Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Front panel driver for Linux
   4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   5 * Copyright (C) 2016-2017 Glider bvba
   6 *
   7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
   8 * connected to a parallel printer port.
   9 *
  10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  11 * serial module compatible with Samsung's KS0074. The pins may be connected in
  12 * any combination, everything is programmable.
  13 *
  14 * The keypad consists in a matrix of push buttons connecting input pins to
  15 * data output pins or to the ground. The combinations have to be hard-coded
  16 * in the driver, though several profiles exist and adding new ones is easy.
  17 *
  18 * Several profiles are provided for commonly found LCD+keypad modules on the
  19 * market, such as those found in Nexcom's appliances.
  20 *
  21 * FIXME:
  22 *      - the initialization/deinitialization process is very dirty and should
  23 *        be rewritten. It may even be buggy.
  24 *
  25 * TODO:
  26 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  27 *      - make the LCD a part of a virtual screen of Vx*Vy
  28 *	- make the inputs list smp-safe
  29 *      - change the keyboard to a double mapping : signals -> key_id -> values
  30 *        so that applications can change values without knowing signals
  31 *
  32 */
  33
  34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  35
  36#include <linux/module.h>
  37
  38#include <linux/types.h>
  39#include <linux/errno.h>
  40#include <linux/signal.h>
  41#include <linux/sched.h>
  42#include <linux/spinlock.h>
  43#include <linux/interrupt.h>
  44#include <linux/miscdevice.h>
  45#include <linux/slab.h>
  46#include <linux/ioport.h>
  47#include <linux/fcntl.h>
  48#include <linux/init.h>
  49#include <linux/delay.h>
  50#include <linux/kernel.h>
  51#include <linux/ctype.h>
  52#include <linux/parport.h>
  53#include <linux/list.h>
  54
  55#include <linux/io.h>
  56#include <linux/uaccess.h>
  57
  58#include "charlcd.h"
  59
  60#define KEYPAD_MINOR		185
  61
  62#define LCD_MAXBYTES		256	/* max burst write */
  63
  64#define KEYPAD_BUFFER		64
  65
  66/* poll the keyboard this every second */
  67#define INPUT_POLL_TIME		(HZ / 50)
  68/* a key starts to repeat after this times INPUT_POLL_TIME */
  69#define KEYPAD_REP_START	(10)
  70/* a key repeats this times INPUT_POLL_TIME */
  71#define KEYPAD_REP_DELAY	(2)
  72
  73/* converts an r_str() input to an active high, bits string : 000BAOSE */
  74#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
  75
  76#define PNL_PBUSY		0x80	/* inverted input, active low */
  77#define PNL_PACK		0x40	/* direct input, active low */
  78#define PNL_POUTPA		0x20	/* direct input, active high */
  79#define PNL_PSELECD		0x10	/* direct input, active high */
  80#define PNL_PERRORP		0x08	/* direct input, active low */
  81
  82#define PNL_PBIDIR		0x20	/* bi-directional ports */
  83/* high to read data in or-ed with data out */
  84#define PNL_PINTEN		0x10
  85#define PNL_PSELECP		0x08	/* inverted output, active low */
  86#define PNL_PINITP		0x04	/* direct output, active low */
  87#define PNL_PAUTOLF		0x02	/* inverted output, active low */
  88#define PNL_PSTROBE		0x01	/* inverted output */
  89
  90#define PNL_PD0			0x01
  91#define PNL_PD1			0x02
  92#define PNL_PD2			0x04
  93#define PNL_PD3			0x08
  94#define PNL_PD4			0x10
  95#define PNL_PD5			0x20
  96#define PNL_PD6			0x40
  97#define PNL_PD7			0x80
  98
  99#define PIN_NONE		0
 100#define PIN_STROBE		1
 101#define PIN_D0			2
 102#define PIN_D1			3
 103#define PIN_D2			4
 104#define PIN_D3			5
 105#define PIN_D4			6
 106#define PIN_D5			7
 107#define PIN_D6			8
 108#define PIN_D7			9
 109#define PIN_AUTOLF		14
 110#define PIN_INITP		16
 111#define PIN_SELECP		17
 112#define PIN_NOT_SET		127
 113
 114#define NOT_SET			-1
 115
 116/* macros to simplify use of the parallel port */
 117#define r_ctr(x)        (parport_read_control((x)->port))
 118#define r_dtr(x)        (parport_read_data((x)->port))
 119#define r_str(x)        (parport_read_status((x)->port))
 120#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 121#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 122
 123/* this defines which bits are to be used and which ones to be ignored */
 124/* logical or of the output bits involved in the scan matrix */
 125static __u8 scan_mask_o;
 126/* logical or of the input bits involved in the scan matrix */
 127static __u8 scan_mask_i;
 128
 129enum input_type {
 130	INPUT_TYPE_STD,
 131	INPUT_TYPE_KBD,
 132};
 133
 134enum input_state {
 135	INPUT_ST_LOW,
 136	INPUT_ST_RISING,
 137	INPUT_ST_HIGH,
 138	INPUT_ST_FALLING,
 139};
 140
 141struct logical_input {
 142	struct list_head list;
 143	__u64 mask;
 144	__u64 value;
 145	enum input_type type;
 146	enum input_state state;
 147	__u8 rise_time, fall_time;
 148	__u8 rise_timer, fall_timer, high_timer;
 149
 150	union {
 151		struct {	/* valid when type == INPUT_TYPE_STD */
 152			void (*press_fct)(int);
 153			void (*release_fct)(int);
 154			int press_data;
 155			int release_data;
 156		} std;
 157		struct {	/* valid when type == INPUT_TYPE_KBD */
 158			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
 159			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
 160			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
 161		} kbd;
 162	} u;
 163};
 164
 165static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
 166
 167/* physical contacts history
 168 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 169 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 170 * corresponds to the ground.
 171 * Within each group, bits are stored in the same order as read on the port :
 172 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 173 * So, each __u64 is represented like this :
 174 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 175 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 176 */
 177
 178/* what has just been read from the I/O ports */
 179static __u64 phys_read;
 180/* previous phys_read */
 181static __u64 phys_read_prev;
 182/* stabilized phys_read (phys_read|phys_read_prev) */
 183static __u64 phys_curr;
 184/* previous phys_curr */
 185static __u64 phys_prev;
 186/* 0 means that at least one logical signal needs be computed */
 187static char inputs_stable;
 188
 189/* these variables are specific to the keypad */
 190static struct {
 191	bool enabled;
 192} keypad;
 193
 194static char keypad_buffer[KEYPAD_BUFFER];
 195static int keypad_buflen;
 196static int keypad_start;
 197static char keypressed;
 198static wait_queue_head_t keypad_read_wait;
 199
 200/* lcd-specific variables */
 201static struct {
 202	bool enabled;
 203	bool initialized;
 204
 205	int charset;
 206	int proto;
 207
 208	/* TODO: use union here? */
 209	struct {
 210		int e;
 211		int rs;
 212		int rw;
 213		int cl;
 214		int da;
 215		int bl;
 216	} pins;
 217
 218	struct charlcd *charlcd;
 219} lcd;
 220
 221/* Needed only for init */
 222static int selected_lcd_type = NOT_SET;
 223
 224/*
 225 * Bit masks to convert LCD signals to parallel port outputs.
 226 * _d_ are values for data port, _c_ are for control port.
 227 * [0] = signal OFF, [1] = signal ON, [2] = mask
 228 */
 229#define BIT_CLR		0
 230#define BIT_SET		1
 231#define BIT_MSK		2
 232#define BIT_STATES	3
 233/*
 234 * one entry for each bit on the LCD
 235 */
 236#define LCD_BIT_E	0
 237#define LCD_BIT_RS	1
 238#define LCD_BIT_RW	2
 239#define LCD_BIT_BL	3
 240#define LCD_BIT_CL	4
 241#define LCD_BIT_DA	5
 242#define LCD_BITS	6
 243
 244/*
 245 * each bit can be either connected to a DATA or CTRL port
 246 */
 247#define LCD_PORT_C	0
 248#define LCD_PORT_D	1
 249#define LCD_PORTS	2
 250
 251static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 252
 253/*
 254 * LCD protocols
 255 */
 256#define LCD_PROTO_PARALLEL      0
 257#define LCD_PROTO_SERIAL        1
 258#define LCD_PROTO_TI_DA8XX_LCD	2
 259
 260/*
 261 * LCD character sets
 262 */
 263#define LCD_CHARSET_NORMAL      0
 264#define LCD_CHARSET_KS0074      1
 265
 266/*
 267 * LCD types
 268 */
 269#define LCD_TYPE_NONE		0
 270#define LCD_TYPE_CUSTOM		1
 271#define LCD_TYPE_OLD		2
 272#define LCD_TYPE_KS0074		3
 273#define LCD_TYPE_HANTRONIX	4
 274#define LCD_TYPE_NEXCOM		5
 275
 276/*
 277 * keypad types
 278 */
 279#define KEYPAD_TYPE_NONE	0
 280#define KEYPAD_TYPE_OLD		1
 281#define KEYPAD_TYPE_NEW		2
 282#define KEYPAD_TYPE_NEXCOM	3
 283
 284/*
 285 * panel profiles
 286 */
 287#define PANEL_PROFILE_CUSTOM	0
 288#define PANEL_PROFILE_OLD	1
 289#define PANEL_PROFILE_NEW	2
 290#define PANEL_PROFILE_HANTRONIX	3
 291#define PANEL_PROFILE_NEXCOM	4
 292#define PANEL_PROFILE_LARGE	5
 293
 294/*
 295 * Construct custom config from the kernel's configuration
 296 */
 297#define DEFAULT_PARPORT         0
 298#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 299#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 300#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 301#define DEFAULT_LCD_HEIGHT      2
 302#define DEFAULT_LCD_WIDTH       40
 303#define DEFAULT_LCD_BWIDTH      40
 304#define DEFAULT_LCD_HWIDTH      64
 305#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 306#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 307
 308#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 309#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 310#define DEFAULT_LCD_PIN_RW      PIN_INITP
 311#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 312#define DEFAULT_LCD_PIN_SDA     PIN_D0
 313#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 314
 315#ifdef CONFIG_PANEL_PARPORT
 316#undef DEFAULT_PARPORT
 317#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 318#endif
 319
 320#ifdef CONFIG_PANEL_PROFILE
 321#undef DEFAULT_PROFILE
 322#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 323#endif
 324
 325#if DEFAULT_PROFILE == 0	/* custom */
 326#ifdef CONFIG_PANEL_KEYPAD
 327#undef DEFAULT_KEYPAD_TYPE
 328#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 329#endif
 330
 331#ifdef CONFIG_PANEL_LCD
 332#undef DEFAULT_LCD_TYPE
 333#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 334#endif
 335
 336#ifdef CONFIG_PANEL_LCD_HEIGHT
 337#undef DEFAULT_LCD_HEIGHT
 338#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 339#endif
 340
 341#ifdef CONFIG_PANEL_LCD_WIDTH
 342#undef DEFAULT_LCD_WIDTH
 343#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 344#endif
 345
 346#ifdef CONFIG_PANEL_LCD_BWIDTH
 347#undef DEFAULT_LCD_BWIDTH
 348#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 349#endif
 350
 351#ifdef CONFIG_PANEL_LCD_HWIDTH
 352#undef DEFAULT_LCD_HWIDTH
 353#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 354#endif
 355
 356#ifdef CONFIG_PANEL_LCD_CHARSET
 357#undef DEFAULT_LCD_CHARSET
 358#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 359#endif
 360
 361#ifdef CONFIG_PANEL_LCD_PROTO
 362#undef DEFAULT_LCD_PROTO
 363#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 364#endif
 365
 366#ifdef CONFIG_PANEL_LCD_PIN_E
 367#undef DEFAULT_LCD_PIN_E
 368#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 369#endif
 370
 371#ifdef CONFIG_PANEL_LCD_PIN_RS
 372#undef DEFAULT_LCD_PIN_RS
 373#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 374#endif
 375
 376#ifdef CONFIG_PANEL_LCD_PIN_RW
 377#undef DEFAULT_LCD_PIN_RW
 378#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 379#endif
 380
 381#ifdef CONFIG_PANEL_LCD_PIN_SCL
 382#undef DEFAULT_LCD_PIN_SCL
 383#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 384#endif
 385
 386#ifdef CONFIG_PANEL_LCD_PIN_SDA
 387#undef DEFAULT_LCD_PIN_SDA
 388#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 389#endif
 390
 391#ifdef CONFIG_PANEL_LCD_PIN_BL
 392#undef DEFAULT_LCD_PIN_BL
 393#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 394#endif
 395
 396#endif /* DEFAULT_PROFILE == 0 */
 397
 398/* global variables */
 399
 400/* Device single-open policy control */
 401static atomic_t keypad_available = ATOMIC_INIT(1);
 402
 403static struct pardevice *pprt;
 404
 405static int keypad_initialized;
 406
 407static DEFINE_SPINLOCK(pprt_lock);
 408static struct timer_list scan_timer;
 409
 410MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 411
 412static int parport = DEFAULT_PARPORT;
 413module_param(parport, int, 0000);
 414MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 415
 416static int profile = DEFAULT_PROFILE;
 417module_param(profile, int, 0000);
 418MODULE_PARM_DESC(profile,
 419		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 420		 "4=16x2 nexcom; default=40x2, old kp");
 421
 422static int keypad_type = NOT_SET;
 423module_param(keypad_type, int, 0000);
 424MODULE_PARM_DESC(keypad_type,
 425		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 426
 427static int lcd_type = NOT_SET;
 428module_param(lcd_type, int, 0000);
 429MODULE_PARM_DESC(lcd_type,
 430		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 431
 432static int lcd_height = NOT_SET;
 433module_param(lcd_height, int, 0000);
 434MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 435
 436static int lcd_width = NOT_SET;
 437module_param(lcd_width, int, 0000);
 438MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 439
 440static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
 441module_param(lcd_bwidth, int, 0000);
 442MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 443
 444static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
 445module_param(lcd_hwidth, int, 0000);
 446MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 447
 448static int lcd_charset = NOT_SET;
 449module_param(lcd_charset, int, 0000);
 450MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 451
 452static int lcd_proto = NOT_SET;
 453module_param(lcd_proto, int, 0000);
 454MODULE_PARM_DESC(lcd_proto,
 455		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 456
 457/*
 458 * These are the parallel port pins the LCD control signals are connected to.
 459 * Set this to 0 if the signal is not used. Set it to its opposite value
 460 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 461 * pin has not been explicitly specified.
 462 *
 463 * WARNING! no check will be performed about collisions with keypad !
 464 */
 465
 466static int lcd_e_pin  = PIN_NOT_SET;
 467module_param(lcd_e_pin, int, 0000);
 468MODULE_PARM_DESC(lcd_e_pin,
 469		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 470
 471static int lcd_rs_pin = PIN_NOT_SET;
 472module_param(lcd_rs_pin, int, 0000);
 473MODULE_PARM_DESC(lcd_rs_pin,
 474		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 475
 476static int lcd_rw_pin = PIN_NOT_SET;
 477module_param(lcd_rw_pin, int, 0000);
 478MODULE_PARM_DESC(lcd_rw_pin,
 479		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 480
 481static int lcd_cl_pin = PIN_NOT_SET;
 482module_param(lcd_cl_pin, int, 0000);
 483MODULE_PARM_DESC(lcd_cl_pin,
 484		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 485
 486static int lcd_da_pin = PIN_NOT_SET;
 487module_param(lcd_da_pin, int, 0000);
 488MODULE_PARM_DESC(lcd_da_pin,
 489		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 490
 491static int lcd_bl_pin = PIN_NOT_SET;
 492module_param(lcd_bl_pin, int, 0000);
 493MODULE_PARM_DESC(lcd_bl_pin,
 494		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 495
 496/* Deprecated module parameters - consider not using them anymore */
 497
 498static int lcd_enabled = NOT_SET;
 499module_param(lcd_enabled, int, 0000);
 500MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 501
 502static int keypad_enabled = NOT_SET;
 503module_param(keypad_enabled, int, 0000);
 504MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 505
 506/* for some LCD drivers (ks0074) we need a charset conversion table. */
 507static const unsigned char lcd_char_conv_ks0074[256] = {
 508	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 509	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 510	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 511	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 512	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 513	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 514	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 515	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 516	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 517	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 518	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 519	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 520	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 521	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 522	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 523	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 524	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 525	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 526	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 527	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 528	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 529	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 530	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 531	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 532	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 533	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 534	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 535	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 536	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 537	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 538	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 539	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 540	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 541};
 542
 543static const char old_keypad_profile[][4][9] = {
 544	{"S0", "Left\n", "Left\n", ""},
 545	{"S1", "Down\n", "Down\n", ""},
 546	{"S2", "Up\n", "Up\n", ""},
 547	{"S3", "Right\n", "Right\n", ""},
 548	{"S4", "Esc\n", "Esc\n", ""},
 549	{"S5", "Ret\n", "Ret\n", ""},
 550	{"", "", "", ""}
 551};
 552
 553/* signals, press, repeat, release */
 554static const char new_keypad_profile[][4][9] = {
 555	{"S0", "Left\n", "Left\n", ""},
 556	{"S1", "Down\n", "Down\n", ""},
 557	{"S2", "Up\n", "Up\n", ""},
 558	{"S3", "Right\n", "Right\n", ""},
 559	{"S4s5", "", "Esc\n", "Esc\n"},
 560	{"s4S5", "", "Ret\n", "Ret\n"},
 561	{"S4S5", "Help\n", "", ""},
 562	/* add new signals above this line */
 563	{"", "", "", ""}
 564};
 565
 566/* signals, press, repeat, release */
 567static const char nexcom_keypad_profile[][4][9] = {
 568	{"a-p-e-", "Down\n", "Down\n", ""},
 569	{"a-p-E-", "Ret\n", "Ret\n", ""},
 570	{"a-P-E-", "Esc\n", "Esc\n", ""},
 571	{"a-P-e-", "Up\n", "Up\n", ""},
 572	/* add new signals above this line */
 573	{"", "", "", ""}
 574};
 575
 576static const char (*keypad_profile)[4][9] = old_keypad_profile;
 577
 578static DECLARE_BITMAP(bits, LCD_BITS);
 579
 580static void lcd_get_bits(unsigned int port, int *val)
 581{
 582	unsigned int bit, state;
 583
 584	for (bit = 0; bit < LCD_BITS; bit++) {
 585		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 586		*val &= lcd_bits[port][bit][BIT_MSK];
 587		*val |= lcd_bits[port][bit][state];
 588	}
 589}
 590
 591/* sets data port bits according to current signals values */
 592static int set_data_bits(void)
 593{
 594	int val;
 595
 596	val = r_dtr(pprt);
 597	lcd_get_bits(LCD_PORT_D, &val);
 598	w_dtr(pprt, val);
 599	return val;
 600}
 601
 602/* sets ctrl port bits according to current signals values */
 603static int set_ctrl_bits(void)
 604{
 605	int val;
 606
 607	val = r_ctr(pprt);
 608	lcd_get_bits(LCD_PORT_C, &val);
 609	w_ctr(pprt, val);
 610	return val;
 611}
 612
 613/* sets ctrl & data port bits according to current signals values */
 614static void panel_set_bits(void)
 615{
 616	set_data_bits();
 617	set_ctrl_bits();
 618}
 619
 620/*
 621 * Converts a parallel port pin (from -25 to 25) to data and control ports
 622 * masks, and data and control port bits. The signal will be considered
 623 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 624 *
 625 * Result will be used this way :
 626 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 627 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 628 */
 629static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 630{
 631	int d_bit, c_bit, inv;
 632
 633	d_val[0] = 0;
 634	c_val[0] = 0;
 635	d_val[1] = 0;
 636	c_val[1] = 0;
 637	d_val[2] = 0xFF;
 638	c_val[2] = 0xFF;
 639
 640	if (pin == 0)
 641		return;
 642
 643	inv = (pin < 0);
 644	if (inv)
 645		pin = -pin;
 646
 647	d_bit = 0;
 648	c_bit = 0;
 649
 650	switch (pin) {
 651	case PIN_STROBE:	/* strobe, inverted */
 652		c_bit = PNL_PSTROBE;
 653		inv = !inv;
 654		break;
 655	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
 656		d_bit = 1 << (pin - 2);
 657		break;
 658	case PIN_AUTOLF:	/* autofeed, inverted */
 659		c_bit = PNL_PAUTOLF;
 660		inv = !inv;
 661		break;
 662	case PIN_INITP:		/* init, direct */
 663		c_bit = PNL_PINITP;
 664		break;
 665	case PIN_SELECP:	/* select_in, inverted */
 666		c_bit = PNL_PSELECP;
 667		inv = !inv;
 668		break;
 669	default:		/* unknown pin, ignore */
 670		break;
 671	}
 672
 673	if (c_bit) {
 674		c_val[2] &= ~c_bit;
 675		c_val[!inv] = c_bit;
 676	} else if (d_bit) {
 677		d_val[2] &= ~d_bit;
 678		d_val[!inv] = d_bit;
 679	}
 680}
 681
 682/*
 683 * send a serial byte to the LCD panel. The caller is responsible for locking
 684 * if needed.
 685 */
 686static void lcd_send_serial(int byte)
 687{
 688	int bit;
 689
 690	/*
 691	 * the data bit is set on D0, and the clock on STROBE.
 692	 * LCD reads D0 on STROBE's rising edge.
 693	 */
 694	for (bit = 0; bit < 8; bit++) {
 695		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
 696		panel_set_bits();
 697		if (byte & 1) {
 698			set_bit(LCD_BIT_DA, bits);
 699		} else {
 700			clear_bit(LCD_BIT_DA, bits);
 701		}
 702
 703		panel_set_bits();
 704		udelay(2);  /* maintain the data during 2 us before CLK up */
 705		set_bit(LCD_BIT_CL, bits);	/* CLK high */
 706		panel_set_bits();
 707		udelay(1);  /* maintain the strobe during 1 us */
 708		byte >>= 1;
 709	}
 710}
 711
 712/* turn the backlight on or off */
 713static void lcd_backlight(struct charlcd *charlcd, int on)
 714{
 715	if (lcd.pins.bl == PIN_NONE)
 716		return;
 717
 718	/* The backlight is activated by setting the AUTOFEED line to +5V  */
 719	spin_lock_irq(&pprt_lock);
 720	if (on)
 721		set_bit(LCD_BIT_BL, bits);
 722	else
 723		clear_bit(LCD_BIT_BL, bits);
 724	panel_set_bits();
 725	spin_unlock_irq(&pprt_lock);
 726}
 727
 728/* send a command to the LCD panel in serial mode */
 729static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
 730{
 731	spin_lock_irq(&pprt_lock);
 732	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
 733	lcd_send_serial(cmd & 0x0F);
 734	lcd_send_serial((cmd >> 4) & 0x0F);
 735	udelay(40);		/* the shortest command takes at least 40 us */
 736	spin_unlock_irq(&pprt_lock);
 737}
 738
 739/* send data to the LCD panel in serial mode */
 740static void lcd_write_data_s(struct charlcd *charlcd, int data)
 741{
 742	spin_lock_irq(&pprt_lock);
 743	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 744	lcd_send_serial(data & 0x0F);
 745	lcd_send_serial((data >> 4) & 0x0F);
 746	udelay(40);		/* the shortest data takes at least 40 us */
 747	spin_unlock_irq(&pprt_lock);
 748}
 749
 750/* send a command to the LCD panel in 8 bits parallel mode */
 751static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
 752{
 753	spin_lock_irq(&pprt_lock);
 754	/* present the data to the data port */
 755	w_dtr(pprt, cmd);
 756	udelay(20);	/* maintain the data during 20 us before the strobe */
 757
 758	set_bit(LCD_BIT_E, bits);
 759	clear_bit(LCD_BIT_RS, bits);
 760	clear_bit(LCD_BIT_RW, bits);
 761	set_ctrl_bits();
 762
 763	udelay(40);	/* maintain the strobe during 40 us */
 764
 765	clear_bit(LCD_BIT_E, bits);
 766	set_ctrl_bits();
 767
 768	udelay(120);	/* the shortest command takes at least 120 us */
 769	spin_unlock_irq(&pprt_lock);
 770}
 771
 772/* send data to the LCD panel in 8 bits parallel mode */
 773static void lcd_write_data_p8(struct charlcd *charlcd, int data)
 774{
 775	spin_lock_irq(&pprt_lock);
 776	/* present the data to the data port */
 777	w_dtr(pprt, data);
 778	udelay(20);	/* maintain the data during 20 us before the strobe */
 779
 780	set_bit(LCD_BIT_E, bits);
 781	set_bit(LCD_BIT_RS, bits);
 782	clear_bit(LCD_BIT_RW, bits);
 783	set_ctrl_bits();
 784
 785	udelay(40);	/* maintain the strobe during 40 us */
 786
 787	clear_bit(LCD_BIT_E, bits);
 788	set_ctrl_bits();
 789
 790	udelay(45);	/* the shortest data takes at least 45 us */
 791	spin_unlock_irq(&pprt_lock);
 792}
 793
 794/* send a command to the TI LCD panel */
 795static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
 796{
 797	spin_lock_irq(&pprt_lock);
 798	/* present the data to the control port */
 799	w_ctr(pprt, cmd);
 800	udelay(60);
 801	spin_unlock_irq(&pprt_lock);
 802}
 803
 804/* send data to the TI LCD panel */
 805static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
 806{
 807	spin_lock_irq(&pprt_lock);
 808	/* present the data to the data port */
 809	w_dtr(pprt, data);
 810	udelay(60);
 811	spin_unlock_irq(&pprt_lock);
 812}
 813
 814/* fills the display with spaces and resets X/Y */
 815static void lcd_clear_fast_s(struct charlcd *charlcd)
 816{
 817	int pos;
 818
 819	spin_lock_irq(&pprt_lock);
 820	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 821		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 822		lcd_send_serial(' ' & 0x0F);
 823		lcd_send_serial((' ' >> 4) & 0x0F);
 824		/* the shortest data takes at least 40 us */
 825		udelay(40);
 826	}
 827	spin_unlock_irq(&pprt_lock);
 828}
 829
 830/* fills the display with spaces and resets X/Y */
 831static void lcd_clear_fast_p8(struct charlcd *charlcd)
 832{
 833	int pos;
 834
 835	spin_lock_irq(&pprt_lock);
 836	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 837		/* present the data to the data port */
 838		w_dtr(pprt, ' ');
 839
 840		/* maintain the data during 20 us before the strobe */
 841		udelay(20);
 842
 843		set_bit(LCD_BIT_E, bits);
 844		set_bit(LCD_BIT_RS, bits);
 845		clear_bit(LCD_BIT_RW, bits);
 846		set_ctrl_bits();
 847
 848		/* maintain the strobe during 40 us */
 849		udelay(40);
 850
 851		clear_bit(LCD_BIT_E, bits);
 852		set_ctrl_bits();
 853
 854		/* the shortest data takes at least 45 us */
 855		udelay(45);
 856	}
 857	spin_unlock_irq(&pprt_lock);
 858}
 859
 860/* fills the display with spaces and resets X/Y */
 861static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
 862{
 863	int pos;
 864
 865	spin_lock_irq(&pprt_lock);
 866	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 867		/* present the data to the data port */
 868		w_dtr(pprt, ' ');
 869		udelay(60);
 870	}
 871
 872	spin_unlock_irq(&pprt_lock);
 873}
 874
 875static const struct charlcd_ops charlcd_serial_ops = {
 876	.write_cmd	= lcd_write_cmd_s,
 877	.write_data	= lcd_write_data_s,
 878	.clear_fast	= lcd_clear_fast_s,
 879	.backlight	= lcd_backlight,
 880};
 881
 882static const struct charlcd_ops charlcd_parallel_ops = {
 883	.write_cmd	= lcd_write_cmd_p8,
 884	.write_data	= lcd_write_data_p8,
 885	.clear_fast	= lcd_clear_fast_p8,
 886	.backlight	= lcd_backlight,
 887};
 888
 889static const struct charlcd_ops charlcd_tilcd_ops = {
 890	.write_cmd	= lcd_write_cmd_tilcd,
 891	.write_data	= lcd_write_data_tilcd,
 892	.clear_fast	= lcd_clear_fast_tilcd,
 893	.backlight	= lcd_backlight,
 894};
 895
 896/* initialize the LCD driver */
 897static void lcd_init(void)
 898{
 899	struct charlcd *charlcd;
 900
 901	charlcd = charlcd_alloc(0);
 902	if (!charlcd)
 903		return;
 904
 905	/*
 906	 * Init lcd struct with load-time values to preserve exact
 907	 * current functionality (at least for now).
 908	 */
 909	charlcd->height = lcd_height;
 910	charlcd->width = lcd_width;
 911	charlcd->bwidth = lcd_bwidth;
 912	charlcd->hwidth = lcd_hwidth;
 913
 914	switch (selected_lcd_type) {
 915	case LCD_TYPE_OLD:
 916		/* parallel mode, 8 bits */
 917		lcd.proto = LCD_PROTO_PARALLEL;
 918		lcd.charset = LCD_CHARSET_NORMAL;
 919		lcd.pins.e = PIN_STROBE;
 920		lcd.pins.rs = PIN_AUTOLF;
 921
 922		charlcd->width = 40;
 923		charlcd->bwidth = 40;
 924		charlcd->hwidth = 64;
 925		charlcd->height = 2;
 926		break;
 927	case LCD_TYPE_KS0074:
 928		/* serial mode, ks0074 */
 929		lcd.proto = LCD_PROTO_SERIAL;
 930		lcd.charset = LCD_CHARSET_KS0074;
 931		lcd.pins.bl = PIN_AUTOLF;
 932		lcd.pins.cl = PIN_STROBE;
 933		lcd.pins.da = PIN_D0;
 934
 935		charlcd->width = 16;
 936		charlcd->bwidth = 40;
 937		charlcd->hwidth = 16;
 938		charlcd->height = 2;
 939		break;
 940	case LCD_TYPE_NEXCOM:
 941		/* parallel mode, 8 bits, generic */
 942		lcd.proto = LCD_PROTO_PARALLEL;
 943		lcd.charset = LCD_CHARSET_NORMAL;
 944		lcd.pins.e = PIN_AUTOLF;
 945		lcd.pins.rs = PIN_SELECP;
 946		lcd.pins.rw = PIN_INITP;
 947
 948		charlcd->width = 16;
 949		charlcd->bwidth = 40;
 950		charlcd->hwidth = 64;
 951		charlcd->height = 2;
 952		break;
 953	case LCD_TYPE_CUSTOM:
 954		/* customer-defined */
 955		lcd.proto = DEFAULT_LCD_PROTO;
 956		lcd.charset = DEFAULT_LCD_CHARSET;
 957		/* default geometry will be set later */
 958		break;
 959	case LCD_TYPE_HANTRONIX:
 960		/* parallel mode, 8 bits, hantronix-like */
 961	default:
 962		lcd.proto = LCD_PROTO_PARALLEL;
 963		lcd.charset = LCD_CHARSET_NORMAL;
 964		lcd.pins.e = PIN_STROBE;
 965		lcd.pins.rs = PIN_SELECP;
 966
 967		charlcd->width = 16;
 968		charlcd->bwidth = 40;
 969		charlcd->hwidth = 64;
 970		charlcd->height = 2;
 971		break;
 972	}
 973
 974	/* Overwrite with module params set on loading */
 975	if (lcd_height != NOT_SET)
 976		charlcd->height = lcd_height;
 977	if (lcd_width != NOT_SET)
 978		charlcd->width = lcd_width;
 979	if (lcd_bwidth != NOT_SET)
 980		charlcd->bwidth = lcd_bwidth;
 981	if (lcd_hwidth != NOT_SET)
 982		charlcd->hwidth = lcd_hwidth;
 983	if (lcd_charset != NOT_SET)
 984		lcd.charset = lcd_charset;
 985	if (lcd_proto != NOT_SET)
 986		lcd.proto = lcd_proto;
 987	if (lcd_e_pin != PIN_NOT_SET)
 988		lcd.pins.e = lcd_e_pin;
 989	if (lcd_rs_pin != PIN_NOT_SET)
 990		lcd.pins.rs = lcd_rs_pin;
 991	if (lcd_rw_pin != PIN_NOT_SET)
 992		lcd.pins.rw = lcd_rw_pin;
 993	if (lcd_cl_pin != PIN_NOT_SET)
 994		lcd.pins.cl = lcd_cl_pin;
 995	if (lcd_da_pin != PIN_NOT_SET)
 996		lcd.pins.da = lcd_da_pin;
 997	if (lcd_bl_pin != PIN_NOT_SET)
 998		lcd.pins.bl = lcd_bl_pin;
 999
1000	/* this is used to catch wrong and default values */
1001	if (charlcd->width <= 0)
1002		charlcd->width = DEFAULT_LCD_WIDTH;
1003	if (charlcd->bwidth <= 0)
1004		charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1005	if (charlcd->hwidth <= 0)
1006		charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1007	if (charlcd->height <= 0)
1008		charlcd->height = DEFAULT_LCD_HEIGHT;
1009
1010	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1011		charlcd->ops = &charlcd_serial_ops;
1012
1013		if (lcd.pins.cl == PIN_NOT_SET)
1014			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1015		if (lcd.pins.da == PIN_NOT_SET)
1016			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1017
1018	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1019		charlcd->ops = &charlcd_parallel_ops;
1020
1021		if (lcd.pins.e == PIN_NOT_SET)
1022			lcd.pins.e = DEFAULT_LCD_PIN_E;
1023		if (lcd.pins.rs == PIN_NOT_SET)
1024			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1025		if (lcd.pins.rw == PIN_NOT_SET)
1026			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1027	} else {
1028		charlcd->ops = &charlcd_tilcd_ops;
1029	}
1030
1031	if (lcd.pins.bl == PIN_NOT_SET)
1032		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1033
1034	if (lcd.pins.e == PIN_NOT_SET)
1035		lcd.pins.e = PIN_NONE;
1036	if (lcd.pins.rs == PIN_NOT_SET)
1037		lcd.pins.rs = PIN_NONE;
1038	if (lcd.pins.rw == PIN_NOT_SET)
1039		lcd.pins.rw = PIN_NONE;
1040	if (lcd.pins.bl == PIN_NOT_SET)
1041		lcd.pins.bl = PIN_NONE;
1042	if (lcd.pins.cl == PIN_NOT_SET)
1043		lcd.pins.cl = PIN_NONE;
1044	if (lcd.pins.da == PIN_NOT_SET)
1045		lcd.pins.da = PIN_NONE;
1046
1047	if (lcd.charset == NOT_SET)
1048		lcd.charset = DEFAULT_LCD_CHARSET;
1049
1050	if (lcd.charset == LCD_CHARSET_KS0074)
1051		charlcd->char_conv = lcd_char_conv_ks0074;
1052	else
1053		charlcd->char_conv = NULL;
1054
1055	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1056		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1057	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1058		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1059	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1060		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1061	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1062		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1063	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1064		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1065	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1066		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1067
1068	lcd.charlcd = charlcd;
1069	lcd.initialized = true;
1070}
1071
1072/*
1073 * These are the file operation function for user access to /dev/keypad
1074 */
1075
1076static ssize_t keypad_read(struct file *file,
1077			   char __user *buf, size_t count, loff_t *ppos)
1078{
1079	unsigned i = *ppos;
1080	char __user *tmp = buf;
1081
1082	if (keypad_buflen == 0) {
1083		if (file->f_flags & O_NONBLOCK)
1084			return -EAGAIN;
1085
1086		if (wait_event_interruptible(keypad_read_wait,
1087					     keypad_buflen != 0))
1088			return -EINTR;
1089	}
1090
1091	for (; count-- > 0 && (keypad_buflen > 0);
1092	     ++i, ++tmp, --keypad_buflen) {
1093		put_user(keypad_buffer[keypad_start], tmp);
1094		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1095	}
1096	*ppos = i;
1097
1098	return tmp - buf;
1099}
1100
1101static int keypad_open(struct inode *inode, struct file *file)
1102{
1103	int ret;
1104
1105	ret = -EBUSY;
1106	if (!atomic_dec_and_test(&keypad_available))
1107		goto fail;	/* open only once at a time */
1108
1109	ret = -EPERM;
1110	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1111		goto fail;
1112
1113	keypad_buflen = 0;	/* flush the buffer on opening */
1114	return 0;
1115 fail:
1116	atomic_inc(&keypad_available);
1117	return ret;
1118}
1119
1120static int keypad_release(struct inode *inode, struct file *file)
1121{
1122	atomic_inc(&keypad_available);
1123	return 0;
1124}
1125
1126static const struct file_operations keypad_fops = {
1127	.read    = keypad_read,		/* read */
1128	.open    = keypad_open,		/* open */
1129	.release = keypad_release,	/* close */
1130	.llseek  = default_llseek,
1131};
1132
1133static struct miscdevice keypad_dev = {
1134	.minor	= KEYPAD_MINOR,
1135	.name	= "keypad",
1136	.fops	= &keypad_fops,
1137};
1138
1139static void keypad_send_key(const char *string, int max_len)
1140{
1141	/* send the key to the device only if a process is attached to it. */
1142	if (!atomic_read(&keypad_available)) {
1143		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1144			keypad_buffer[(keypad_start + keypad_buflen++) %
1145				      KEYPAD_BUFFER] = *string++;
1146		}
1147		wake_up_interruptible(&keypad_read_wait);
1148	}
1149}
1150
1151/* this function scans all the bits involving at least one logical signal,
1152 * and puts the results in the bitfield "phys_read" (one bit per established
1153 * contact), and sets "phys_read_prev" to "phys_read".
1154 *
1155 * Note: to debounce input signals, we will only consider as switched a signal
1156 * which is stable across 2 measures. Signals which are different between two
1157 * reads will be kept as they previously were in their logical form (phys_prev).
1158 * A signal which has just switched will have a 1 in
1159 * (phys_read ^ phys_read_prev).
1160 */
1161static void phys_scan_contacts(void)
1162{
1163	int bit, bitval;
1164	char oldval;
1165	char bitmask;
1166	char gndmask;
1167
1168	phys_prev = phys_curr;
1169	phys_read_prev = phys_read;
1170	phys_read = 0;		/* flush all signals */
1171
1172	/* keep track of old value, with all outputs disabled */
1173	oldval = r_dtr(pprt) | scan_mask_o;
1174	/* activate all keyboard outputs (active low) */
1175	w_dtr(pprt, oldval & ~scan_mask_o);
1176
1177	/* will have a 1 for each bit set to gnd */
1178	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1179	/* disable all matrix signals */
1180	w_dtr(pprt, oldval);
1181
1182	/* now that all outputs are cleared, the only active input bits are
1183	 * directly connected to the ground
1184	 */
1185
1186	/* 1 for each grounded input */
1187	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1188
1189	/* grounded inputs are signals 40-44 */
1190	phys_read |= (__u64)gndmask << 40;
1191
1192	if (bitmask != gndmask) {
1193		/*
1194		 * since clearing the outputs changed some inputs, we know
1195		 * that some input signals are currently tied to some outputs.
1196		 * So we'll scan them.
1197		 */
1198		for (bit = 0; bit < 8; bit++) {
1199			bitval = BIT(bit);
1200
1201			if (!(scan_mask_o & bitval))	/* skip unused bits */
1202				continue;
1203
1204			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1205			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1206			phys_read |= (__u64)bitmask << (5 * bit);
1207		}
1208		w_dtr(pprt, oldval);	/* disable all outputs */
1209	}
1210	/*
1211	 * this is easy: use old bits when they are flapping,
1212	 * use new ones when stable
1213	 */
1214	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1215		    (phys_read & ~(phys_read ^ phys_read_prev));
1216}
1217
1218static inline int input_state_high(struct logical_input *input)
1219{
1220#if 0
1221	/* FIXME:
1222	 * this is an invalid test. It tries to catch
1223	 * transitions from single-key to multiple-key, but
1224	 * doesn't take into account the contacts polarity.
1225	 * The only solution to the problem is to parse keys
1226	 * from the most complex to the simplest combinations,
1227	 * and mark them as 'caught' once a combination
1228	 * matches, then unmatch it for all other ones.
1229	 */
1230
1231	/* try to catch dangerous transitions cases :
1232	 * someone adds a bit, so this signal was a false
1233	 * positive resulting from a transition. We should
1234	 * invalidate the signal immediately and not call the
1235	 * release function.
1236	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1237	 */
1238	if (((phys_prev & input->mask) == input->value) &&
1239	    ((phys_curr & input->mask) >  input->value)) {
1240		input->state = INPUT_ST_LOW; /* invalidate */
1241		return 1;
1242	}
1243#endif
1244
1245	if ((phys_curr & input->mask) == input->value) {
1246		if ((input->type == INPUT_TYPE_STD) &&
1247		    (input->high_timer == 0)) {
1248			input->high_timer++;
1249			if (input->u.std.press_fct)
1250				input->u.std.press_fct(input->u.std.press_data);
1251		} else if (input->type == INPUT_TYPE_KBD) {
1252			/* will turn on the light */
1253			keypressed = 1;
1254
1255			if (input->high_timer == 0) {
1256				char *press_str = input->u.kbd.press_str;
1257
1258				if (press_str[0]) {
1259					int s = sizeof(input->u.kbd.press_str);
1260
1261					keypad_send_key(press_str, s);
1262				}
1263			}
1264
1265			if (input->u.kbd.repeat_str[0]) {
1266				char *repeat_str = input->u.kbd.repeat_str;
1267
1268				if (input->high_timer >= KEYPAD_REP_START) {
1269					int s = sizeof(input->u.kbd.repeat_str);
1270
1271					input->high_timer -= KEYPAD_REP_DELAY;
1272					keypad_send_key(repeat_str, s);
1273				}
1274				/* we will need to come back here soon */
1275				inputs_stable = 0;
1276			}
1277
1278			if (input->high_timer < 255)
1279				input->high_timer++;
1280		}
1281		return 1;
1282	}
1283
1284	/* else signal falling down. Let's fall through. */
1285	input->state = INPUT_ST_FALLING;
1286	input->fall_timer = 0;
1287
1288	return 0;
1289}
1290
1291static inline void input_state_falling(struct logical_input *input)
1292{
1293#if 0
1294	/* FIXME !!! same comment as in input_state_high */
1295	if (((phys_prev & input->mask) == input->value) &&
1296	    ((phys_curr & input->mask) >  input->value)) {
1297		input->state = INPUT_ST_LOW;	/* invalidate */
1298		return;
1299	}
1300#endif
1301
1302	if ((phys_curr & input->mask) == input->value) {
1303		if (input->type == INPUT_TYPE_KBD) {
1304			/* will turn on the light */
1305			keypressed = 1;
1306
1307			if (input->u.kbd.repeat_str[0]) {
1308				char *repeat_str = input->u.kbd.repeat_str;
1309
1310				if (input->high_timer >= KEYPAD_REP_START) {
1311					int s = sizeof(input->u.kbd.repeat_str);
1312
1313					input->high_timer -= KEYPAD_REP_DELAY;
1314					keypad_send_key(repeat_str, s);
1315				}
1316				/* we will need to come back here soon */
1317				inputs_stable = 0;
1318			}
1319
1320			if (input->high_timer < 255)
1321				input->high_timer++;
1322		}
1323		input->state = INPUT_ST_HIGH;
1324	} else if (input->fall_timer >= input->fall_time) {
1325		/* call release event */
1326		if (input->type == INPUT_TYPE_STD) {
1327			void (*release_fct)(int) = input->u.std.release_fct;
1328
1329			if (release_fct)
1330				release_fct(input->u.std.release_data);
1331		} else if (input->type == INPUT_TYPE_KBD) {
1332			char *release_str = input->u.kbd.release_str;
1333
1334			if (release_str[0]) {
1335				int s = sizeof(input->u.kbd.release_str);
1336
1337				keypad_send_key(release_str, s);
1338			}
1339		}
1340
1341		input->state = INPUT_ST_LOW;
1342	} else {
1343		input->fall_timer++;
1344		inputs_stable = 0;
1345	}
1346}
1347
1348static void panel_process_inputs(void)
1349{
1350	struct logical_input *input;
1351
1352	keypressed = 0;
1353	inputs_stable = 1;
1354	list_for_each_entry(input, &logical_inputs, list) {
1355		switch (input->state) {
1356		case INPUT_ST_LOW:
1357			if ((phys_curr & input->mask) != input->value)
1358				break;
1359			/* if all needed ones were already set previously,
1360			 * this means that this logical signal has been
1361			 * activated by the releasing of another combined
1362			 * signal, so we don't want to match.
1363			 * eg: AB -(release B)-> A -(release A)-> 0 :
1364			 *     don't match A.
1365			 */
1366			if ((phys_prev & input->mask) == input->value)
1367				break;
1368			input->rise_timer = 0;
1369			input->state = INPUT_ST_RISING;
1370			/* fall through */
1371		case INPUT_ST_RISING:
1372			if ((phys_curr & input->mask) != input->value) {
1373				input->state = INPUT_ST_LOW;
1374				break;
1375			}
1376			if (input->rise_timer < input->rise_time) {
1377				inputs_stable = 0;
1378				input->rise_timer++;
1379				break;
1380			}
1381			input->high_timer = 0;
1382			input->state = INPUT_ST_HIGH;
1383			/* fall through */
1384		case INPUT_ST_HIGH:
1385			if (input_state_high(input))
1386				break;
1387			/* fall through */
1388		case INPUT_ST_FALLING:
1389			input_state_falling(input);
1390		}
1391	}
1392}
1393
1394static void panel_scan_timer(struct timer_list *unused)
1395{
1396	if (keypad.enabled && keypad_initialized) {
1397		if (spin_trylock_irq(&pprt_lock)) {
1398			phys_scan_contacts();
1399
1400			/* no need for the parport anymore */
1401			spin_unlock_irq(&pprt_lock);
1402		}
1403
1404		if (!inputs_stable || phys_curr != phys_prev)
1405			panel_process_inputs();
1406	}
1407
1408	if (keypressed && lcd.enabled && lcd.initialized)
1409		charlcd_poke(lcd.charlcd);
1410
1411	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1412}
1413
1414static void init_scan_timer(void)
1415{
1416	if (scan_timer.function)
1417		return;		/* already started */
1418
1419	timer_setup(&scan_timer, panel_scan_timer, 0);
1420	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1421	add_timer(&scan_timer);
1422}
1423
1424/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1425 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1426 * corresponding to out and in bits respectively.
1427 * returns 1 if ok, 0 if error (in which case, nothing is written).
1428 */
1429static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1430			  u8 *imask, u8 *omask)
1431{
1432	const char sigtab[] = "EeSsPpAaBb";
1433	u8 im, om;
1434	__u64 m, v;
1435
1436	om = 0;
1437	im = 0;
1438	m = 0ULL;
1439	v = 0ULL;
1440	while (*name) {
1441		int in, out, bit, neg;
1442		const char *idx;
1443
1444		idx = strchr(sigtab, *name);
1445		if (!idx)
1446			return 0;	/* input name not found */
1447
1448		in = idx - sigtab;
1449		neg = (in & 1);	/* odd (lower) names are negated */
1450		in >>= 1;
1451		im |= BIT(in);
1452
1453		name++;
1454		if (*name >= '0' && *name <= '7') {
1455			out = *name - '0';
1456			om |= BIT(out);
1457		} else if (*name == '-') {
1458			out = 8;
1459		} else {
1460			return 0;	/* unknown bit name */
1461		}
1462
1463		bit = (out * 5) + in;
1464
1465		m |= 1ULL << bit;
1466		if (!neg)
1467			v |= 1ULL << bit;
1468		name++;
1469	}
1470	*mask = m;
1471	*value = v;
1472	if (imask)
1473		*imask |= im;
1474	if (omask)
1475		*omask |= om;
1476	return 1;
1477}
1478
1479/* tries to bind a key to the signal name <name>. The key will send the
1480 * strings <press>, <repeat>, <release> for these respective events.
1481 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1482 */
1483static struct logical_input *panel_bind_key(const char *name, const char *press,
1484					    const char *repeat,
1485					    const char *release)
1486{
1487	struct logical_input *key;
1488
1489	key = kzalloc(sizeof(*key), GFP_KERNEL);
1490	if (!key)
1491		return NULL;
1492
1493	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1494			     &scan_mask_o)) {
1495		kfree(key);
1496		return NULL;
1497	}
1498
1499	key->type = INPUT_TYPE_KBD;
1500	key->state = INPUT_ST_LOW;
1501	key->rise_time = 1;
1502	key->fall_time = 1;
1503
1504	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1505	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1506	strncpy(key->u.kbd.release_str, release,
1507		sizeof(key->u.kbd.release_str));
1508	list_add(&key->list, &logical_inputs);
1509	return key;
1510}
1511
1512#if 0
1513/* tries to bind a callback function to the signal name <name>. The function
1514 * <press_fct> will be called with the <press_data> arg when the signal is
1515 * activated, and so on for <release_fct>/<release_data>
1516 * Returns the pointer to the new signal if ok, NULL if the signal could not
1517 * be bound.
1518 */
1519static struct logical_input *panel_bind_callback(char *name,
1520						 void (*press_fct)(int),
1521						 int press_data,
1522						 void (*release_fct)(int),
1523						 int release_data)
1524{
1525	struct logical_input *callback;
1526
1527	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1528	if (!callback)
1529		return NULL;
1530
1531	memset(callback, 0, sizeof(struct logical_input));
1532	if (!input_name2mask(name, &callback->mask, &callback->value,
1533			     &scan_mask_i, &scan_mask_o))
1534		return NULL;
1535
1536	callback->type = INPUT_TYPE_STD;
1537	callback->state = INPUT_ST_LOW;
1538	callback->rise_time = 1;
1539	callback->fall_time = 1;
1540	callback->u.std.press_fct = press_fct;
1541	callback->u.std.press_data = press_data;
1542	callback->u.std.release_fct = release_fct;
1543	callback->u.std.release_data = release_data;
1544	list_add(&callback->list, &logical_inputs);
1545	return callback;
1546}
1547#endif
1548
1549static void keypad_init(void)
1550{
1551	int keynum;
1552
1553	init_waitqueue_head(&keypad_read_wait);
1554	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1555
1556	/* Let's create all known keys */
1557
1558	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1559		panel_bind_key(keypad_profile[keynum][0],
1560			       keypad_profile[keynum][1],
1561			       keypad_profile[keynum][2],
1562			       keypad_profile[keynum][3]);
1563	}
1564
1565	init_scan_timer();
1566	keypad_initialized = 1;
1567}
1568
1569/**************************************************/
1570/* device initialization                          */
1571/**************************************************/
1572
1573static void panel_attach(struct parport *port)
1574{
1575	struct pardev_cb panel_cb;
1576
1577	if (port->number != parport)
1578		return;
1579
1580	if (pprt) {
1581		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1582		       __func__, port->number, parport);
1583		return;
1584	}
1585
1586	memset(&panel_cb, 0, sizeof(panel_cb));
1587	panel_cb.private = &pprt;
1588	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1589
1590	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1591	if (!pprt) {
1592		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1593		       __func__, port->number, parport);
1594		return;
1595	}
1596
1597	if (parport_claim(pprt)) {
1598		pr_err("could not claim access to parport%d. Aborting.\n",
1599		       parport);
1600		goto err_unreg_device;
1601	}
1602
1603	/* must init LCD first, just in case an IRQ from the keypad is
1604	 * generated at keypad init
1605	 */
1606	if (lcd.enabled) {
1607		lcd_init();
1608		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1609			goto err_unreg_device;
1610	}
1611
1612	if (keypad.enabled) {
1613		keypad_init();
1614		if (misc_register(&keypad_dev))
1615			goto err_lcd_unreg;
1616	}
1617	return;
1618
1619err_lcd_unreg:
1620	if (scan_timer.function)
1621		del_timer_sync(&scan_timer);
1622	if (lcd.enabled)
1623		charlcd_unregister(lcd.charlcd);
1624err_unreg_device:
1625	charlcd_free(lcd.charlcd);
1626	lcd.charlcd = NULL;
1627	parport_unregister_device(pprt);
1628	pprt = NULL;
1629}
1630
1631static void panel_detach(struct parport *port)
1632{
1633	if (port->number != parport)
1634		return;
1635
1636	if (!pprt) {
1637		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1638		       __func__, port->number, parport);
1639		return;
1640	}
1641	if (scan_timer.function)
1642		del_timer_sync(&scan_timer);
1643
1644	if (keypad.enabled) {
1645		misc_deregister(&keypad_dev);
1646		keypad_initialized = 0;
1647	}
1648
1649	if (lcd.enabled) {
1650		charlcd_unregister(lcd.charlcd);
1651		lcd.initialized = false;
1652		charlcd_free(lcd.charlcd);
1653		lcd.charlcd = NULL;
1654	}
1655
1656	/* TODO: free all input signals */
1657	parport_release(pprt);
1658	parport_unregister_device(pprt);
1659	pprt = NULL;
1660}
1661
1662static struct parport_driver panel_driver = {
1663	.name = "panel",
1664	.match_port = panel_attach,
1665	.detach = panel_detach,
1666	.devmodel = true,
1667};
1668
1669/* init function */
1670static int __init panel_init_module(void)
1671{
1672	int selected_keypad_type = NOT_SET, err;
1673
1674	/* take care of an eventual profile */
1675	switch (profile) {
1676	case PANEL_PROFILE_CUSTOM:
1677		/* custom profile */
1678		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1679		selected_lcd_type = DEFAULT_LCD_TYPE;
1680		break;
1681	case PANEL_PROFILE_OLD:
1682		/* 8 bits, 2*16, old keypad */
1683		selected_keypad_type = KEYPAD_TYPE_OLD;
1684		selected_lcd_type = LCD_TYPE_OLD;
1685
1686		/* TODO: This two are a little hacky, sort it out later */
1687		if (lcd_width == NOT_SET)
1688			lcd_width = 16;
1689		if (lcd_hwidth == NOT_SET)
1690			lcd_hwidth = 16;
1691		break;
1692	case PANEL_PROFILE_NEW:
1693		/* serial, 2*16, new keypad */
1694		selected_keypad_type = KEYPAD_TYPE_NEW;
1695		selected_lcd_type = LCD_TYPE_KS0074;
1696		break;
1697	case PANEL_PROFILE_HANTRONIX:
1698		/* 8 bits, 2*16 hantronix-like, no keypad */
1699		selected_keypad_type = KEYPAD_TYPE_NONE;
1700		selected_lcd_type = LCD_TYPE_HANTRONIX;
1701		break;
1702	case PANEL_PROFILE_NEXCOM:
1703		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1704		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1705		selected_lcd_type = LCD_TYPE_NEXCOM;
1706		break;
1707	case PANEL_PROFILE_LARGE:
1708		/* 8 bits, 2*40, old keypad */
1709		selected_keypad_type = KEYPAD_TYPE_OLD;
1710		selected_lcd_type = LCD_TYPE_OLD;
1711		break;
1712	}
1713
1714	/*
1715	 * Overwrite selection with module param values (both keypad and lcd),
1716	 * where the deprecated params have lower prio.
1717	 */
1718	if (keypad_enabled != NOT_SET)
1719		selected_keypad_type = keypad_enabled;
1720	if (keypad_type != NOT_SET)
1721		selected_keypad_type = keypad_type;
1722
1723	keypad.enabled = (selected_keypad_type > 0);
1724
1725	if (lcd_enabled != NOT_SET)
1726		selected_lcd_type = lcd_enabled;
1727	if (lcd_type != NOT_SET)
1728		selected_lcd_type = lcd_type;
1729
1730	lcd.enabled = (selected_lcd_type > 0);
1731
1732	if (lcd.enabled) {
1733		/*
1734		 * Init lcd struct with load-time values to preserve exact
1735		 * current functionality (at least for now).
1736		 */
1737		lcd.charset = lcd_charset;
1738		lcd.proto = lcd_proto;
1739		lcd.pins.e = lcd_e_pin;
1740		lcd.pins.rs = lcd_rs_pin;
1741		lcd.pins.rw = lcd_rw_pin;
1742		lcd.pins.cl = lcd_cl_pin;
1743		lcd.pins.da = lcd_da_pin;
1744		lcd.pins.bl = lcd_bl_pin;
1745	}
1746
1747	switch (selected_keypad_type) {
1748	case KEYPAD_TYPE_OLD:
1749		keypad_profile = old_keypad_profile;
1750		break;
1751	case KEYPAD_TYPE_NEW:
1752		keypad_profile = new_keypad_profile;
1753		break;
1754	case KEYPAD_TYPE_NEXCOM:
1755		keypad_profile = nexcom_keypad_profile;
1756		break;
1757	default:
1758		keypad_profile = NULL;
1759		break;
1760	}
1761
1762	if (!lcd.enabled && !keypad.enabled) {
1763		/* no device enabled, let's exit */
1764		pr_err("panel driver disabled.\n");
1765		return -ENODEV;
1766	}
1767
1768	err = parport_register_driver(&panel_driver);
1769	if (err) {
1770		pr_err("could not register with parport. Aborting.\n");
1771		return err;
1772	}
1773
1774	if (pprt)
1775		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1776			parport, pprt->port->base);
1777	else
1778		pr_info("panel driver not yet registered\n");
1779	return 0;
1780}
1781
1782static void __exit panel_cleanup_module(void)
1783{
1784	parport_unregister_driver(&panel_driver);
1785}
1786
1787module_init(panel_init_module);
1788module_exit(panel_cleanup_module);
1789MODULE_AUTHOR("Willy Tarreau");
1790MODULE_LICENSE("GPL");
1791
1792/*
1793 * Local variables:
1794 *  c-indent-level: 4
1795 *  tab-width: 8
1796 * End:
1797 */