Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ACPI support for Intel Lynxpoint LPSS.
   4 *
   5 * Copyright (C) 2013, Intel Corporation
   6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/clkdev.h>
  12#include <linux/clk-provider.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/mutex.h>
  16#include <linux/pci.h>
  17#include <linux/platform_device.h>
  18#include <linux/platform_data/x86/clk-lpss.h>
  19#include <linux/platform_data/x86/pmc_atom.h>
  20#include <linux/pm_domain.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pwm.h>
  23#include <linux/suspend.h>
  24#include <linux/delay.h>
  25
  26#include "internal.h"
  27
  28ACPI_MODULE_NAME("acpi_lpss");
  29
  30#ifdef CONFIG_X86_INTEL_LPSS
  31
  32#include <asm/cpu_device_id.h>
  33#include <asm/intel-family.h>
  34#include <asm/iosf_mbi.h>
  35
  36#define LPSS_ADDR(desc) ((unsigned long)&desc)
  37
  38#define LPSS_CLK_SIZE	0x04
  39#define LPSS_LTR_SIZE	0x18
  40
  41/* Offsets relative to LPSS_PRIVATE_OFFSET */
  42#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
  43#define LPSS_RESETS			0x04
  44#define LPSS_RESETS_RESET_FUNC		BIT(0)
  45#define LPSS_RESETS_RESET_APB		BIT(1)
  46#define LPSS_GENERAL			0x08
  47#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
  48#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
  49#define LPSS_SW_LTR			0x10
  50#define LPSS_AUTO_LTR			0x14
  51#define LPSS_LTR_SNOOP_REQ		BIT(15)
  52#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
  53#define LPSS_LTR_SNOOP_LAT_1US		0x800
  54#define LPSS_LTR_SNOOP_LAT_32US		0xC00
  55#define LPSS_LTR_SNOOP_LAT_SHIFT	5
  56#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
  57#define LPSS_LTR_MAX_VAL		0x3FF
  58#define LPSS_TX_INT			0x20
  59#define LPSS_TX_INT_MASK		BIT(1)
  60
  61#define LPSS_PRV_REG_COUNT		9
  62
  63/* LPSS Flags */
  64#define LPSS_CLK			BIT(0)
  65#define LPSS_CLK_GATE			BIT(1)
  66#define LPSS_CLK_DIVIDER		BIT(2)
  67#define LPSS_LTR			BIT(3)
  68#define LPSS_SAVE_CTX			BIT(4)
  69#define LPSS_NO_D3_DELAY		BIT(5)
  70
  71/* Crystal Cove PMIC shares same ACPI ID between different platforms */
  72#define BYT_CRC_HRV			2
  73#define CHT_CRC_HRV			3
  74
  75struct lpss_private_data;
  76
  77struct lpss_device_desc {
  78	unsigned int flags;
  79	const char *clk_con_id;
  80	unsigned int prv_offset;
  81	size_t prv_size_override;
  82	struct property_entry *properties;
  83	void (*setup)(struct lpss_private_data *pdata);
  84	bool resume_from_noirq;
  85};
  86
  87static const struct lpss_device_desc lpss_dma_desc = {
  88	.flags = LPSS_CLK,
  89};
  90
  91struct lpss_private_data {
  92	struct acpi_device *adev;
  93	void __iomem *mmio_base;
  94	resource_size_t mmio_size;
  95	unsigned int fixed_clk_rate;
  96	struct clk *clk;
  97	const struct lpss_device_desc *dev_desc;
  98	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
  99};
 100
 101/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
 102static u32 pmc_atom_d3_mask = 0xfe000ffe;
 103
 104/* LPSS run time quirks */
 105static unsigned int lpss_quirks;
 106
 107/*
 108 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
 109 *
 110 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
 111 * it can be powered off automatically whenever the last LPSS device goes down.
 112 * In case of no power any access to the DMA controller will hang the system.
 113 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
 114 * well as on ASuS T100TA transformer.
 115 *
 116 * This quirk overrides power state of entire LPSS island to keep DMA powered
 117 * on whenever we have at least one other device in use.
 118 */
 119#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
 120
 121/* UART Component Parameter Register */
 122#define LPSS_UART_CPR			0xF4
 123#define LPSS_UART_CPR_AFCE		BIT(4)
 124
 125static void lpss_uart_setup(struct lpss_private_data *pdata)
 126{
 127	unsigned int offset;
 128	u32 val;
 129
 130	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
 131	val = readl(pdata->mmio_base + offset);
 132	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
 133
 134	val = readl(pdata->mmio_base + LPSS_UART_CPR);
 135	if (!(val & LPSS_UART_CPR_AFCE)) {
 136		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
 137		val = readl(pdata->mmio_base + offset);
 138		val |= LPSS_GENERAL_UART_RTS_OVRD;
 139		writel(val, pdata->mmio_base + offset);
 140	}
 141}
 142
 143static void lpss_deassert_reset(struct lpss_private_data *pdata)
 144{
 145	unsigned int offset;
 146	u32 val;
 147
 148	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
 149	val = readl(pdata->mmio_base + offset);
 150	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
 151	writel(val, pdata->mmio_base + offset);
 152}
 153
 154/*
 155 * BYT PWM used for backlight control by the i915 driver on systems without
 156 * the Crystal Cove PMIC.
 157 */
 158static struct pwm_lookup byt_pwm_lookup[] = {
 159	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
 160			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
 161			       "pwm-lpss-platform"),
 162};
 163
 164static void byt_pwm_setup(struct lpss_private_data *pdata)
 165{
 166	struct acpi_device *adev = pdata->adev;
 167
 168	/* Only call pwm_add_table for the first PWM controller */
 169	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
 170		return;
 171
 172	if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
 173		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
 174}
 175
 176#define LPSS_I2C_ENABLE			0x6c
 177
 178static void byt_i2c_setup(struct lpss_private_data *pdata)
 179{
 180	const char *uid_str = acpi_device_uid(pdata->adev);
 181	acpi_handle handle = pdata->adev->handle;
 182	unsigned long long shared_host = 0;
 183	acpi_status status;
 184	long uid = 0;
 185
 186	/* Expected to always be true, but better safe then sorry */
 187	if (uid_str)
 188		uid = simple_strtol(uid_str, NULL, 10);
 189
 190	/* Detect I2C bus shared with PUNIT and ignore its d3 status */
 191	status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
 192	if (ACPI_SUCCESS(status) && shared_host && uid)
 193		pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
 194
 195	lpss_deassert_reset(pdata);
 196
 197	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
 198		pdata->fixed_clk_rate = 133000000;
 199
 200	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
 201}
 202
 203/* BSW PWM used for backlight control by the i915 driver */
 204static struct pwm_lookup bsw_pwm_lookup[] = {
 205	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
 206			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
 207			       "pwm-lpss-platform"),
 208};
 209
 210static void bsw_pwm_setup(struct lpss_private_data *pdata)
 211{
 212	struct acpi_device *adev = pdata->adev;
 213
 214	/* Only call pwm_add_table for the first PWM controller */
 215	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
 216		return;
 217
 218	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
 219}
 220
 221static const struct lpss_device_desc lpt_dev_desc = {
 222	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
 223			| LPSS_SAVE_CTX,
 224	.prv_offset = 0x800,
 225};
 226
 227static const struct lpss_device_desc lpt_i2c_dev_desc = {
 228	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
 229	.prv_offset = 0x800,
 230};
 231
 232static struct property_entry uart_properties[] = {
 233	PROPERTY_ENTRY_U32("reg-io-width", 4),
 234	PROPERTY_ENTRY_U32("reg-shift", 2),
 235	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
 236	{ },
 237};
 238
 239static const struct lpss_device_desc lpt_uart_dev_desc = {
 240	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
 241			| LPSS_SAVE_CTX,
 242	.clk_con_id = "baudclk",
 243	.prv_offset = 0x800,
 244	.setup = lpss_uart_setup,
 245	.properties = uart_properties,
 246};
 247
 248static const struct lpss_device_desc lpt_sdio_dev_desc = {
 249	.flags = LPSS_LTR,
 250	.prv_offset = 0x1000,
 251	.prv_size_override = 0x1018,
 252};
 253
 254static const struct lpss_device_desc byt_pwm_dev_desc = {
 255	.flags = LPSS_SAVE_CTX,
 256	.prv_offset = 0x800,
 257	.setup = byt_pwm_setup,
 258};
 259
 260static const struct lpss_device_desc bsw_pwm_dev_desc = {
 261	.flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
 262	.prv_offset = 0x800,
 263	.setup = bsw_pwm_setup,
 264};
 265
 266static const struct lpss_device_desc byt_uart_dev_desc = {
 267	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
 268	.clk_con_id = "baudclk",
 269	.prv_offset = 0x800,
 270	.setup = lpss_uart_setup,
 271	.properties = uart_properties,
 272};
 273
 274static const struct lpss_device_desc bsw_uart_dev_desc = {
 275	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
 276			| LPSS_NO_D3_DELAY,
 277	.clk_con_id = "baudclk",
 278	.prv_offset = 0x800,
 279	.setup = lpss_uart_setup,
 280	.properties = uart_properties,
 281};
 282
 283static const struct lpss_device_desc byt_spi_dev_desc = {
 284	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
 285	.prv_offset = 0x400,
 286};
 287
 288static const struct lpss_device_desc byt_sdio_dev_desc = {
 289	.flags = LPSS_CLK,
 290};
 291
 292static const struct lpss_device_desc byt_i2c_dev_desc = {
 293	.flags = LPSS_CLK | LPSS_SAVE_CTX,
 294	.prv_offset = 0x800,
 295	.setup = byt_i2c_setup,
 296	.resume_from_noirq = true,
 297};
 298
 299static const struct lpss_device_desc bsw_i2c_dev_desc = {
 300	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
 301	.prv_offset = 0x800,
 302	.setup = byt_i2c_setup,
 303	.resume_from_noirq = true,
 304};
 305
 306static const struct lpss_device_desc bsw_spi_dev_desc = {
 307	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
 308			| LPSS_NO_D3_DELAY,
 309	.prv_offset = 0x400,
 310	.setup = lpss_deassert_reset,
 311};
 312
 313#define ICPU(model)	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
 314
 315static const struct x86_cpu_id lpss_cpu_ids[] = {
 316	ICPU(INTEL_FAM6_ATOM_SILVERMONT),	/* Valleyview, Bay Trail */
 317	ICPU(INTEL_FAM6_ATOM_AIRMONT),	/* Braswell, Cherry Trail */
 318	{}
 319};
 320
 321#else
 322
 323#define LPSS_ADDR(desc) (0UL)
 324
 325#endif /* CONFIG_X86_INTEL_LPSS */
 326
 327static const struct acpi_device_id acpi_lpss_device_ids[] = {
 328	/* Generic LPSS devices */
 329	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
 330
 331	/* Lynxpoint LPSS devices */
 332	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
 333	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
 334	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
 335	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
 336	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
 337	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
 338	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
 339	{ "INT33C7", },
 340
 341	/* BayTrail LPSS devices */
 342	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
 343	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
 344	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
 345	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
 346	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
 347	{ "INT33B2", },
 348	{ "INT33FC", },
 349
 350	/* Braswell LPSS devices */
 351	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
 352	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
 353	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
 354	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
 355	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
 356	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
 357
 358	/* Broadwell LPSS devices */
 359	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
 360	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
 361	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
 362	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
 363	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
 364	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
 365	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
 366	{ "INT3437", },
 367
 368	/* Wildcat Point LPSS devices */
 369	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
 370
 371	{ }
 372};
 373
 374#ifdef CONFIG_X86_INTEL_LPSS
 375
 376static int is_memory(struct acpi_resource *res, void *not_used)
 377{
 378	struct resource r;
 379	return !acpi_dev_resource_memory(res, &r);
 380}
 381
 382/* LPSS main clock device. */
 383static struct platform_device *lpss_clk_dev;
 384
 385static inline void lpt_register_clock_device(void)
 386{
 387	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
 388}
 389
 390static int register_device_clock(struct acpi_device *adev,
 391				 struct lpss_private_data *pdata)
 392{
 393	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
 394	const char *devname = dev_name(&adev->dev);
 395	struct clk *clk;
 396	struct lpss_clk_data *clk_data;
 397	const char *parent, *clk_name;
 398	void __iomem *prv_base;
 399
 400	if (!lpss_clk_dev)
 401		lpt_register_clock_device();
 402
 403	clk_data = platform_get_drvdata(lpss_clk_dev);
 404	if (!clk_data)
 405		return -ENODEV;
 406	clk = clk_data->clk;
 407
 408	if (!pdata->mmio_base
 409	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
 410		return -ENODATA;
 411
 412	parent = clk_data->name;
 413	prv_base = pdata->mmio_base + dev_desc->prv_offset;
 414
 415	if (pdata->fixed_clk_rate) {
 416		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
 417					      pdata->fixed_clk_rate);
 418		goto out;
 419	}
 420
 421	if (dev_desc->flags & LPSS_CLK_GATE) {
 422		clk = clk_register_gate(NULL, devname, parent, 0,
 423					prv_base, 0, 0, NULL);
 424		parent = devname;
 425	}
 426
 427	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
 428		/* Prevent division by zero */
 429		if (!readl(prv_base))
 430			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
 431
 432		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
 433		if (!clk_name)
 434			return -ENOMEM;
 435		clk = clk_register_fractional_divider(NULL, clk_name, parent,
 436						      0, prv_base,
 437						      1, 15, 16, 15, 0, NULL);
 438		parent = clk_name;
 439
 440		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
 441		if (!clk_name) {
 442			kfree(parent);
 443			return -ENOMEM;
 444		}
 445		clk = clk_register_gate(NULL, clk_name, parent,
 446					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
 447					prv_base, 31, 0, NULL);
 448		kfree(parent);
 449		kfree(clk_name);
 450	}
 451out:
 452	if (IS_ERR(clk))
 453		return PTR_ERR(clk);
 454
 455	pdata->clk = clk;
 456	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
 457	return 0;
 458}
 459
 460struct lpss_device_links {
 461	const char *supplier_hid;
 462	const char *supplier_uid;
 463	const char *consumer_hid;
 464	const char *consumer_uid;
 465	u32 flags;
 466};
 467
 468/*
 469 * The _DEP method is used to identify dependencies but instead of creating
 470 * device links for every handle in _DEP, only links in the following list are
 471 * created. That is necessary because, in the general case, _DEP can refer to
 472 * devices that might not have drivers, or that are on different buses, or where
 473 * the supplier is not enumerated until after the consumer is probed.
 474 */
 475static const struct lpss_device_links lpss_device_links[] = {
 476	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
 477	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
 478	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
 479};
 480
 481static bool hid_uid_match(struct acpi_device *adev,
 482			  const char *hid2, const char *uid2)
 483{
 484	const char *hid1 = acpi_device_hid(adev);
 485	const char *uid1 = acpi_device_uid(adev);
 486
 487	if (strcmp(hid1, hid2))
 488		return false;
 489
 490	if (!uid2)
 491		return true;
 492
 493	return uid1 && !strcmp(uid1, uid2);
 494}
 495
 496static bool acpi_lpss_is_supplier(struct acpi_device *adev,
 497				  const struct lpss_device_links *link)
 498{
 499	return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
 500}
 501
 502static bool acpi_lpss_is_consumer(struct acpi_device *adev,
 503				  const struct lpss_device_links *link)
 504{
 505	return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
 506}
 507
 508struct hid_uid {
 509	const char *hid;
 510	const char *uid;
 511};
 512
 513static int match_hid_uid(struct device *dev, const void *data)
 514{
 515	struct acpi_device *adev = ACPI_COMPANION(dev);
 516	const struct hid_uid *id = data;
 517
 518	if (!adev)
 519		return 0;
 520
 521	return hid_uid_match(adev, id->hid, id->uid);
 522}
 523
 524static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
 525{
 526	struct device *dev;
 527
 528	struct hid_uid data = {
 529		.hid = hid,
 530		.uid = uid,
 531	};
 532
 533	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
 534	if (dev)
 535		return dev;
 536
 537	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
 538}
 539
 540static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
 541{
 542	struct acpi_handle_list dep_devices;
 543	acpi_status status;
 544	int i;
 545
 546	if (!acpi_has_method(adev->handle, "_DEP"))
 547		return false;
 548
 549	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
 550					 &dep_devices);
 551	if (ACPI_FAILURE(status)) {
 552		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
 553		return false;
 554	}
 555
 556	for (i = 0; i < dep_devices.count; i++) {
 557		if (dep_devices.handles[i] == handle)
 558			return true;
 559	}
 560
 561	return false;
 562}
 563
 564static void acpi_lpss_link_consumer(struct device *dev1,
 565				    const struct lpss_device_links *link)
 566{
 567	struct device *dev2;
 568
 569	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
 570	if (!dev2)
 571		return;
 572
 573	if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
 574		device_link_add(dev2, dev1, link->flags);
 575
 576	put_device(dev2);
 577}
 578
 579static void acpi_lpss_link_supplier(struct device *dev1,
 580				    const struct lpss_device_links *link)
 581{
 582	struct device *dev2;
 583
 584	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
 585	if (!dev2)
 586		return;
 587
 588	if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
 589		device_link_add(dev1, dev2, link->flags);
 590
 591	put_device(dev2);
 592}
 593
 594static void acpi_lpss_create_device_links(struct acpi_device *adev,
 595					  struct platform_device *pdev)
 596{
 597	int i;
 598
 599	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
 600		const struct lpss_device_links *link = &lpss_device_links[i];
 601
 602		if (acpi_lpss_is_supplier(adev, link))
 603			acpi_lpss_link_consumer(&pdev->dev, link);
 604
 605		if (acpi_lpss_is_consumer(adev, link))
 606			acpi_lpss_link_supplier(&pdev->dev, link);
 607	}
 608}
 609
 610static int acpi_lpss_create_device(struct acpi_device *adev,
 611				   const struct acpi_device_id *id)
 612{
 613	const struct lpss_device_desc *dev_desc;
 614	struct lpss_private_data *pdata;
 615	struct resource_entry *rentry;
 616	struct list_head resource_list;
 617	struct platform_device *pdev;
 618	int ret;
 619
 620	dev_desc = (const struct lpss_device_desc *)id->driver_data;
 621	if (!dev_desc) {
 622		pdev = acpi_create_platform_device(adev, NULL);
 623		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
 624	}
 625	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
 626	if (!pdata)
 627		return -ENOMEM;
 628
 629	INIT_LIST_HEAD(&resource_list);
 630	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
 631	if (ret < 0)
 632		goto err_out;
 633
 634	list_for_each_entry(rentry, &resource_list, node)
 635		if (resource_type(rentry->res) == IORESOURCE_MEM) {
 636			if (dev_desc->prv_size_override)
 637				pdata->mmio_size = dev_desc->prv_size_override;
 638			else
 639				pdata->mmio_size = resource_size(rentry->res);
 640			pdata->mmio_base = ioremap(rentry->res->start,
 641						   pdata->mmio_size);
 642			break;
 643		}
 644
 645	acpi_dev_free_resource_list(&resource_list);
 646
 647	if (!pdata->mmio_base) {
 648		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
 649		adev->pnp.type.platform_id = 0;
 650		/* Skip the device, but continue the namespace scan. */
 651		ret = 0;
 652		goto err_out;
 653	}
 654
 655	pdata->adev = adev;
 656	pdata->dev_desc = dev_desc;
 657
 658	if (dev_desc->setup)
 659		dev_desc->setup(pdata);
 660
 661	if (dev_desc->flags & LPSS_CLK) {
 662		ret = register_device_clock(adev, pdata);
 663		if (ret) {
 664			/* Skip the device, but continue the namespace scan. */
 665			ret = 0;
 666			goto err_out;
 667		}
 668	}
 669
 670	/*
 671	 * This works around a known issue in ACPI tables where LPSS devices
 672	 * have _PS0 and _PS3 without _PSC (and no power resources), so
 673	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
 674	 */
 675	acpi_device_fix_up_power(adev);
 676
 677	adev->driver_data = pdata;
 678	pdev = acpi_create_platform_device(adev, dev_desc->properties);
 679	if (!IS_ERR_OR_NULL(pdev)) {
 680		acpi_lpss_create_device_links(adev, pdev);
 681		return 1;
 682	}
 683
 684	ret = PTR_ERR(pdev);
 685	adev->driver_data = NULL;
 686
 687 err_out:
 688	kfree(pdata);
 689	return ret;
 690}
 691
 692static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
 693{
 694	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
 695}
 696
 697static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
 698			     unsigned int reg)
 699{
 700	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
 701}
 702
 703static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
 704{
 705	struct acpi_device *adev;
 706	struct lpss_private_data *pdata;
 707	unsigned long flags;
 708	int ret;
 709
 710	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
 711	if (WARN_ON(ret))
 712		return ret;
 713
 714	spin_lock_irqsave(&dev->power.lock, flags);
 715	if (pm_runtime_suspended(dev)) {
 716		ret = -EAGAIN;
 717		goto out;
 718	}
 719	pdata = acpi_driver_data(adev);
 720	if (WARN_ON(!pdata || !pdata->mmio_base)) {
 721		ret = -ENODEV;
 722		goto out;
 723	}
 724	*val = __lpss_reg_read(pdata, reg);
 725
 726 out:
 727	spin_unlock_irqrestore(&dev->power.lock, flags);
 728	return ret;
 729}
 730
 731static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
 732			     char *buf)
 733{
 734	u32 ltr_value = 0;
 735	unsigned int reg;
 736	int ret;
 737
 738	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
 739	ret = lpss_reg_read(dev, reg, &ltr_value);
 740	if (ret)
 741		return ret;
 742
 743	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
 744}
 745
 746static ssize_t lpss_ltr_mode_show(struct device *dev,
 747				  struct device_attribute *attr, char *buf)
 748{
 749	u32 ltr_mode = 0;
 750	char *outstr;
 751	int ret;
 752
 753	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
 754	if (ret)
 755		return ret;
 756
 757	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
 758	return sprintf(buf, "%s\n", outstr);
 759}
 760
 761static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
 762static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
 763static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
 764
 765static struct attribute *lpss_attrs[] = {
 766	&dev_attr_auto_ltr.attr,
 767	&dev_attr_sw_ltr.attr,
 768	&dev_attr_ltr_mode.attr,
 769	NULL,
 770};
 771
 772static const struct attribute_group lpss_attr_group = {
 773	.attrs = lpss_attrs,
 774	.name = "lpss_ltr",
 775};
 776
 777static void acpi_lpss_set_ltr(struct device *dev, s32 val)
 778{
 779	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 780	u32 ltr_mode, ltr_val;
 781
 782	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
 783	if (val < 0) {
 784		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
 785			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
 786			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
 787		}
 788		return;
 789	}
 790	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
 791	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
 792		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
 793		val = LPSS_LTR_MAX_VAL;
 794	} else if (val > LPSS_LTR_MAX_VAL) {
 795		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
 796		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
 797	} else {
 798		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
 799	}
 800	ltr_val |= val;
 801	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
 802	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
 803		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
 804		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
 805	}
 806}
 807
 808#ifdef CONFIG_PM
 809/**
 810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
 811 * @dev: LPSS device
 812 * @pdata: pointer to the private data of the LPSS device
 813 *
 814 * Most LPSS devices have private registers which may loose their context when
 815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
 816 * prv_reg_ctx array.
 817 */
 818static void acpi_lpss_save_ctx(struct device *dev,
 819			       struct lpss_private_data *pdata)
 820{
 821	unsigned int i;
 822
 823	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
 824		unsigned long offset = i * sizeof(u32);
 825
 826		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
 827		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
 828			pdata->prv_reg_ctx[i], offset);
 829	}
 830}
 831
 832/**
 833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
 834 * @dev: LPSS device
 835 * @pdata: pointer to the private data of the LPSS device
 836 *
 837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
 838 */
 839static void acpi_lpss_restore_ctx(struct device *dev,
 840				  struct lpss_private_data *pdata)
 841{
 842	unsigned int i;
 843
 844	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
 845		unsigned long offset = i * sizeof(u32);
 846
 847		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
 848		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
 849			pdata->prv_reg_ctx[i], offset);
 850	}
 851}
 852
 853static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
 854{
 855	/*
 856	 * The following delay is needed or the subsequent write operations may
 857	 * fail. The LPSS devices are actually PCI devices and the PCI spec
 858	 * expects 10ms delay before the device can be accessed after D3 to D0
 859	 * transition. However some platforms like BSW does not need this delay.
 860	 */
 861	unsigned int delay = 10;	/* default 10ms delay */
 862
 863	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
 864		delay = 0;
 865
 866	msleep(delay);
 867}
 868
 869static int acpi_lpss_activate(struct device *dev)
 870{
 871	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 872	int ret;
 873
 874	ret = acpi_dev_resume(dev);
 875	if (ret)
 876		return ret;
 877
 878	acpi_lpss_d3_to_d0_delay(pdata);
 879
 880	/*
 881	 * This is called only on ->probe() stage where a device is either in
 882	 * known state defined by BIOS or most likely powered off. Due to this
 883	 * we have to deassert reset line to be sure that ->probe() will
 884	 * recognize the device.
 885	 */
 886	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
 887		lpss_deassert_reset(pdata);
 888
 889	return 0;
 890}
 891
 892static void acpi_lpss_dismiss(struct device *dev)
 893{
 894	acpi_dev_suspend(dev, false);
 895}
 896
 897/* IOSF SB for LPSS island */
 898#define LPSS_IOSF_UNIT_LPIOEP		0xA0
 899#define LPSS_IOSF_UNIT_LPIO1		0xAB
 900#define LPSS_IOSF_UNIT_LPIO2		0xAC
 901
 902#define LPSS_IOSF_PMCSR			0x84
 903#define LPSS_PMCSR_D0			0
 904#define LPSS_PMCSR_D3hot		3
 905#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
 906
 907#define LPSS_IOSF_GPIODEF0		0x154
 908#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
 909#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
 910#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
 911#define LPSS_GPIODEF0_DMA_LLP		BIT(13)
 912
 913static DEFINE_MUTEX(lpss_iosf_mutex);
 914static bool lpss_iosf_d3_entered = true;
 915
 916static void lpss_iosf_enter_d3_state(void)
 917{
 918	u32 value1 = 0;
 919	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
 920	u32 value2 = LPSS_PMCSR_D3hot;
 921	u32 mask2 = LPSS_PMCSR_Dx_MASK;
 922	/*
 923	 * PMC provides an information about actual status of the LPSS devices.
 924	 * Here we read the values related to LPSS power island, i.e. LPSS
 925	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
 926	 */
 927	u32 func_dis, d3_sts_0, pmc_status;
 928	int ret;
 929
 930	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
 931	if (ret)
 932		return;
 933
 934	mutex_lock(&lpss_iosf_mutex);
 935
 936	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
 937	if (ret)
 938		goto exit;
 939
 940	/*
 941	 * Get the status of entire LPSS power island per device basis.
 942	 * Shutdown both LPSS DMA controllers if and only if all other devices
 943	 * are already in D3hot.
 944	 */
 945	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
 946	if (pmc_status)
 947		goto exit;
 948
 949	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
 950			LPSS_IOSF_PMCSR, value2, mask2);
 951
 952	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
 953			LPSS_IOSF_PMCSR, value2, mask2);
 954
 955	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
 956			LPSS_IOSF_GPIODEF0, value1, mask1);
 957
 958	lpss_iosf_d3_entered = true;
 959
 960exit:
 961	mutex_unlock(&lpss_iosf_mutex);
 962}
 963
 964static void lpss_iosf_exit_d3_state(void)
 965{
 966	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
 967		     LPSS_GPIODEF0_DMA_LLP;
 968	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
 969	u32 value2 = LPSS_PMCSR_D0;
 970	u32 mask2 = LPSS_PMCSR_Dx_MASK;
 971
 972	mutex_lock(&lpss_iosf_mutex);
 973
 974	if (!lpss_iosf_d3_entered)
 975		goto exit;
 976
 977	lpss_iosf_d3_entered = false;
 978
 979	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
 980			LPSS_IOSF_GPIODEF0, value1, mask1);
 981
 982	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
 983			LPSS_IOSF_PMCSR, value2, mask2);
 984
 985	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
 986			LPSS_IOSF_PMCSR, value2, mask2);
 987
 988exit:
 989	mutex_unlock(&lpss_iosf_mutex);
 990}
 991
 992static int acpi_lpss_suspend(struct device *dev, bool wakeup)
 993{
 994	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 995	int ret;
 996
 997	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
 998		acpi_lpss_save_ctx(dev, pdata);
 999
1000	ret = acpi_dev_suspend(dev, wakeup);
1001
1002	/*
1003	 * This call must be last in the sequence, otherwise PMC will return
1004	 * wrong status for devices being about to be powered off. See
1005	 * lpss_iosf_enter_d3_state() for further information.
1006	 */
1007	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1008	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1009		lpss_iosf_enter_d3_state();
1010
1011	return ret;
1012}
1013
1014static int acpi_lpss_resume(struct device *dev)
1015{
1016	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1017	int ret;
1018
1019	/*
1020	 * This call is kept first to be in symmetry with
1021	 * acpi_lpss_runtime_suspend() one.
1022	 */
1023	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024		lpss_iosf_exit_d3_state();
1025
1026	ret = acpi_dev_resume(dev);
1027	if (ret)
1028		return ret;
1029
1030	acpi_lpss_d3_to_d0_delay(pdata);
1031
1032	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1033		acpi_lpss_restore_ctx(dev, pdata);
1034
1035	return 0;
1036}
1037
1038#ifdef CONFIG_PM_SLEEP
1039static int acpi_lpss_do_suspend_late(struct device *dev)
1040{
1041	int ret;
1042
1043	if (dev_pm_smart_suspend_and_suspended(dev))
1044		return 0;
1045
1046	ret = pm_generic_suspend_late(dev);
1047	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1048}
1049
1050static int acpi_lpss_suspend_late(struct device *dev)
1051{
1052	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1053
1054	if (pdata->dev_desc->resume_from_noirq)
1055		return 0;
1056
1057	return acpi_lpss_do_suspend_late(dev);
1058}
1059
1060static int acpi_lpss_suspend_noirq(struct device *dev)
1061{
1062	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1063	int ret;
1064
1065	if (pdata->dev_desc->resume_from_noirq) {
1066		/*
1067		 * The driver's ->suspend_late callback will be invoked by
1068		 * acpi_lpss_do_suspend_late(), with the assumption that the
1069		 * driver really wanted to run that code in ->suspend_noirq, but
1070		 * it could not run after acpi_dev_suspend() and the driver
1071		 * expected the latter to be called in the "late" phase.
1072		 */
1073		ret = acpi_lpss_do_suspend_late(dev);
1074		if (ret)
1075			return ret;
1076	}
1077
1078	return acpi_subsys_suspend_noirq(dev);
1079}
1080
1081static int acpi_lpss_do_resume_early(struct device *dev)
1082{
1083	int ret = acpi_lpss_resume(dev);
1084
1085	return ret ? ret : pm_generic_resume_early(dev);
1086}
1087
1088static int acpi_lpss_resume_early(struct device *dev)
1089{
1090	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1091
1092	if (pdata->dev_desc->resume_from_noirq)
1093		return 0;
1094
1095	return acpi_lpss_do_resume_early(dev);
1096}
1097
1098static int acpi_lpss_resume_noirq(struct device *dev)
1099{
1100	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1101	int ret;
1102
1103	/* Follow acpi_subsys_resume_noirq(). */
1104	if (dev_pm_may_skip_resume(dev))
1105		return 0;
1106
1107	if (dev_pm_smart_suspend_and_suspended(dev))
1108		pm_runtime_set_active(dev);
1109
1110	ret = pm_generic_resume_noirq(dev);
1111	if (ret)
1112		return ret;
1113
1114	if (!pdata->dev_desc->resume_from_noirq)
1115		return 0;
1116
1117	/*
1118	 * The driver's ->resume_early callback will be invoked by
1119	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1120	 * really wanted to run that code in ->resume_noirq, but it could not
1121	 * run before acpi_dev_resume() and the driver expected the latter to be
1122	 * called in the "early" phase.
1123	 */
1124	return acpi_lpss_do_resume_early(dev);
1125}
1126
1127static int acpi_lpss_do_restore_early(struct device *dev)
1128{
1129	int ret = acpi_lpss_resume(dev);
1130
1131	return ret ? ret : pm_generic_restore_early(dev);
1132}
1133
1134static int acpi_lpss_restore_early(struct device *dev)
1135{
1136	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1137
1138	if (pdata->dev_desc->resume_from_noirq)
1139		return 0;
1140
1141	return acpi_lpss_do_restore_early(dev);
1142}
1143
1144static int acpi_lpss_restore_noirq(struct device *dev)
1145{
1146	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1147	int ret;
1148
1149	ret = pm_generic_restore_noirq(dev);
1150	if (ret)
1151		return ret;
1152
1153	if (!pdata->dev_desc->resume_from_noirq)
1154		return 0;
1155
1156	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1157	return acpi_lpss_do_restore_early(dev);
1158}
1159
1160static int acpi_lpss_do_poweroff_late(struct device *dev)
1161{
1162	int ret = pm_generic_poweroff_late(dev);
1163
1164	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1165}
1166
1167static int acpi_lpss_poweroff_late(struct device *dev)
1168{
1169	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170
1171	if (dev_pm_smart_suspend_and_suspended(dev))
1172		return 0;
1173
1174	if (pdata->dev_desc->resume_from_noirq)
1175		return 0;
1176
1177	return acpi_lpss_do_poweroff_late(dev);
1178}
1179
1180static int acpi_lpss_poweroff_noirq(struct device *dev)
1181{
1182	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1183
1184	if (dev_pm_smart_suspend_and_suspended(dev))
1185		return 0;
1186
1187	if (pdata->dev_desc->resume_from_noirq) {
1188		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1189		int ret = acpi_lpss_do_poweroff_late(dev);
1190		if (ret)
1191			return ret;
1192	}
1193
1194	return pm_generic_poweroff_noirq(dev);
1195}
1196#endif /* CONFIG_PM_SLEEP */
1197
1198static int acpi_lpss_runtime_suspend(struct device *dev)
1199{
1200	int ret = pm_generic_runtime_suspend(dev);
1201
1202	return ret ? ret : acpi_lpss_suspend(dev, true);
1203}
1204
1205static int acpi_lpss_runtime_resume(struct device *dev)
1206{
1207	int ret = acpi_lpss_resume(dev);
1208
1209	return ret ? ret : pm_generic_runtime_resume(dev);
1210}
1211#endif /* CONFIG_PM */
1212
1213static struct dev_pm_domain acpi_lpss_pm_domain = {
1214#ifdef CONFIG_PM
1215	.activate = acpi_lpss_activate,
1216	.dismiss = acpi_lpss_dismiss,
1217#endif
1218	.ops = {
1219#ifdef CONFIG_PM
1220#ifdef CONFIG_PM_SLEEP
1221		.prepare = acpi_subsys_prepare,
1222		.complete = acpi_subsys_complete,
1223		.suspend = acpi_subsys_suspend,
1224		.suspend_late = acpi_lpss_suspend_late,
1225		.suspend_noirq = acpi_lpss_suspend_noirq,
1226		.resume_noirq = acpi_lpss_resume_noirq,
1227		.resume_early = acpi_lpss_resume_early,
1228		.freeze = acpi_subsys_freeze,
1229		.poweroff = acpi_subsys_poweroff,
1230		.poweroff_late = acpi_lpss_poweroff_late,
1231		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1232		.restore_noirq = acpi_lpss_restore_noirq,
1233		.restore_early = acpi_lpss_restore_early,
1234#endif
1235		.runtime_suspend = acpi_lpss_runtime_suspend,
1236		.runtime_resume = acpi_lpss_runtime_resume,
1237#endif
1238	},
1239};
1240
1241static int acpi_lpss_platform_notify(struct notifier_block *nb,
1242				     unsigned long action, void *data)
1243{
1244	struct platform_device *pdev = to_platform_device(data);
1245	struct lpss_private_data *pdata;
1246	struct acpi_device *adev;
1247	const struct acpi_device_id *id;
1248
1249	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1250	if (!id || !id->driver_data)
1251		return 0;
1252
1253	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1254		return 0;
1255
1256	pdata = acpi_driver_data(adev);
1257	if (!pdata)
1258		return 0;
1259
1260	if (pdata->mmio_base &&
1261	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1262		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1263		return 0;
1264	}
1265
1266	switch (action) {
1267	case BUS_NOTIFY_BIND_DRIVER:
1268		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1269		break;
1270	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1271	case BUS_NOTIFY_UNBOUND_DRIVER:
1272		dev_pm_domain_set(&pdev->dev, NULL);
1273		break;
1274	case BUS_NOTIFY_ADD_DEVICE:
1275		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276		if (pdata->dev_desc->flags & LPSS_LTR)
1277			return sysfs_create_group(&pdev->dev.kobj,
1278						  &lpss_attr_group);
1279		break;
1280	case BUS_NOTIFY_DEL_DEVICE:
1281		if (pdata->dev_desc->flags & LPSS_LTR)
1282			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1283		dev_pm_domain_set(&pdev->dev, NULL);
1284		break;
1285	default:
1286		break;
1287	}
1288
1289	return 0;
1290}
1291
1292static struct notifier_block acpi_lpss_nb = {
1293	.notifier_call = acpi_lpss_platform_notify,
1294};
1295
1296static void acpi_lpss_bind(struct device *dev)
1297{
1298	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1299
1300	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1301		return;
1302
1303	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1304		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1305	else
1306		dev_err(dev, "MMIO size insufficient to access LTR\n");
1307}
1308
1309static void acpi_lpss_unbind(struct device *dev)
1310{
1311	dev->power.set_latency_tolerance = NULL;
1312}
1313
1314static struct acpi_scan_handler lpss_handler = {
1315	.ids = acpi_lpss_device_ids,
1316	.attach = acpi_lpss_create_device,
1317	.bind = acpi_lpss_bind,
1318	.unbind = acpi_lpss_unbind,
1319};
1320
1321void __init acpi_lpss_init(void)
1322{
1323	const struct x86_cpu_id *id;
1324	int ret;
1325
1326	ret = lpt_clk_init();
1327	if (ret)
1328		return;
1329
1330	id = x86_match_cpu(lpss_cpu_ids);
1331	if (id)
1332		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1333
1334	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1335	acpi_scan_add_handler(&lpss_handler);
1336}
1337
1338#else
1339
1340static struct acpi_scan_handler lpss_handler = {
1341	.ids = acpi_lpss_device_ids,
1342};
1343
1344void __init acpi_lpss_init(void)
1345{
1346	acpi_scan_add_handler(&lpss_handler);
1347}
1348
1349#endif /* CONFIG_X86_INTEL_LPSS */