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3810	       readl(&(tb->TransportSupport)));
3811	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3812	       readl(&(tb->TransportActive)));
3813	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3814	       readl(&(tb->HostWrite.TransportRequest)));
3815	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3816	       readl(&(tb->HostWrite.CoalIntDelay)));
3817	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3818	       readl(&(tb->HostWrite.CoalIntCount)));
3819	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3820	       readl(&(tb->CmdsOutMax)));
3821	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3822		readl(&(tb->BusTypes)));
3823	for (i = 0; i < 16; i++)
3824		temp_name[i] = readb(&(tb->ServerName[i]));
3825	temp_name[16] = '\0';
3826	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3827	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3828		readl(&(tb->HeartBeat)));
3829}
3830
3831static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3832{
3833	int i, offset, mem_type, bar_type;
3834	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3835		return 0;
3836	offset = 0;
3837	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3838		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3839		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3840			offset += 4;
3841		else {
3842			mem_type = pci_resource_flags(pdev, i) &
3843			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3844			switch (mem_type) {
3845			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3846			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3847				offset += 4;	/* 32 bit */
3848				break;
3849			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3850				offset += 8;
3851				break;
3852			default:	/* reserved in PCI 2.2 */
3853				dev_warn(&pdev->dev,
3854				       "Base address is invalid\n");
3855				return -1;
3856				break;
3857			}
3858		}
3859		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3860			return i + 1;
3861	}
3862	return -1;
3863}
3864
3865/* Fill in bucket_map[], given nsgs (the max number of
3866 * scatter gather elements supported) and bucket[],
3867 * which is an array of 8 integers.  The bucket[] array
3868 * contains 8 different DMA transfer sizes (in 16
3869 * byte increments) which the controller uses to fetch
3870 * commands.  This function fills in bucket_map[], which
3871 * maps a given number of scatter gather elements to one of
3872 * the 8 DMA transfer sizes.  The point of it is to allow the
3873 * controller to only do as much DMA as needed to fetch the
3874 * command, with the DMA transfer size encoded in the lower
3875 * bits of the command address.
3876 */
3877static void  calc_bucket_map(int bucket[], int num_buckets,
3878	int nsgs, int *bucket_map)
3879{
3880	int i, j, b, size;
3881
3882	/* even a command with 0 SGs requires 4 blocks */
3883#define MINIMUM_TRANSFER_BLOCKS 4
3884#define NUM_BUCKETS 8
3885	/* Note, bucket_map must have nsgs+1 entries. */
3886	for (i = 0; i <= nsgs; i++) {
3887		/* Compute size of a command with i SG entries */
3888		size = i + MINIMUM_TRANSFER_BLOCKS;
3889		b = num_buckets; /* Assume the biggest bucket */
3890		/* Find the bucket that is just big enough */
3891		for (j = 0; j < 8; j++) {
3892			if (bucket[j] >= size) {
3893				b = j;
3894				break;
3895			}
3896		}
3897		/* for a command with i SG entries, use bucket b. */
3898		bucket_map[i] = b;
3899	}
3900}
3901
3902static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3903{
3904	int i;
3905
3906	/* under certain very rare conditions, this can take awhile.
3907	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3908	 * as we enter this code.) */
3909	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3910		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3911			break;
3912		usleep_range(10000, 20000);
3913	}
3914}
3915
3916static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3917	u32 use_short_tags)
3918{
3919	/* This is a bit complicated.  There are 8 registers on
3920	 * the controller which we write to to tell it 8 different
3921	 * sizes of commands which there may be.  It's a way of
3922	 * reducing the DMA done to fetch each command.  Encoded into
3923	 * each command's tag are 3 bits which communicate to the controller
3924	 * which of the eight sizes that command fits within.  The size of
3925	 * each command depends on how many scatter gather entries there are.
3926	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3927	 * with the number of 16-byte blocks a command of that size requires.
3928	 * The smallest command possible requires 5 such 16 byte blocks.
3929	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3930	 * blocks.  Note, this only extends to the SG entries contained
3931	 * within the command block, and does not extend to chained blocks
3932	 * of SG elements.   bft[] contains the eight values we write to
3933	 * the registers.  They are not evenly distributed, but have more
3934	 * sizes for small commands, and fewer sizes for larger commands.
3935	 */
3936	__u32 trans_offset;
3937	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3938			/*
3939			 *  5 = 1 s/g entry or 4k
3940			 *  6 = 2 s/g entry or 8k
3941			 *  8 = 4 s/g entry or 16k
3942			 * 10 = 6 s/g entry or 24k
3943			 */
3944	unsigned long register_value;
3945	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3946
3947	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3948
3949	/* Controller spec: zero out this buffer. */
3950	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3951	h->reply_pool_head = h->reply_pool;
3952
3953	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3954	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3955				h->blockFetchTable);
3956	writel(bft[0], &h->transtable->BlockFetch0);
3957	writel(bft[1], &h->transtable->BlockFetch1);
3958	writel(bft[2], &h->transtable->BlockFetch2);
3959	writel(bft[3], &h->transtable->BlockFetch3);
3960	writel(bft[4], &h->transtable->BlockFetch4);
3961	writel(bft[5], &h->transtable->BlockFetch5);
3962	writel(bft[6], &h->transtable->BlockFetch6);
3963	writel(bft[7], &h->transtable->BlockFetch7);
3964
3965	/* size of controller ring buffer */
3966	writel(h->max_commands, &h->transtable->RepQSize);
3967	writel(1, &h->transtable->RepQCount);
3968	writel(0, &h->transtable->RepQCtrAddrLow32);
3969	writel(0, &h->transtable->RepQCtrAddrHigh32);
3970	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3971	writel(0, &h->transtable->RepQAddr0High32);
3972	writel(CFGTBL_Trans_Performant | use_short_tags,
3973			&(h->cfgtable->HostWrite.TransportRequest));
3974
3975	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3976	cciss_wait_for_mode_change_ack(h);
3977	register_value = readl(&(h->cfgtable->TransportActive));
3978	if (!(register_value & CFGTBL_Trans_Performant))
3979		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3980					" performant mode\n");
3981}
3982
3983static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3984{
3985	__u32 trans_support;
3986
3987	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3988	/* Attempt to put controller into performant mode if supported */
3989	/* Does board support performant mode? */
3990	trans_support = readl(&(h->cfgtable->TransportSupport));
3991	if (!(trans_support & PERFORMANT_MODE))
3992		return;
3993
3994	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3995	/* Performant mode demands commands on a 32 byte boundary
3996	 * pci_alloc_consistent aligns on page boundarys already.
3997	 * Just need to check if divisible by 32
3998	 */
3999	if ((sizeof(CommandList_struct) % 32) != 0) {
4000		dev_warn(&h->pdev->dev, "%s %d %s\n",
4001			"cciss info: command size[",
4002			(int)sizeof(CommandList_struct),
4003			"] not divisible by 32, no performant mode..\n");
4004		return;
4005	}
4006
4007	/* Performant mode ring buffer and supporting data structures */
4008	h->reply_pool = (__u64 *)pci_alloc_consistent(
4009		h->pdev, h->max_commands * sizeof(__u64),
4010		&(h->reply_pool_dhandle));
4011
4012	/* Need a block fetch table for performant mode */
4013	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4014		sizeof(__u32)), GFP_KERNEL);
4015
4016	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4017		goto clean_up;
4018
4019	cciss_enter_performant_mode(h,
4020		trans_support & CFGTBL_Trans_use_short_tags);
4021
4022	/* Change the access methods to the performant access methods */
4023	h->access = SA5_performant_access;
4024	h->transMethod = CFGTBL_Trans_Performant;
4025
4026	return;
4027clean_up:
4028	kfree(h->blockFetchTable);
4029	if (h->reply_pool)
4030		pci_free_consistent(h->pdev,
4031				h->max_commands * sizeof(__u64),
4032				h->reply_pool,
4033				h->reply_pool_dhandle);
4034	return;
4035
4036} /* cciss_put_controller_into_performant_mode */
4037
4038/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4039 * controllers that are capable. If not, we use IO-APIC mode.
4040 */
4041
4042static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4043{
4044#ifdef CONFIG_PCI_MSI
4045	int err;
4046	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4047	{0, 2}, {0, 3}
4048	};
4049
4050	/* Some boards advertise MSI but don't really support it */
4051	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4052	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4053		goto default_int_mode;
4054
4055	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4056		err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4057		if (!err) {
4058			h->intr[0] = cciss_msix_entries[0].vector;
4059			h->intr[1] = cciss_msix_entries[1].vector;
4060			h->intr[2] = cciss_msix_entries[2].vector;
4061			h->intr[3] = cciss_msix_entries[3].vector;
4062			h->msix_vector = 1;
4063			return;
4064		}
4065		if (err > 0) {
4066			dev_warn(&h->pdev->dev,
4067				"only %d MSI-X vectors available\n", err);
4068			goto default_int_mode;
4069		} else {
4070			dev_warn(&h->pdev->dev,
4071				"MSI-X init failed %d\n", err);
4072			goto default_int_mode;
4073		}
4074	}
4075	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4076		if (!pci_enable_msi(h->pdev))
4077			h->msi_vector = 1;
4078		else
4079			dev_warn(&h->pdev->dev, "MSI init failed\n");
4080	}
4081default_int_mode:
4082#endif				/* CONFIG_PCI_MSI */
4083	/* if we get here we're going to use the default interrupt mode */
4084	h->intr[PERF_MODE_INT] = h->pdev->irq;
4085	return;
4086}
4087
4088static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4089{
4090	int i;
4091	u32 subsystem_vendor_id, subsystem_device_id;
4092
4093	subsystem_vendor_id = pdev->subsystem_vendor;
4094	subsystem_device_id = pdev->subsystem_device;
4095	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4096			subsystem_vendor_id;
4097
4098	for (i = 0; i < ARRAY_SIZE(products); i++)
4099		if (*board_id == products[i].board_id)
4100			return i;
4101	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4102		*board_id);
4103	return -ENODEV;
4104}
4105
4106static inline bool cciss_board_disabled(ctlr_info_t *h)
4107{
4108	u16 command;
4109
4110	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4111	return ((command & PCI_COMMAND_MEMORY) == 0);
4112}
4113
4114static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4115	unsigned long *memory_bar)
4116{
4117	int i;
4118
4119	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4120		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4121			/* addressing mode bits already removed */
4122			*memory_bar = pci_resource_start(pdev, i);
4123			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4124				*memory_bar);
4125			return 0;
4126		}
4127	dev_warn(&pdev->dev, "no memory BAR found\n");
4128	return -ENODEV;
4129}
4130
4131static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4132	void __iomem *vaddr, int wait_for_ready)
4133#define BOARD_READY 1
4134#define BOARD_NOT_READY 0
4135{
4136	int i, iterations;
4137	u32 scratchpad;
4138
4139	if (wait_for_ready)
4140		iterations = CCISS_BOARD_READY_ITERATIONS;
4141	else
4142		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4143
4144	for (i = 0; i < iterations; i++) {
4145		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4146		if (wait_for_ready) {
4147			if (scratchpad == CCISS_FIRMWARE_READY)
4148				return 0;
4149		} else {
4150			if (scratchpad != CCISS_FIRMWARE_READY)
4151				return 0;
4152		}
4153		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4154	}
4155	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4156	return -ENODEV;
4157}
4158
4159static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4160	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4161	u64 *cfg_offset)
4162{
4163	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4164	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4165	*cfg_base_addr &= (u32) 0x0000ffff;
4166	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4167	if (*cfg_base_addr_index == -1) {
4168		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4169			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4170		return -ENODEV;
4171	}
4172	return 0;
4173}
4174
4175static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4176{
4177	u64 cfg_offset;
4178	u32 cfg_base_addr;
4179	u64 cfg_base_addr_index;
4180	u32 trans_offset;
4181	int rc;
4182
4183	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4184		&cfg_base_addr_index, &cfg_offset);
4185	if (rc)
4186		return rc;
4187	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4188		cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4189	if (!h->cfgtable)
4190		return -ENOMEM;
4191	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4192	if (rc)
4193		return rc;
4194	/* Find performant mode table. */
4195	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4196	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4197				cfg_base_addr_index)+cfg_offset+trans_offset,
4198				sizeof(*h->transtable));
4199	if (!h->transtable)
4200		return -ENOMEM;
4201	return 0;
4202}
4203
4204static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4205{
4206	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4207
4208	/* Limit commands in memory limited kdump scenario. */
4209	if (reset_devices && h->max_commands > 32)
4210		h->max_commands = 32;
4211
4212	if (h->max_commands < 16) {
4213		dev_warn(&h->pdev->dev, "Controller reports "
4214			"max supported commands of %d, an obvious lie. "
4215			"Using 16.  Ensure that firmware is up to date.\n",
4216			h->max_commands);
4217		h->max_commands = 16;
4218	}
4219}
4220
4221/* Interrogate the hardware for some limits:
4222 * max commands, max SG elements without chaining, and with chaining,
4223 * SG chain block size, etc.
4224 */
4225static void __devinit cciss_find_board_params(ctlr_info_t *h)
4226{
4227	cciss_get_max_perf_mode_cmds(h);
4228	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4229	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4230	/*
4231	 * Limit in-command s/g elements to 32 save dma'able memory.
4232	 * Howvever spec says if 0, use 31
4233	 */
4234	h->max_cmd_sgentries = 31;
4235	if (h->maxsgentries > 512) {
4236		h->max_cmd_sgentries = 32;
4237		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4238		h->maxsgentries--; /* save one for chain pointer */
4239	} else {
4240		h->maxsgentries = 31; /* default to traditional values */
4241		h->chainsize = 0;
4242	}
4243}
4244
4245static inline bool CISS_signature_present(ctlr_info_t *h)
4246{
4247	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4248	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
4249	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
4250	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
4251		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4252		return false;
4253	}
4254	return true;
4255}
4256
4257/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4258static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4259{
4260#ifdef CONFIG_X86
4261	u32 prefetch;
4262
4263	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4264	prefetch |= 0x100;
4265	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4266#endif
4267}
4268
4269/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4270 * in a prefetch beyond physical memory.
4271 */
4272static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4273{
4274	u32 dma_prefetch;
4275	__u32 dma_refetch;
4276
4277	if (h->board_id != 0x3225103C)
4278		return;
4279	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4280	dma_prefetch |= 0x8000;
4281	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4282	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4283	dma_refetch |= 0x1;
4284	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4285}
4286
4287static int __devinit cciss_pci_init(ctlr_info_t *h)
4288{
4289	int prod_index, err;
4290
4291	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4292	if (prod_index < 0)
4293		return -ENODEV;
4294	h->product_name = products[prod_index].product_name;
4295	h->access = *(products[prod_index].access);
4296
4297	if (cciss_board_disabled(h)) {
4298		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4299		return -ENODEV;
4300	}
4301	err = pci_enable_device(h->pdev);
4302	if (err) {
4303		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4304		return err;
4305	}
4306
4307	err = pci_request_regions(h->pdev, "cciss");
4308	if (err) {
4309		dev_warn(&h->pdev->dev,
4310			"Cannot obtain PCI resources, aborting\n");
4311		return err;
4312	}
4313
4314	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4315	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4316
4317/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4318 * else we use the IO-APIC interrupt assigned to us by system ROM.
4319 */
4320	cciss_interrupt_mode(h);
4321	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4322	if (err)
4323		goto err_out_free_res;
4324	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4325	if (!h->vaddr) {
4326		err = -ENOMEM;
4327		goto err_out_free_res;
4328	}
4329	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4330	if (err)
4331		goto err_out_free_res;
4332	err = cciss_find_cfgtables(h);
4333	if (err)
4334		goto err_out_free_res;
4335	print_cfg_table(h);
4336	cciss_find_board_params(h);
4337
4338	if (!CISS_signature_present(h)) {
4339		err = -ENODEV;
4340		goto err_out_free_res;
4341	}
4342	cciss_enable_scsi_prefetch(h);
4343	cciss_p600_dma_prefetch_quirk(h);
4344	cciss_put_controller_into_performant_mode(h);
4345	return 0;
4346
4347err_out_free_res:
4348	/*
4349	 * Deliberately omit pci_disable_device(): it does something nasty to
4350	 * Smart Array controllers that pci_enable_device does not undo
4351	 */
4352	if (h->transtable)
4353		iounmap(h->transtable);
4354	if (h->cfgtable)
4355		iounmap(h->cfgtable);
4356	if (h->vaddr)
4357		iounmap(h->vaddr);
4358	pci_release_regions(h->pdev);
4359	return err;
4360}
4361
4362/* Function to find the first free pointer into our hba[] array
4363 * Returns -1 if no free entries are left.
4364 */
4365static int alloc_cciss_hba(struct pci_dev *pdev)
4366{
4367	int i;
4368
4369	for (i = 0; i < MAX_CTLR; i++) {
4370		if (!hba[i]) {
4371			ctlr_info_t *h;
4372
4373			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4374			if (!h)
4375				goto Enomem;
4376			hba[i] = h;
4377			return i;
4378		}
4379	}
4380	dev_warn(&pdev->dev, "This driver supports a maximum"
4381	       " of %d controllers.\n", MAX_CTLR);
4382	return -1;
4383Enomem:
4384	dev_warn(&pdev->dev, "out of memory.\n");
4385	return -1;
4386}
4387
4388static void free_hba(ctlr_info_t *h)
4389{
4390	int i;
4391
4392	hba[h->ctlr] = NULL;
4393	for (i = 0; i < h->highest_lun + 1; i++)
4394		if (h->gendisk[i] != NULL)
4395			put_disk(h->gendisk[i]);
4396	kfree(h);
4397}
4398
4399/* Send a message CDB to the firmware. */
4400static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4401{
4402	typedef struct {
4403		CommandListHeader_struct CommandHeader;
4404		RequestBlock_struct Request;
4405		ErrDescriptor_struct ErrorDescriptor;
4406	} Command;
4407	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4408	Command *cmd;
4409	dma_addr_t paddr64;
4410	uint32_t paddr32, tag;
4411	void __iomem *vaddr;
4412	int i, err;
4413
4414	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4415	if (vaddr == NULL)
4416		return -ENOMEM;
4417
4418	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4419	   CCISS commands, so they must be allocated from the lower 4GiB of
4420	   memory. */
4421	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4422	if (err) {
4423		iounmap(vaddr);
4424		return -ENOMEM;
4425	}
4426
4427	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4428	if (cmd == NULL) {
4429		iounmap(vaddr);
4430		return -ENOMEM;
4431	}
4432
4433	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4434	   although there's no guarantee, we assume that the address is at
4435	   least 4-byte aligned (most likely, it's page-aligned). */
4436	paddr32 = paddr64;
4437
4438	cmd->CommandHeader.ReplyQueue = 0;
4439	cmd->CommandHeader.SGList = 0;
4440	cmd->CommandHeader.SGTotal = 0;
4441	cmd->CommandHeader.Tag.lower = paddr32;
4442	cmd->CommandHeader.Tag.upper = 0;
4443	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4444
4445	cmd->Request.CDBLen = 16;
4446	cmd->Request.Type.Type = TYPE_MSG;
4447	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4448	cmd->Request.Type.Direction = XFER_NONE;
4449	cmd->Request.Timeout = 0; /* Don't time out */
4450	cmd->Request.CDB[0] = opcode;
4451	cmd->Request.CDB[1] = type;
4452	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4453
4454	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4455	cmd->ErrorDescriptor.Addr.upper = 0;
4456	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4457
4458	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4459
4460	for (i = 0; i < 10; i++) {
4461		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4462		if ((tag & ~3) == paddr32)
4463			break;
4464		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4465	}
4466
4467	iounmap(vaddr);
4468
4469	/* we leak the DMA buffer here ... no choice since the controller could
4470	   still complete the command. */
4471	if (i == 10) {
4472		dev_err(&pdev->dev,
4473			"controller message %02x:%02x timed out\n",
4474			opcode, type);
4475		return -ETIMEDOUT;
4476	}
4477
4478	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4479
4480	if (tag & 2) {
4481		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4482			opcode, type);
4483		return -EIO;
4484	}
4485
4486	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4487		opcode, type);
4488	return 0;
4489}
4490
4491#define cciss_noop(p) cciss_message(p, 3, 0)
4492
4493static int cciss_controller_hard_reset(struct pci_dev *pdev,
4494	void * __iomem vaddr, u32 use_doorbell)
4495{
4496	u16 pmcsr;
4497	int pos;
4498
4499	if (use_doorbell) {
4500		/* For everything after the P600, the PCI power state method
4501		 * of resetting the controller doesn't work, so we have this
4502		 * other way using the doorbell register.
4503		 */
4504		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4505		writel(use_doorbell, vaddr + SA5_DOORBELL);
4506	} else { /* Try to do it the PCI power state way */
4507
4508		/* Quoting from the Open CISS Specification: "The Power
4509		 * Management Control/Status Register (CSR) controls the power
4510		 * state of the device.  The normal operating state is D0,
4511		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4512		 * the controller, place the interface device in D3 then to D0,
4513		 * this causes a secondary PCI reset which will reset the
4514		 * controller." */
4515
4516		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4517		if (pos == 0) {
4518			dev_err(&pdev->dev,
4519				"cciss_controller_hard_reset: "
4520				"PCI PM not supported\n");
4521			return -ENODEV;
4522		}
4523		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4524		/* enter the D3hot power management state */
4525		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4526		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4527		pmcsr |= PCI_D3hot;
4528		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4529
4530		msleep(500);
4531
4532		/* enter the D0 power management state */
4533		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4534		pmcsr |= PCI_D0;
4535		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4536	}
4537	return 0;
4538}
4539
4540static __devinit void init_driver_version(char *driver_version, int len)
4541{
4542	memset(driver_version, 0, len);
4543	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4544}
4545
4546static __devinit int write_driver_ver_to_cfgtable(
4547	CfgTable_struct __iomem *cfgtable)
4548{
4549	char *driver_version;
4550	int i, size = sizeof(cfgtable->driver_version);
4551
4552	driver_version = kmalloc(size, GFP_KERNEL);
4553	if (!driver_version)
4554		return -ENOMEM;
4555
4556	init_driver_version(driver_version, size);
4557	for (i = 0; i < size; i++)
4558		writeb(driver_version[i], &cfgtable->driver_version[i]);
4559	kfree(driver_version);
4560	return 0;
4561}
4562
4563static __devinit void read_driver_ver_from_cfgtable(
4564	CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4565{
4566	int i;
4567
4568	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4569		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4570}
4571
4572static __devinit int controller_reset_failed(
4573	CfgTable_struct __iomem *cfgtable)
4574{
4575
4576	char *driver_ver, *old_driver_ver;
4577	int rc, size = sizeof(cfgtable->driver_version);
4578
4579	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4580	if (!old_driver_ver)
4581		return -ENOMEM;
4582	driver_ver = old_driver_ver + size;
4583
4584	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4585	 * should have been changed, otherwise we know the reset failed.
4586	 */
4587	init_driver_version(old_driver_ver, size);
4588	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4589	rc = !memcmp(driver_ver, old_driver_ver, size);
4590	kfree(old_driver_ver);
4591	return rc;
4592}
4593
4594/* This does a hard reset of the controller using PCI power management
4595 * states or using the doorbell register. */
4596static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4597{
4598	u64 cfg_offset;
4599	u32 cfg_base_addr;
4600	u64 cfg_base_addr_index;
4601	void __iomem *vaddr;
4602	unsigned long paddr;
4603	u32 misc_fw_support;
4604	int rc;
4605	CfgTable_struct __iomem *cfgtable;
4606	u32 use_doorbell;
4607	u32 board_id;
4608	u16 command_register;
4609
4610	/* For controllers as old a the p600, this is very nearly
4611	 * the same thing as
4612	 *
4613	 * pci_save_state(pci_dev);
4614	 * pci_set_power_state(pci_dev, PCI_D3hot);
4615	 * pci_set_power_state(pci_dev, PCI_D0);
4616	 * pci_restore_state(pci_dev);
4617	 *
4618	 * For controllers newer than the P600, the pci power state
4619	 * method of resetting doesn't work so we have another way
4620	 * using the doorbell register.
4621	 */
4622
4623	/* Exclude 640x boards.  These are two pci devices in one slot
4624	 * which share a battery backed cache module.  One controls the
4625	 * cache, the other accesses the cache through the one that controls
4626	 * it.  If we reset the one controlling the cache, the other will
4627	 * likely not be happy.  Just forbid resetting this conjoined mess.
4628	 */
4629	cciss_lookup_board_id(pdev, &board_id);
4630	if (!ctlr_is_resettable(board_id)) {
4631		dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4632				"due to shared cache module.");
4633		return -ENODEV;
4634	}
4635
4636	/* if controller is soft- but not hard resettable... */
4637	if (!ctlr_is_hard_resettable(board_id))
4638		return -ENOTSUPP; /* try soft reset later. */
4639
4640	/* Save the PCI command register */
4641	pci_read_config_word(pdev, 4, &command_register);
4642	/* Turn the board off.  This is so that later pci_restore_state()
4643	 * won't turn the board on before the rest of config space is ready.
4644	 */
4645	pci_disable_device(pdev);
4646	pci_save_state(pdev);
4647
4648	/* find the first memory BAR, so we can find the cfg table */
4649	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4650	if (rc)
4651		return rc;
4652	vaddr = remap_pci_mem(paddr, 0x250);
4653	if (!vaddr)
4654		return -ENOMEM;
4655
4656	/* find cfgtable in order to check if reset via doorbell is supported */
4657	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4658					&cfg_base_addr_index, &cfg_offset);
4659	if (rc)
4660		goto unmap_vaddr;
4661	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4662		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4663	if (!cfgtable) {
4664		rc = -ENOMEM;
4665		goto unmap_vaddr;
4666	}
4667	rc = write_driver_ver_to_cfgtable(cfgtable);
4668	if (rc)
4669		goto unmap_vaddr;
4670
4671	/* If reset via doorbell register is supported, use that.
4672	 * There are two such methods.  Favor the newest method.
4673	 */
4674	misc_fw_support = readl(&cfgtable->misc_fw_support);
4675	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4676	if (use_doorbell) {
4677		use_doorbell = DOORBELL_CTLR_RESET2;
4678	} else {
4679		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4680		if (use_doorbell) {
4681			dev_warn(&pdev->dev, "Controller claims that "
4682				"'Bit 2 doorbell reset' is "
4683				"supported, but not 'bit 5 doorbell reset'.  "
4684				"Firmware update is recommended.\n");
4685			rc = -ENOTSUPP; /* use the soft reset */
4686			goto unmap_cfgtable;
4687		}
4688	}
4689
4690	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4691	if (rc)
4692		goto unmap_cfgtable;
4693	pci_restore_state(pdev);
4694	rc = pci_enable_device(pdev);
4695	if (rc) {
4696		dev_warn(&pdev->dev, "failed to enable device.\n");
4697		goto unmap_cfgtable;
4698	}
4699	pci_write_config_word(pdev, 4, command_register);
4700
4701	/* Some devices (notably the HP Smart Array 5i Controller)
4702	   need a little pause here */
4703	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4704
4705	/* Wait for board to become not ready, then ready. */
4706	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4707	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4708	if (rc) {
4709		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4710				"  Will try soft reset.\n");
4711		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4712		goto unmap_cfgtable;
4713	}
4714	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4715	if (rc) {
4716		dev_warn(&pdev->dev,
4717			"failed waiting for board to become ready "
4718			"after hard reset\n");
4719		goto unmap_cfgtable;
4720	}
4721
4722	rc = controller_reset_failed(vaddr);
4723	if (rc < 0)
4724		goto unmap_cfgtable;
4725	if (rc) {
4726		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4727			"controller. Will try soft reset.\n");
4728		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4729	} else {
4730		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4731	}
4732
4733unmap_cfgtable:
4734	iounmap(cfgtable);
4735
4736unmap_vaddr:
4737	iounmap(vaddr);
4738	return rc;
4739}
4740
4741static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4742{
4743	int rc, i;
4744
4745	if (!reset_devices)
4746		return 0;
4747
4748	/* Reset the controller with a PCI power-cycle or via doorbell */
4749	rc = cciss_kdump_hard_reset_controller(pdev);
4750
4751	/* -ENOTSUPP here means we cannot reset the controller
4752	 * but it's already (and still) up and running in
4753	 * "performant mode".  Or, it might be 640x, which can't reset
4754	 * due to concerns about shared bbwc between 6402/6404 pair.
4755	 */
4756	if (rc == -ENOTSUPP)
4757		return rc; /* just try to do the kdump anyhow. */
4758	if (rc)
4759		return -ENODEV;
4760
4761	/* Now try to get the controller to respond to a no-op */
4762	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4763	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4764		if (cciss_noop(pdev) == 0)
4765			break;
4766		else
4767			dev_warn(&pdev->dev, "no-op failed%s\n",
4768				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4769					"; re-trying" : ""));
4770		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4771	}
4772	return 0;
4773}
4774
4775static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4776{
4777	h->cmd_pool_bits = kmalloc(
4778		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4779		sizeof(unsigned long), GFP_KERNEL);
4780	h->cmd_pool = pci_alloc_consistent(h->pdev,
4781		h->nr_cmds * sizeof(CommandList_struct),
4782		&(h->cmd_pool_dhandle));
4783	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4784		h->nr_cmds * sizeof(ErrorInfo_struct),
4785		&(h->errinfo_pool_dhandle));
4786	if ((h->cmd_pool_bits == NULL)
4787		|| (h->cmd_pool == NULL)
4788		|| (h->errinfo_pool == NULL)) {
4789		dev_err(&h->pdev->dev, "out of memory");
4790		return -ENOMEM;
4791	}
4792	return 0;
4793}
4794
4795static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4796{
4797	int i;
4798
4799	/* zero it, so that on free we need not know how many were alloc'ed */
4800	h->scatter_list = kzalloc(h->max_commands *
4801				sizeof(struct scatterlist *), GFP_KERNEL);
4802	if (!h->scatter_list)
4803		return -ENOMEM;
4804
4805	for (i = 0; i < h->nr_cmds; i++) {
4806		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4807						h->maxsgentries, GFP_KERNEL);
4808		if (h->scatter_list[i] == NULL) {
4809			dev_err(&h->pdev->dev, "could not allocate "
4810				"s/g lists\n");
4811			return -ENOMEM;
4812		}
4813	}
4814	return 0;
4815}
4816
4817static void cciss_free_scatterlists(ctlr_info_t *h)
4818{
4819	int i;
4820
4821	if (h->scatter_list) {
4822		for (i = 0; i < h->nr_cmds; i++)
4823			kfree(h->scatter_list[i]);
4824		kfree(h->scatter_list);
4825	}
4826}
4827
4828static void cciss_free_cmd_pool(ctlr_info_t *h)
4829{
4830	kfree(h->cmd_pool_bits);
4831	if (h->cmd_pool)
4832		pci_free_consistent(h->pdev,
4833			h->nr_cmds * sizeof(CommandList_struct),
4834			h->cmd_pool, h->cmd_pool_dhandle);
4835	if (h->errinfo_pool)
4836		pci_free_consistent(h->pdev,
4837			h->nr_cmds * sizeof(ErrorInfo_struct),
4838			h->errinfo_pool, h->errinfo_pool_dhandle);
4839}
4840
4841static int cciss_request_irq(ctlr_info_t *h,
4842	irqreturn_t (*msixhandler)(int, void *),
4843	irqreturn_t (*intxhandler)(int, void *))
4844{
4845	if (h->msix_vector || h->msi_vector) {
4846		if (!request_irq(h->intr[PERF_MODE_INT], msixhandler,
4847				IRQF_DISABLED, h->devname, h))
4848			return 0;
4849		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4850			" for %s\n", h->intr[PERF_MODE_INT],
4851			h->devname);
4852		return -1;
4853	}
4854
4855	if (!request_irq(h->intr[PERF_MODE_INT], intxhandler,
4856			IRQF_DISABLED, h->devname, h))
4857		return 0;
4858	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4859		h->intr[PERF_MODE_INT], h->devname);
4860	return -1;
4861}
4862
4863static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4864{
4865	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4866		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4867		return -EIO;
4868	}
4869
4870	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4871	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4872		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4873		return -1;
4874	}
4875
4876	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4877	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4878		dev_warn(&h->pdev->dev, "Board failed to become ready "
4879			"after soft reset.\n");
4880		return -1;
4881	}
4882
4883	return 0;
4884}
4885
4886static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4887{
4888	int ctlr = h->ctlr;
4889
4890	free_irq(h->intr[PERF_MODE_INT], h);
4891#ifdef CONFIG_PCI_MSI
4892	if (h->msix_vector)
4893		pci_disable_msix(h->pdev);
4894	else if (h->msi_vector)
4895		pci_disable_msi(h->pdev);
4896#endif /* CONFIG_PCI_MSI */
4897	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4898	cciss_free_scatterlists(h);
4899	cciss_free_cmd_pool(h);
4900	kfree(h->blockFetchTable);
4901	if (h->reply_pool)
4902		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4903				h->reply_pool, h->reply_pool_dhandle);
4904	if (h->transtable)
4905		iounmap(h->transtable);
4906	if (h->cfgtable)
4907		iounmap(h->cfgtable);
4908	if (h->vaddr)
4909		iounmap(h->vaddr);
4910	unregister_blkdev(h->major, h->devname);
4911	cciss_destroy_hba_sysfs_entry(h);
4912	pci_release_regions(h->pdev);
4913	kfree(h);
4914	hba[ctlr] = NULL;
4915}
4916
4917/*
4918 *  This is it.  Find all the controllers and register them.  I really hate
4919 *  stealing all these major device numbers.
4920 *  returns the number of block devices registered.
4921 */
4922static int __devinit cciss_init_one(struct pci_dev *pdev,
4923				    const struct pci_device_id *ent)
4924{
4925	int i;
4926	int j = 0;
4927	int rc;
4928	int try_soft_reset = 0;
4929	int dac, return_code;
4930	InquiryData_struct *inq_buff;
4931	ctlr_info_t *h;
4932	unsigned long flags;
4933
4934	rc = cciss_init_reset_devices(pdev);
4935	if (rc) {
4936		if (rc != -ENOTSUPP)
4937			return rc;
4938		/* If the reset fails in a particular way (it has no way to do
4939		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4940		 * a soft reset once we get the controller configured up to the
4941		 * point that it can accept a command.
4942		 */
4943		try_soft_reset = 1;
4944		rc = 0;
4945	}
4946
4947reinit_after_soft_reset:
4948
4949	i = alloc_cciss_hba(pdev);
4950	if (i < 0)
4951		return -1;
4952
4953	h = hba[i];
4954	h->pdev = pdev;
4955	h->busy_initializing = 1;
4956	INIT_LIST_HEAD(&h->cmpQ);
4957	INIT_LIST_HEAD(&h->reqQ);
4958	mutex_init(&h->busy_shutting_down);
4959
4960	if (cciss_pci_init(h) != 0)
4961		goto clean_no_release_regions;
4962
4963	sprintf(h->devname, "cciss%d", i);
4964	h->ctlr = i;
4965
4966	if (cciss_tape_cmds < 2)
4967		cciss_tape_cmds = 2;
4968	if (cciss_tape_cmds > 16)
4969		cciss_tape_cmds = 16;
4970
4971	init_completion(&h->scan_wait);
4972
4973	if (cciss_create_hba_sysfs_entry(h))
4974		goto clean0;
4975
4976	/* configure PCI DMA stuff */
4977	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4978		dac = 1;
4979	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4980		dac = 0;
4981	else {
4982		dev_err(&h->pdev->dev, "no suitable DMA available\n");
4983		goto clean1;
4984	}
4985
4986	/*
4987	 * register with the major number, or get a dynamic major number
4988	 * by passing 0 as argument.  This is done for greater than
4989	 * 8 controller support.
4990	 */
4991	if (i < MAX_CTLR_ORIG)
4992		h->major = COMPAQ_CISS_MAJOR + i;
4993	rc = register_blkdev(h->major, h->devname);
4994	if (rc == -EBUSY || rc == -EINVAL) {
4995		dev_err(&h->pdev->dev,
4996		       "Unable to get major number %d for %s "
4997		       "on hba %d\n", h->major, h->devname, i);
4998		goto clean1;
4999	} else {
5000		if (i >= MAX_CTLR_ORIG)
5001			h->major = rc;
5002	}
5003
5004	/* make sure the board interrupts are off */
5005	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5006	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5007	if (rc)
5008		goto clean2;
5009
5010	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5011	       h->devname, pdev->device, pci_name(pdev),
5012	       h->intr[PERF_MODE_INT], dac ? "" : " not");
5013
5014	if (cciss_allocate_cmd_pool(h))
5015		goto clean4;
5016
5017	if (cciss_allocate_scatterlists(h))
5018		goto clean4;
5019
5020	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5021		h->chainsize, h->nr_cmds);
5022	if (!h->cmd_sg_list && h->chainsize > 0)
5023		goto clean4;
5024
5025	spin_lock_init(&h->lock);
5026
5027	/* Initialize the pdev driver private data.
5028	   have it point to h.  */
5029	pci_set_drvdata(pdev, h);
5030	/* command and error info recs zeroed out before
5031	   they are used */
5032	memset(h->cmd_pool_bits, 0,
5033	       DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5034			* sizeof(unsigned long));
5035
5036	h->num_luns = 0;
5037	h->highest_lun = -1;
5038	for (j = 0; j < CISS_MAX_LUN; j++) {
5039		h->drv[j] = NULL;
5040		h->gendisk[j] = NULL;
5041	}
5042
5043	/* At this point, the controller is ready to take commands.
5044	 * Now, if reset_devices and the hard reset didn't work, try
5045	 * the soft reset and see if that works.
5046	 */
5047	if (try_soft_reset) {
5048
5049		/* This is kind of gross.  We may or may not get a completion
5050		 * from the soft reset command, and if we do, then the value
5051		 * from the fifo may or may not be valid.  So, we wait 10 secs
5052		 * after the reset throwing away any completions we get during
5053		 * that time.  Unregister the interrupt handler and register
5054		 * fake ones to scoop up any residual completions.
5055		 */
5056		spin_lock_irqsave(&h->lock, flags);
5057		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5058		spin_unlock_irqrestore(&h->lock, flags);
5059		free_irq(h->intr[PERF_MODE_INT], h);
5060		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5061					cciss_intx_discard_completions);
5062		if (rc) {
5063			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5064				"soft reset.\n");
5065			goto clean4;
5066		}
5067
5068		rc = cciss_kdump_soft_reset(h);
5069		if (rc) {
5070			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5071			goto clean4;
5072		}
5073
5074		dev_info(&h->pdev->dev, "Board READY.\n");
5075		dev_info(&h->pdev->dev,
5076			"Waiting for stale completions to drain.\n");
5077		h->access.set_intr_mask(h, CCISS_INTR_ON);
5078		msleep(10000);
5079		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5080
5081		rc = controller_reset_failed(h->cfgtable);
5082		if (rc)
5083			dev_info(&h->pdev->dev,
5084				"Soft reset appears to have failed.\n");
5085
5086		/* since the controller's reset, we have to go back and re-init
5087		 * everything.  Easiest to just forget what we've done and do it
5088		 * all over again.
5089		 */
5090		cciss_undo_allocations_after_kdump_soft_reset(h);
5091		try_soft_reset = 0;
5092		if (rc)
5093			/* don't go to clean4, we already unallocated */
5094			return -ENODEV;
5095
5096		goto reinit_after_soft_reset;
5097	}
5098
5099	cciss_scsi_setup(h);
5100
5101	/* Turn the interrupts on so we can service requests */
5102	h->access.set_intr_mask(h, CCISS_INTR_ON);
5103
5104	/* Get the firmware version */
5105	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5106	if (inq_buff == NULL) {
5107		dev_err(&h->pdev->dev, "out of memory\n");
5108		goto clean4;
5109	}
5110
5111	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5112		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5113	if (return_code == IO_OK) {
5114		h->firm_ver[0] = inq_buff->data_byte[32];
5115		h->firm_ver[1] = inq_buff->data_byte[33];
5116		h->firm_ver[2] = inq_buff->data_byte[34];
5117		h->firm_ver[3] = inq_buff->data_byte[35];
5118	} else {	 /* send command failed */
5119		dev_warn(&h->pdev->dev, "unable to determine firmware"
5120			" version of controller\n");
5121	}
5122	kfree(inq_buff);
5123
5124	cciss_procinit(h);
5125
5126	h->cciss_max_sectors = 8192;
5127
5128	rebuild_lun_table(h, 1, 0);
5129	h->busy_initializing = 0;
5130	return 1;
5131
5132clean4:
5133	cciss_free_cmd_pool(h);
5134	cciss_free_scatterlists(h);
5135	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5136	free_irq(h->intr[PERF_MODE_INT], h);
5137clean2:
5138	unregister_blkdev(h->major, h->devname);
5139clean1:
5140	cciss_destroy_hba_sysfs_entry(h);
5141clean0:
5142	pci_release_regions(pdev);
5143clean_no_release_regions:
5144	h->busy_initializing = 0;
5145
5146	/*
5147	 * Deliberately omit pci_disable_device(): it does something nasty to
5148	 * Smart Array controllers that pci_enable_device does not undo
5149	 */
5150	pci_set_drvdata(pdev, NULL);
5151	free_hba(h);
5152	return -1;
5153}
5154
5155static void cciss_shutdown(struct pci_dev *pdev)
5156{
5157	ctlr_info_t *h;
5158	char *flush_buf;
5159	int return_code;
5160
5161	h = pci_get_drvdata(pdev);
5162	flush_buf = kzalloc(4, GFP_KERNEL);
5163	if (!flush_buf) {
5164		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5165		return;
5166	}
5167	/* write all data in the battery backed cache to disk */
5168	memset(flush_buf, 0, 4);
5169	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5170		4, 0, CTLR_LUNID, TYPE_CMD);
5171	kfree(flush_buf);
5172	if (return_code != IO_OK)
5173		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5174	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5175	free_irq(h->intr[PERF_MODE_INT], h);
5176}
5177
5178static void __devexit cciss_remove_one(struct pci_dev *pdev)
5179{
5180	ctlr_info_t *h;
5181	int i, j;
5182
5183	if (pci_get_drvdata(pdev) == NULL) {
5184		dev_err(&pdev->dev, "Unable to remove device\n");
5185		return;
5186	}
5187
5188	h = pci_get_drvdata(pdev);
5189	i = h->ctlr;
5190	if (hba[i] == NULL) {
5191		dev_err(&pdev->dev, "device appears to already be removed\n");
5192		return;
5193	}
5194
5195	mutex_lock(&h->busy_shutting_down);
5196
5197	remove_from_scan_list(h);
5198	remove_proc_entry(h->devname, proc_cciss);
5199	unregister_blkdev(h->major, h->devname);
5200
5201	/* remove it from the disk list */
5202	for (j = 0; j < CISS_MAX_LUN; j++) {
5203		struct gendisk *disk = h->gendisk[j];
5204		if (disk) {
5205			struct request_queue *q = disk->queue;
5206
5207			if (disk->flags & GENHD_FL_UP) {
5208				cciss_destroy_ld_sysfs_entry(h, j, 1);
5209				del_gendisk(disk);
5210			}
5211			if (q)
5212				blk_cleanup_queue(q);
5213		}
5214	}
5215
5216#ifdef CONFIG_CISS_SCSI_TAPE
5217	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5218#endif
5219
5220	cciss_shutdown(pdev);
5221
5222#ifdef CONFIG_PCI_MSI
5223	if (h->msix_vector)
5224		pci_disable_msix(h->pdev);
5225	else if (h->msi_vector)
5226		pci_disable_msi(h->pdev);
5227#endif				/* CONFIG_PCI_MSI */
5228
5229	iounmap(h->transtable);
5230	iounmap(h->cfgtable);
5231	iounmap(h->vaddr);
5232
5233	cciss_free_cmd_pool(h);
5234	/* Free up sg elements */
5235	for (j = 0; j < h->nr_cmds; j++)
5236		kfree(h->scatter_list[j]);
5237	kfree(h->scatter_list);
5238	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5239	kfree(h->blockFetchTable);
5240	if (h->reply_pool)
5241		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5242				h->reply_pool, h->reply_pool_dhandle);
5243	/*
5244	 * Deliberately omit pci_disable_device(): it does something nasty to
5245	 * Smart Array controllers that pci_enable_device does not undo
5246	 */
5247	pci_release_regions(pdev);
5248	pci_set_drvdata(pdev, NULL);
5249	cciss_destroy_hba_sysfs_entry(h);
5250	mutex_unlock(&h->busy_shutting_down);
5251	free_hba(h);
5252}
5253
5254static struct pci_driver cciss_pci_driver = {
5255	.name = "cciss",
5256	.probe = cciss_init_one,
5257	.remove = __devexit_p(cciss_remove_one),
5258	.id_table = cciss_pci_device_id,	/* id_table */
5259	.shutdown = cciss_shutdown,
5260};
5261
5262/*
5263 *  This is it.  Register the PCI driver information for the cards we control
5264 *  the OS will call our registered routines when it finds one of our cards.
5265 */
5266static int __init cciss_init(void)
5267{
5268	int err;
5269
5270	/*
5271	 * The hardware requires that commands are aligned on a 64-bit
5272	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5273	 * array of them, the size must be a multiple of 8 bytes.
5274	 */
5275	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5276	printk(KERN_INFO DRIVER_NAME "\n");
5277
5278	err = bus_register(&cciss_bus_type);
5279	if (err)
5280		return err;
5281
5282	/* Start the scan thread */
5283	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5284	if (IS_ERR(cciss_scan_thread)) {
5285		err = PTR_ERR(cciss_scan_thread);
5286		goto err_bus_unregister;
5287	}
5288
5289	/* Register for our PCI devices */
5290	err = pci_register_driver(&cciss_pci_driver);
5291	if (err)
5292		goto err_thread_stop;
5293
5294	return err;
5295
5296err_thread_stop:
5297	kthread_stop(cciss_scan_thread);
5298err_bus_unregister:
5299	bus_unregister(&cciss_bus_type);
5300
5301	return err;
5302}
5303
5304static void __exit cciss_cleanup(void)
5305{
5306	int i;
5307
5308	pci_unregister_driver(&cciss_pci_driver);
5309	/* double check that all controller entrys have been removed */
5310	for (i = 0; i < MAX_CTLR; i++) {
5311		if (hba[i] != NULL) {
5312			dev_warn(&hba[i]->pdev->dev,
5313				"had to remove controller\n");
5314			cciss_remove_one(hba[i]->pdev);
5315		}
5316	}
5317	kthread_stop(cciss_scan_thread);
5318	if (proc_cciss)
5319		remove_proc_entry("driver/cciss", NULL);
5320	bus_unregister(&cciss_bus_type);
5321}
5322
5323module_init(cciss_init);
5324module_exit(cciss_cleanup);