Linux Audio

Check our new training course

Loading...
v3.1
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE:	There is support for head.S console in this file.  This
 202 * console can talk to a Mac frame buffer, but could easily be extrapolated
 203 * to extend it to support other platforms.
 204 *
 205 * TEST_MMU:	This is a test harness for running on any given machine but
 206 * getting an MMU dump for another class of machine.  The classes of machines
 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 208 * and any of the models (030, 040, 060, etc.).
 209 *
 210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 212 *		machines.  At that point the underlying logic will be
 213 *		believed to be solid enough to be trusted, and TEST_MMU
 214 *		can be dropped.  Do note that that will clean up the
 215 *		head.S code significantly as large blocks of #if/#else
 216 *		clauses can be removed.
 217 *
 218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 219 * determing why devices don't appear to work.  A test case was to remove
 220 * the cacheability of the kernel bits.
 221 *
 222 * MMU_PRINT:	There is a routine built into head.S that can display the
 223 * MMU data structures.  It outputs its result through the serial_putc
 224 * interface.  So where ever that winds up driving data, that's where the
 225 * mmu struct will appear.  On the Macintosh that's typically the console.
 226 *
 227 * SERIAL_DEBUG:	There are a series of putc() macro statements
 228 * scattered through out the code to give progress of status to the
 229 * person sitting at the console.  This constant determines whether those
 230 * are used.
 231 *
 232 * DEBUG:	This is the standard DEBUG flag that can be set for building
 233 *		the kernel.  It has the effect adding additional tests into
 234 *		the code.
 235 *
 236 * FONT_6x11:
 237 * FONT_8x8:
 238 * FONT_8x16:
 239 *		In theory these could be determined at run time or handed
 240 *		over by the booter.  But, let's be real, it's a fine hard
 241 *		coded value.  (But, you will notice the code is run-time
 242 *		flexible!)  A pointer to the font's struct font_desc
 243 *		is kept locally in Lconsole_font.  It is used to determine
 244 *		font size information dynamically.
 245 *
 246 * Atari constants:
 247 * USE_PRINTER:	Use the printer port for serial debug.
 248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 251 *
 252 * Macintosh constants:
 253 * MAC_SERIAL_DEBUG:	Turns on serial debug output for the Macintosh.
 254 * MAC_USE_SCC_A:	Use the SCC port A (modem) for serial debug.
 255 * MAC_USE_SCC_B:	Use the SCC port B (printer) for serial debug (default).
 256 */
 257
 258#include <linux/linkage.h>
 259#include <linux/init.h>
 260#include <asm/bootinfo.h>
 
 
 
 
 
 
 261#include <asm/setup.h>
 262#include <asm/entry.h>
 263#include <asm/pgtable.h>
 264#include <asm/page.h>
 265#include <asm/asm-offsets.h>
 266
 267#ifdef CONFIG_MAC
 268
 269#include <asm/machw.h>
 270
 271/*
 272 * Macintosh console support
 273 */
 274
 275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
 276#define CONSOLE
 277#define CONSOLE_PENGUIN
 278#endif
 279
 280/*
 281 * Macintosh serial debug support; outputs boot info to the printer
 282 *   and/or modem serial ports
 283 */
 284#undef MAC_SERIAL_DEBUG
 285
 286/*
 287 * Macintosh serial debug port selection; define one or both;
 288 *   requires MAC_SERIAL_DEBUG to be defined
 289 */
 290#define MAC_USE_SCC_A		/* Macintosh modem serial port */
 291#define MAC_USE_SCC_B		/* Macintosh printer serial port */
 292
 293#endif	/* CONFIG_MAC */
 294
 295#undef MMU_PRINT
 296#undef MMU_NOCACHE_KERNEL
 297#define SERIAL_DEBUG
 298#undef DEBUG
 299
 300/*
 301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 302 * The 8x8 font is harder to read but fits more on the screen.
 303 */
 304#define FONT_8x8	/* default */
 305/* #define FONT_8x16 */	/* 2nd choice */
 306/* #define FONT_6x11 */	/* 3rd choice */
 307
 308.globl kernel_pg_dir
 309.globl availmem
 
 310.globl m68k_pgtable_cachemode
 311.globl m68k_supervisor_cachemode
 312#ifdef CONFIG_MVME16x
 313.globl mvme_bdid
 314#endif
 315#ifdef CONFIG_Q40
 316.globl q40_mem_cptr
 317#endif
 318
 319CPUTYPE_040	= 1	/* indicates an 040 */
 320CPUTYPE_060	= 2	/* indicates an 060 */
 321CPUTYPE_0460	= 3	/* if either above are set, this is set */
 322CPUTYPE_020	= 4	/* indicates an 020 */
 323
 324/* Translation control register */
 325TC_ENABLE = 0x8000
 326TC_PAGE8K = 0x4000
 327TC_PAGE4K = 0x0000
 328
 329/* Transparent translation registers */
 330TTR_ENABLE	= 0x8000	/* enable transparent translation */
 331TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 332TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 333TTR_USERMODE	= 0x0000	/* only user mode access */
 334TTR_CI		= 0x0400	/* inhibit cache */
 335TTR_RW		= 0x0200	/* read/write mode */
 336TTR_RWM		= 0x0100	/* read/write mask */
 337TTR_FCB2	= 0x0040	/* function code base bit 2 */
 338TTR_FCB1	= 0x0020	/* function code base bit 1 */
 339TTR_FCB0	= 0x0010	/* function code base bit 0 */
 340TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 341TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 342TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 343
 344/* Cache Control registers */
 345CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 346CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 347CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 348CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 349CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 350CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 351CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 352CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 353CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 354CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 355CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 356CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 357CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 358CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 359CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 360CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 361CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 362CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 363CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 364CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 365CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 366CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 367
 368/* Miscellaneous definitions */
 369PAGESIZE	= 4096
 370PAGESHIFT	= 12
 371
 372ROOT_TABLE_SIZE	= 128
 373PTR_TABLE_SIZE	= 128
 374PAGE_TABLE_SIZE	= 64
 375ROOT_INDEX_SHIFT = 25
 376PTR_INDEX_SHIFT  = 18
 377PAGE_INDEX_SHIFT = 12
 378
 379#ifdef DEBUG
 380/* When debugging use readable names for labels */
 381#ifdef __STDC__
 382#define L(name) .head.S.##name
 383#else
 384#define L(name) .head.S./**/name
 385#endif
 386#else
 387#ifdef __STDC__
 388#define L(name) .L##name
 389#else
 390#define L(name) .L/**/name
 391#endif
 392#endif
 393
 394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 395#ifndef __INITDATA
 396#define __INITDATA	.data
 397#define __FINIT		.previous
 398#endif
 399
 400/* Several macros to make the writing of subroutines easier:
 401 * - func_start marks the beginning of the routine which setups the frame
 402 *   register and saves the registers, it also defines another macro
 403 *   to automatically restore the registers again.
 404 * - func_return marks the end of the routine and simply calls the prepared
 405 *   macro to restore registers and jump back to the caller.
 406 * - func_define generates another macro to automatically put arguments
 407 *   onto the stack call the subroutine and cleanup the stack again.
 408 */
 409
 410/* Within subroutines these macros can be used to access the arguments
 411 * on the stack. With STACK some allocated memory on the stack can be
 412 * accessed and ARG0 points to the return address (used by mmu_engage).
 413 */
 414#define	STACK	%a6@(stackstart)
 415#define ARG0	%a6@(4)
 416#define ARG1	%a6@(8)
 417#define ARG2	%a6@(12)
 418#define ARG3	%a6@(16)
 419#define ARG4	%a6@(20)
 420
 421.macro	func_start	name,saveregs,stack=0
 422L(\name):
 423	linkw	%a6,#-\stack
 424	moveml	\saveregs,%sp@-
 425.set	stackstart,-\stack
 426
 427.macro	func_return_\name
 428	moveml	%sp@+,\saveregs
 429	unlk	%a6
 430	rts
 431.endm
 432.endm
 433
 434.macro	func_return	name
 435	func_return_\name
 436.endm
 437
 438.macro	func_call	name
 439	jbsr	L(\name)
 440.endm
 441
 442.macro	move_stack	nr,arg1,arg2,arg3,arg4
 443.if	\nr
 444	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 445	movel	\arg1,%sp@-
 446.endif
 447.endm
 448
 449.macro	func_define	name,nr=0
 450.macro	\name	arg1,arg2,arg3,arg4
 451	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 452	func_call	\name
 453.if	\nr
 454	lea	%sp@(\nr*4),%sp
 455.endif
 456.endm
 457.endm
 458
 459func_define	mmu_map,4
 460func_define	mmu_map_tt,4
 461func_define	mmu_fixup_page_mmu_cache,1
 462func_define	mmu_temp_map,2
 463func_define	mmu_engage
 464func_define	mmu_get_root_table_entry,1
 465func_define	mmu_get_ptr_table_entry,2
 466func_define	mmu_get_page_table_entry,2
 467func_define	mmu_print
 468func_define	get_new_page
 469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 470func_define	set_leds
 471#endif
 472
 473.macro	mmu_map_eq	arg1,arg2,arg3
 474	mmu_map	\arg1,\arg1,\arg2,\arg3
 475.endm
 476
 477.macro	get_bi_record	record
 478	pea	\record
 479	func_call	get_bi_record
 480	addql	#4,%sp
 481.endm
 482
 483func_define	serial_putc,1
 484func_define	console_putc,1
 485
 486func_define	console_init
 487func_define	console_put_stats
 488func_define	console_put_penguin
 489func_define	console_plot_pixel,3
 490func_define	console_scroll
 491
 492.macro	putc	ch
 493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 494	pea	\ch
 495#endif
 496#ifdef CONSOLE
 497	func_call	console_putc
 498#endif
 499#ifdef SERIAL_DEBUG
 500	func_call	serial_putc
 501#endif
 502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 503	addql	#4,%sp
 504#endif
 505.endm
 506
 507.macro	dputc	ch
 508#ifdef DEBUG
 509	putc	\ch
 510#endif
 511.endm
 512
 513func_define	putn,1
 514
 515.macro	dputn	nr
 516#ifdef DEBUG
 517	putn	\nr
 518#endif
 519.endm
 520
 521.macro	puts		string
 522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 523	__INITDATA
 524.Lstr\@:
 525	.string	"\string"
 526	__FINIT
 527	pea	%pc@(.Lstr\@)
 528	func_call	puts
 529	addql	#4,%sp
 530#endif
 531.endm
 532
 533.macro	dputs	string
 534#ifdef DEBUG
 535	puts	"\string"
 536#endif
 537.endm
 538
 539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 552
 553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 554			jeq 42f; \
 555			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 556			jne lab ;\
 557		42:\
 558
 559#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 560#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 561#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 562#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 563#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 564#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 565#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 566
 567/* On the HP300 we use the on-board LEDs for debug output before
 568   the console is running.  Writing a 1 bit turns the corresponding LED
 569   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 570.macro	leds	mask
 571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 572	hasnt_leds(.Lled\@)
 573	pea	\mask
 574	func_call	set_leds
 575	addql	#4,%sp
 576.Lled\@:
 577#endif
 578.endm
 579
 580__HEAD
 581ENTRY(_stext)
 582/*
 583 * Version numbers of the bootinfo interface
 584 * The area from _stext to _start will later be used as kernel pointer table
 585 */
 586	bras	1f	/* Jump over bootinfo version numbers */
 587
 588	.long	BOOTINFOV_MAGIC
 589	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 590	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 591	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 592	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 593	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 594	.long	MACH_MAC, MAC_BOOTI_VERSION
 595	.long	MACH_Q40, Q40_BOOTI_VERSION
 596	.long	MACH_HP300, HP300_BOOTI_VERSION
 597	.long	0
 5981:	jra	__start
 599
 600.equ	kernel_pg_dir,_stext
 601
 602.equ	.,_stext+PAGESIZE
 603
 604ENTRY(_start)
 605	jra	__start
 606__INIT
 607ENTRY(__start)
 608/*
 609 * Setup initial stack pointer
 610 */
 611	lea	%pc@(_stext),%sp
 612
 613/*
 614 * Record the CPU and machine type.
 615 */
 616	get_bi_record	BI_MACHTYPE
 617	lea	%pc@(m68k_machtype),%a1
 618	movel	%a0@,%a1@
 619
 620	get_bi_record	BI_FPUTYPE
 621	lea	%pc@(m68k_fputype),%a1
 622	movel	%a0@,%a1@
 623
 624	get_bi_record	BI_MMUTYPE
 625	lea	%pc@(m68k_mmutype),%a1
 626	movel	%a0@,%a1@
 627
 628	get_bi_record	BI_CPUTYPE
 629	lea	%pc@(m68k_cputype),%a1
 630	movel	%a0@,%a1@
 631
 632	leds	0x1
 633
 634#ifdef CONFIG_MAC
 635/*
 636 * For Macintosh, we need to determine the display parameters early (at least
 637 * while debugging it).
 638 */
 639
 640	is_not_mac(L(test_notmac))
 641
 642	get_bi_record	BI_MAC_VADDR
 643	lea	%pc@(L(mac_videobase)),%a1
 644	movel	%a0@,%a1@
 645
 646	get_bi_record	BI_MAC_VDEPTH
 647	lea	%pc@(L(mac_videodepth)),%a1
 648	movel	%a0@,%a1@
 649
 650	get_bi_record	BI_MAC_VDIM
 651	lea	%pc@(L(mac_dimensions)),%a1
 652	movel	%a0@,%a1@
 653
 654	get_bi_record	BI_MAC_VROW
 655	lea	%pc@(L(mac_rowbytes)),%a1
 656	movel	%a0@,%a1@
 657
 658#ifdef MAC_SERIAL_DEBUG
 659	get_bi_record	BI_MAC_SCCBASE
 660	lea	%pc@(L(mac_sccbase)),%a1
 661	movel	%a0@,%a1@
 662#endif /* MAC_SERIAL_DEBUG */
 663
 664#if 0
 665	/*
 666	 * Clear the screen
 667	 */
 668	lea	%pc@(L(mac_videobase)),%a0
 669	movel	%a0@,%a1
 670	lea	%pc@(L(mac_dimensions)),%a0
 671	movel	%a0@,%d1
 672	swap	%d1		/* #rows is high bytes */
 673	andl	#0xFFFF,%d1	/* rows */
 674	subl	#10,%d1
 675	lea	%pc@(L(mac_rowbytes)),%a0
 676loopy2:
 677	movel	%a0@,%d0
 678	subql	#1,%d0
 679loopx2:
 680	moveb	#0x55, %a1@+
 681	dbra	%d0,loopx2
 682	dbra	%d1,loopy2
 683#endif
 684
 685L(test_notmac):
 686#endif /* CONFIG_MAC */
 687
 688
 689/*
 690 * There are ultimately two pieces of information we want for all kinds of
 691 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 692 * and is converted here from a booter type definition to a separate bit
 693 * number which allows for the standard is_0x0 macro tests.
 694 */
 695	movel	%pc@(m68k_cputype),%d0
 696	/*
 697	 * Assume it's an 030
 698	 */
 699	clrl	%d1
 700
 701	/*
 702	 * Test the BootInfo cputype for 060
 703	 */
 704	btst	#CPUB_68060,%d0
 705	jeq	1f
 706	bset	#CPUTYPE_060,%d1
 707	bset	#CPUTYPE_0460,%d1
 708	jra	3f
 7091:
 710	/*
 711	 * Test the BootInfo cputype for 040
 712	 */
 713	btst	#CPUB_68040,%d0
 714	jeq	2f
 715	bset	#CPUTYPE_040,%d1
 716	bset	#CPUTYPE_0460,%d1
 717	jra	3f
 7182:
 719	/*
 720	 * Test the BootInfo cputype for 020
 721	 */
 722	btst	#CPUB_68020,%d0
 723	jeq	3f
 724	bset	#CPUTYPE_020,%d1
 725	jra	3f
 7263:
 727	/*
 728	 * Record the cpu type
 729	 */
 730	lea	%pc@(L(cputype)),%a0
 731	movel	%d1,%a0@
 732
 733	/*
 734	 * NOTE:
 735	 *
 736	 * Now the macros are valid:
 737	 *	is_040_or_060
 738	 *	is_not_040_or_060
 739	 *	is_040
 740	 *	is_060
 741	 *	is_not_060
 742	 */
 743
 744	/*
 745	 * Determine the cache mode for pages holding MMU tables
 746	 * and for supervisor mode, unused for '020 and '030
 747	 */
 748	clrl	%d0
 749	clrl	%d1
 750
 751	is_not_040_or_060(L(save_cachetype))
 752
 753	/*
 754	 * '040 or '060
 755	 * d1 := cacheable write-through
 756	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 757	 * but we have been using write-through since at least 2.0.29 so I
 758	 * guess it is OK.
 759	 */
 760#ifdef CONFIG_060_WRITETHROUGH
 761	/*
 762	 * If this is a 68060 board using drivers with cache coherency
 763	 * problems, then supervisor memory accesses need to be write-through
 764	 * also; otherwise, we want copyback.
 765	 */
 766
 767	is_not_060(1f)
 768	movel	#_PAGE_CACHE040W,%d0
 769	jra	L(save_cachetype)
 770#endif /* CONFIG_060_WRITETHROUGH */
 7711:
 772	movew	#_PAGE_CACHE040,%d0
 773
 774	movel	#_PAGE_CACHE040W,%d1
 775
 776L(save_cachetype):
 777	/* Save cache mode for supervisor mode and page tables
 778	 */
 779	lea	%pc@(m68k_supervisor_cachemode),%a0
 780	movel	%d0,%a0@
 781	lea	%pc@(m68k_pgtable_cachemode),%a0
 782	movel	%d1,%a0@
 783
 784/*
 785 * raise interrupt level
 786 */
 787	movew	#0x2700,%sr
 788
 789/*
 790   If running on an Atari, determine the I/O base of the
 791   serial port and test if we are running on a Medusa or Hades.
 792   This test is necessary here, because on the Hades the serial
 793   port is only accessible in the high I/O memory area.
 794
 795   The test whether it is a Medusa is done by writing to the byte at
 796   phys. 0x0. This should result in a bus error on all other machines.
 797
 798   ...should, but doesn't. The Afterburner040 for the Falcon has the
 799   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 800   another test to distinguish Medusa and AB040. This is a
 801   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 802   (+AB040), but is in the range where the Medusa always asserts DTACK.
 803
 804   The test for the Hades is done by reading address 0xb0000000. This
 805   should give a bus error on the Medusa.
 806 */
 807
 808#ifdef CONFIG_ATARI
 809	is_not_atari(L(notypetest))
 810
 811	/* get special machine type (Medusa/Hades/AB40) */
 812	moveq	#0,%d3 /* default if tag doesn't exist */
 813	get_bi_record	BI_ATARI_MCH_TYPE
 814	tstl	%d0
 815	jbmi	1f
 816	movel	%a0@,%d3
 817	lea	%pc@(atari_mch_type),%a0
 818	movel	%d3,%a0@
 8191:
 820	/* On the Hades, the iobase must be set up before opening the
 821	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 822	moveq	#0,%d0
 823	cmpl	#ATARI_MACH_HADES,%d3
 824	jbne	1f
 825	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 8261:	lea     %pc@(L(iobase)),%a0
 827	movel   %d0,%a0@
 828
 829L(notypetest):
 830#endif
 831
 832#ifdef CONFIG_VME
 833	is_mvme147(L(getvmetype))
 834	is_bvme6000(L(getvmetype))
 835	is_not_mvme16x(L(gvtdone))
 836
 837	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 838	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 839	 * early so we know how to handle console output.  If the tag
 840	 * doesn't exist then we use the Bug for output on MVME16x.
 841	 */
 842L(getvmetype):
 843	get_bi_record	BI_VME_TYPE
 844	tstl	%d0
 845	jbmi	1f
 846	movel	%a0@,%d3
 847	lea	%pc@(vme_brdtype),%a0
 848	movel	%d3,%a0@
 8491:
 850#ifdef CONFIG_MVME16x
 851	is_not_mvme16x(L(gvtdone))
 852
 853	/* Need to get the BRD_ID info to differentiate between 162, 167,
 854	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 855	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 856	 */
 857	get_bi_record	BI_VME_BRDINFO
 858	tstl	%d0
 859	jpl	1f
 860
 861	/* Get pointer to board ID data from Bug */
 862	movel	%d2,%sp@-
 863	trap	#15
 864	.word	0x70		/* trap 0x70 - .BRD_ID */
 865	movel	%sp@+,%a0
 8661:
 867	lea	%pc@(mvme_bdid),%a1
 868	/* Structure is 32 bytes long */
 869	movel	%a0@+,%a1@+
 870	movel	%a0@+,%a1@+
 871	movel	%a0@+,%a1@+
 872	movel	%a0@+,%a1@+
 873	movel	%a0@+,%a1@+
 874	movel	%a0@+,%a1@+
 875	movel	%a0@+,%a1@+
 876	movel	%a0@+,%a1@+
 877#endif
 878
 879L(gvtdone):
 880
 881#endif
 882
 883#ifdef CONFIG_HP300
 884	is_not_hp300(L(nothp))
 885
 886	/* Get the address of the UART for serial debugging */
 887	get_bi_record	BI_HP300_UART_ADDR
 888	tstl	%d0
 889	jbmi	1f
 890	movel	%a0@,%d3
 891	lea	%pc@(L(uartbase)),%a0
 892	movel	%d3,%a0@
 893	get_bi_record	BI_HP300_UART_SCODE
 894	tstl	%d0
 895	jbmi	1f
 896	movel	%a0@,%d3
 897	lea	%pc@(L(uart_scode)),%a0
 898	movel	%d3,%a0@
 8991:
 900L(nothp):
 901#endif
 902
 903/*
 904 * Initialize serial port
 905 */
 906	jbsr	L(serial_init)
 907
 908/*
 909 * Initialize console
 910 */
 911#ifdef CONFIG_MAC
 912	is_not_mac(L(nocon))
 913#ifdef CONSOLE
 914	console_init
 915#ifdef CONSOLE_PENGUIN
 916	console_put_penguin
 917#endif	/* CONSOLE_PENGUIN */
 918	console_put_stats
 919#endif	/* CONSOLE */
 920L(nocon):
 921#endif	/* CONFIG_MAC */
 922
 923
 924	putc	'\n'
 925	putc	'A'
 926	leds	0x2
 927	dputn	%pc@(L(cputype))
 928	dputn	%pc@(m68k_supervisor_cachemode)
 929	dputn	%pc@(m68k_pgtable_cachemode)
 930	dputc	'\n'
 931
 932/*
 933 * Save physical start address of kernel
 934 */
 935	lea	%pc@(L(phys_kernel_start)),%a0
 936	lea	%pc@(_stext),%a1
 937	subl	#_stext,%a1
 938	addl	#PAGE_OFFSET,%a1
 939	movel	%a1,%a0@
 940
 941	putc	'B'
 942
 943	leds	0x4
 944
 945/*
 946 *	mmu_init
 947 *
 948 *	This block of code does what's necessary to map in the various kinds
 949 *	of machines for execution of Linux.
 950 *	First map the first 4 MB of kernel code & data
 951 */
 952
 953	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
 
 
 
 
 
 
 
 
 
 
 
 
 954		%pc@(m68k_supervisor_cachemode)
 955
 956	putc	'C'
 957
 958#ifdef CONFIG_AMIGA
 959
 960L(mmu_init_amiga):
 961
 962	is_not_amiga(L(mmu_init_not_amiga))
 963/*
 964 * mmu_init_amiga
 965 */
 966
 967	putc	'D'
 968
 969	is_not_040_or_060(1f)
 970
 971	/*
 972	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 973	 */
 974	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 975	/*
 976	 * Map the Zorro III I/O space with transparent translation
 977	 * for frame buffer memory etc.
 978	 */
 979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 980
 981	jbra	L(mmu_init_done)
 982
 9831:
 984	/*
 985	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 986	 */
 987	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 988	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 989
 990	jbra	L(mmu_init_done)
 991
 992L(mmu_init_not_amiga):
 993#endif
 994
 995#ifdef CONFIG_ATARI
 996
 997L(mmu_init_atari):
 998
 999	is_not_atari(L(mmu_init_not_atari))
1000
1001	putc	'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004   the last 16 MB of virtual address space to the first 16 MB (i.e.
1005   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006   needed. I/O ranges are marked non-cachable.
1007
1008   For the Medusa it is better to map the I/O region transparently
1009   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010   accessible only in the high area.
1011
1012   On the Hades all I/O registers are only accessible in the high
1013   area.
1014*/
1015
1016	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017	moveq	#0,%d0
1018	movel	%pc@(atari_mch_type),%d3
1019	cmpl	#ATARI_MACH_MEDUSA,%d3
1020	jbeq	2f
1021	cmpl	#ATARI_MACH_HADES,%d3
1022	jbne	1f
10232:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241:	movel	%d0,%d3
1025
1026	is_040_or_060(L(spata68040))
1027
1028	/* Map everything non-cacheable, though not all parts really
1029	 * need to disable caches (crucial only for 0xff8000..0xffffff
1030	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031	 * isn't really used, except for sometimes peeking into the
1032	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033	 * this. */
1034	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036	jbra	L(mmu_init_done)
1037
1038L(spata68040):
1039
1040	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042	jbra	L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048	is_not_q40(L(notq40))
1049	/*
1050	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051	 * non-cached serialized etc..
1052	 * this includes master chip, DAC, RTC and ISA ports
1053	 * 0xfe000000-0xfeffffff is for screen and ROM
1054	 */
1055
1056	putc    'Q'
1057
1058	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061	jbra	L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067	is_not_hp300(L(nothp300))
1068
1069	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071	 * The ROM mapping is needed because the LEDs are mapped there too.
1072	 */
1073
1074	is_040(1f)
1075
1076	/*
1077	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078	 */
1079	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081	jbra	L(mmu_init_done)
1082
10831:
1084	/*
1085	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086	 */
1087	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089	jbra	L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096	is_not_mvme147(L(not147))
1097
1098	/*
1099	 * On MVME147 we have already created kernel page tables for
1100	 * 4MB of RAM at address 0, so now need to do a transparent
1101	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1102	 * so we can access on-board i/o areas.
1103	 */
1104
1105	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107	jbra	L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114	is_not_mvme16x(L(not16x))
1115
1116	/*
1117	 * On MVME16x we have already created kernel page tables for
1118	 * 4MB of RAM at address 0, so now need to do a transparent
1119	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1123	 * mapping is needed to allow 167Bug to run.
1124	 * IO is in the range 0xfff00000 to 0xfffeffff.
1125	 * PROM is 0xff800000->0xffbfffff and SRAM is
1126	 * 0xffe00000->0xffe1ffff.
1127	 */
1128
1129	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131	jbra	L(mmu_init_done)
1132
1133L(not16x):
1134#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138	is_not_bvme6000(L(not6000))
1139
1140	/*
1141	 * On BVME6000 we have already created kernel page tables for
1142	 * 4MB of RAM at address 0, so now need to do a transparent
1143	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1144	 * so we can access on-board i/o areas.
1145	 * Supervisor only access, so transparent mapping doesn't
1146	 * clash with User code virtual address space.
1147	 */
1148
1149	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151	jbra	L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done.  However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions.  But I'd like to cut that out.  (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188	is_not_mac(L(mmu_init_not_mac))
1189
1190	putc	'F'
1191
1192	is_not_040_or_060(1f)
1193
1194	moveq	#_PAGE_NOCACHE_S,%d3
1195	jbra	2f
11961:
1197	moveq	#_PAGE_NOCACHE030,%d3
11982:
1199	/*
1200	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201	 *	     we simply map the 4MB that contains the videomem
1202	 */
1203
1204	movel	#VIDEOMEMMASK,%d0
1205	andl	%pc@(L(mac_videobase)),%d0
1206
1207	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209	mmu_map_eq	#0x40000000,#0x02000000,%d3
1210	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211	mmu_map_eq	#0x50000000,#0x03000000,%d3
1212	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1214
1215	jbra	L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221	is_not_sun3x(L(notsun3x))
1222
1223	/* oh, the pain..  We're gonna want the prom code after
1224	 * starting the MMU, so we copy the mappings, translating
1225	 * from 8k -> 4k pages as we go.
1226	 */
1227
1228	/* copy maps from 0xfee00000 to 0xff000000 */
1229	movel	#0xfee00000, %d0
1230	moveq	#ROOT_INDEX_SHIFT, %d1
1231	lsrl	%d1,%d0
1232	mmu_get_root_table_entry	%d0
1233
1234	movel	#0xfee00000, %d0
1235	moveq	#PTR_INDEX_SHIFT, %d1
1236	lsrl	%d1,%d0
1237	andl	#PTR_TABLE_SIZE-1, %d0
1238	mmu_get_ptr_table_entry		%a0,%d0
1239
1240	movel	#0xfee00000, %d0
1241	moveq	#PAGE_INDEX_SHIFT, %d1
1242	lsrl	%d1,%d0
1243	andl	#PAGE_TABLE_SIZE-1, %d0
1244	mmu_get_page_table_entry	%a0,%d0
1245
1246	/* this is where the prom page table lives */
1247	movel	0xfefe00d4, %a1
1248	movel	%a1@, %a1
1249
1250	movel	#((0x200000 >> 13)-1), %d1
1251
12521:
1253	movel	%a1@+, %d3
1254	movel	%d3,%a0@+
1255	addl	#0x1000,%d3
1256	movel	%d3,%a0@+
1257
1258	dbra	%d1,1b
1259
1260	/* setup tt1 for I/O */
1261	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262	jbra	L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
1267#ifdef CONFIG_APOLLO
1268	is_not_apollo(L(notapollo))
1269
1270	putc	'P'
1271	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274	jbra	L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279	putc	'G'
1280	leds	0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297	is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300	jbra	L(mmu_fixup_done)
1301#endif
1302
1303	/* first fix the page at the start of the kernel, that
1304	 * contains also kernel_pg_dir.
1305	 */
1306	movel	%pc@(L(phys_kernel_start)),%d0
1307	subl	#PAGE_OFFSET,%d0
1308	lea	%pc@(_stext),%a0
1309	subl	%d0,%a0
1310	mmu_fixup_page_mmu_cache	%a0
1311
1312	movel	%pc@(L(kernel_end)),%a0
1313	subl	%d0,%a0
1314	movel	%pc@(L(memory_start)),%a1
1315	subl	%d0,%a1
1316	bra	2f
13171:
1318	mmu_fixup_page_mmu_cache	%a0
1319	addw	#PAGESIZE,%a0
13202:
1321	cmpl	%a0,%a1
1322	jgt	1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327	mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses.  The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 *    the kernel of which there are two sub-possibilities:
1341 *    A. The PC maps to the correct instruction (logical PC == physical
1342 *       code location), or
1343 *    B. The PC does not map through and the processor will read some
1344 *       data (or instruction) which is not the logically next instr.
1345 *    As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU.  The processor
1348 *    will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 *    the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else.  e.g., 0x0400.0000
1356 *
1357 *    Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc.  And, create a transparent
1368 * translation register for the first 16 Meg.  Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally).  This is essentially the code that the Amiga used
1373 * to use.  Now, it's generalized for all processors.  Which means
1374 * that a fresh (but temporary) mapping has to be created.  The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!).  This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg.  Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392	putc	'H'
1393
1394	mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402	movel	L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405	is_not_amiga(1f)
1406	/* fixup the Amiga custom register location before printing */
1407	clrl	L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412	is_not_atari(1f)
1413	/* fixup the Atari iobase register location before printing */
1414	movel	#0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419	is_not_mac(1f)
1420	movel	#~VIDEOMEMMASK,%d0
1421	andl	L(mac_videobase),%d0
1422	addl	#VIDEOMEMBASE,%d0
1423	movel	%d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425	movel	%pc@(L(phys_kernel_start)),%d0
1426	subl	#PAGE_OFFSET,%d0
1427	subl	%d0,L(console_font)
1428	subl	%d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431	orl	#0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437	is_not_hp300(2f)
1438	/*
1439	 * Fix up the iobase register to point to the new location of the LEDs.
1440	 */
1441	movel	#0xf0000000,L(iobase)
1442
1443	/*
1444	 * Energise the FPU and caches.
1445	 */
1446	is_040(1f)
1447	movel	#0x60,0xf05f400c
1448	jbra	2f
1449
1450	/*
1451	 * 040: slightly different, apparently.
1452	 */
14531:	movew	#0,0xf05f400e
1454	movew	#0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459	is_not_sun3x(1f)
1460
1461	/* enable copro */
1462	oriw	#0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467	is_not_apollo(1f)
1468
1469	/*
1470	 * Fix up the iobase before printing
1471	 */
1472	movel	#0x80000000,L(iobase)
14731:
1474#endif
1475
1476	putc	'I'
1477	leds	0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483	is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486	.chip	68040
1487	nop
1488	cpusha	%bc
1489	nop
1490
1491	is_060(L(cache68060))
1492
1493	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494	/* MMU stuff works in copyback mode now, so enable the cache */
1495	movec	%d0,%cacr
1496	jra	L(cache_done)
1497
1498L(cache68060):
1499	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500	/* MMU stuff works in copyback mode now, so enable the cache */
1501	movec	%d0,%cacr
1502	/* enable superscalar dispatch in PCR */
1503	moveq	#1,%d0
1504	.chip	68060
1505	movec	%d0,%pcr
1506
1507	jbra	L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510	.chip	68030
1511	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512	movec	%d0,%cacr
1513
1514	jra	L(cache_done)
1515	.chip	68k
1516L(cache_done):
1517
1518	putc	'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523	lea	init_task,%curptr
1524	lea	init_thread_union+THREAD_SIZE,%sp
1525
1526	putc	'K'
1527
1528	subl	%a6,%a6		/* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533	jbsr	base_trap_init
1534
1535/* jump to the kernel start */
1536
1537	putc	'\n'
1538	leds	0x55
1539
1540	jbsr	start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 *          a0: data pointer (end-of-records if not found)
1547 */
1548func_start	get_bi_record,%d1
1549
1550	movel	ARG1,%d0
1551	lea	%pc@(_end),%a0
15521:	tstw	%a0@(BIR_TAG)
1553	jeq	3f
1554	cmpw	%a0@(BIR_TAG),%d0
1555	jeq	2f
1556	addw	%a0@(BIR_SIZE),%a0
1557	jra	1b
15582:	moveq	#0,%d0
1559	movew	%a0@(BIR_SIZE),%d0
1560	lea	%a0@(BIR_DATA),%a0
1561	jra	4f
15623:	moveq	#-1,%d0
1563	lea	%a0@(BIR_SIZE),%a0
15644:
1565func_return	get_bi_record
1566
1567
1568/*
1569 *	MMU Initialization Begins Here
1570 *
1571 *	The structure of the MMU tables on the 68k machines
1572 *	is thus:
1573 *	Root Table
1574 *		Logical addresses are translated through
1575 *	a hierarchical translation mechanism where the high-order
1576 *	seven bits of the logical address (LA) are used as an
1577 *	index into the "root table."  Each entry in the root
1578 *	table has a bit which specifies if it's a valid pointer to a
1579 *	pointer table.  Each entry defines a 32KMeg range of memory.
1580 *	If an entry is invalid then that logical range of 32M is
1581 *	invalid and references to that range of memory (when the MMU
1582 *	is enabled) will fault.  If the entry is valid, then it does
1583 *	one of two things.  On 040/060 class machines, it points to
1584 *	a pointer table which then describes more finely the memory
1585 *	within that 32M range.  On 020/030 class machines, a technique
1586 *	called "early terminating descriptors" are used.  This technique
1587 *	allows an entire 32Meg to be described by a single entry in the
1588 *	root table.  Thus, this entry in the root table, contains the
1589 *	physical address of the memory or I/O at the logical address
1590 *	which the entry represents and it also contains the necessary
1591 *	cache bits for this region.
1592 *
1593 *	Pointer Tables
1594 *		Per the Root Table, there will be one or more
1595 *	pointer tables.  Each pointer table defines a 32M range.
1596 *	Not all of the 32M range need be defined.  Again, the next
1597 *	seven bits of the logical address are used an index into
1598 *	the pointer table to point to page tables (if the pointer
1599 *	is valid).  There will undoubtedly be more than one
1600 *	pointer table for the kernel because each pointer table
1601 *	defines a range of only 32M.  Valid pointer table entries
1602 *	point to page tables, or are early terminating entries
1603 *	themselves.
1604 *
1605 *	Page Tables
1606 *		Per the Pointer Tables, each page table entry points
1607 *	to the physical page in memory that supports the logical
1608 *	address that translates to the particular index.
1609 *
1610 *	In short, the Logical Address gets translated as follows:
1611 *		bits 31..26 - index into the Root Table
1612 *		bits 25..18 - index into the Pointer Table
1613 *		bits 17..12 - index into the Page Table
1614 *		bits 11..0  - offset into a particular 4K page
1615 *
1616 *	The algorithms which follows do one thing: they abstract
1617 *	the MMU hardware.  For example, there are three kinds of
1618 *	cache settings that are relevant.  Either, memory is
1619 *	being mapped in which case it is either Kernel Code (or
1620 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1621 *	option also describes the kernel.  Or, I/O is being mapped
1622 *	in which case it has its own kind of cache bits.  There
1623 *	are constants which abstract these notions from the code that
1624 *	actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 *	mmu_print
1633 *
1634 *	This algorithm will print out the current MMU mappings.
1635 *
1636 *	Input:
1637 *		%a5 points to the root table.  Everything else is calculated
1638 *			from this.
1639 */
1640
1641#define mmu_next_valid		0
1642#define mmu_start_logical	4
1643#define mmu_next_logical	8
1644#define mmu_start_physical	12
1645#define mmu_next_physical	16
1646
1647#define MMU_PRINT_INVALID		-1
1648#define MMU_PRINT_VALID			1
1649#define MMU_PRINT_UNINITED		0
1650
1651#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start	mmu_print,%a0-%a6/%d0-%d7
1654
1655	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1656	lea	%pc@(L(mmu_print_data)),%a0
1657	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659	is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662	puts	"\nMMU040\n"
1663	puts	"rp:"
1664	putn	%a5
1665	putc	'\n'
1666#if 0
1667	/*
1668	 * The following #if/#endif block is a tight algorithm for dumping the 040
1669	 * MMU Map in gory detail.  It really isn't that practical unless the
1670	 * MMU Map algorithm appears to go awry and you need to debug it at the
1671	 * entry per entry level.
1672	 */
1673	movel	#ROOT_TABLE_SIZE,%d5
1674#if 0
1675	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1676	subql	#1,%d5			| they (might) work
1677#endif
16781:	tstl	%d5
1679	jbeq	mmu_print_done
1680	subq	#1,%d5
1681	movel	%a5@+,%d7
1682	btst	#1,%d7
1683	jbeq	1b
1684
16852:	putn	%d7
1686	andil	#0xFFFFFE00,%d7
1687	movel	%d7,%a4
1688	movel	#PTR_TABLE_SIZE,%d4
1689	putc	' '
16903:	tstl	%d4
1691	jbeq	11f
1692	subq	#1,%d4
1693	movel	%a4@+,%d7
1694	btst	#1,%d7
1695	jbeq	3b
1696
16974:	putn	%d7
1698	andil	#0xFFFFFF00,%d7
1699	movel	%d7,%a3
1700	movel	#PAGE_TABLE_SIZE,%d3
17015:	movel	#8,%d2
17026:	tstl	%d3
1703	jbeq	31f
1704	subq	#1,%d3
1705	movel	%a3@+,%d6
1706	btst	#0,%d6
1707	jbeq	6b
17087:	tstl	%d2
1709	jbeq	8f
1710	subq	#1,%d2
1711	putc	' '
1712	jbra	91f
17138:	putc	'\n'
1714	movel	#8+1+8+1+1,%d2
17159:	putc	' '
1716	dbra	%d2,9b
1717	movel	#7,%d2
171891:	putn	%d6
1719	jbra	6b
1720
172131:	putc	'\n'
1722	movel	#8+1,%d2
172332:	putc	' '
1724	dbra	%d2,32b
1725	jbra	3b
1726
172711:	putc	'\n'
1728	jbra	1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731	lea	%pc@(kernel_pg_dir),%a5
1732	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1733	movel	#0x00000000,%a4		/* logical address */
1734	moveql	#0,%d0
173540:
1736	/* Increment the logical address and preserve in d5 */
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<13,%d5
1739	movel	%a0@+,%d6
1740	btst	#1,%d6
1741	jbne	41f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	48f
174441:
1745	movel	#0,%d1
1746	andil	#0xfffffe00,%d6
1747	movel	%d6,%a1
174842:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE<<6,%d5
1751	movel	%a1@+,%d6
1752	btst	#1,%d6
1753	jbne	43f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	47f
175643:
1757	movel	#0,%d2
1758	andil	#0xffffff00,%d6
1759	movel	%d6,%a2
176044:
1761	movel	%a4,%d5
1762	addil	#PAGESIZE,%d5
1763	movel	%a2@+,%d6
1764	btst	#0,%d6
1765	jbne	45f
1766	jbsr	mmu_print_tuple_invalidate
1767	jbra	46f
176845:
1769	moveml	%d0-%d1,%sp@-
1770	movel	%a4,%d0
1771	movel	%d6,%d1
1772	andil	#0xfffff4e0,%d1
1773	lea	%pc@(mmu_040_print_flags),%a6
1774	jbsr	mmu_print_tuple
1775	moveml	%sp@+,%d0-%d1
177646:
1777	movel	%d5,%a4
1778	addq	#1,%d2
1779	cmpib	#64,%d2
1780	jbne	44b
178147:
1782	movel	%d5,%a4
1783	addq	#1,%d1
1784	cmpib	#128,%d1
1785	jbne	42b
178648:
1787	movel	%d5,%a4			/* move to the next logical address */
1788	addq	#1,%d0
1789	cmpib	#128,%d0
1790	jbne	40b
1791
1792	.chip	68040
1793	movec	%dtt1,%d0
1794	movel	%d0,%d1
1795	andiw	#0x8000,%d1		/* is it valid ? */
1796	jbeq	1f			/* No, bail out */
1797
1798	movel	%d0,%d1
1799	andil	#0xff000000,%d1		/* Get the address */
1800	putn	%d1
1801	puts	"=="
1802	putn	%d1
1803
1804	movel	%d0,%d6
1805	jbsr	mmu_040_print_flags_tt
18061:
1807	movec	%dtt0,%d0
1808	movel	%d0,%d1
1809	andiw	#0x8000,%d1		/* is it valid ? */
1810	jbeq	1f			/* No, bail out */
1811
1812	movel	%d0,%d1
1813	andil	#0xff000000,%d1		/* Get the address */
1814	putn	%d1
1815	puts	"=="
1816	putn	%d1
1817
1818	movel	%d0,%d6
1819	jbsr	mmu_040_print_flags_tt
18201:
1821	.chip	68k
1822
1823	jbra	mmu_print_done
1824
1825mmu_040_print_flags:
1826	btstl	#10,%d6
1827	putZc(' ','G')	/* global bit */
1828	btstl	#7,%d6
1829	putZc(' ','S')	/* supervisor bit */
1830mmu_040_print_flags_tt:
1831	btstl	#6,%d6
1832	jbne	3f
1833	putc	'C'
1834	btstl	#5,%d6
1835	putZc('w','c')	/* write through or copy-back */
1836	jbra	4f
18373:
1838	putc	'N'
1839	btstl	#5,%d6
1840	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18414:
1842	rts
1843
1844mmu_030_print_flags:
1845	btstl	#6,%d6
1846	putZc('C','I')	/* write through or copy-back */
1847	rts
1848
1849mmu_030_print:
1850	puts	"\nMMU030\n"
1851	puts	"\nrp:"
1852	putn	%a5
1853	putc	'\n'
1854	movel	%a5,%d0
1855	andil	#0xfffffff0,%d0
1856	movel	%d0,%a0
1857	movel	#0x00000000,%a4		/* logical address */
1858	movel	#0,%d0
185930:
1860	movel	%a4,%d5
1861	addil	#PAGESIZE<<13,%d5
1862	movel	%a0@+,%d6
1863	btst	#1,%d6			/* is it a table ptr? */
1864	jbne	31f			/* yes */
1865	btst	#0,%d6			/* is it early terminating? */
1866	jbeq	1f			/* no */
1867	jbsr	mmu_030_print_helper
1868	jbra	38f
18691:
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	38f
187231:
1873	movel	#0,%d1
1874	andil	#0xfffffff0,%d6
1875	movel	%d6,%a1
187632:
1877	movel	%a4,%d5
1878	addil	#PAGESIZE<<6,%d5
1879	movel	%a1@+,%d6
1880	btst	#1,%d6			/* is it a table ptr? */
1881	jbne	33f			/* yes */
1882	btst	#0,%d6			/* is it a page descriptor? */
1883	jbeq	1f			/* no */
1884	jbsr	mmu_030_print_helper
1885	jbra	37f
18861:
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	37f
188933:
1890	movel	#0,%d2
1891	andil	#0xfffffff0,%d6
1892	movel	%d6,%a2
189334:
1894	movel	%a4,%d5
1895	addil	#PAGESIZE,%d5
1896	movel	%a2@+,%d6
1897	btst	#0,%d6
1898	jbne	35f
1899	jbsr	mmu_print_tuple_invalidate
1900	jbra	36f
190135:
1902	jbsr	mmu_030_print_helper
190336:
1904	movel	%d5,%a4
1905	addq	#1,%d2
1906	cmpib	#64,%d2
1907	jbne	34b
190837:
1909	movel	%d5,%a4
1910	addq	#1,%d1
1911	cmpib	#128,%d1
1912	jbne	32b
191338:
1914	movel	%d5,%a4			/* move to the next logical address */
1915	addq	#1,%d0
1916	cmpib	#128,%d0
1917	jbne	30b
1918
1919mmu_print_done:
1920	puts	"\n\n"
1921
1922func_return	mmu_print
1923
1924
1925mmu_030_print_helper:
1926	moveml	%d0-%d1,%sp@-
1927	movel	%a4,%d0
1928	movel	%d6,%d1
1929	lea	%pc@(mmu_030_print_flags),%a6
1930	jbsr	mmu_print_tuple
1931	moveml	%sp@+,%d0-%d1
1932	rts
1933
1934mmu_print_tuple_invalidate:
1935	moveml	%a0/%d7,%sp@-
1936
1937	lea	%pc@(L(mmu_print_data)),%a0
1938	tstl	%a0@(mmu_next_valid)
1939	jbmi	mmu_print_tuple_invalidate_exit
1940
1941	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943	putn	%a4
1944
1945	puts	"##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948	moveml	%sp@+,%a0/%d7
1949	rts
1950
1951
1952mmu_print_tuple:
1953	moveml	%d0-%d7/%a0,%sp@-
1954
1955	lea	%pc@(L(mmu_print_data)),%a0
1956
1957	tstl	%a0@(mmu_next_valid)
1958	jble	mmu_print_tuple_print
1959
1960	cmpl	%a0@(mmu_next_physical),%d1
1961	jbeq	mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964	putn	%d0
1965	puts	"->"
1966	putn	%d1
1967
1968	movel	%d1,%d6
1969	jbsr	%a6@
1970
1971mmu_print_tuple_record:
1972	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974	movel	%d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977	movel	%d5,%d7
1978	subl	%a4,%d7
1979	addl	%d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982	moveml	%sp@+,%d0-%d7/%a0
1983	rts
1984
1985mmu_print_machine_cpu_types:
1986	puts	"machine: "
1987
1988	is_not_amiga(1f)
1989	puts	"amiga"
1990	jbra	9f
19911:
1992	is_not_atari(2f)
1993	puts	"atari"
1994	jbra	9f
19952:
1996	is_not_mac(3f)
1997	puts	"macintosh"
1998	jbra	9f
19993:	puts	"unknown"
20009:	putc	'\n'
2001
2002	puts	"cputype: 0"
2003	is_not_060(1f)
2004	putc	'6'
2005	jbra	9f
20061:
2007	is_not_040_or_060(2f)
2008	putc	'4'
2009	jbra	9f
20102:	putc	'3'
20119:	putc	'0'
2012	putc	'\n'
2013
2014	rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start	mmu_map_tt,%d0/%d1/%a0,4
2027
2028	dputs	"mmu_map_tt:"
2029	dputn	ARG1
2030	dputn	ARG2
2031	dputn	ARG3
2032	dputn	ARG4
2033	dputc	'\n'
2034
2035	is_020(L(do_map))
2036
2037	/* Extract the highest bit set
2038	 */
2039	bfffo	ARG3{#0,#32},%d1
2040	cmpw	#8,%d1
2041	jcc	L(do_map)
2042
2043	/* And get the mask
2044	 */
2045	moveq	#-1,%d0
2046	lsrl	%d1,%d0
2047	lsrl	#1,%d0
2048
2049	/* Mask the address
2050	 */
2051	movel	%d0,%d1
2052	notl	%d1
2053	andl	ARG2,%d1
2054
2055	/* Generate the upper 16bit of the tt register
2056	 */
2057	lsrl	#8,%d0
2058	orl	%d0,%d1
2059	clrw	%d1
2060
2061	is_040_or_060(L(mmu_map_tt_040))
2062
2063	/* set 030 specific bits (read/write access for supervisor mode
2064	 * (highest function code set, lower two bits masked))
2065	 */
2066	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067	movel	ARG4,%d0
2068	btst	#6,%d0
2069	jeq	1f
2070	orw	#TTR_CI,%d1
2071
20721:	lea	STACK,%a0
2073	dputn	%d1
2074	movel	%d1,%a0@
2075	.chip	68030
2076	tstl	ARG1
2077	jne	1f
2078	pmove	%a0@,%tt0
2079	jra	2f
20801:	pmove	%a0@,%tt1
20812:	.chip	68k
2082	jra	L(mmu_map_tt_done)
2083
2084	/* set 040 specific bits
2085	 */
2086L(mmu_map_tt_040):
2087	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2088	orl	ARG4,%d1
2089	dputn	%d1
2090
2091	.chip	68040
2092	tstl	ARG1
2093	jne	1f
2094	movec	%d1,%itt0
2095	movec	%d1,%dtt0
2096	jra	2f
20971:	movec	%d1,%itt1
2098	movec	%d1,%dtt1
20992:	.chip	68k
2100
2101	jra	L(mmu_map_tt_done)
2102
2103L(do_map):
2104	mmu_map_eq	ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return	mmu_map_tt
2109
2110/*
2111 *	mmu_map
2112 *
2113 *	This routine will map a range of memory using a pointer
2114 *	table and allocating the pages on the fly from the kernel.
2115 *	The pointer table does not have to be already linked into
2116 *	the root table, this routine will do that if necessary.
2117 *
2118 *	NOTE
2119 *	This routine will assert failure and use the serial_putc
2120 *	routines in the case of a run-time error.  For example,
2121 *	if the address is already mapped.
2122 *
2123 *	NOTE-2
2124 *	This routine will use early terminating descriptors
2125 *	where possible for the 68020+68851 and 68030 type
2126 *	processors.
2127 */
2128func_start	mmu_map,%d0-%d4/%a0-%a4
2129
2130	dputs	"\nmmu_map:"
2131	dputn	ARG1
2132	dputn	ARG2
2133	dputn	ARG3
2134	dputn	ARG4
2135	dputc	'\n'
2136
2137	/* Get logical address and round it down to 256KB
2138	 */
2139	movel	ARG1,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a3
2142
2143	/* Get the end address
2144	 */
2145	movel	ARG1,%a4
2146	addl	ARG3,%a4
2147	subql	#1,%a4
2148
2149	/* Get physical address and round it down to 256KB
2150	 */
2151	movel	ARG2,%d0
2152	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153	movel	%d0,%a2
2154
2155	/* Add page attributes to the physical address
2156	 */
2157	movel	ARG4,%d0
2158	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159	addw	%d0,%a2
2160
2161	dputn	%a2
2162	dputn	%a3
2163	dputn	%a4
2164
2165	is_not_040_or_060(L(mmu_map_030))
2166
2167	addw	#_PAGE_GLOBAL040,%a2
2168/*
2169 *	MMU 040 & 060 Support
2170 *
2171 *	The MMU usage for the 040 and 060 is different enough from
2172 *	the 030 and 68851 that there is separate code.  This comment
2173 *	block describes the data structures and algorithms built by
2174 *	this code.
2175 *
2176 *	The 040 does not support early terminating descriptors, as
2177 *	the 030 does.  Therefore, a third level of table is needed
2178 *	for the 040, and that would be the page table.  In Linux,
2179 *	page tables are allocated directly from the memory above the
2180 *	kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185	/* Calculate the offset into the root table
2186	 */
2187	movel	%a3,%d0
2188	moveq	#ROOT_INDEX_SHIFT,%d1
2189	lsrl	%d1,%d0
2190	mmu_get_root_table_entry	%d0
2191
2192	/* Calculate the offset into the pointer table
2193	 */
2194	movel	%a3,%d0
2195	moveq	#PTR_INDEX_SHIFT,%d1
2196	lsrl	%d1,%d0
2197	andl	#PTR_TABLE_SIZE-1,%d0
2198	mmu_get_ptr_table_entry		%a0,%d0
2199
2200	/* Calculate the offset into the page table
2201	 */
2202	movel	%a3,%d0
2203	moveq	#PAGE_INDEX_SHIFT,%d1
2204	lsrl	%d1,%d0
2205	andl	#PAGE_TABLE_SIZE-1,%d0
2206	mmu_get_page_table_entry	%a0,%d0
2207
2208	/* The page table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	movel	%a2,%a0@
22162:
2217	addw	#PAGESIZE,%a2
2218	addw	#PAGESIZE,%a3
2219
2220	/* Ready with mapping?
2221	 */
2222	lea	%a3@(-1),%a0
2223	cmpl	%a0,%a4
2224	jhi	L(mmu_map_040)
2225	jra	L(mmu_map_done)
2226
2227L(mmu_map_030):
2228	/* Calculate the offset into the root table
2229	 */
2230	movel	%a3,%d0
2231	moveq	#ROOT_INDEX_SHIFT,%d1
2232	lsrl	%d1,%d0
2233	mmu_get_root_table_entry	%d0
2234
2235	/* Check if logical address 32MB aligned,
2236	 * so we can try to map it once
2237	 */
2238	movel	%a3,%d0
2239	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240	jne	1f
2241
2242	/* Is there enough to map for 32MB at once
2243	 */
2244	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245	cmpl	%a1,%a4
2246	jcs	1f
2247
2248	addql	#1,%a1
2249
2250	/* The root table entry must not no be busy
2251	 */
2252	tstl	%a0@
2253	jne	L(mmu_map_error)
2254
2255	/* Do the mapping and advance the pointers
2256	 */
2257	dputs	"early term1"
2258	dputn	%a2
2259	dputn	%a3
2260	dputn	%a1
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	movel	%a1,%a3
2265	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266	jra	L(mmu_mapnext_030)
22671:
2268	/* Calculate the offset into the pointer table
2269	 */
2270	movel	%a3,%d0
2271	moveq	#PTR_INDEX_SHIFT,%d1
2272	lsrl	%d1,%d0
2273	andl	#PTR_TABLE_SIZE-1,%d0
2274	mmu_get_ptr_table_entry		%a0,%d0
2275
2276	/* The pointer table entry must not no be busy
2277	 */
2278	tstl	%a0@
2279	jne	L(mmu_map_error)
2280
2281	/* Do the mapping and advance the pointers
2282	 */
2283	dputs	"early term2"
2284	dputn	%a2
2285	dputn	%a3
2286	dputc	'\n'
2287	movel	%a2,%a0@
2288
2289	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2290	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293	/* Ready with mapping?
2294	 */
2295	lea	%a3@(-1),%a0
2296	cmpl	%a0,%a4
2297	jhi	L(mmu_map_030)
2298	jra	L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302	dputs	"mmu_map error:"
2303	dputn	%a2
2304	dputn	%a3
2305	dputc	'\n'
2306
2307L(mmu_map_done):
2308
2309func_return	mmu_map
2310
2311/*
2312 *	mmu_fixup
2313 *
2314 *	On the 040 class machines, all pages that are used for the
2315 *	mmu have to be fixed up.
2316 */
2317
2318func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320	dputs	"mmu_fixup_page_mmu_cache"
2321	dputn	ARG1
2322
2323	/* Calculate the offset into the root table
2324	 */
2325	movel	ARG1,%d0
2326	moveq	#ROOT_INDEX_SHIFT,%d1
2327	lsrl	%d1,%d0
2328	mmu_get_root_table_entry	%d0
2329
2330	/* Calculate the offset into the pointer table
2331	 */
2332	movel	ARG1,%d0
2333	moveq	#PTR_INDEX_SHIFT,%d1
2334	lsrl	%d1,%d0
2335	andl	#PTR_TABLE_SIZE-1,%d0
2336	mmu_get_ptr_table_entry		%a0,%d0
2337
2338	/* Calculate the offset into the page table
2339	 */
2340	movel	ARG1,%d0
2341	moveq	#PAGE_INDEX_SHIFT,%d1
2342	lsrl	%d1,%d0
2343	andl	#PAGE_TABLE_SIZE-1,%d0
2344	mmu_get_page_table_entry	%a0,%d0
2345
2346	movel	%a0@,%d0
2347	andil	#_CACHEMASK040,%d0
2348	orl	%pc@(m68k_pgtable_cachemode),%d0
2349	movel	%d0,%a0@
2350
2351	dputc	'\n'
2352
2353func_return	mmu_fixup_page_mmu_cache
2354
2355/*
2356 *	mmu_temp_map
2357 *
2358 *	create a temporary mapping to enable the mmu,
2359 *	this we don't need any transparation translation tricks.
2360 */
2361
2362func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364	dputs	"mmu_temp_map"
2365	dputn	ARG1
2366	dputn	ARG2
2367	dputc	'\n'
2368
2369	lea	%pc@(L(temp_mmap_mem)),%a1
2370
2371	/* Calculate the offset in the root table
2372	 */
2373	movel	ARG2,%d0
2374	moveq	#ROOT_INDEX_SHIFT,%d1
2375	lsrl	%d1,%d0
2376	mmu_get_root_table_entry	%d0
2377
2378	/* Check if the table is temporary allocated, so we have to reuse it
2379	 */
2380	movel	%a0@,%d0
2381	cmpl	%pc@(L(memory_start)),%d0
2382	jcc	1f
2383
2384	/* Temporary allocate a ptr table and insert it into the root table
2385	 */
2386	movel	%a1@,%d0
2387	addl	#PTR_TABLE_SIZE*4,%a1@
2388	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389	movel	%d0,%a0@
2390	dputs	" (new)"
23911:
2392	dputn	%d0
2393	/* Mask the root table entry for the ptr table
2394	 */
2395	andw	#-ROOT_TABLE_SIZE,%d0
2396	movel	%d0,%a0
2397
2398	/* Calculate the offset into the pointer table
2399	 */
2400	movel	ARG2,%d0
2401	moveq	#PTR_INDEX_SHIFT,%d1
2402	lsrl	%d1,%d0
2403	andl	#PTR_TABLE_SIZE-1,%d0
2404	lea	%a0@(%d0*4),%a0
2405	dputn	%a0
2406
2407	/* Check if a temporary page table is already allocated
2408	 */
2409	movel	%a0@,%d0
2410	jne	1f
2411
2412	/* Temporary allocate a page table and insert it into the ptr table
2413	 */
2414	movel	%a1@,%d0
2415	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416	   alignment restriction for pointer tables on the '0[46]0.  */
2417	addl	#512,%a1@
2418	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419	movel	%d0,%a0@
2420	dputs	" (new)"
24211:
2422	dputn	%d0
2423	/* Mask the ptr table entry for the page table
2424	 */
2425	andw	#-PTR_TABLE_SIZE,%d0
2426	movel	%d0,%a0
2427
2428	/* Calculate the offset into the page table
2429	 */
2430	movel	ARG2,%d0
2431	moveq	#PAGE_INDEX_SHIFT,%d1
2432	lsrl	%d1,%d0
2433	andl	#PAGE_TABLE_SIZE-1,%d0
2434	lea	%a0@(%d0*4),%a0
2435	dputn	%a0
2436
2437	/* Insert the address into the page table
2438	 */
2439	movel	ARG1,%d0
2440	andw	#-PAGESIZE,%d0
2441	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442	movel	%d0,%a0@
2443	dputn	%d0
2444
2445	dputc	'\n'
2446
2447func_return	mmu_temp_map
2448
2449func_start	mmu_engage,%d0-%d2/%a0-%a3
2450
2451	moveq	#ROOT_TABLE_SIZE-1,%d0
2452	/* Temporarily use a different root table.  */
2453	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2454	movel	%a0@,%a2
2455	movel	%pc@(L(memory_start)),%a1
2456	movel	%a1,%a0@
2457	movel	%a2,%a0
24581:
2459	movel	%a0@+,%a1@+
2460	dbra	%d0,1b
2461
2462	lea	%pc@(L(temp_mmap_mem)),%a0
2463	movel	%a1,%a0@
2464
2465	movew	#PAGESIZE-1,%d0
24661:
2467	clrl	%a1@+
2468	dbra	%d0,1b
2469
2470	lea	%pc@(1b),%a0
2471	movel	#1b,%a1
2472	/* Skip temp mappings if phys == virt */
2473	cmpl	%a0,%a1
2474	jeq	1f
2475
2476	mmu_temp_map	%a0,%a0
2477	mmu_temp_map	%a0,%a1
2478
2479	addw	#PAGESIZE,%a0
2480	addw	#PAGESIZE,%a1
2481	mmu_temp_map	%a0,%a0
2482	mmu_temp_map	%a0,%a1
24831:
2484	movel	%pc@(L(memory_start)),%a3
2485	movel	%pc@(L(phys_kernel_start)),%d2
2486
2487	is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490	.chip	68040
2491	nop
2492	cinva	%bc
2493	nop
2494	pflusha
2495	nop
2496	movec	%a3,%srp
2497	movel	#TC_ENABLE+TC_PAGE4K,%d0
2498	movec	%d0,%tc		/* enable the MMU */
2499	jmp	1f:l
25001:	nop
2501	movec	%a2,%srp
2502	nop
2503	cinva	%bc
2504	nop
2505	pflusha
2506	.chip	68k
2507	jra	L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510	.space	12
2511L(mmu_engage_030):
2512	.chip	68030
2513	lea	%pc@(L(mmu_engage_030_temp)),%a0
2514	movel	#0x80000002,%a0@
2515	movel	%a3,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	/*
2521	 * enable,super root enable,4096 byte pages,7 bit root index,
2522	 * 7 bit pointer index, 6 bit page table index.
2523	 */
2524	movel	#0x82c07760,%a0@(8)
2525	pmove	%a0@(8),%tc	/* enable the MMU */
2526	jmp	1f:l
25271:	movel	%a2,%a0@(4)
2528	movel	#0x0808,%d0
2529	movec	%d0,%cacr
2530	pmove	%a0@,%srp
2531	pflusha
2532	.chip	68k
2533
2534L(mmu_engage_cleanup):
2535	subl	#PAGE_OFFSET,%d2
2536	subl	%d2,%a2
2537	movel	%a2,L(kernel_pgdir_ptr)
2538	subl	%d2,%fp
2539	subl	%d2,%sp
2540	subl	%d2,ARG0
2541
2542func_return	mmu_engage
2543
2544func_start	mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547	dputs	"mmu_get_root_table_entry:"
2548	dputn	ARG1
2549	dputs	" ="
2550#endif
2551
2552	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2553	tstl	%a0
2554	jne	2f
2555
2556	dputs	"\nmmu_init:"
2557
2558	/* Find the start of free memory, get_bi_record does this for us,
2559	 * as the bootinfo structure is located directly behind the kernel
2560	 * and and we simply search for the last entry.
2561	 */
2562	get_bi_record	BI_LAST
2563	addw	#PAGESIZE-1,%a0
2564	movel	%a0,%d0
2565	andw	#-PAGESIZE,%d0
2566
2567	dputn	%d0
2568
2569	lea	%pc@(L(memory_start)),%a0
2570	movel	%d0,%a0@
2571	lea	%pc@(L(kernel_end)),%a0
2572	movel	%d0,%a0@
2573
2574	/* we have to return the first page at _stext since the init code
2575	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576	 * page is used for further ptr tables in get_ptr_table.
2577	 */
2578	lea	%pc@(_stext),%a0
2579	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2580	movel	%a0,%a1@
2581	addl	#ROOT_TABLE_SIZE*4,%a1@
2582
2583	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2584	addql	#1,%a1@
2585
2586	/* clear the page
2587	 */
2588	movel	%a0,%a1
2589	movew	#PAGESIZE/4-1,%d0
25901:
2591	clrl	%a1@+
2592	dbra	%d0,1b
2593
2594	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2595	movel	%a0,%a1@
2596
2597	dputn	%a0
2598	dputc	'\n'
25992:
2600	movel	ARG1,%d0
2601	lea	%a0@(%d0*4),%a0
2602
2603#if 0
2604	dputn	%a0
2605	dputc	'\n'
2606#endif
2607
2608func_return	mmu_get_root_table_entry
2609
2610
2611
2612func_start	mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615	dputs	"mmu_get_ptr_table_entry:"
2616	dputn	ARG1
2617	dputn	ARG2
2618	dputs	" ="
2619#endif
2620
2621	movel	ARG1,%a0
2622	movel	%a0@,%d0
2623	jne	2f
2624
2625	/* Keep track of the number of pointer tables we use
2626	 */
2627	dputs	"\nmmu_get_new_ptr_table:"
2628	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2629	movel	%a0@,%d0
2630	addql	#1,%a0@
2631
2632	/* See if there is a free pointer table in our cache of pointer tables
2633	 */
2634	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2635	andw	#7,%d0
2636	jne	1f
2637
2638	/* Get a new pointer table page from above the kernel memory
2639	 */
2640	get_new_page
2641	movel	%a0,%a1@
26421:
2643	/* There is an unused pointer table in our cache... use it
2644	 */
2645	movel	%a1@,%d0
2646	addl	#PTR_TABLE_SIZE*4,%a1@
2647
2648	dputn	%d0
2649	dputc	'\n'
2650
2651	/* Insert the new pointer table into the root table
2652	 */
2653	movel	ARG1,%a0
2654	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655	movel	%d0,%a0@
26562:
2657	/* Extract the pointer table entry
2658	 */
2659	andw	#-PTR_TABLE_SIZE,%d0
2660	movel	%d0,%a0
2661	movel	ARG2,%d0
2662	lea	%a0@(%d0*4),%a0
2663
2664#if 0
2665	dputn	%a0
2666	dputc	'\n'
2667#endif
2668
2669func_return	mmu_get_ptr_table_entry
2670
2671
2672func_start	mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675	dputs	"mmu_get_page_table_entry:"
2676	dputn	ARG1
2677	dputn	ARG2
2678	dputs	" ="
2679#endif
2680
2681	movel	ARG1,%a0
2682	movel	%a0@,%d0
2683	jne	2f
2684
2685	/* If the page table entry doesn't exist, we allocate a complete new
2686	 * page and use it as one continues big page table which can cover
2687	 * 4MB of memory, nearly almost all mappings have that alignment.
2688	 */
2689	get_new_page
2690	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692	/* align pointer table entry for a page of page tables
2693	 */
2694	movel	ARG1,%d0
2695	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696	movel	%d0,%a1
2697
2698	/* Insert the page tables into the pointer entries
2699	 */
2700	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702	movel	%a0,%a1@+
2703	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2704	dbra	%d0,1b
2705
2706	/* Now we can get the initialized pointer table entry
2707	 */
2708	movel	ARG1,%a0
2709	movel	%a0@,%d0
27102:
2711	/* Extract the page table entry
2712	 */
2713	andw	#-PAGE_TABLE_SIZE,%d0
2714	movel	%d0,%a0
2715	movel	ARG2,%d0
2716	lea	%a0@(%d0*4),%a0
2717
2718#if 0
2719	dputn	%a0
2720	dputc	'\n'
2721#endif
2722
2723func_return	mmu_get_page_table_entry
2724
2725/*
2726 *	get_new_page
2727 *
2728 *	Return a new page from the memory start and clear it.
2729 */
2730func_start	get_new_page,%d0/%a1
2731
2732	dputs	"\nget_new_page:"
2733
2734	/* allocate the page and adjust memory_start
2735	 */
2736	lea	%pc@(L(memory_start)),%a0
2737	movel	%a0@,%a1
2738	addl	#PAGESIZE,%a0@
2739
2740	/* clear the new page
2741	 */
2742	movel	%a1,%a0
2743	movew	#PAGESIZE/4-1,%d0
27441:
2745	clrl	%a1@+
2746	dbra	%d0,1b
2747
2748	dputn	%a0
2749	dputc	'\n'
2750
2751func_return	get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
 
 
 
2762
 
 
2763L(scc_initable_mac):
2764	.byte	9,12		/* Reset */
2765	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2766	.byte	3,0xc0		/* receiver: 8 bpc */
2767	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2768	.byte	9,0		/* no interrupts */
2769	.byte	10,0		/* NRZ */
2770	.byte	11,0x50		/* use baud rate generator */
2771	.byte	12,10,13,0	/* 9600 baud */
2772	.byte	14,1		/* Baud rate generator enable */
2773	.byte	3,0xc1		/* enable receiver */
2774	.byte	5,0xea		/* enable transmitter */
2775	.byte	-1
2776	.even
2777#endif
 
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789	.byte	9,12		/* Reset */
2790	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2791	.byte	3,0xc0		/* receiver: 8 bpc */
2792	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2793	.byte	9,0		/* no interrupts */
2794	.byte	10,0		/* NRZ */
2795	.byte	11,0x50		/* use baud rate generator */
2796	.byte	12,24,13,0	/* 9600 baud */
2797	.byte	14,2,14,3	/* use master clock for BRG, enable */
2798	.byte	3,0xc1		/* enable receiver */
2799	.byte	5,0xea		/* enable transmitter */
2800	.byte	-1
2801	.even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT	= 0xff8800
2807LPSG_READ	= 0xff8800
2808LPSG_WRITE	= 0xff8802
2809LPSG_IO_A	= 14
2810LPSG_IO_B	= 15
2811LPSG_CONTROL	= 7
2812LSTMFP_GPIP	= 0xfffa01
2813LSTMFP_DDR	= 0xfffa05
2814LSTMFP_IERB	= 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL	= 0xff8c85
2819LSCC_DATA	= 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL	= 0xff8c81
2824LSCC_DATA	= 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR     = 0xfffa29
2829LMFP_TDCDR   = 0xfffa1d
2830LMFP_TDDR    = 0xfffa25
2831LMFP_TSR     = 0xfffa2d
2832LMFP_UDR     = 0xfffa2f
2833
2834#endif
2835#endif	/* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start	serial_init,%d0/%d1/%a0/%a1
2845	/*
2846	 *	Some of the register usage that follows
2847	 *	CONFIG_AMIGA
2848	 *		a0 = pointer to boot info record
2849	 *		d0 = boot info offset
2850	 *	CONFIG_ATARI
2851	 *		a0 = address of SCC
2852	 *		a1 = Liobase address/address of scc_initable
2853	 *		d0 = init data for serial port
2854	 *	CONFIG_MAC
2855	 *		a0 = address of SCC
2856	 *		a1 = address of scc_initable_mac
2857	 *		d0 = init data for serial port
2858	 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR	7
2862#define SERIAL_CNTRL	CIABBASE+C_PRA
2863
2864	is_not_amiga(1f)
2865	lea	%pc@(L(custom)),%a0
2866	movel	#-ZTWOBASE,%a0@
2867	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868	get_bi_record	BI_AMIGA_SERPER
2869	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
 
2873#ifdef CONFIG_ATARI
2874	is_not_atari(4f)
2875	movel	%pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877	bclr	#0,%a1@(LSTMFP_IERB)
2878	bclr	#0,%a1@(LSTMFP_DDR)
2879	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2880	moveb	#0xff,%a1@(LPSG_WRITE)
2881	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2882	clrb	%a1@(LPSG_WRITE)
2883	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2884	moveb	%a1@(LPSG_READ),%d0
2885	bset	#5,%d0
2886	moveb	%d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888	lea	%a1@(LSCC_CTRL),%a0
2889	lea	%pc@(L(scc_initable)),%a1
 
 
 
 
 
 
 
 
 
 
 
 
28902:	moveb	%a1@+,%d0
2891	jmi	3f
2892	moveb	%d0,%a0@
2893	moveb	%a1@+,%a0@
2894	jra	2b
28953:	clrb	%a0@
2896#elif defined(USE_MFP)
2897	bclr	#1,%a1@(LMFP_TSR)
2898	moveb   #0x88,%a1@(LMFP_UCR)
2899	andb	#0x70,%a1@(LMFP_TDCDR)
2900	moveb   #2,%a1@(LMFP_TDDR)
2901	orb	#1,%a1@(LMFP_TDCDR)
2902	bset	#1,%a1@(LMFP_TSR)
2903#endif
2904	jra	L(serial_init_done)
29054:
2906#endif
 
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
2913#define mac_scc_cha_b_ctrl_offset	0x0
2914#define mac_scc_cha_a_ctrl_offset	0x2
2915#define mac_scc_cha_b_data_offset	0x4
2916#define mac_scc_cha_a_data_offset	0x6
2917
 
 
 
 
 
 
 
 
 
 
 
 
2918#ifdef MAC_USE_SCC_A
2919	/* Initialize channel A */
2920	movel	%pc@(L(mac_sccbase)),%a0
2921	lea	%pc@(L(scc_initable_mac)),%a1
29225:	moveb	%a1@+,%d0
2923	jmi	6f
2924	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926	jra	5b
29276:
2928#endif	/* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931	/* Initialize channel B */
2932#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2933	movel	%pc@(L(mac_sccbase)),%a0
2934#endif	/* MAC_USE_SCC_A */
2935	lea	%pc@(L(scc_initable_mac)),%a1
29367:	moveb	%a1@+,%d0
2937	jmi	8f
2938	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940	jra	7b
29418:
2942#endif	/* MAC_USE_SCC_B */
2943#endif	/* MAC_SERIAL_DEBUG */
2944
2945	jra	L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif	/* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950	is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952   - check for '%LX$' signature in SRAM   */
2953	lea	%pc@(q40_mem_cptr),%a1
2954	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2955	move.l	#0xff020000,%a1
2956	cmp.b	#'%',%a1@
2957	bne	2f	/*nodbg*/
2958	addq.w	#4,%a1
2959	cmp.b	#'L',%a1@
2960	bne	2f	/*nodbg*/
2961	addq.w	#4,%a1
2962	cmp.b	#'X',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'$',%a1@
2966	bne	2f	/*nodbg*/
2967	/* signature OK */
2968	lea	%pc@(L(q40_do_debug)),%a1
2969	tas	%a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
 
 
 
 
 
 
 
 
 
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return	serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start	serial_putc,%d0/%d1/%a0/%a1
2989
2990	movel	ARG1,%d0
2991	cmpib	#'\n',%d0
2992	jbne	1f
2993
2994	/* A little safe recursion is good for the soul */
2995	serial_putc	#'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999	is_not_amiga(2f)
3000	andw	#0x00ff,%d0
3001	oriw	#0x0100,%d0
3002	movel	%pc@(L(custom)),%a0
3003	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30041:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3005	andw	#0x2000,%d0
3006	jeq	1b
3007	jra	L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012	is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017	movel	%pc@(L(mac_sccbase)),%a1
 
 
30183:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3019	jeq	3b
3020	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif	/* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif	/* MAC_USE_SCC_A */
30274:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3028	jeq	4b
3029	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif	/* MAC_USE_SCC_B */
3031
3032#endif	/* MAC_SERIAL_DEBUG */
3033
3034	jra	L(serial_putc_done)
30355:
3036#endif	/* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039	is_not_atari(4f)
3040	movel	%pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423:	btst	#0,%a1@(LSTMFP_GPIP)
3043	jne	3b
3044	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3045	moveb	%d0,%a1@(LPSG_WRITE)
3046	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3047	moveb	%a1@(LPSG_READ),%d0
3048	bclr	#5,%d0
3049	moveb	%d0,%a1@(LPSG_WRITE)
3050	nop
3051	nop
3052	bset	#5,%d0
3053	moveb	%d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553:	btst	#2,%a1@(LSCC_CTRL)
3056	jeq	3b
3057	moveb	%d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593:	btst	#7,%a1@(LMFP_TSR)
3060	jeq	3b
3061	moveb	%d0,%a1@(LMFP_UDR)
3062#endif
3063	jra	L(serial_putc_done)
30644:
3065#endif	/* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068	is_not_mvme147(2f)
30691:	btst	#2,M147_SCC_CTRL_A
3070	jeq	1b
3071	moveb	%d0,M147_SCC_DATA_A
3072	jbra	L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077	is_not_mvme16x(2f)
3078	/*
3079	 * If the loader gave us a board type then we can use that to
3080	 * select an appropriate output routine; otherwise we just use
3081	 * the Bug code.  If we have to use the Bug that means the Bug
3082	 * workspace has to be valid, which means the Bug has to use
3083	 * the SRAM, which is non-standard.
3084	 */
3085	moveml	%d0-%d7/%a2-%a6,%sp@-
3086	movel	vme_brdtype,%d1
3087	jeq	1f			| No tag - use the Bug
3088	cmpi	#VME_TYPE_MVME162,%d1
3089	jeq	6f
3090	cmpi	#VME_TYPE_MVME172,%d1
3091	jne	5f
3092	/* 162/172; it's an SCC */
30936:	btst	#2,M162_SCC_CTRL_A
3094	nop
3095	nop
3096	nop
3097	jeq	6b
3098	moveb	#8,M162_SCC_CTRL_A
3099	nop
3100	nop
3101	nop
3102	moveb	%d0,M162_SCC_CTRL_A
3103	jra	3f
31045:
3105	/* 166/167/177; it's a CD2401 */
3106	moveb	#0,M167_CYCAR
3107	moveb	M167_CYIER,%d2
3108	moveb	#0x02,M167_CYIER
31097:
3110	btst	#5,M167_PCSCCTICR
3111	jeq	7b
3112	moveb	M167_PCTPIACKR,%d1
3113	moveb	M167_CYLICR,%d1
3114	jeq	8f
3115	moveb	#0x08,M167_CYTEOIR
3116	jra	7b
31178:
3118	moveb	%d0,M167_CYTDR
3119	moveb	#0,M167_CYTEOIR
3120	moveb	%d2,M167_CYIER
3121	jra	3f
31221:
3123	moveb	%d0,%sp@-
3124	trap	#15
3125	.word	0x0020	/* TRAP 0x020 */
31263:
3127	moveml	%sp@+,%d0-%d7/%a2-%a6
3128	jbra	L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133	is_not_bvme6000(2f)
3134	/*
3135	 * The BVME6000 machine has a serial port ...
3136	 */
31371:	btst	#2,BVME_SCC_CTRL_A
3138	jeq	1b
3139	moveb	%d0,BVME_SCC_DATA_A
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145	is_not_sun3x(2f)
3146	movel	%d0,-(%sp)
3147	movel	0xFEFE0018,%a1
3148	jbsr	(%a1)
3149	addq	#4,%sp
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155	is_not_q40(2f)
3156	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3157	beq	2f
3158	lea	%pc@(q40_mem_cptr),%a1
3159	move.l	%a1@,%a0
3160	move.b	%d0,%a0@
3161	addq.l	#4,%a0
3162	move.l	%a0,%a1@
3163	jbra    L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168	is_not_apollo(2f)
3169	movl    %pc@(L(iobase)),%a1
3170	moveb	%d0,%a1@(LTHRB0)
31711:      moveb   %a1@(LSRB0),%d0
3172	andb	#0x4,%d0
3173	beq	1b
3174	jbra	L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179	is_not_hp300(3f)
3180	movl    %pc@(L(iobase)),%a1
3181	addl	%pc@(L(uartbase)),%a1
3182	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3183	jmi	3f			/* Unset? Exit */
3184	cmpi	#256,%d1		/* APCI scode? */
3185	jeq	2f
31861:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3187	andb	#0x20,%d1
3188	beq	1b
3189	moveb	%d0,%a1@(DCADATA)
3190	jbra	L(serial_putc_done)
31912:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3192	andb	#0x20,%d1
3193	beq	2b
3194	moveb	%d0,%a1@(APCIDATA)
3195	jbra	L(serial_putc_done)
31963:
3197#endif
3198
3199L(serial_putc_done):
3200func_return	serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start	puts,%d0/%a0
3206
3207	movel	ARG1,%a0
3208	jra	2f
32091:
3210#ifdef CONSOLE
3211	console_putc	%d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214	serial_putc	%d0
3215#endif
32162:	moveb	%a0@+,%d0
3217	jne	1b
3218
3219func_return	puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start	putn,%d0-%d2
3226
3227	putc	' '
3228
3229	movel	ARG1,%d0
3230	moveq	#7,%d1
32311:	roll	#4,%d0
3232	move	%d0,%d2
3233	andb	#0x0f,%d2
3234	addb	#'0',%d2
3235	cmpb	#'9',%d2
3236	jls	2f
3237	addb	#'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240	console_putc	%d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243	serial_putc	%d2
3244#endif
3245	dbra	%d1,1b
3246
3247func_return	putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 *	mac_serial_print
3252 *
3253 *	This routine takes its parameters on the stack.  It then
3254 *	turns around and calls the internal routine.  This routine
3255 *	is used until the Linux console driver initializes itself.
3256 *
3257 *	The calling parameters are:
3258 *		void mac_serial_print(const char *str);
3259 *
3260 *	This routine does NOT understand variable arguments only
3261 *	simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264	moveml	%d0/%a0,%sp@-
3265#if 1
3266	move	%sr,%sp@-
3267	ori	#0x0700,%sr
3268#endif
3269	movel	%sp@(10),%a0		/* fetch parameter */
3270	jra	2f
32711:	serial_putc	%d0
32722:	moveb	%a0@+,%d0
3273	jne	1b
3274#if 1
3275	move	%sp@+,%sr
 
3276#endif
3277	moveml	%sp@+,%d0/%a0
 
 
 
 
 
 
3278	rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start	set_leds,%d0/%a0
3283	movel	ARG1,%d0
3284#ifdef CONFIG_HP300
3285	is_not_hp300(1f)
3286	movel	%pc@(L(iobase)),%a0
3287	moveb	%d0,%a0@(0x1ffff)
3288	jra	2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292	movel   %pc@(L(iobase)),%a0
3293	lsll    #8,%d0
3294	eorw    #0xff00,%d0
3295	moveb	%d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return	set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 *	For continuity, see the data alignment
3304 *	to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column	0
3307#define Lconsole_struct_cur_row		4
3308#define Lconsole_struct_num_columns	8
3309#define Lconsole_struct_num_rows	12
3310#define Lconsole_struct_left_edge	16
3311#define Lconsole_struct_penguin_putc	20
3312
3313func_start	console_init,%a0-%a4/%d0-%d7
3314	/*
3315	 *	Some of the register usage that follows
3316	 *		a0 = pointer to boot_info
3317	 *		a1 = pointer to screen
3318	 *		a2 = pointer to Lconsole_globals
3319	 *		d3 = pixel width of screen
3320	 *		d4 = pixel height of screen
3321	 *		(d3,d4) ~= (x,y) of a point just below
3322	 *			and to the right of the screen
3323	 *			NOT on the screen!
3324	 *		d5 = number of bytes per scan line
3325	 *		d6 = number of bytes on the entire screen
3326	 */
3327
3328	lea	%pc@(L(console_globals)),%a2
3329	movel	%pc@(L(mac_videobase)),%a1
3330	movel	%pc@(L(mac_rowbytes)),%d5
3331	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3332	movel	%d3,%d4
3333	swap	%d4		/* -> high byte */
3334	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3335	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3336
3337	movel	%d5,%d6
3338|	subl	#20,%d6
3339	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3340	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3341	moveq	#-1,%d0		/* Mac_black */
3342	subq	#1,%d6
3343
3344L(console_clear_loop):
3345	movel	%d0,%a1@+
3346	movel	%d0,%a1@+
3347	dbra	%d6,L(console_clear_loop)
3348
3349	/* Calculate font size */
3350
3351#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352	lea	%pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354	lea	%pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356	lea	%pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358	lea	%pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360	lea	0,%a0
3361#endif
3362
3363	/*
3364	 *	At this point we make a shift in register usage
3365	 *	a1 = address of console_font pointer
3366	 */
3367	lea	%pc@(L(console_font)),%a1
3368	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3369	tstl	%a0
3370	jeq	1f
3371	lea	%pc@(L(console_font_data)),%a4
3372	movel	%a0@(FONT_DESC_DATA),%d0
3373	subl	#L(console_font),%a1
3374	addl	%a1,%d0
3375	movel	%d0,%a4@
3376
3377	/*
3378	 *	Calculate global maxs
3379	 *	Note - we can use either an
3380	 *	8 x 16 or 8 x 8 character font
3381	 *	6 x 11 also supported
3382	 */
3383		/* ASSERT: a0 = contents of Lconsole_font */
3384	movel	%d3,%d0				/* screen width in pixels */
3385	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3386
3387	movel	%d4,%d1				/* screen height in pixels */
3388	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3389
3390	movel	%d0,%a2@(Lconsole_struct_num_columns)
3391	movel	%d1,%a2@(Lconsole_struct_num_rows)
3392
3393	/*
3394	 *	Clear the current row and column
3395	 */
3396	clrl	%a2@(Lconsole_struct_cur_column)
3397	clrl	%a2@(Lconsole_struct_cur_row)
3398	clrl	%a2@(Lconsole_struct_left_edge)
3399
3400	/*
3401	 * Initialization is complete
3402	 */
34031:
3404func_return	console_init
3405
3406func_start	console_put_stats,%a0/%d7
3407	/*
3408	 *	Some of the register usage that follows
3409	 *		a0 = pointer to boot_info
3410	 *		d7 = value of boot_info fields
3411	 */
3412	puts	"\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415	puts	" vidaddr:"
3416	putn	%pc@(L(mac_videobase))		/* video addr. */
3417
3418	puts	"\n  _stext:"
3419	lea	%pc@(_stext),%a0
3420	putn	%a0
3421
3422	puts	"\nbootinfo:"
3423	lea	%pc@(_end),%a0
3424	putn	%a0
3425
3426	puts	"\ncpuid:"
3427	putn	%pc@(L(cputype))
3428	putc	'\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
3431	putn	%pc@(L(mac_sccbase))
3432	putc	'\n'
3433#endif
3434#  if defined(MMU_PRINT)
3435	jbsr	mmu_print_machine_cpu_types
3436#  endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
3439func_return	console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start	console_put_penguin,%a0-%a1/%d0-%d7
3443	/*
3444	 *	Get 'that_penguin' onto the screen in the upper right corner
3445	 *	penguin is 64 x 74 pixels, align against right edge of screen
3446	 */
3447	lea	%pc@(L(mac_dimensions)),%a0
3448	movel	%a0@,%d0
3449	andil	#0xffff,%d0
3450	subil	#64,%d0		/* snug up against the right edge */
3451	clrl	%d1		/* start at the top */
3452	movel	#73,%d7
3453	lea	%pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455	movel	#31,%d6
3456L(console_penguin_pixel_pair):
3457	moveb	%a1@,%d2
3458	lsrb	#4,%d2
3459	console_plot_pixel %d0,%d1,%d2
3460	addq	#1,%d0
3461	moveb	%a1@+,%d2
3462	console_plot_pixel %d0,%d1,%d2
3463	addq	#1,%d0
3464	dbra	%d6,L(console_penguin_pixel_pair)
3465
3466	subil	#64,%d0
3467	addq	#1,%d1
3468	dbra	%d7,L(console_penguin_row)
3469
3470func_return	console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477	/*
3478	 * Calculate source and destination addresses
3479	 *	output	a1 = dest
3480	 *		a2 = source
3481	 */
3482
3483func_start	console_scroll,%a0-%a4/%d0-%d7
3484	lea	%pc@(L(mac_videobase)),%a0
3485	movel	%a0@,%a1
3486	movel	%a1,%a2
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d5
3489	movel	%pc@(L(console_font)),%a0
3490	tstl	%a0
3491	jeq	1f
3492	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3493	addal	%d5,%a2
3494
3495	/*
3496	 * Get dimensions
3497	 */
3498	lea	%pc@(L(mac_dimensions)),%a0
3499	movel	%a0@,%d3
3500	movel	%d3,%d4
3501	swap	%d4
3502	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3503	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3504
3505	/*
3506	 * Calculate number of bytes to move
3507	 */
3508	lea	%pc@(L(mac_rowbytes)),%a0
3509	movel	%a0@,%d6
3510	movel	%pc@(L(console_font)),%a0
3511	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3512	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3513	divul	#32,%d6		/* we'll move 8 longs at a time */
3514	subq	#1,%d6
3515
3516L(console_scroll_loop):
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	dbra	%d6,L(console_scroll_loop)
3526
3527	lea	%pc@(L(mac_rowbytes)),%a0
3528	movel	%a0@,%d6
3529	movel	%pc@(L(console_font)),%a0
3530	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3531	divul	#32,%d6			/* we'll move 8 words at a time */
3532	subq	#1,%d6
3533
3534	moveq	#-1,%d0
3535L(console_scroll_clear_loop):
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	dbra	%d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return	console_scroll
3548
3549
3550func_start	console_putc,%a0/%a1/%d0-%d7
3551
3552	is_not_mac(L(console_exit))
3553	tstl	%pc@(L(console_font))
3554	jeq	L(console_exit)
3555
3556	/* Output character in d7 on console.
3557	 */
3558	movel	ARG1,%d7
3559	cmpib	#'\n',%d7
3560	jbne	1f
3561
3562	/* A little safe recursion is good for the soul */
3563	console_putc	#'\r'
35641:
3565	lea	%pc@(L(console_globals)),%a0
3566
3567	cmpib	#10,%d7
3568	jne	L(console_not_lf)
3569	movel	%a0@(Lconsole_struct_cur_row),%d0
3570	addil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	movel	%a0@(Lconsole_struct_num_rows),%d1
3573	cmpl	%d1,%d0
3574	jcs	1f
3575	subil	#1,%d0
3576	movel	%d0,%a0@(Lconsole_struct_cur_row)
3577	console_scroll
35781:
3579	jra	L(console_exit)
3580
3581L(console_not_lf):
3582	cmpib	#13,%d7
3583	jne	L(console_not_cr)
3584	clrl	%a0@(Lconsole_struct_cur_column)
3585	jra	L(console_exit)
3586
3587L(console_not_cr):
3588	cmpib	#1,%d7
3589	jne	L(console_not_home)
3590	clrl	%a0@(Lconsole_struct_cur_row)
3591	clrl	%a0@(Lconsole_struct_cur_column)
3592	jra	L(console_exit)
3593
3594/*
3595 *	At this point we know that the %d7 character is going to be
3596 *	rendered on the screen.  Register usage is -
3597 *		a0 = pointer to console globals
3598 *		a1 = font data
3599 *		d0 = cursor column
3600 *		d1 = cursor row to draw the character
3601 *		d7 = character number
3602 */
3603L(console_not_home):
3604	movel	%a0@(Lconsole_struct_cur_column),%d0
3605	addql	#1,%a0@(Lconsole_struct_cur_column)
3606	movel	%a0@(Lconsole_struct_num_columns),%d1
3607	cmpl	%d1,%d0
3608	jcs	1f
3609	console_putc	#'\n'	/* recursion is OK! */
36101:
3611	movel	%a0@(Lconsole_struct_cur_row),%d1
3612
3613	/*
3614	 *	At this point we make a shift in register usage
3615	 *	a0 = address of pointer to font data (fbcon_font_desc)
3616	 */
3617	movel	%pc@(L(console_font)),%a0
3618	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3619	andl	#0x000000ff,%d7
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3622	addl	%d7,%a1			/* a1 = points to char image */
3623
3624	/*
3625	 *	At this point we make a shift in register usage
3626	 *	d0 = pixel coordinate, x
3627	 *	d1 = pixel coordinate, y
3628	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629	 *	d3 = font scan line data (8 pixels)
3630	 *	d6 = count down for the font's pixel width (8)
3631	 *	d7 = count down for the font's pixel count in height
3632	 */
3633		/* ASSERT: a0 = contents of Lconsole_font */
3634	mulul	%a0@(FONT_DESC_WIDTH),%d0
3635	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3636	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3637	subq	#1,%d7
3638L(console_read_char_scanline):
3639	moveb	%a1@+,%d3
3640
3641		/* ASSERT: a0 = contents of Lconsole_font */
3642	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3643	subql	#1,%d6
3644
3645L(console_do_font_scanline):
3646	lslb	#1,%d3
3647	scsb	%d2		/* convert 1 bit into a byte */
3648	console_plot_pixel %d0,%d1,%d2
3649	addq	#1,%d0
3650	dbra	%d6,L(console_do_font_scanline)
3651
3652		/* ASSERT: a0 = contents of Lconsole_font */
3653	subl	%a0@(FONT_DESC_WIDTH),%d0
3654	addq	#1,%d1
3655	dbra	%d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return	console_putc
3659
3660	/*
3661	 *	Input:
3662	 *		d0 = x coordinate
3663	 *		d1 = y coordinate
3664	 *		d2 = (bit 0) 1/0 for white/black (!)
3665	 *	All registers are preserved
3666	 */
3667func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669	movel	%pc@(L(mac_videobase)),%a1
3670	movel	%pc@(L(mac_videodepth)),%d3
3671	movel	ARG1,%d0
3672	movel	ARG2,%d1
3673	mulul	%pc@(L(mac_rowbytes)),%d1
3674	movel	ARG3,%d2
3675
3676	/*
3677	 *	Register usage:
3678	 *		d0 = x coord becomes byte offset into frame buffer
3679	 *		d1 = y coord
3680	 *		d2 = black or white (0/1)
3681	 *		d3 = video depth
3682	 *		d4 = temp of x (d0) for many bit depths
3683	 */
3684L(test_1bit):
3685	cmpb	#1,%d3
3686	jbne	L(test_2bit)
3687	movel	%d0,%d4		/* we need the low order 3 bits! */
3688	divul	#8,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#7,%d4
3692	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	andb	#1,%d2
3694	jbne	L(white_1)
3695	bsetb	%d4,%a1@
3696	jbra	L(console_plot_pixel_exit)
3697L(white_1):
3698	bclrb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702	cmpb	#2,%d3
3703	jbne	L(test_4bit)
3704	movel	%d0,%d4		/* we need the low order 2 bits! */
3705	divul	#4,%d0
3706	addal	%d0,%a1
3707	addal	%d1,%a1
3708	andb	#3,%d4
3709	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3710	lsll	#1,%d4		/* ! */
3711	andb	#1,%d2
3712	jbne	L(white_2)
3713	bsetb	%d4,%a1@
3714	addq	#1,%d4
3715	bsetb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717L(white_2):
3718	bclrb	%d4,%a1@
3719	addq	#1,%d4
3720	bclrb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724	cmpb	#4,%d3
3725	jbne	L(test_8bit)
3726	movel	%d0,%d4		/* we need the low order bit! */
3727	divul	#2,%d0
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d4
3731	eorb	#1,%d4
3732	lsll	#2,%d4		/* ! */
3733	andb	#1,%d2
3734	jbne	L(white_4)
3735	bsetb	%d4,%a1@
3736	addq	#1,%d4
3737	bsetb	%d4,%a1@
3738	addq	#1,%d4
3739	bsetb	%d4,%a1@
3740	addq	#1,%d4
3741	bsetb	%d4,%a1@
3742	jbra	L(console_plot_pixel_exit)
3743L(white_4):
3744	bclrb	%d4,%a1@
3745	addq	#1,%d4
3746	bclrb	%d4,%a1@
3747	addq	#1,%d4
3748	bclrb	%d4,%a1@
3749	addq	#1,%d4
3750	bclrb	%d4,%a1@
3751	jbra	L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754	cmpb	#8,%d3
3755	jbne	L(test_16bit)
3756	addal	%d0,%a1
3757	addal	%d1,%a1
3758	andb	#1,%d2
3759	jbne	L(white_8)
3760	moveb	#0xff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762L(white_8):
3763	clrb	%a1@
3764	jbra	L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767	cmpb	#16,%d3
3768	jbne	L(console_plot_pixel_exit)
3769	addal	%d0,%a1
3770	addal	%d0,%a1
3771	addal	%d1,%a1
3772	andb	#1,%d2
3773	jbne	L(white_16)
3774	clrw	%a1@
3775	jbra	L(console_plot_pixel_exit)
3776L(white_16):
3777	movew	#0x0fff,%a1@
3778	jbra	L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return	console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around.  I don't believe
3787 * it's used or important anymore.  My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793	moveml	%a0/%d7,%sp@-
3794	puts	"A="
3795	putn	%a1
3796
3797	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3798
3799	puts	"DA="
3800	putn	%a0
3801
3802	puts	"D="
3803	putn	%a0@
3804
3805	puts	"S="
3806	lea	%pc@(L(mmu)),%a0
3807	.long	0xf0106200		| pmove		%psr,%a0@
3808	clrl	%d7
3809	movew	%a0@,%d7
3810	putn	%d7
3811
3812	putc	'\n'
3813	moveml	%sp@+,%a0/%d7
3814	rts
3815#endif	/* 0 */
3816
3817__INITDATA
3818	.align	4
3819
 
 
 
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824	.long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829	.long	0		/* cursor column */
3830	.long	0		/* cursor row */
3831	.long	0		/* max num columns */
3832	.long	0		/* max num rows */
3833	.long	0		/* left edge */
3834	.long	0		/* mac putc */
3835L(console_font):
3836	.long	0		/* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838	.long	0		/* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843	.long	0		/* valid flag */
3844	.long	0		/* start logical */
3845	.long	0		/* next logical */
3846	.long	0		/* start physical */
3847	.long	0		/* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851	.long	0
3852L(mmu_cached_pointer_tables):
3853	.long	0
3854L(mmu_num_pointer_tables):
3855	.long	0
3856L(phys_kernel_start):
3857	.long	0
3858L(kernel_end):
3859	.long	0
3860L(memory_start):
3861	.long	0
3862L(kernel_pgdir_ptr):
3863	.long	0
3864L(temp_mmap_mem):
3865	.long	0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
 
3879M167_PCSCCTICR = 0xfff4201e
 
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A	= 0xffb0000b
3885BVME_SCC_DATA_A	= 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890	.long	0
3891L(mac_videobase):
3892	.long	0
3893L(mac_videodepth):
3894	.long	0
3895L(mac_dimensions):
3896	.long	0
3897L(mac_rowbytes):
3898	.long	0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901	.long	0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0        = 0x10412
3907LTHRB0       = 0x10416
3908LCPUCTRL     = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA	     = 0x11
3913DCALSR	     = 0x1b
3914APCIDATA     = 0x00
3915APCILSR      = 0x14
3916L(uartbase):
3917	.long	0
3918L(uart_scode):
3919	.long	-1
3920#endif
3921
3922__FINIT
3923	.data
3924	.align	4
3925
3926availmem:
3927	.long	0
3928m68k_pgtable_cachemode:
3929	.long	0
3930m68k_supervisor_cachemode:
3931	.long	0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934	.long	0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938	.long	0
3939L(q40_do_debug):
3940	.long	0
3941#endif
v5.4
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
 202 * extended to support other platforms.
 
 203 *
 204 * TEST_MMU:	This is a test harness for running on any given machine but
 205 * getting an MMU dump for another class of machine.  The classes of machines
 206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 207 * and any of the models (030, 040, 060, etc.).
 208 *
 209 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 210 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 211 *		machines.  At that point the underlying logic will be
 212 *		believed to be solid enough to be trusted, and TEST_MMU
 213 *		can be dropped.  Do note that that will clean up the
 214 *		head.S code significantly as large blocks of #if/#else
 215 *		clauses can be removed.
 216 *
 217 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 218 * determing why devices don't appear to work.  A test case was to remove
 219 * the cacheability of the kernel bits.
 220 *
 221 * MMU_PRINT:	There is a routine built into head.S that can display the
 222 * MMU data structures.  It outputs its result through the serial_putc
 223 * interface.  So where ever that winds up driving data, that's where the
 224 * mmu struct will appear.
 225 *
 226 * SERIAL_DEBUG:	There are a series of putc() macro statements
 227 * scattered through out the code to give progress of status to the
 228 * person sitting at the console.  This constant determines whether those
 229 * are used.
 230 *
 231 * DEBUG:	This is the standard DEBUG flag that can be set for building
 232 *		the kernel.  It has the effect adding additional tests into
 233 *		the code.
 234 *
 235 * FONT_6x11:
 236 * FONT_8x8:
 237 * FONT_8x16:
 238 *		In theory these could be determined at run time or handed
 239 *		over by the booter.  But, let's be real, it's a fine hard
 240 *		coded value.  (But, you will notice the code is run-time
 241 *		flexible!)  A pointer to the font's struct font_desc
 242 *		is kept locally in Lconsole_font.  It is used to determine
 243 *		font size information dynamically.
 244 *
 245 * Atari constants:
 246 * USE_PRINTER:	Use the printer port for serial debug.
 247 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 248 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 249 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 250 *
 251 * Macintosh constants:
 252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
 253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
 
 254 */
 255
 256#include <linux/linkage.h>
 257#include <linux/init.h>
 258#include <asm/bootinfo.h>
 259#include <asm/bootinfo-amiga.h>
 260#include <asm/bootinfo-atari.h>
 261#include <asm/bootinfo-hp300.h>
 262#include <asm/bootinfo-mac.h>
 263#include <asm/bootinfo-q40.h>
 264#include <asm/bootinfo-vme.h>
 265#include <asm/setup.h>
 266#include <asm/entry.h>
 267#include <asm/pgtable.h>
 268#include <asm/page.h>
 269#include <asm/asm-offsets.h>
 
 270#ifdef CONFIG_MAC
 271#  include <asm/machw.h>
 
 
 
 
 
 
 
 
 
 272#endif
 273
 274#ifdef CONFIG_EARLY_PRINTK
 275#  define SERIAL_DEBUG
 276#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
 277#    define CONSOLE_DEBUG
 278#  endif
 279#endif
 
 
 
 
 
 
 
 
 280
 281#undef MMU_PRINT
 282#undef MMU_NOCACHE_KERNEL
 
 283#undef DEBUG
 284
 285/*
 286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 287 * The 8x8 font is harder to read but fits more on the screen.
 288 */
 289#define FONT_8x8	/* default */
 290/* #define FONT_8x16 */	/* 2nd choice */
 291/* #define FONT_6x11 */	/* 3rd choice */
 292
 293.globl kernel_pg_dir
 294.globl availmem
 295.globl m68k_init_mapped_size
 296.globl m68k_pgtable_cachemode
 297.globl m68k_supervisor_cachemode
 298#ifdef CONFIG_MVME16x
 299.globl mvme_bdid
 300#endif
 301#ifdef CONFIG_Q40
 302.globl q40_mem_cptr
 303#endif
 304
 305CPUTYPE_040	= 1	/* indicates an 040 */
 306CPUTYPE_060	= 2	/* indicates an 060 */
 307CPUTYPE_0460	= 3	/* if either above are set, this is set */
 308CPUTYPE_020	= 4	/* indicates an 020 */
 309
 310/* Translation control register */
 311TC_ENABLE = 0x8000
 312TC_PAGE8K = 0x4000
 313TC_PAGE4K = 0x0000
 314
 315/* Transparent translation registers */
 316TTR_ENABLE	= 0x8000	/* enable transparent translation */
 317TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 318TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 319TTR_USERMODE	= 0x0000	/* only user mode access */
 320TTR_CI		= 0x0400	/* inhibit cache */
 321TTR_RW		= 0x0200	/* read/write mode */
 322TTR_RWM		= 0x0100	/* read/write mask */
 323TTR_FCB2	= 0x0040	/* function code base bit 2 */
 324TTR_FCB1	= 0x0020	/* function code base bit 1 */
 325TTR_FCB0	= 0x0010	/* function code base bit 0 */
 326TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 327TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 328TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 329
 330/* Cache Control registers */
 331CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 332CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 333CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 334CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 335CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 336CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 337CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 338CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 339CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 340CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 341CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 342CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 343CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 344CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 345CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 346CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 347CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 348CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 349CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 350CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 351CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 352CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 353
 354/* Miscellaneous definitions */
 355PAGESIZE	= 4096
 356PAGESHIFT	= 12
 357
 358ROOT_TABLE_SIZE	= 128
 359PTR_TABLE_SIZE	= 128
 360PAGE_TABLE_SIZE	= 64
 361ROOT_INDEX_SHIFT = 25
 362PTR_INDEX_SHIFT  = 18
 363PAGE_INDEX_SHIFT = 12
 364
 365#ifdef DEBUG
 366/* When debugging use readable names for labels */
 367#ifdef __STDC__
 368#define L(name) .head.S.##name
 369#else
 370#define L(name) .head.S./**/name
 371#endif
 372#else
 373#ifdef __STDC__
 374#define L(name) .L##name
 375#else
 376#define L(name) .L/**/name
 377#endif
 378#endif
 379
 380/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 381#ifndef __INITDATA
 382#define __INITDATA	.data
 383#define __FINIT		.previous
 384#endif
 385
 386/* Several macros to make the writing of subroutines easier:
 387 * - func_start marks the beginning of the routine which setups the frame
 388 *   register and saves the registers, it also defines another macro
 389 *   to automatically restore the registers again.
 390 * - func_return marks the end of the routine and simply calls the prepared
 391 *   macro to restore registers and jump back to the caller.
 392 * - func_define generates another macro to automatically put arguments
 393 *   onto the stack call the subroutine and cleanup the stack again.
 394 */
 395
 396/* Within subroutines these macros can be used to access the arguments
 397 * on the stack. With STACK some allocated memory on the stack can be
 398 * accessed and ARG0 points to the return address (used by mmu_engage).
 399 */
 400#define	STACK	%a6@(stackstart)
 401#define ARG0	%a6@(4)
 402#define ARG1	%a6@(8)
 403#define ARG2	%a6@(12)
 404#define ARG3	%a6@(16)
 405#define ARG4	%a6@(20)
 406
 407.macro	func_start	name,saveregs,stack=0
 408L(\name):
 409	linkw	%a6,#-\stack
 410	moveml	\saveregs,%sp@-
 411.set	stackstart,-\stack
 412
 413.macro	func_return_\name
 414	moveml	%sp@+,\saveregs
 415	unlk	%a6
 416	rts
 417.endm
 418.endm
 419
 420.macro	func_return	name
 421	func_return_\name
 422.endm
 423
 424.macro	func_call	name
 425	jbsr	L(\name)
 426.endm
 427
 428.macro	move_stack	nr,arg1,arg2,arg3,arg4
 429.if	\nr
 430	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 431	movel	\arg1,%sp@-
 432.endif
 433.endm
 434
 435.macro	func_define	name,nr=0
 436.macro	\name	arg1,arg2,arg3,arg4
 437	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 438	func_call	\name
 439.if	\nr
 440	lea	%sp@(\nr*4),%sp
 441.endif
 442.endm
 443.endm
 444
 445func_define	mmu_map,4
 446func_define	mmu_map_tt,4
 447func_define	mmu_fixup_page_mmu_cache,1
 448func_define	mmu_temp_map,2
 449func_define	mmu_engage
 450func_define	mmu_get_root_table_entry,1
 451func_define	mmu_get_ptr_table_entry,2
 452func_define	mmu_get_page_table_entry,2
 453func_define	mmu_print
 454func_define	get_new_page
 455#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 456func_define	set_leds
 457#endif
 458
 459.macro	mmu_map_eq	arg1,arg2,arg3
 460	mmu_map	\arg1,\arg1,\arg2,\arg3
 461.endm
 462
 463.macro	get_bi_record	record
 464	pea	\record
 465	func_call	get_bi_record
 466	addql	#4,%sp
 467.endm
 468
 469func_define	serial_putc,1
 470func_define	console_putc,1
 471
 472func_define	console_init
 
 473func_define	console_put_penguin
 474func_define	console_plot_pixel,3
 475func_define	console_scroll
 476
 477.macro	putc	ch
 478#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 479	pea	\ch
 480#endif
 481#ifdef CONSOLE_DEBUG
 482	func_call	console_putc
 483#endif
 484#ifdef SERIAL_DEBUG
 485	func_call	serial_putc
 486#endif
 487#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 488	addql	#4,%sp
 489#endif
 490.endm
 491
 492.macro	dputc	ch
 493#ifdef DEBUG
 494	putc	\ch
 495#endif
 496.endm
 497
 498func_define	putn,1
 499
 500.macro	dputn	nr
 501#ifdef DEBUG
 502	putn	\nr
 503#endif
 504.endm
 505
 506.macro	puts		string
 507#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 508	__INITDATA
 509.Lstr\@:
 510	.string	"\string"
 511	__FINIT
 512	pea	%pc@(.Lstr\@)
 513	func_call	puts
 514	addql	#4,%sp
 515#endif
 516.endm
 517
 518.macro	dputs	string
 519#ifdef DEBUG
 520	puts	"\string"
 521#endif
 522.endm
 523
 524#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 525#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 526#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 527#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 528#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 529#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 530#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 531#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 532#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 533#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 534#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 535#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 536#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 537
 538#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 539			jeq 42f; \
 540			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 541			jne lab ;\
 542		42:\
 543
 544#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 545#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 546#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 547#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 548#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 549#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 550#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 551
 552/* On the HP300 we use the on-board LEDs for debug output before
 553   the console is running.  Writing a 1 bit turns the corresponding LED
 554   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 555.macro	leds	mask
 556#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 557	hasnt_leds(.Lled\@)
 558	pea	\mask
 559	func_call	set_leds
 560	addql	#4,%sp
 561.Lled\@:
 562#endif
 563.endm
 564
 565__HEAD
 566ENTRY(_stext)
 567/*
 568 * Version numbers of the bootinfo interface
 569 * The area from _stext to _start will later be used as kernel pointer table
 570 */
 571	bras	1f	/* Jump over bootinfo version numbers */
 572
 573	.long	BOOTINFOV_MAGIC
 574	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 575	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 576	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 577	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 578	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 579	.long	MACH_MAC, MAC_BOOTI_VERSION
 580	.long	MACH_Q40, Q40_BOOTI_VERSION
 581	.long	MACH_HP300, HP300_BOOTI_VERSION
 582	.long	0
 5831:	jra	__start
 584
 585.equ	kernel_pg_dir,_stext
 586
 587.equ	.,_stext+PAGESIZE
 588
 589ENTRY(_start)
 590	jra	__start
 591__INIT
 592ENTRY(__start)
 593/*
 594 * Setup initial stack pointer
 595 */
 596	lea	%pc@(_stext),%sp
 597
 598/*
 599 * Record the CPU and machine type.
 600 */
 601	get_bi_record	BI_MACHTYPE
 602	lea	%pc@(m68k_machtype),%a1
 603	movel	%a0@,%a1@
 604
 605	get_bi_record	BI_FPUTYPE
 606	lea	%pc@(m68k_fputype),%a1
 607	movel	%a0@,%a1@
 608
 609	get_bi_record	BI_MMUTYPE
 610	lea	%pc@(m68k_mmutype),%a1
 611	movel	%a0@,%a1@
 612
 613	get_bi_record	BI_CPUTYPE
 614	lea	%pc@(m68k_cputype),%a1
 615	movel	%a0@,%a1@
 616
 617	leds	0x1
 618
 619#ifdef CONFIG_MAC
 620/*
 621 * For Macintosh, we need to determine the display parameters early (at least
 622 * while debugging it).
 623 */
 624
 625	is_not_mac(L(test_notmac))
 626
 627	get_bi_record	BI_MAC_VADDR
 628	lea	%pc@(L(mac_videobase)),%a1
 629	movel	%a0@,%a1@
 630
 631	get_bi_record	BI_MAC_VDEPTH
 632	lea	%pc@(L(mac_videodepth)),%a1
 633	movel	%a0@,%a1@
 634
 635	get_bi_record	BI_MAC_VDIM
 636	lea	%pc@(L(mac_dimensions)),%a1
 637	movel	%a0@,%a1@
 638
 639	get_bi_record	BI_MAC_VROW
 640	lea	%pc@(L(mac_rowbytes)),%a1
 641	movel	%a0@,%a1@
 642
 
 643	get_bi_record	BI_MAC_SCCBASE
 644	lea	%pc@(L(mac_sccbase)),%a1
 645	movel	%a0@,%a1@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647L(test_notmac):
 648#endif /* CONFIG_MAC */
 649
 650
 651/*
 652 * There are ultimately two pieces of information we want for all kinds of
 653 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 654 * and is converted here from a booter type definition to a separate bit
 655 * number which allows for the standard is_0x0 macro tests.
 656 */
 657	movel	%pc@(m68k_cputype),%d0
 658	/*
 659	 * Assume it's an 030
 660	 */
 661	clrl	%d1
 662
 663	/*
 664	 * Test the BootInfo cputype for 060
 665	 */
 666	btst	#CPUB_68060,%d0
 667	jeq	1f
 668	bset	#CPUTYPE_060,%d1
 669	bset	#CPUTYPE_0460,%d1
 670	jra	3f
 6711:
 672	/*
 673	 * Test the BootInfo cputype for 040
 674	 */
 675	btst	#CPUB_68040,%d0
 676	jeq	2f
 677	bset	#CPUTYPE_040,%d1
 678	bset	#CPUTYPE_0460,%d1
 679	jra	3f
 6802:
 681	/*
 682	 * Test the BootInfo cputype for 020
 683	 */
 684	btst	#CPUB_68020,%d0
 685	jeq	3f
 686	bset	#CPUTYPE_020,%d1
 687	jra	3f
 6883:
 689	/*
 690	 * Record the cpu type
 691	 */
 692	lea	%pc@(L(cputype)),%a0
 693	movel	%d1,%a0@
 694
 695	/*
 696	 * NOTE:
 697	 *
 698	 * Now the macros are valid:
 699	 *	is_040_or_060
 700	 *	is_not_040_or_060
 701	 *	is_040
 702	 *	is_060
 703	 *	is_not_060
 704	 */
 705
 706	/*
 707	 * Determine the cache mode for pages holding MMU tables
 708	 * and for supervisor mode, unused for '020 and '030
 709	 */
 710	clrl	%d0
 711	clrl	%d1
 712
 713	is_not_040_or_060(L(save_cachetype))
 714
 715	/*
 716	 * '040 or '060
 717	 * d1 := cacheable write-through
 718	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 719	 * but we have been using write-through since at least 2.0.29 so I
 720	 * guess it is OK.
 721	 */
 722#ifdef CONFIG_060_WRITETHROUGH
 723	/*
 724	 * If this is a 68060 board using drivers with cache coherency
 725	 * problems, then supervisor memory accesses need to be write-through
 726	 * also; otherwise, we want copyback.
 727	 */
 728
 729	is_not_060(1f)
 730	movel	#_PAGE_CACHE040W,%d0
 731	jra	L(save_cachetype)
 732#endif /* CONFIG_060_WRITETHROUGH */
 7331:
 734	movew	#_PAGE_CACHE040,%d0
 735
 736	movel	#_PAGE_CACHE040W,%d1
 737
 738L(save_cachetype):
 739	/* Save cache mode for supervisor mode and page tables
 740	 */
 741	lea	%pc@(m68k_supervisor_cachemode),%a0
 742	movel	%d0,%a0@
 743	lea	%pc@(m68k_pgtable_cachemode),%a0
 744	movel	%d1,%a0@
 745
 746/*
 747 * raise interrupt level
 748 */
 749	movew	#0x2700,%sr
 750
 751/*
 752   If running on an Atari, determine the I/O base of the
 753   serial port and test if we are running on a Medusa or Hades.
 754   This test is necessary here, because on the Hades the serial
 755   port is only accessible in the high I/O memory area.
 756
 757   The test whether it is a Medusa is done by writing to the byte at
 758   phys. 0x0. This should result in a bus error on all other machines.
 759
 760   ...should, but doesn't. The Afterburner040 for the Falcon has the
 761   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 762   another test to distinguish Medusa and AB040. This is a
 763   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 764   (+AB040), but is in the range where the Medusa always asserts DTACK.
 765
 766   The test for the Hades is done by reading address 0xb0000000. This
 767   should give a bus error on the Medusa.
 768 */
 769
 770#ifdef CONFIG_ATARI
 771	is_not_atari(L(notypetest))
 772
 773	/* get special machine type (Medusa/Hades/AB40) */
 774	moveq	#0,%d3 /* default if tag doesn't exist */
 775	get_bi_record	BI_ATARI_MCH_TYPE
 776	tstl	%d0
 777	jbmi	1f
 778	movel	%a0@,%d3
 779	lea	%pc@(atari_mch_type),%a0
 780	movel	%d3,%a0@
 7811:
 782	/* On the Hades, the iobase must be set up before opening the
 783	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 784	moveq	#0,%d0
 785	cmpl	#ATARI_MACH_HADES,%d3
 786	jbne	1f
 787	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 7881:	lea     %pc@(L(iobase)),%a0
 789	movel   %d0,%a0@
 790
 791L(notypetest):
 792#endif
 793
 794#ifdef CONFIG_VME
 795	is_mvme147(L(getvmetype))
 796	is_bvme6000(L(getvmetype))
 797	is_not_mvme16x(L(gvtdone))
 798
 799	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 800	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 801	 * early so we know how to handle console output.  If the tag
 802	 * doesn't exist then we use the Bug for output on MVME16x.
 803	 */
 804L(getvmetype):
 805	get_bi_record	BI_VME_TYPE
 806	tstl	%d0
 807	jbmi	1f
 808	movel	%a0@,%d3
 809	lea	%pc@(vme_brdtype),%a0
 810	movel	%d3,%a0@
 8111:
 812#ifdef CONFIG_MVME16x
 813	is_not_mvme16x(L(gvtdone))
 814
 815	/* Need to get the BRD_ID info to differentiate between 162, 167,
 816	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 817	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 818	 */
 819	get_bi_record	BI_VME_BRDINFO
 820	tstl	%d0
 821	jpl	1f
 822
 823	/* Get pointer to board ID data from Bug */
 824	movel	%d2,%sp@-
 825	trap	#15
 826	.word	0x70		/* trap 0x70 - .BRD_ID */
 827	movel	%sp@+,%a0
 8281:
 829	lea	%pc@(mvme_bdid),%a1
 830	/* Structure is 32 bytes long */
 831	movel	%a0@+,%a1@+
 832	movel	%a0@+,%a1@+
 833	movel	%a0@+,%a1@+
 834	movel	%a0@+,%a1@+
 835	movel	%a0@+,%a1@+
 836	movel	%a0@+,%a1@+
 837	movel	%a0@+,%a1@+
 838	movel	%a0@+,%a1@+
 839#endif
 840
 841L(gvtdone):
 842
 843#endif
 844
 845#ifdef CONFIG_HP300
 846	is_not_hp300(L(nothp))
 847
 848	/* Get the address of the UART for serial debugging */
 849	get_bi_record	BI_HP300_UART_ADDR
 850	tstl	%d0
 851	jbmi	1f
 852	movel	%a0@,%d3
 853	lea	%pc@(L(uartbase)),%a0
 854	movel	%d3,%a0@
 855	get_bi_record	BI_HP300_UART_SCODE
 856	tstl	%d0
 857	jbmi	1f
 858	movel	%a0@,%d3
 859	lea	%pc@(L(uart_scode)),%a0
 860	movel	%d3,%a0@
 8611:
 862L(nothp):
 863#endif
 864
 865/*
 866 * Initialize serial port
 867 */
 868	jbsr	L(serial_init)
 869
 870/*
 871 * Initialize console
 872 */
 873#ifdef CONFIG_MAC
 874	is_not_mac(L(nocon))
 875#  ifdef CONSOLE_DEBUG
 876	console_init
 877#    ifdef CONFIG_LOGO
 878	console_put_penguin
 879#    endif /* CONFIG_LOGO */
 880#  endif /* CONSOLE_DEBUG */
 
 881L(nocon):
 882#endif /* CONFIG_MAC */
 883
 884
 885	putc	'\n'
 886	putc	'A'
 887	leds	0x2
 888	dputn	%pc@(L(cputype))
 889	dputn	%pc@(m68k_supervisor_cachemode)
 890	dputn	%pc@(m68k_pgtable_cachemode)
 891	dputc	'\n'
 892
 893/*
 894 * Save physical start address of kernel
 895 */
 896	lea	%pc@(L(phys_kernel_start)),%a0
 897	lea	%pc@(_stext),%a1
 898	subl	#_stext,%a1
 899	addl	#PAGE_OFFSET,%a1
 900	movel	%a1,%a0@
 901
 902	putc	'B'
 903
 904	leds	0x4
 905
 906/*
 907 *	mmu_init
 908 *
 909 *	This block of code does what's necessary to map in the various kinds
 910 *	of machines for execution of Linux.
 911 *	First map the first 4, 8, or 16 MB of kernel code & data
 912 */
 913
 914	get_bi_record BI_MEMCHUNK
 915	movel	%a0@(4),%d0
 916	movel	#16*1024*1024,%d1
 917	cmpl	%d0,%d1
 918	jls	1f
 919	lsrl	#1,%d1
 920	cmpl	%d0,%d1
 921	jls	1f
 922	lsrl	#1,%d1
 9231:
 924	lea	%pc@(m68k_init_mapped_size),%a0
 925	movel	%d1,%a0@
 926	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
 927		%pc@(m68k_supervisor_cachemode)
 928
 929	putc	'C'
 930
 931#ifdef CONFIG_AMIGA
 932
 933L(mmu_init_amiga):
 934
 935	is_not_amiga(L(mmu_init_not_amiga))
 936/*
 937 * mmu_init_amiga
 938 */
 939
 940	putc	'D'
 941
 942	is_not_040_or_060(1f)
 943
 944	/*
 945	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 946	 */
 947	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 948	/*
 949	 * Map the Zorro III I/O space with transparent translation
 950	 * for frame buffer memory etc.
 951	 */
 952	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 953
 954	jbra	L(mmu_init_done)
 955
 9561:
 957	/*
 958	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 959	 */
 960	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 961	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 962
 963	jbra	L(mmu_init_done)
 964
 965L(mmu_init_not_amiga):
 966#endif
 967
 968#ifdef CONFIG_ATARI
 969
 970L(mmu_init_atari):
 971
 972	is_not_atari(L(mmu_init_not_atari))
 973
 974	putc	'E'
 975
 976/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
 977   the last 16 MB of virtual address space to the first 16 MB (i.e.
 978   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
 979   needed. I/O ranges are marked non-cachable.
 980
 981   For the Medusa it is better to map the I/O region transparently
 982   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
 983   accessible only in the high area.
 984
 985   On the Hades all I/O registers are only accessible in the high
 986   area.
 987*/
 988
 989	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
 990	moveq	#0,%d0
 991	movel	%pc@(atari_mch_type),%d3
 992	cmpl	#ATARI_MACH_MEDUSA,%d3
 993	jbeq	2f
 994	cmpl	#ATARI_MACH_HADES,%d3
 995	jbne	1f
 9962:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
 9971:	movel	%d0,%d3
 998
 999	is_040_or_060(L(spata68040))
1000
1001	/* Map everything non-cacheable, though not all parts really
1002	 * need to disable caches (crucial only for 0xff8000..0xffffff
1003	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1004	 * isn't really used, except for sometimes peeking into the
1005	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1006	 * this. */
1007	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1008
1009	jbra	L(mmu_init_done)
1010
1011L(spata68040):
1012
1013	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1014
1015	jbra	L(mmu_init_done)
1016
1017L(mmu_init_not_atari):
1018#endif
1019
1020#ifdef CONFIG_Q40
1021	is_not_q40(L(notq40))
1022	/*
1023	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1024	 * non-cached serialized etc..
1025	 * this includes master chip, DAC, RTC and ISA ports
1026	 * 0xfe000000-0xfeffffff is for screen and ROM
1027	 */
1028
1029	putc    'Q'
1030
1031	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1032	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1033
1034	jbra	L(mmu_init_done)
1035
1036L(notq40):
1037#endif
1038
1039#ifdef CONFIG_HP300
1040	is_not_hp300(L(nothp300))
1041
1042	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1043	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1044	 * The ROM mapping is needed because the LEDs are mapped there too.
1045	 */
1046
1047	is_040(1f)
1048
1049	/*
1050	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1051	 */
1052	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1053
1054	jbra	L(mmu_init_done)
1055
10561:
1057	/*
1058	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1059	 */
1060	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1061
1062	jbra	L(mmu_init_done)
1063
1064L(nothp300):
1065#endif /* CONFIG_HP300 */
1066
1067#ifdef CONFIG_MVME147
1068
1069	is_not_mvme147(L(not147))
1070
1071	/*
1072	 * On MVME147 we have already created kernel page tables for
1073	 * 4MB of RAM at address 0, so now need to do a transparent
1074	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1075	 * so we can access on-board i/o areas.
1076	 */
1077
1078	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1079
1080	jbra	L(mmu_init_done)
1081
1082L(not147):
1083#endif /* CONFIG_MVME147 */
1084
1085#ifdef CONFIG_MVME16x
1086
1087	is_not_mvme16x(L(not16x))
1088
1089	/*
1090	 * On MVME16x we have already created kernel page tables for
1091	 * 4MB of RAM at address 0, so now need to do a transparent
1092	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1093	 * Supervisor only access, so transparent mapping doesn't
1094	 * clash with User code virtual address space.
1095	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1096	 * mapping is needed to allow 167Bug to run.
1097	 * IO is in the range 0xfff00000 to 0xfffeffff.
1098	 * PROM is 0xff800000->0xffbfffff and SRAM is
1099	 * 0xffe00000->0xffe1ffff.
1100	 */
1101
1102	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1103
1104	jbra	L(mmu_init_done)
1105
1106L(not16x):
1107#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1108
1109#ifdef CONFIG_BVME6000
1110
1111	is_not_bvme6000(L(not6000))
1112
1113	/*
1114	 * On BVME6000 we have already created kernel page tables for
1115	 * 4MB of RAM at address 0, so now need to do a transparent
1116	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1117	 * so we can access on-board i/o areas.
1118	 * Supervisor only access, so transparent mapping doesn't
1119	 * clash with User code virtual address space.
1120	 */
1121
1122	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1123
1124	jbra	L(mmu_init_done)
1125
1126L(not6000):
1127#endif /* CONFIG_BVME6000 */
1128
1129/*
1130 * mmu_init_mac
1131 *
1132 * The Macintosh mappings are less clear.
1133 *
1134 * Even as of this writing, it is unclear how the
1135 * Macintosh mappings will be done.  However, as
1136 * the first author of this code I'm proposing the
1137 * following model:
1138 *
1139 * Map the kernel (that's already done),
1140 * Map the I/O (on most machines that's the
1141 * 0x5000.0000 ... 0x5300.0000 range,
1142 * Map the video frame buffer using as few pages
1143 * as absolutely (this requirement mostly stems from
1144 * the fact that when the frame buffer is at
1145 * 0x0000.0000 then we know there is valid RAM just
1146 * above the screen that we don't want to waste!).
1147 *
1148 * By the way, if the frame buffer is at 0x0000.0000
1149 * then the Macintosh is known as an RBV based Mac.
1150 *
1151 * By the way 2, the code currently maps in a bunch of
1152 * regions.  But I'd like to cut that out.  (And move most
1153 * of the mappings up into the kernel proper ... or only
1154 * map what's necessary.)
1155 */
1156
1157#ifdef CONFIG_MAC
1158
1159L(mmu_init_mac):
1160
1161	is_not_mac(L(mmu_init_not_mac))
1162
1163	putc	'F'
1164
1165	is_not_040_or_060(1f)
1166
1167	moveq	#_PAGE_NOCACHE_S,%d3
1168	jbra	2f
11691:
1170	moveq	#_PAGE_NOCACHE030,%d3
11712:
1172	/*
1173	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1174	 *	     we simply map the 4MB that contains the videomem
1175	 */
1176
1177	movel	#VIDEOMEMMASK,%d0
1178	andl	%pc@(L(mac_videobase)),%d0
1179
1180	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1181	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1182	mmu_map_eq	#0x40000000,#0x02000000,%d3
1183	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1184	mmu_map_eq	#0x50000000,#0x03000000,%d3
1185	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1186	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1187
1188	jbra	L(mmu_init_done)
1189
1190L(mmu_init_not_mac):
1191#endif
1192
1193#ifdef CONFIG_SUN3X
1194	is_not_sun3x(L(notsun3x))
1195
1196	/* oh, the pain..  We're gonna want the prom code after
1197	 * starting the MMU, so we copy the mappings, translating
1198	 * from 8k -> 4k pages as we go.
1199	 */
1200
1201	/* copy maps from 0xfee00000 to 0xff000000 */
1202	movel	#0xfee00000, %d0
1203	moveq	#ROOT_INDEX_SHIFT, %d1
1204	lsrl	%d1,%d0
1205	mmu_get_root_table_entry	%d0
1206
1207	movel	#0xfee00000, %d0
1208	moveq	#PTR_INDEX_SHIFT, %d1
1209	lsrl	%d1,%d0
1210	andl	#PTR_TABLE_SIZE-1, %d0
1211	mmu_get_ptr_table_entry		%a0,%d0
1212
1213	movel	#0xfee00000, %d0
1214	moveq	#PAGE_INDEX_SHIFT, %d1
1215	lsrl	%d1,%d0
1216	andl	#PAGE_TABLE_SIZE-1, %d0
1217	mmu_get_page_table_entry	%a0,%d0
1218
1219	/* this is where the prom page table lives */
1220	movel	0xfefe00d4, %a1
1221	movel	%a1@, %a1
1222
1223	movel	#((0x200000 >> 13)-1), %d1
1224
12251:
1226	movel	%a1@+, %d3
1227	movel	%d3,%a0@+
1228	addl	#0x1000,%d3
1229	movel	%d3,%a0@+
1230
1231	dbra	%d1,1b
1232
1233	/* setup tt1 for I/O */
1234	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1235	jbra	L(mmu_init_done)
1236
1237L(notsun3x):
1238#endif
1239
1240#ifdef CONFIG_APOLLO
1241	is_not_apollo(L(notapollo))
1242
1243	putc	'P'
1244	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1245
1246L(notapollo):
1247	jbra	L(mmu_init_done)
1248#endif
1249
1250L(mmu_init_done):
1251
1252	putc	'G'
1253	leds	0x8
1254
1255/*
1256 * mmu_fixup
1257 *
1258 * On the 040 class machines, all pages that are used for the
1259 * mmu have to be fixed up. According to Motorola, pages holding mmu
1260 * tables should be non-cacheable on a '040 and write-through on a
1261 * '060. But analysis of the reasons for this, and practical
1262 * experience, showed that write-through also works on a '040.
1263 *
1264 * Allocated memory so far goes from kernel_end to memory_start that
1265 * is used for all kind of tables, for that the cache attributes
1266 * are now fixed.
1267 */
1268L(mmu_fixup):
1269
1270	is_not_040_or_060(L(mmu_fixup_done))
1271
1272#ifdef MMU_NOCACHE_KERNEL
1273	jbra	L(mmu_fixup_done)
1274#endif
1275
1276	/* first fix the page at the start of the kernel, that
1277	 * contains also kernel_pg_dir.
1278	 */
1279	movel	%pc@(L(phys_kernel_start)),%d0
1280	subl	#PAGE_OFFSET,%d0
1281	lea	%pc@(_stext),%a0
1282	subl	%d0,%a0
1283	mmu_fixup_page_mmu_cache	%a0
1284
1285	movel	%pc@(L(kernel_end)),%a0
1286	subl	%d0,%a0
1287	movel	%pc@(L(memory_start)),%a1
1288	subl	%d0,%a1
1289	bra	2f
12901:
1291	mmu_fixup_page_mmu_cache	%a0
1292	addw	#PAGESIZE,%a0
12932:
1294	cmpl	%a0,%a1
1295	jgt	1b
1296
1297L(mmu_fixup_done):
1298
1299#ifdef MMU_PRINT
1300	mmu_print
1301#endif
1302
1303/*
1304 * mmu_engage
1305 *
1306 * This chunk of code performs the gruesome task of engaging the MMU.
1307 * The reason its gruesome is because when the MMU becomes engaged it
1308 * maps logical addresses to physical addresses.  The Program Counter
1309 * register is then passed through the MMU before the next instruction
1310 * is fetched (the instruction following the engage MMU instruction).
1311 * This may mean one of two things:
1312 * 1. The Program Counter falls within the logical address space of
1313 *    the kernel of which there are two sub-possibilities:
1314 *    A. The PC maps to the correct instruction (logical PC == physical
1315 *       code location), or
1316 *    B. The PC does not map through and the processor will read some
1317 *       data (or instruction) which is not the logically next instr.
1318 *    As you can imagine, A is good and B is bad.
1319 * Alternatively,
1320 * 2. The Program Counter does not map through the MMU.  The processor
1321 *    will take a Bus Error.
1322 * Clearly, 2 is bad.
1323 * It doesn't take a wiz kid to figure you want 1.A.
1324 * This code creates that possibility.
1325 * There are two possible 1.A. states (we now ignore the other above states):
1326 * A. The kernel is located at physical memory addressed the same as
1327 *    the logical memory for the kernel, i.e., 0x01000.
1328 * B. The kernel is located some where else.  e.g., 0x0400.0000
1329 *
1330 *    Under some conditions the Macintosh can look like A or B.
1331 * [A friend and I once noted that Apple hardware engineers should be
1332 * wacked twice each day: once when they show up at work (as in, Whack!,
1333 * "This is for the screwy hardware we know you're going to design today."),
1334 * and also at the end of the day (as in, Whack! "I don't know what
1335 * you designed today, but I'm sure it wasn't good."). -- rst]
1336 *
1337 * This code works on the following premise:
1338 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1339 * then create a mapping for the kernel at logical 0x8000.0000 to
1340 * the physical location of the pc.  And, create a transparent
1341 * translation register for the first 16 Meg.  Then, after the MMU
1342 * is engaged, the PC can be moved up into the 0x8000.0000 range
1343 * and then the transparent translation can be turned off and then
1344 * the PC can jump to the correct logical location and it will be
1345 * home (finally).  This is essentially the code that the Amiga used
1346 * to use.  Now, it's generalized for all processors.  Which means
1347 * that a fresh (but temporary) mapping has to be created.  The mapping
1348 * is made in page 0 (an as of yet unused location -- except for the
1349 * stack!).  This temporary mapping will only require 1 pointer table
1350 * and a single page table (it can map 256K).
1351 *
1352 * OK, alternatively, imagine that the Program Counter is not within
1353 * the first 16 Meg.  Then, just use Transparent Translation registers
1354 * to do the right thing.
1355 *
1356 * Last, if _start is already at 0x01000, then there's nothing special
1357 * to do (in other words, in a degenerate case of the first case above,
1358 * do nothing).
1359 *
1360 * Let's do it.
1361 *
1362 *
1363 */
1364
1365	putc	'H'
1366
1367	mmu_engage
1368
1369/*
1370 * After this point no new memory is allocated and
1371 * the start of available memory is stored in availmem.
1372 * (The bootmem allocator requires now the physicall address.)
1373 */
1374
1375	movel	L(memory_start),availmem
1376
1377#ifdef CONFIG_AMIGA
1378	is_not_amiga(1f)
1379	/* fixup the Amiga custom register location before printing */
1380	clrl	L(custom)
13811:
1382#endif
1383
1384#ifdef CONFIG_ATARI
1385	is_not_atari(1f)
1386	/* fixup the Atari iobase register location before printing */
1387	movel	#0xff000000,L(iobase)
13881:
1389#endif
1390
1391#ifdef CONFIG_MAC
1392	is_not_mac(1f)
1393	movel	#~VIDEOMEMMASK,%d0
1394	andl	L(mac_videobase),%d0
1395	addl	#VIDEOMEMBASE,%d0
1396	movel	%d0,L(mac_videobase)
1397#ifdef CONSOLE_DEBUG
1398	movel	%pc@(L(phys_kernel_start)),%d0
1399	subl	#PAGE_OFFSET,%d0
1400	subl	%d0,L(console_font)
1401	subl	%d0,L(console_font_data)
1402#endif
 
1403	orl	#0x50000000,L(mac_sccbase)
 
14041:
1405#endif
1406
1407#ifdef CONFIG_HP300
1408	is_not_hp300(2f)
1409	/*
1410	 * Fix up the iobase register to point to the new location of the LEDs.
1411	 */
1412	movel	#0xf0000000,L(iobase)
1413
1414	/*
1415	 * Energise the FPU and caches.
1416	 */
1417	is_040(1f)
1418	movel	#0x60,0xf05f400c
1419	jbra	2f
1420
1421	/*
1422	 * 040: slightly different, apparently.
1423	 */
14241:	movew	#0,0xf05f400e
1425	movew	#0x64,0xf05f400e
14262:
1427#endif
1428
1429#ifdef CONFIG_SUN3X
1430	is_not_sun3x(1f)
1431
1432	/* enable copro */
1433	oriw	#0x4000,0x61000000
14341:
1435#endif
1436
1437#ifdef CONFIG_APOLLO
1438	is_not_apollo(1f)
1439
1440	/*
1441	 * Fix up the iobase before printing
1442	 */
1443	movel	#0x80000000,L(iobase)
14441:
1445#endif
1446
1447	putc	'I'
1448	leds	0x10
1449
1450/*
1451 * Enable caches
1452 */
1453
1454	is_not_040_or_060(L(cache_not_680460))
1455
1456L(cache680460):
1457	.chip	68040
1458	nop
1459	cpusha	%bc
1460	nop
1461
1462	is_060(L(cache68060))
1463
1464	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1465	/* MMU stuff works in copyback mode now, so enable the cache */
1466	movec	%d0,%cacr
1467	jra	L(cache_done)
1468
1469L(cache68060):
1470	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1471	/* MMU stuff works in copyback mode now, so enable the cache */
1472	movec	%d0,%cacr
1473	/* enable superscalar dispatch in PCR */
1474	moveq	#1,%d0
1475	.chip	68060
1476	movec	%d0,%pcr
1477
1478	jbra	L(cache_done)
1479L(cache_not_680460):
1480L(cache68030):
1481	.chip	68030
1482	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1483	movec	%d0,%cacr
1484
1485	jra	L(cache_done)
1486	.chip	68k
1487L(cache_done):
1488
1489	putc	'J'
1490
1491/*
1492 * Setup initial stack pointer
1493 */
1494	lea	init_task,%curptr
1495	lea	init_thread_union+THREAD_SIZE,%sp
1496
1497	putc	'K'
1498
1499	subl	%a6,%a6		/* clear a6 for gdb */
1500
1501/*
1502 * The new 64bit printf support requires an early exception initialization.
1503 */
1504	jbsr	base_trap_init
1505
1506/* jump to the kernel start */
1507
1508	putc	'\n'
1509	leds	0x55
1510
1511	jbsr	start_kernel
1512
1513/*
1514 * Find a tag record in the bootinfo structure
1515 * The bootinfo structure is located right after the kernel
1516 * Returns: d0: size (-1 if not found)
1517 *          a0: data pointer (end-of-records if not found)
1518 */
1519func_start	get_bi_record,%d1
1520
1521	movel	ARG1,%d0
1522	lea	%pc@(_end),%a0
15231:	tstw	%a0@(BIR_TAG)
1524	jeq	3f
1525	cmpw	%a0@(BIR_TAG),%d0
1526	jeq	2f
1527	addw	%a0@(BIR_SIZE),%a0
1528	jra	1b
15292:	moveq	#0,%d0
1530	movew	%a0@(BIR_SIZE),%d0
1531	lea	%a0@(BIR_DATA),%a0
1532	jra	4f
15333:	moveq	#-1,%d0
1534	lea	%a0@(BIR_SIZE),%a0
15354:
1536func_return	get_bi_record
1537
1538
1539/*
1540 *	MMU Initialization Begins Here
1541 *
1542 *	The structure of the MMU tables on the 68k machines
1543 *	is thus:
1544 *	Root Table
1545 *		Logical addresses are translated through
1546 *	a hierarchical translation mechanism where the high-order
1547 *	seven bits of the logical address (LA) are used as an
1548 *	index into the "root table."  Each entry in the root
1549 *	table has a bit which specifies if it's a valid pointer to a
1550 *	pointer table.  Each entry defines a 32KMeg range of memory.
1551 *	If an entry is invalid then that logical range of 32M is
1552 *	invalid and references to that range of memory (when the MMU
1553 *	is enabled) will fault.  If the entry is valid, then it does
1554 *	one of two things.  On 040/060 class machines, it points to
1555 *	a pointer table which then describes more finely the memory
1556 *	within that 32M range.  On 020/030 class machines, a technique
1557 *	called "early terminating descriptors" are used.  This technique
1558 *	allows an entire 32Meg to be described by a single entry in the
1559 *	root table.  Thus, this entry in the root table, contains the
1560 *	physical address of the memory or I/O at the logical address
1561 *	which the entry represents and it also contains the necessary
1562 *	cache bits for this region.
1563 *
1564 *	Pointer Tables
1565 *		Per the Root Table, there will be one or more
1566 *	pointer tables.  Each pointer table defines a 32M range.
1567 *	Not all of the 32M range need be defined.  Again, the next
1568 *	seven bits of the logical address are used an index into
1569 *	the pointer table to point to page tables (if the pointer
1570 *	is valid).  There will undoubtedly be more than one
1571 *	pointer table for the kernel because each pointer table
1572 *	defines a range of only 32M.  Valid pointer table entries
1573 *	point to page tables, or are early terminating entries
1574 *	themselves.
1575 *
1576 *	Page Tables
1577 *		Per the Pointer Tables, each page table entry points
1578 *	to the physical page in memory that supports the logical
1579 *	address that translates to the particular index.
1580 *
1581 *	In short, the Logical Address gets translated as follows:
1582 *		bits 31..26 - index into the Root Table
1583 *		bits 25..18 - index into the Pointer Table
1584 *		bits 17..12 - index into the Page Table
1585 *		bits 11..0  - offset into a particular 4K page
1586 *
1587 *	The algorithms which follows do one thing: they abstract
1588 *	the MMU hardware.  For example, there are three kinds of
1589 *	cache settings that are relevant.  Either, memory is
1590 *	being mapped in which case it is either Kernel Code (or
1591 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1592 *	option also describes the kernel.  Or, I/O is being mapped
1593 *	in which case it has its own kind of cache bits.  There
1594 *	are constants which abstract these notions from the code that
1595 *	actually makes the call to map some range of memory.
1596 *
1597 *
1598 *
1599 */
1600
1601#ifdef MMU_PRINT
1602/*
1603 *	mmu_print
1604 *
1605 *	This algorithm will print out the current MMU mappings.
1606 *
1607 *	Input:
1608 *		%a5 points to the root table.  Everything else is calculated
1609 *			from this.
1610 */
1611
1612#define mmu_next_valid		0
1613#define mmu_start_logical	4
1614#define mmu_next_logical	8
1615#define mmu_start_physical	12
1616#define mmu_next_physical	16
1617
1618#define MMU_PRINT_INVALID		-1
1619#define MMU_PRINT_VALID			1
1620#define MMU_PRINT_UNINITED		0
1621
1622#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1623
1624func_start	mmu_print,%a0-%a6/%d0-%d7
1625
1626	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1627	lea	%pc@(L(mmu_print_data)),%a0
1628	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1629
1630	is_not_040_or_060(mmu_030_print)
1631
1632mmu_040_print:
1633	puts	"\nMMU040\n"
1634	puts	"rp:"
1635	putn	%a5
1636	putc	'\n'
1637#if 0
1638	/*
1639	 * The following #if/#endif block is a tight algorithm for dumping the 040
1640	 * MMU Map in gory detail.  It really isn't that practical unless the
1641	 * MMU Map algorithm appears to go awry and you need to debug it at the
1642	 * entry per entry level.
1643	 */
1644	movel	#ROOT_TABLE_SIZE,%d5
1645#if 0
1646	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1647	subql	#1,%d5			| they (might) work
1648#endif
16491:	tstl	%d5
1650	jbeq	mmu_print_done
1651	subq	#1,%d5
1652	movel	%a5@+,%d7
1653	btst	#1,%d7
1654	jbeq	1b
1655
16562:	putn	%d7
1657	andil	#0xFFFFFE00,%d7
1658	movel	%d7,%a4
1659	movel	#PTR_TABLE_SIZE,%d4
1660	putc	' '
16613:	tstl	%d4
1662	jbeq	11f
1663	subq	#1,%d4
1664	movel	%a4@+,%d7
1665	btst	#1,%d7
1666	jbeq	3b
1667
16684:	putn	%d7
1669	andil	#0xFFFFFF00,%d7
1670	movel	%d7,%a3
1671	movel	#PAGE_TABLE_SIZE,%d3
16725:	movel	#8,%d2
16736:	tstl	%d3
1674	jbeq	31f
1675	subq	#1,%d3
1676	movel	%a3@+,%d6
1677	btst	#0,%d6
1678	jbeq	6b
16797:	tstl	%d2
1680	jbeq	8f
1681	subq	#1,%d2
1682	putc	' '
1683	jbra	91f
16848:	putc	'\n'
1685	movel	#8+1+8+1+1,%d2
16869:	putc	' '
1687	dbra	%d2,9b
1688	movel	#7,%d2
168991:	putn	%d6
1690	jbra	6b
1691
169231:	putc	'\n'
1693	movel	#8+1,%d2
169432:	putc	' '
1695	dbra	%d2,32b
1696	jbra	3b
1697
169811:	putc	'\n'
1699	jbra	1b
1700#endif /* MMU 040 Dumping code that's gory and detailed */
1701
1702	lea	%pc@(kernel_pg_dir),%a5
1703	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1704	movel	#0x00000000,%a4		/* logical address */
1705	moveql	#0,%d0
170640:
1707	/* Increment the logical address and preserve in d5 */
1708	movel	%a4,%d5
1709	addil	#PAGESIZE<<13,%d5
1710	movel	%a0@+,%d6
1711	btst	#1,%d6
1712	jbne	41f
1713	jbsr	mmu_print_tuple_invalidate
1714	jbra	48f
171541:
1716	movel	#0,%d1
1717	andil	#0xfffffe00,%d6
1718	movel	%d6,%a1
171942:
1720	movel	%a4,%d5
1721	addil	#PAGESIZE<<6,%d5
1722	movel	%a1@+,%d6
1723	btst	#1,%d6
1724	jbne	43f
1725	jbsr	mmu_print_tuple_invalidate
1726	jbra	47f
172743:
1728	movel	#0,%d2
1729	andil	#0xffffff00,%d6
1730	movel	%d6,%a2
173144:
1732	movel	%a4,%d5
1733	addil	#PAGESIZE,%d5
1734	movel	%a2@+,%d6
1735	btst	#0,%d6
1736	jbne	45f
1737	jbsr	mmu_print_tuple_invalidate
1738	jbra	46f
173945:
1740	moveml	%d0-%d1,%sp@-
1741	movel	%a4,%d0
1742	movel	%d6,%d1
1743	andil	#0xfffff4e0,%d1
1744	lea	%pc@(mmu_040_print_flags),%a6
1745	jbsr	mmu_print_tuple
1746	moveml	%sp@+,%d0-%d1
174746:
1748	movel	%d5,%a4
1749	addq	#1,%d2
1750	cmpib	#64,%d2
1751	jbne	44b
175247:
1753	movel	%d5,%a4
1754	addq	#1,%d1
1755	cmpib	#128,%d1
1756	jbne	42b
175748:
1758	movel	%d5,%a4			/* move to the next logical address */
1759	addq	#1,%d0
1760	cmpib	#128,%d0
1761	jbne	40b
1762
1763	.chip	68040
1764	movec	%dtt1,%d0
1765	movel	%d0,%d1
1766	andiw	#0x8000,%d1		/* is it valid ? */
1767	jbeq	1f			/* No, bail out */
1768
1769	movel	%d0,%d1
1770	andil	#0xff000000,%d1		/* Get the address */
1771	putn	%d1
1772	puts	"=="
1773	putn	%d1
1774
1775	movel	%d0,%d6
1776	jbsr	mmu_040_print_flags_tt
17771:
1778	movec	%dtt0,%d0
1779	movel	%d0,%d1
1780	andiw	#0x8000,%d1		/* is it valid ? */
1781	jbeq	1f			/* No, bail out */
1782
1783	movel	%d0,%d1
1784	andil	#0xff000000,%d1		/* Get the address */
1785	putn	%d1
1786	puts	"=="
1787	putn	%d1
1788
1789	movel	%d0,%d6
1790	jbsr	mmu_040_print_flags_tt
17911:
1792	.chip	68k
1793
1794	jbra	mmu_print_done
1795
1796mmu_040_print_flags:
1797	btstl	#10,%d6
1798	putZc(' ','G')	/* global bit */
1799	btstl	#7,%d6
1800	putZc(' ','S')	/* supervisor bit */
1801mmu_040_print_flags_tt:
1802	btstl	#6,%d6
1803	jbne	3f
1804	putc	'C'
1805	btstl	#5,%d6
1806	putZc('w','c')	/* write through or copy-back */
1807	jbra	4f
18083:
1809	putc	'N'
1810	btstl	#5,%d6
1811	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18124:
1813	rts
1814
1815mmu_030_print_flags:
1816	btstl	#6,%d6
1817	putZc('C','I')	/* write through or copy-back */
1818	rts
1819
1820mmu_030_print:
1821	puts	"\nMMU030\n"
1822	puts	"\nrp:"
1823	putn	%a5
1824	putc	'\n'
1825	movel	%a5,%d0
1826	andil	#0xfffffff0,%d0
1827	movel	%d0,%a0
1828	movel	#0x00000000,%a4		/* logical address */
1829	movel	#0,%d0
183030:
1831	movel	%a4,%d5
1832	addil	#PAGESIZE<<13,%d5
1833	movel	%a0@+,%d6
1834	btst	#1,%d6			/* is it a table ptr? */
1835	jbne	31f			/* yes */
1836	btst	#0,%d6			/* is it early terminating? */
1837	jbeq	1f			/* no */
1838	jbsr	mmu_030_print_helper
1839	jbra	38f
18401:
1841	jbsr	mmu_print_tuple_invalidate
1842	jbra	38f
184331:
1844	movel	#0,%d1
1845	andil	#0xfffffff0,%d6
1846	movel	%d6,%a1
184732:
1848	movel	%a4,%d5
1849	addil	#PAGESIZE<<6,%d5
1850	movel	%a1@+,%d6
1851	btst	#1,%d6			/* is it a table ptr? */
1852	jbne	33f			/* yes */
1853	btst	#0,%d6			/* is it a page descriptor? */
1854	jbeq	1f			/* no */
1855	jbsr	mmu_030_print_helper
1856	jbra	37f
18571:
1858	jbsr	mmu_print_tuple_invalidate
1859	jbra	37f
186033:
1861	movel	#0,%d2
1862	andil	#0xfffffff0,%d6
1863	movel	%d6,%a2
186434:
1865	movel	%a4,%d5
1866	addil	#PAGESIZE,%d5
1867	movel	%a2@+,%d6
1868	btst	#0,%d6
1869	jbne	35f
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	36f
187235:
1873	jbsr	mmu_030_print_helper
187436:
1875	movel	%d5,%a4
1876	addq	#1,%d2
1877	cmpib	#64,%d2
1878	jbne	34b
187937:
1880	movel	%d5,%a4
1881	addq	#1,%d1
1882	cmpib	#128,%d1
1883	jbne	32b
188438:
1885	movel	%d5,%a4			/* move to the next logical address */
1886	addq	#1,%d0
1887	cmpib	#128,%d0
1888	jbne	30b
1889
1890mmu_print_done:
1891	puts	"\n"
1892
1893func_return	mmu_print
1894
1895
1896mmu_030_print_helper:
1897	moveml	%d0-%d1,%sp@-
1898	movel	%a4,%d0
1899	movel	%d6,%d1
1900	lea	%pc@(mmu_030_print_flags),%a6
1901	jbsr	mmu_print_tuple
1902	moveml	%sp@+,%d0-%d1
1903	rts
1904
1905mmu_print_tuple_invalidate:
1906	moveml	%a0/%d7,%sp@-
1907
1908	lea	%pc@(L(mmu_print_data)),%a0
1909	tstl	%a0@(mmu_next_valid)
1910	jbmi	mmu_print_tuple_invalidate_exit
1911
1912	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1913
1914	putn	%a4
1915
1916	puts	"##\n"
1917
1918mmu_print_tuple_invalidate_exit:
1919	moveml	%sp@+,%a0/%d7
1920	rts
1921
1922
1923mmu_print_tuple:
1924	moveml	%d0-%d7/%a0,%sp@-
1925
1926	lea	%pc@(L(mmu_print_data)),%a0
1927
1928	tstl	%a0@(mmu_next_valid)
1929	jble	mmu_print_tuple_print
1930
1931	cmpl	%a0@(mmu_next_physical),%d1
1932	jbeq	mmu_print_tuple_increment
1933
1934mmu_print_tuple_print:
1935	putn	%d0
1936	puts	"->"
1937	putn	%d1
1938
1939	movel	%d1,%d6
1940	jbsr	%a6@
1941
1942mmu_print_tuple_record:
1943	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1944
1945	movel	%d1,%a0@(mmu_next_physical)
1946
1947mmu_print_tuple_increment:
1948	movel	%d5,%d7
1949	subl	%a4,%d7
1950	addl	%d7,%a0@(mmu_next_physical)
1951
1952mmu_print_tuple_exit:
1953	moveml	%sp@+,%d0-%d7/%a0
1954	rts
1955
1956mmu_print_machine_cpu_types:
1957	puts	"machine: "
1958
1959	is_not_amiga(1f)
1960	puts	"amiga"
1961	jbra	9f
19621:
1963	is_not_atari(2f)
1964	puts	"atari"
1965	jbra	9f
19662:
1967	is_not_mac(3f)
1968	puts	"macintosh"
1969	jbra	9f
19703:	puts	"unknown"
19719:	putc	'\n'
1972
1973	puts	"cputype: 0"
1974	is_not_060(1f)
1975	putc	'6'
1976	jbra	9f
19771:
1978	is_not_040_or_060(2f)
1979	putc	'4'
1980	jbra	9f
19812:	putc	'3'
19829:	putc	'0'
1983	putc	'\n'
1984
1985	rts
1986#endif /* MMU_PRINT */
1987
1988/*
1989 * mmu_map_tt
1990 *
1991 * This is a specific function which works on all 680x0 machines.
1992 * On 030, 040 & 060 it will attempt to use Transparent Translation
1993 * registers (tt1).
1994 * On 020 it will call the standard mmu_map which will use early
1995 * terminating descriptors.
1996 */
1997func_start	mmu_map_tt,%d0/%d1/%a0,4
1998
1999	dputs	"mmu_map_tt:"
2000	dputn	ARG1
2001	dputn	ARG2
2002	dputn	ARG3
2003	dputn	ARG4
2004	dputc	'\n'
2005
2006	is_020(L(do_map))
2007
2008	/* Extract the highest bit set
2009	 */
2010	bfffo	ARG3{#0,#32},%d1
2011	cmpw	#8,%d1
2012	jcc	L(do_map)
2013
2014	/* And get the mask
2015	 */
2016	moveq	#-1,%d0
2017	lsrl	%d1,%d0
2018	lsrl	#1,%d0
2019
2020	/* Mask the address
2021	 */
2022	movel	%d0,%d1
2023	notl	%d1
2024	andl	ARG2,%d1
2025
2026	/* Generate the upper 16bit of the tt register
2027	 */
2028	lsrl	#8,%d0
2029	orl	%d0,%d1
2030	clrw	%d1
2031
2032	is_040_or_060(L(mmu_map_tt_040))
2033
2034	/* set 030 specific bits (read/write access for supervisor mode
2035	 * (highest function code set, lower two bits masked))
2036	 */
2037	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2038	movel	ARG4,%d0
2039	btst	#6,%d0
2040	jeq	1f
2041	orw	#TTR_CI,%d1
2042
20431:	lea	STACK,%a0
2044	dputn	%d1
2045	movel	%d1,%a0@
2046	.chip	68030
2047	tstl	ARG1
2048	jne	1f
2049	pmove	%a0@,%tt0
2050	jra	2f
20511:	pmove	%a0@,%tt1
20522:	.chip	68k
2053	jra	L(mmu_map_tt_done)
2054
2055	/* set 040 specific bits
2056	 */
2057L(mmu_map_tt_040):
2058	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2059	orl	ARG4,%d1
2060	dputn	%d1
2061
2062	.chip	68040
2063	tstl	ARG1
2064	jne	1f
2065	movec	%d1,%itt0
2066	movec	%d1,%dtt0
2067	jra	2f
20681:	movec	%d1,%itt1
2069	movec	%d1,%dtt1
20702:	.chip	68k
2071
2072	jra	L(mmu_map_tt_done)
2073
2074L(do_map):
2075	mmu_map_eq	ARG2,ARG3,ARG4
2076
2077L(mmu_map_tt_done):
2078
2079func_return	mmu_map_tt
2080
2081/*
2082 *	mmu_map
2083 *
2084 *	This routine will map a range of memory using a pointer
2085 *	table and allocating the pages on the fly from the kernel.
2086 *	The pointer table does not have to be already linked into
2087 *	the root table, this routine will do that if necessary.
2088 *
2089 *	NOTE
2090 *	This routine will assert failure and use the serial_putc
2091 *	routines in the case of a run-time error.  For example,
2092 *	if the address is already mapped.
2093 *
2094 *	NOTE-2
2095 *	This routine will use early terminating descriptors
2096 *	where possible for the 68020+68851 and 68030 type
2097 *	processors.
2098 */
2099func_start	mmu_map,%d0-%d4/%a0-%a4
2100
2101	dputs	"\nmmu_map:"
2102	dputn	ARG1
2103	dputn	ARG2
2104	dputn	ARG3
2105	dputn	ARG4
2106	dputc	'\n'
2107
2108	/* Get logical address and round it down to 256KB
2109	 */
2110	movel	ARG1,%d0
2111	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2112	movel	%d0,%a3
2113
2114	/* Get the end address
2115	 */
2116	movel	ARG1,%a4
2117	addl	ARG3,%a4
2118	subql	#1,%a4
2119
2120	/* Get physical address and round it down to 256KB
2121	 */
2122	movel	ARG2,%d0
2123	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2124	movel	%d0,%a2
2125
2126	/* Add page attributes to the physical address
2127	 */
2128	movel	ARG4,%d0
2129	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2130	addw	%d0,%a2
2131
2132	dputn	%a2
2133	dputn	%a3
2134	dputn	%a4
2135
2136	is_not_040_or_060(L(mmu_map_030))
2137
2138	addw	#_PAGE_GLOBAL040,%a2
2139/*
2140 *	MMU 040 & 060 Support
2141 *
2142 *	The MMU usage for the 040 and 060 is different enough from
2143 *	the 030 and 68851 that there is separate code.  This comment
2144 *	block describes the data structures and algorithms built by
2145 *	this code.
2146 *
2147 *	The 040 does not support early terminating descriptors, as
2148 *	the 030 does.  Therefore, a third level of table is needed
2149 *	for the 040, and that would be the page table.  In Linux,
2150 *	page tables are allocated directly from the memory above the
2151 *	kernel.
2152 *
2153 */
2154
2155L(mmu_map_040):
2156	/* Calculate the offset into the root table
2157	 */
2158	movel	%a3,%d0
2159	moveq	#ROOT_INDEX_SHIFT,%d1
2160	lsrl	%d1,%d0
2161	mmu_get_root_table_entry	%d0
2162
2163	/* Calculate the offset into the pointer table
2164	 */
2165	movel	%a3,%d0
2166	moveq	#PTR_INDEX_SHIFT,%d1
2167	lsrl	%d1,%d0
2168	andl	#PTR_TABLE_SIZE-1,%d0
2169	mmu_get_ptr_table_entry		%a0,%d0
2170
2171	/* Calculate the offset into the page table
2172	 */
2173	movel	%a3,%d0
2174	moveq	#PAGE_INDEX_SHIFT,%d1
2175	lsrl	%d1,%d0
2176	andl	#PAGE_TABLE_SIZE-1,%d0
2177	mmu_get_page_table_entry	%a0,%d0
2178
2179	/* The page table entry must not no be busy
2180	 */
2181	tstl	%a0@
2182	jne	L(mmu_map_error)
2183
2184	/* Do the mapping and advance the pointers
2185	 */
2186	movel	%a2,%a0@
21872:
2188	addw	#PAGESIZE,%a2
2189	addw	#PAGESIZE,%a3
2190
2191	/* Ready with mapping?
2192	 */
2193	lea	%a3@(-1),%a0
2194	cmpl	%a0,%a4
2195	jhi	L(mmu_map_040)
2196	jra	L(mmu_map_done)
2197
2198L(mmu_map_030):
2199	/* Calculate the offset into the root table
2200	 */
2201	movel	%a3,%d0
2202	moveq	#ROOT_INDEX_SHIFT,%d1
2203	lsrl	%d1,%d0
2204	mmu_get_root_table_entry	%d0
2205
2206	/* Check if logical address 32MB aligned,
2207	 * so we can try to map it once
2208	 */
2209	movel	%a3,%d0
2210	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2211	jne	1f
2212
2213	/* Is there enough to map for 32MB at once
2214	 */
2215	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2216	cmpl	%a1,%a4
2217	jcs	1f
2218
2219	addql	#1,%a1
2220
2221	/* The root table entry must not no be busy
2222	 */
2223	tstl	%a0@
2224	jne	L(mmu_map_error)
2225
2226	/* Do the mapping and advance the pointers
2227	 */
2228	dputs	"early term1"
2229	dputn	%a2
2230	dputn	%a3
2231	dputn	%a1
2232	dputc	'\n'
2233	movel	%a2,%a0@
2234
2235	movel	%a1,%a3
2236	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2237	jra	L(mmu_mapnext_030)
22381:
2239	/* Calculate the offset into the pointer table
2240	 */
2241	movel	%a3,%d0
2242	moveq	#PTR_INDEX_SHIFT,%d1
2243	lsrl	%d1,%d0
2244	andl	#PTR_TABLE_SIZE-1,%d0
2245	mmu_get_ptr_table_entry		%a0,%d0
2246
2247	/* The pointer table entry must not no be busy
2248	 */
2249	tstl	%a0@
2250	jne	L(mmu_map_error)
2251
2252	/* Do the mapping and advance the pointers
2253	 */
2254	dputs	"early term2"
2255	dputn	%a2
2256	dputn	%a3
2257	dputc	'\n'
2258	movel	%a2,%a0@
2259
2260	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2261	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2262
2263L(mmu_mapnext_030):
2264	/* Ready with mapping?
2265	 */
2266	lea	%a3@(-1),%a0
2267	cmpl	%a0,%a4
2268	jhi	L(mmu_map_030)
2269	jra	L(mmu_map_done)
2270
2271L(mmu_map_error):
2272
2273	dputs	"mmu_map error:"
2274	dputn	%a2
2275	dputn	%a3
2276	dputc	'\n'
2277
2278L(mmu_map_done):
2279
2280func_return	mmu_map
2281
2282/*
2283 *	mmu_fixup
2284 *
2285 *	On the 040 class machines, all pages that are used for the
2286 *	mmu have to be fixed up.
2287 */
2288
2289func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2290
2291	dputs	"mmu_fixup_page_mmu_cache"
2292	dputn	ARG1
2293
2294	/* Calculate the offset into the root table
2295	 */
2296	movel	ARG1,%d0
2297	moveq	#ROOT_INDEX_SHIFT,%d1
2298	lsrl	%d1,%d0
2299	mmu_get_root_table_entry	%d0
2300
2301	/* Calculate the offset into the pointer table
2302	 */
2303	movel	ARG1,%d0
2304	moveq	#PTR_INDEX_SHIFT,%d1
2305	lsrl	%d1,%d0
2306	andl	#PTR_TABLE_SIZE-1,%d0
2307	mmu_get_ptr_table_entry		%a0,%d0
2308
2309	/* Calculate the offset into the page table
2310	 */
2311	movel	ARG1,%d0
2312	moveq	#PAGE_INDEX_SHIFT,%d1
2313	lsrl	%d1,%d0
2314	andl	#PAGE_TABLE_SIZE-1,%d0
2315	mmu_get_page_table_entry	%a0,%d0
2316
2317	movel	%a0@,%d0
2318	andil	#_CACHEMASK040,%d0
2319	orl	%pc@(m68k_pgtable_cachemode),%d0
2320	movel	%d0,%a0@
2321
2322	dputc	'\n'
2323
2324func_return	mmu_fixup_page_mmu_cache
2325
2326/*
2327 *	mmu_temp_map
2328 *
2329 *	create a temporary mapping to enable the mmu,
2330 *	this we don't need any transparation translation tricks.
2331 */
2332
2333func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2334
2335	dputs	"mmu_temp_map"
2336	dputn	ARG1
2337	dputn	ARG2
2338	dputc	'\n'
2339
2340	lea	%pc@(L(temp_mmap_mem)),%a1
2341
2342	/* Calculate the offset in the root table
2343	 */
2344	movel	ARG2,%d0
2345	moveq	#ROOT_INDEX_SHIFT,%d1
2346	lsrl	%d1,%d0
2347	mmu_get_root_table_entry	%d0
2348
2349	/* Check if the table is temporary allocated, so we have to reuse it
2350	 */
2351	movel	%a0@,%d0
2352	cmpl	%pc@(L(memory_start)),%d0
2353	jcc	1f
2354
2355	/* Temporary allocate a ptr table and insert it into the root table
2356	 */
2357	movel	%a1@,%d0
2358	addl	#PTR_TABLE_SIZE*4,%a1@
2359	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2360	movel	%d0,%a0@
2361	dputs	" (new)"
23621:
2363	dputn	%d0
2364	/* Mask the root table entry for the ptr table
2365	 */
2366	andw	#-ROOT_TABLE_SIZE,%d0
2367	movel	%d0,%a0
2368
2369	/* Calculate the offset into the pointer table
2370	 */
2371	movel	ARG2,%d0
2372	moveq	#PTR_INDEX_SHIFT,%d1
2373	lsrl	%d1,%d0
2374	andl	#PTR_TABLE_SIZE-1,%d0
2375	lea	%a0@(%d0*4),%a0
2376	dputn	%a0
2377
2378	/* Check if a temporary page table is already allocated
2379	 */
2380	movel	%a0@,%d0
2381	jne	1f
2382
2383	/* Temporary allocate a page table and insert it into the ptr table
2384	 */
2385	movel	%a1@,%d0
2386	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2387	   alignment restriction for pointer tables on the '0[46]0.  */
2388	addl	#512,%a1@
2389	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2390	movel	%d0,%a0@
2391	dputs	" (new)"
23921:
2393	dputn	%d0
2394	/* Mask the ptr table entry for the page table
2395	 */
2396	andw	#-PTR_TABLE_SIZE,%d0
2397	movel	%d0,%a0
2398
2399	/* Calculate the offset into the page table
2400	 */
2401	movel	ARG2,%d0
2402	moveq	#PAGE_INDEX_SHIFT,%d1
2403	lsrl	%d1,%d0
2404	andl	#PAGE_TABLE_SIZE-1,%d0
2405	lea	%a0@(%d0*4),%a0
2406	dputn	%a0
2407
2408	/* Insert the address into the page table
2409	 */
2410	movel	ARG1,%d0
2411	andw	#-PAGESIZE,%d0
2412	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2413	movel	%d0,%a0@
2414	dputn	%d0
2415
2416	dputc	'\n'
2417
2418func_return	mmu_temp_map
2419
2420func_start	mmu_engage,%d0-%d2/%a0-%a3
2421
2422	moveq	#ROOT_TABLE_SIZE-1,%d0
2423	/* Temporarily use a different root table.  */
2424	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2425	movel	%a0@,%a2
2426	movel	%pc@(L(memory_start)),%a1
2427	movel	%a1,%a0@
2428	movel	%a2,%a0
24291:
2430	movel	%a0@+,%a1@+
2431	dbra	%d0,1b
2432
2433	lea	%pc@(L(temp_mmap_mem)),%a0
2434	movel	%a1,%a0@
2435
2436	movew	#PAGESIZE-1,%d0
24371:
2438	clrl	%a1@+
2439	dbra	%d0,1b
2440
2441	lea	%pc@(1b),%a0
2442	movel	#1b,%a1
2443	/* Skip temp mappings if phys == virt */
2444	cmpl	%a0,%a1
2445	jeq	1f
2446
2447	mmu_temp_map	%a0,%a0
2448	mmu_temp_map	%a0,%a1
2449
2450	addw	#PAGESIZE,%a0
2451	addw	#PAGESIZE,%a1
2452	mmu_temp_map	%a0,%a0
2453	mmu_temp_map	%a0,%a1
24541:
2455	movel	%pc@(L(memory_start)),%a3
2456	movel	%pc@(L(phys_kernel_start)),%d2
2457
2458	is_not_040_or_060(L(mmu_engage_030))
2459
2460L(mmu_engage_040):
2461	.chip	68040
2462	nop
2463	cinva	%bc
2464	nop
2465	pflusha
2466	nop
2467	movec	%a3,%srp
2468	movel	#TC_ENABLE+TC_PAGE4K,%d0
2469	movec	%d0,%tc		/* enable the MMU */
2470	jmp	1f:l
24711:	nop
2472	movec	%a2,%srp
2473	nop
2474	cinva	%bc
2475	nop
2476	pflusha
2477	.chip	68k
2478	jra	L(mmu_engage_cleanup)
2479
2480L(mmu_engage_030_temp):
2481	.space	12
2482L(mmu_engage_030):
2483	.chip	68030
2484	lea	%pc@(L(mmu_engage_030_temp)),%a0
2485	movel	#0x80000002,%a0@
2486	movel	%a3,%a0@(4)
2487	movel	#0x0808,%d0
2488	movec	%d0,%cacr
2489	pmove	%a0@,%srp
2490	pflusha
2491	/*
2492	 * enable,super root enable,4096 byte pages,7 bit root index,
2493	 * 7 bit pointer index, 6 bit page table index.
2494	 */
2495	movel	#0x82c07760,%a0@(8)
2496	pmove	%a0@(8),%tc	/* enable the MMU */
2497	jmp	1f:l
24981:	movel	%a2,%a0@(4)
2499	movel	#0x0808,%d0
2500	movec	%d0,%cacr
2501	pmove	%a0@,%srp
2502	pflusha
2503	.chip	68k
2504
2505L(mmu_engage_cleanup):
2506	subl	#PAGE_OFFSET,%d2
2507	subl	%d2,%a2
2508	movel	%a2,L(kernel_pgdir_ptr)
2509	subl	%d2,%fp
2510	subl	%d2,%sp
2511	subl	%d2,ARG0
2512
2513func_return	mmu_engage
2514
2515func_start	mmu_get_root_table_entry,%d0/%a1
2516
2517#if 0
2518	dputs	"mmu_get_root_table_entry:"
2519	dputn	ARG1
2520	dputs	" ="
2521#endif
2522
2523	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2524	tstl	%a0
2525	jne	2f
2526
2527	dputs	"\nmmu_init:"
2528
2529	/* Find the start of free memory, get_bi_record does this for us,
2530	 * as the bootinfo structure is located directly behind the kernel
2531	 * and and we simply search for the last entry.
2532	 */
2533	get_bi_record	BI_LAST
2534	addw	#PAGESIZE-1,%a0
2535	movel	%a0,%d0
2536	andw	#-PAGESIZE,%d0
2537
2538	dputn	%d0
2539
2540	lea	%pc@(L(memory_start)),%a0
2541	movel	%d0,%a0@
2542	lea	%pc@(L(kernel_end)),%a0
2543	movel	%d0,%a0@
2544
2545	/* we have to return the first page at _stext since the init code
2546	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2547	 * page is used for further ptr tables in get_ptr_table.
2548	 */
2549	lea	%pc@(_stext),%a0
2550	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2551	movel	%a0,%a1@
2552	addl	#ROOT_TABLE_SIZE*4,%a1@
2553
2554	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2555	addql	#1,%a1@
2556
2557	/* clear the page
2558	 */
2559	movel	%a0,%a1
2560	movew	#PAGESIZE/4-1,%d0
25611:
2562	clrl	%a1@+
2563	dbra	%d0,1b
2564
2565	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2566	movel	%a0,%a1@
2567
2568	dputn	%a0
2569	dputc	'\n'
25702:
2571	movel	ARG1,%d0
2572	lea	%a0@(%d0*4),%a0
2573
2574#if 0
2575	dputn	%a0
2576	dputc	'\n'
2577#endif
2578
2579func_return	mmu_get_root_table_entry
2580
2581
2582
2583func_start	mmu_get_ptr_table_entry,%d0/%a1
2584
2585#if 0
2586	dputs	"mmu_get_ptr_table_entry:"
2587	dputn	ARG1
2588	dputn	ARG2
2589	dputs	" ="
2590#endif
2591
2592	movel	ARG1,%a0
2593	movel	%a0@,%d0
2594	jne	2f
2595
2596	/* Keep track of the number of pointer tables we use
2597	 */
2598	dputs	"\nmmu_get_new_ptr_table:"
2599	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2600	movel	%a0@,%d0
2601	addql	#1,%a0@
2602
2603	/* See if there is a free pointer table in our cache of pointer tables
2604	 */
2605	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2606	andw	#7,%d0
2607	jne	1f
2608
2609	/* Get a new pointer table page from above the kernel memory
2610	 */
2611	get_new_page
2612	movel	%a0,%a1@
26131:
2614	/* There is an unused pointer table in our cache... use it
2615	 */
2616	movel	%a1@,%d0
2617	addl	#PTR_TABLE_SIZE*4,%a1@
2618
2619	dputn	%d0
2620	dputc	'\n'
2621
2622	/* Insert the new pointer table into the root table
2623	 */
2624	movel	ARG1,%a0
2625	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2626	movel	%d0,%a0@
26272:
2628	/* Extract the pointer table entry
2629	 */
2630	andw	#-PTR_TABLE_SIZE,%d0
2631	movel	%d0,%a0
2632	movel	ARG2,%d0
2633	lea	%a0@(%d0*4),%a0
2634
2635#if 0
2636	dputn	%a0
2637	dputc	'\n'
2638#endif
2639
2640func_return	mmu_get_ptr_table_entry
2641
2642
2643func_start	mmu_get_page_table_entry,%d0/%a1
2644
2645#if 0
2646	dputs	"mmu_get_page_table_entry:"
2647	dputn	ARG1
2648	dputn	ARG2
2649	dputs	" ="
2650#endif
2651
2652	movel	ARG1,%a0
2653	movel	%a0@,%d0
2654	jne	2f
2655
2656	/* If the page table entry doesn't exist, we allocate a complete new
2657	 * page and use it as one continues big page table which can cover
2658	 * 4MB of memory, nearly almost all mappings have that alignment.
2659	 */
2660	get_new_page
2661	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2662
2663	/* align pointer table entry for a page of page tables
2664	 */
2665	movel	ARG1,%d0
2666	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2667	movel	%d0,%a1
2668
2669	/* Insert the page tables into the pointer entries
2670	 */
2671	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26721:
2673	movel	%a0,%a1@+
2674	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2675	dbra	%d0,1b
2676
2677	/* Now we can get the initialized pointer table entry
2678	 */
2679	movel	ARG1,%a0
2680	movel	%a0@,%d0
26812:
2682	/* Extract the page table entry
2683	 */
2684	andw	#-PAGE_TABLE_SIZE,%d0
2685	movel	%d0,%a0
2686	movel	ARG2,%d0
2687	lea	%a0@(%d0*4),%a0
2688
2689#if 0
2690	dputn	%a0
2691	dputc	'\n'
2692#endif
2693
2694func_return	mmu_get_page_table_entry
2695
2696/*
2697 *	get_new_page
2698 *
2699 *	Return a new page from the memory start and clear it.
2700 */
2701func_start	get_new_page,%d0/%a1
2702
2703	dputs	"\nget_new_page:"
2704
2705	/* allocate the page and adjust memory_start
2706	 */
2707	lea	%pc@(L(memory_start)),%a0
2708	movel	%a0@,%a1
2709	addl	#PAGESIZE,%a0@
2710
2711	/* clear the new page
2712	 */
2713	movel	%a1,%a0
2714	movew	#PAGESIZE/4-1,%d0
27151:
2716	clrl	%a1@+
2717	dbra	%d0,1b
2718
2719	dputn	%a0
2720	dputc	'\n'
2721
2722func_return	get_new_page
2723
2724
2725
2726/*
2727 * Debug output support
2728 * Atarians have a choice between the parallel port, the serial port
2729 * from the MFP or a serial port of the SCC
2730 */
2731
2732#ifdef CONFIG_MAC
2733/* You may define either or both of these. */
2734#define MAC_USE_SCC_A /* Modem port */
2735#define MAC_USE_SCC_B /* Printer port */
2736
2737#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2738/* Initialisation table for SCC with 3.6864 MHz PCLK */
2739L(scc_initable_mac):
 
2740	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2741	.byte	3,0xc0		/* receiver: 8 bpc */
2742	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2743	.byte	10,0		/* NRZ */
2744	.byte	11,0x50		/* use baud rate generator */
2745	.byte	12,1,13,0	/* 38400 baud */
2746	.byte	14,1		/* Baud rate generator enable */
2747	.byte	3,0xc1		/* enable receiver */
2748	.byte	5,0xea		/* enable transmitter */
2749	.byte	-1
2750	.even
2751#endif
2752#endif /* CONFIG_MAC */
2753
2754#ifdef CONFIG_ATARI
2755/* #define USE_PRINTER */
2756/* #define USE_SCC_B */
2757/* #define USE_SCC_A */
2758#define USE_MFP
2759
2760#if defined(USE_SCC_A) || defined(USE_SCC_B)
2761/* Initialisation table for SCC with 7.9872 MHz PCLK */
2762/* PCLK == 8.0539 gives baud == 9680.1 */
2763L(scc_initable_atari):
 
2764	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2765	.byte	3,0xc0		/* receiver: 8 bpc */
2766	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2767	.byte	10,0		/* NRZ */
2768	.byte	11,0x50		/* use baud rate generator */
2769	.byte	12,24,13,0	/* 9600 baud */
2770	.byte	14,2,14,3	/* use master clock for BRG, enable */
2771	.byte	3,0xc1		/* enable receiver */
2772	.byte	5,0xea		/* enable transmitter */
2773	.byte	-1
2774	.even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT	= 0xff8800
2780LPSG_READ	= 0xff8800
2781LPSG_WRITE	= 0xff8802
2782LPSG_IO_A	= 14
2783LPSG_IO_B	= 15
2784LPSG_CONTROL	= 7
2785LSTMFP_GPIP	= 0xfffa01
2786LSTMFP_DDR	= 0xfffa05
2787LSTMFP_IERB	= 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL	= 0xff8c85
2792LSCC_DATA	= 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL	= 0xff8c81
2797LSCC_DATA	= 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR     = 0xfffa29
2802LMFP_TDCDR   = 0xfffa1d
2803LMFP_TDDR    = 0xfffa25
2804LMFP_TSR     = 0xfffa2d
2805LMFP_UDR     = 0xfffa2f
2806
2807#endif
2808#endif	/* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware
2816 */
2817func_start	serial_init,%d0/%d1/%a0/%a1
2818	/*
2819	 *	Some of the register usage that follows
2820	 *	CONFIG_AMIGA
2821	 *		a0 = pointer to boot info record
2822	 *		d0 = boot info offset
2823	 *	CONFIG_ATARI
2824	 *		a0 = address of SCC
2825	 *		a1 = Liobase address/address of scc_initable_atari
2826	 *		d0 = init data for serial port
2827	 *	CONFIG_MAC
2828	 *		a0 = address of SCC
2829	 *		a1 = address of scc_initable_mac
2830	 *		d0 = init data for serial port
2831	 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR	7
2835#define SERIAL_CNTRL	CIABBASE+C_PRA
2836
2837	is_not_amiga(1f)
2838	lea	%pc@(L(custom)),%a0
2839	movel	#-ZTWOBASE,%a0@
2840	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841	get_bi_record	BI_AMIGA_SERPER
2842	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846
2847#ifdef CONFIG_ATARI
2848	is_not_atari(4f)
2849	movel	%pc@(L(iobase)),%a1
2850#if defined(USE_PRINTER)
2851	bclr	#0,%a1@(LSTMFP_IERB)
2852	bclr	#0,%a1@(LSTMFP_DDR)
2853	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2854	moveb	#0xff,%a1@(LPSG_WRITE)
2855	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2856	clrb	%a1@(LPSG_WRITE)
2857	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2858	moveb	%a1@(LPSG_READ),%d0
2859	bset	#5,%d0
2860	moveb	%d0,%a1@(LPSG_WRITE)
2861#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2862	lea	%a1@(LSCC_CTRL),%a0
2863	/* Reset SCC register pointer */
2864	moveb	%a0@,%d0
2865	/* Reset SCC device: write register pointer then register value */
2866	moveb	#9,%a0@
2867	moveb	#0xc0,%a0@
2868	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2869	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2870	movel	#32,%d0
28712:
2872	subq	#1,%d0
2873	jne	2b
2874	/* Initialize channel */
2875	lea	%pc@(L(scc_initable_atari)),%a1
28762:	moveb	%a1@+,%d0
2877	jmi	3f
2878	moveb	%d0,%a0@
2879	moveb	%a1@+,%a0@
2880	jra	2b
28813:	clrb	%a0@
2882#elif defined(USE_MFP)
2883	bclr	#1,%a1@(LMFP_TSR)
2884	moveb   #0x88,%a1@(LMFP_UCR)
2885	andb	#0x70,%a1@(LMFP_TDCDR)
2886	moveb   #2,%a1@(LMFP_TDDR)
2887	orb	#1,%a1@(LMFP_TDCDR)
2888	bset	#1,%a1@(LMFP_TSR)
2889#endif
2890	jra	L(serial_init_done)
28914:
2892#endif
2893
2894#ifdef CONFIG_MAC
2895	is_not_mac(L(serial_init_not_mac))
2896#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
 
 
 
2897#define mac_scc_cha_b_ctrl_offset	0x0
2898#define mac_scc_cha_a_ctrl_offset	0x2
2899#define mac_scc_cha_b_data_offset	0x4
2900#define mac_scc_cha_a_data_offset	0x6
2901	movel	%pc@(L(mac_sccbase)),%a0
2902	/* Reset SCC register pointer */
2903	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2904	/* Reset SCC device: write register pointer then register value */
2905	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2906	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2907	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2908	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2909	movel	#35,%d0
29105:
2911	subq	#1,%d0
2912	jne	5b
2913#endif
2914#ifdef MAC_USE_SCC_A
2915	/* Initialize channel A */
 
2916	lea	%pc@(L(scc_initable_mac)),%a1
29175:	moveb	%a1@+,%d0
2918	jmi	6f
2919	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2920	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2921	jra	5b
29226:
2923#endif	/* MAC_USE_SCC_A */
 
2924#ifdef MAC_USE_SCC_B
2925	/* Initialize channel B */
 
 
 
2926	lea	%pc@(L(scc_initable_mac)),%a1
29277:	moveb	%a1@+,%d0
2928	jmi	8f
2929	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2930	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2931	jra	7b
29328:
2933#endif	/* MAC_USE_SCC_B */
 
 
2934	jra	L(serial_init_done)
2935L(serial_init_not_mac):
2936#endif	/* CONFIG_MAC */
2937
2938#ifdef CONFIG_Q40
2939	is_not_q40(2f)
2940/* debug output goes into SRAM, so we don't do it unless requested
2941   - check for '%LX$' signature in SRAM   */
2942	lea	%pc@(q40_mem_cptr),%a1
2943	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2944	move.l	#0xff020000,%a1
2945	cmp.b	#'%',%a1@
2946	bne	2f	/*nodbg*/
2947	addq.w	#4,%a1
2948	cmp.b	#'L',%a1@
2949	bne	2f	/*nodbg*/
2950	addq.w	#4,%a1
2951	cmp.b	#'X',%a1@
2952	bne	2f	/*nodbg*/
2953	addq.w	#4,%a1
2954	cmp.b	#'$',%a1@
2955	bne	2f	/*nodbg*/
2956	/* signature OK */
2957	lea	%pc@(L(q40_do_debug)),%a1
2958	tas	%a1@
2959/*nodbg: q40_do_debug is 0 by default*/
29602:
2961#endif
2962
2963#ifdef CONFIG_MVME16x
2964	is_not_mvme16x(L(serial_init_not_mvme16x))
2965	moveb	#0x10,M167_PCSCCMICR
2966	moveb	#0x10,M167_PCSCCTICR
2967	moveb	#0x10,M167_PCSCCRICR
2968	jra	L(serial_init_done)
2969L(serial_init_not_mvme16x):
2970#endif
2971
2972#ifdef CONFIG_APOLLO
2973/* We count on the PROM initializing SIO1 */
2974#endif
2975
2976#ifdef CONFIG_HP300
2977/* We count on the boot loader initialising the UART */
2978#endif
2979
2980L(serial_init_done):
2981func_return	serial_init
2982
2983/*
2984 * Output character on serial port.
2985 */
2986func_start	serial_putc,%d0/%d1/%a0/%a1
2987
2988	movel	ARG1,%d0
2989	cmpib	#'\n',%d0
2990	jbne	1f
2991
2992	/* A little safe recursion is good for the soul */
2993	serial_putc	#'\r'
29941:
2995
2996#ifdef CONFIG_AMIGA
2997	is_not_amiga(2f)
2998	andw	#0x00ff,%d0
2999	oriw	#0x0100,%d0
3000	movel	%pc@(L(custom)),%a0
3001	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30021:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3003	andw	#0x2000,%d0
3004	jeq	1b
3005	jra	L(serial_putc_done)
30062:
3007#endif
3008
3009#ifdef CONFIG_MAC
3010	is_not_mac(5f)
3011#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
 
 
 
3012	movel	%pc@(L(mac_sccbase)),%a1
3013#endif
3014#ifdef MAC_USE_SCC_A
30153:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3016	jeq	3b
3017	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3018#endif	/* MAC_USE_SCC_A */
 
3019#ifdef MAC_USE_SCC_B
 
 
 
30204:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3021	jeq	4b
3022	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3023#endif	/* MAC_USE_SCC_B */
 
 
 
3024	jra	L(serial_putc_done)
30255:
3026#endif	/* CONFIG_MAC */
3027
3028#ifdef CONFIG_ATARI
3029	is_not_atari(4f)
3030	movel	%pc@(L(iobase)),%a1
3031#if defined(USE_PRINTER)
30323:	btst	#0,%a1@(LSTMFP_GPIP)
3033	jne	3b
3034	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3035	moveb	%d0,%a1@(LPSG_WRITE)
3036	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3037	moveb	%a1@(LPSG_READ),%d0
3038	bclr	#5,%d0
3039	moveb	%d0,%a1@(LPSG_WRITE)
3040	nop
3041	nop
3042	bset	#5,%d0
3043	moveb	%d0,%a1@(LPSG_WRITE)
3044#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30453:	btst	#2,%a1@(LSCC_CTRL)
3046	jeq	3b
3047	moveb	%d0,%a1@(LSCC_DATA)
3048#elif defined(USE_MFP)
30493:	btst	#7,%a1@(LMFP_TSR)
3050	jeq	3b
3051	moveb	%d0,%a1@(LMFP_UDR)
3052#endif
3053	jra	L(serial_putc_done)
30544:
3055#endif	/* CONFIG_ATARI */
3056
3057#ifdef CONFIG_MVME147
3058	is_not_mvme147(2f)
30591:	btst	#2,M147_SCC_CTRL_A
3060	jeq	1b
3061	moveb	%d0,M147_SCC_DATA_A
3062	jbra	L(serial_putc_done)
30632:
3064#endif
3065
3066#ifdef CONFIG_MVME16x
3067	is_not_mvme16x(2f)
3068	/*
3069	 * If the loader gave us a board type then we can use that to
3070	 * select an appropriate output routine; otherwise we just use
3071	 * the Bug code.  If we have to use the Bug that means the Bug
3072	 * workspace has to be valid, which means the Bug has to use
3073	 * the SRAM, which is non-standard.
3074	 */
3075	moveml	%d0-%d7/%a2-%a6,%sp@-
3076	movel	vme_brdtype,%d1
3077	jeq	1f			| No tag - use the Bug
3078	cmpi	#VME_TYPE_MVME162,%d1
3079	jeq	6f
3080	cmpi	#VME_TYPE_MVME172,%d1
3081	jne	5f
3082	/* 162/172; it's an SCC */
30836:	btst	#2,M162_SCC_CTRL_A
3084	nop
3085	nop
3086	nop
3087	jeq	6b
3088	moveb	#8,M162_SCC_CTRL_A
3089	nop
3090	nop
3091	nop
3092	moveb	%d0,M162_SCC_CTRL_A
3093	jra	3f
30945:
3095	/* 166/167/177; it's a CD2401 */
3096	moveb	#0,M167_CYCAR
3097	moveb	M167_CYIER,%d2
3098	moveb	#0x02,M167_CYIER
30997:
3100	btst	#5,M167_PCSCCTICR
3101	jeq	7b
3102	moveb	M167_PCTPIACKR,%d1
3103	moveb	M167_CYLICR,%d1
3104	jeq	8f
3105	moveb	#0x08,M167_CYTEOIR
3106	jra	7b
31078:
3108	moveb	%d0,M167_CYTDR
3109	moveb	#0,M167_CYTEOIR
3110	moveb	%d2,M167_CYIER
3111	jra	3f
31121:
3113	moveb	%d0,%sp@-
3114	trap	#15
3115	.word	0x0020	/* TRAP 0x020 */
31163:
3117	moveml	%sp@+,%d0-%d7/%a2-%a6
3118	jbra	L(serial_putc_done)
31192:
3120#endif /* CONFIG_MVME16x */
3121
3122#ifdef CONFIG_BVME6000
3123	is_not_bvme6000(2f)
3124	/*
3125	 * The BVME6000 machine has a serial port ...
3126	 */
31271:	btst	#2,BVME_SCC_CTRL_A
3128	jeq	1b
3129	moveb	%d0,BVME_SCC_DATA_A
3130	jbra	L(serial_putc_done)
31312:
3132#endif
3133
3134#ifdef CONFIG_SUN3X
3135	is_not_sun3x(2f)
3136	movel	%d0,-(%sp)
3137	movel	0xFEFE0018,%a1
3138	jbsr	(%a1)
3139	addq	#4,%sp
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_Q40
3145	is_not_q40(2f)
3146	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3147	beq	2f
3148	lea	%pc@(q40_mem_cptr),%a1
3149	move.l	%a1@,%a0
3150	move.b	%d0,%a0@
3151	addq.l	#4,%a0
3152	move.l	%a0,%a1@
3153	jbra    L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_APOLLO
3158	is_not_apollo(2f)
3159	movl    %pc@(L(iobase)),%a1
3160	moveb	%d0,%a1@(LTHRB0)
31611:      moveb   %a1@(LSRB0),%d0
3162	andb	#0x4,%d0
3163	beq	1b
3164	jbra	L(serial_putc_done)
31652:
3166#endif
3167
3168#ifdef CONFIG_HP300
3169	is_not_hp300(3f)
3170	movl    %pc@(L(iobase)),%a1
3171	addl	%pc@(L(uartbase)),%a1
3172	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3173	jmi	3f			/* Unset? Exit */
3174	cmpi	#256,%d1		/* APCI scode? */
3175	jeq	2f
31761:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3177	andb	#0x20,%d1
3178	beq	1b
3179	moveb	%d0,%a1@(DCADATA)
3180	jbra	L(serial_putc_done)
31812:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3182	andb	#0x20,%d1
3183	beq	2b
3184	moveb	%d0,%a1@(APCIDATA)
3185	jbra	L(serial_putc_done)
31863:
3187#endif
3188
3189L(serial_putc_done):
3190func_return	serial_putc
3191
3192/*
3193 * Output a string.
3194 */
3195func_start	puts,%d0/%a0
3196
3197	movel	ARG1,%a0
3198	jra	2f
31991:
3200#ifdef CONSOLE_DEBUG
3201	console_putc	%d0
3202#endif
3203#ifdef SERIAL_DEBUG
3204	serial_putc	%d0
3205#endif
32062:	moveb	%a0@+,%d0
3207	jne	1b
3208
3209func_return	puts
3210
3211/*
3212 * Output number in hex notation.
3213 */
3214
3215func_start	putn,%d0-%d2
3216
3217	putc	' '
3218
3219	movel	ARG1,%d0
3220	moveq	#7,%d1
32211:	roll	#4,%d0
3222	move	%d0,%d2
3223	andb	#0x0f,%d2
3224	addb	#'0',%d2
3225	cmpb	#'9',%d2
3226	jls	2f
3227	addb	#'A'-('9'+1),%d2
32282:
3229#ifdef CONSOLE_DEBUG
3230	console_putc	%d2
3231#endif
3232#ifdef SERIAL_DEBUG
3233	serial_putc	%d2
3234#endif
3235	dbra	%d1,1b
3236
3237func_return	putn
3238
3239#ifdef CONFIG_EARLY_PRINTK
3240/*
 
 
3241 *	This routine takes its parameters on the stack.  It then
3242 *	turns around and calls the internal routines.  This routine
3243 *	is used by the boot console.
3244 *
3245 *	The calling parameters are:
3246 *		void debug_cons_nputs(const char *str, unsigned length)
3247 *
3248 *	This routine does NOT understand variable arguments only
3249 *	simple strings!
3250 */
3251ENTRY(debug_cons_nputs)
3252	moveml	%d0/%d1/%a0,%sp@-
3253	movew	%sr,%sp@-
 
3254	ori	#0x0700,%sr
3255	movel	%sp@(18),%a0		/* fetch parameter */
3256	movel	%sp@(22),%d1		/* fetch parameter */
3257	jra	2f
32581:
3259#ifdef CONSOLE_DEBUG
3260	console_putc	%d0
3261#endif
3262#ifdef SERIAL_DEBUG
3263	serial_putc	%d0
3264#endif
3265	subq	#1,%d1
32662:	jeq	3f
3267	moveb	%a0@+,%d0
3268	jne	1b
32693:
3270	movew	%sp@+,%sr
3271	moveml	%sp@+,%d0/%d1/%a0
3272	rts
3273#endif /* CONFIG_EARLY_PRINTK */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start	set_leds,%d0/%a0
3277	movel	ARG1,%d0
3278#ifdef CONFIG_HP300
3279	is_not_hp300(1f)
3280	movel	%pc@(L(iobase)),%a0
3281	moveb	%d0,%a0@(0x1ffff)
3282	jra	2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286	movel   %pc@(L(iobase)),%a0
3287	lsll    #8,%d0
3288	eorw    #0xff00,%d0
3289	moveb	%d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return	set_leds
3293#endif
3294
3295#ifdef CONSOLE_DEBUG
3296/*
3297 *	For continuity, see the data alignment
3298 *	to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column	0
3301#define Lconsole_struct_cur_row		4
3302#define Lconsole_struct_num_columns	8
3303#define Lconsole_struct_num_rows	12
3304#define Lconsole_struct_left_edge	16
 
3305
3306func_start	console_init,%a0-%a4/%d0-%d7
3307	/*
3308	 *	Some of the register usage that follows
3309	 *		a0 = pointer to boot_info
3310	 *		a1 = pointer to screen
3311	 *		a2 = pointer to console_globals
3312	 *		d3 = pixel width of screen
3313	 *		d4 = pixel height of screen
3314	 *		(d3,d4) ~= (x,y) of a point just below
3315	 *			and to the right of the screen
3316	 *			NOT on the screen!
3317	 *		d5 = number of bytes per scan line
3318	 *		d6 = number of bytes on the entire screen
3319	 */
3320
3321	lea	%pc@(L(console_globals)),%a2
3322	movel	%pc@(L(mac_videobase)),%a1
3323	movel	%pc@(L(mac_rowbytes)),%d5
3324	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3325	movel	%d3,%d4
3326	swap	%d4		/* -> high byte */
3327	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3328	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3329
3330	movel	%d5,%d6
3331|	subl	#20,%d6
3332	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3333	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3334	moveq	#-1,%d0		/* Mac_black */
3335	subq	#1,%d6
3336
3337L(console_clear_loop):
3338	movel	%d0,%a1@+
3339	movel	%d0,%a1@+
3340	dbra	%d6,L(console_clear_loop)
3341
3342	/* Calculate font size */
3343
3344#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345	lea	%pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347	lea	%pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349	lea	%pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351	lea	%pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353	lea	0,%a0
3354#endif
3355
3356	/*
3357	 *	At this point we make a shift in register usage
3358	 *	a1 = address of console_font pointer
3359	 */
3360	lea	%pc@(L(console_font)),%a1
3361	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3362	tstl	%a0
3363	jeq	1f
3364	lea	%pc@(L(console_font_data)),%a4
3365	movel	%a0@(FONT_DESC_DATA),%d0
3366	subl	#L(console_font),%a1
3367	addl	%a1,%d0
3368	movel	%d0,%a4@
3369
3370	/*
3371	 *	Calculate global maxs
3372	 *	Note - we can use either an
3373	 *	8 x 16 or 8 x 8 character font
3374	 *	6 x 11 also supported
3375	 */
3376		/* ASSERT: a0 = contents of Lconsole_font */
3377	movel	%d3,%d0				/* screen width in pixels */
3378	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3379
3380	movel	%d4,%d1				/* screen height in pixels */
3381	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3382
3383	movel	%d0,%a2@(Lconsole_struct_num_columns)
3384	movel	%d1,%a2@(Lconsole_struct_num_rows)
3385
3386	/*
3387	 *	Clear the current row and column
3388	 */
3389	clrl	%a2@(Lconsole_struct_cur_column)
3390	clrl	%a2@(Lconsole_struct_cur_row)
3391	clrl	%a2@(Lconsole_struct_left_edge)
3392
3393	/*
3394	 * Initialization is complete
3395	 */
33961:
3397func_return	console_init
3398
3399#ifdef CONFIG_LOGO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400func_start	console_put_penguin,%a0-%a1/%d0-%d7
3401	/*
3402	 *	Get 'that_penguin' onto the screen in the upper right corner
3403	 *	penguin is 64 x 74 pixels, align against right edge of screen
3404	 */
3405	lea	%pc@(L(mac_dimensions)),%a0
3406	movel	%a0@,%d0
3407	andil	#0xffff,%d0
3408	subil	#64,%d0		/* snug up against the right edge */
3409	clrl	%d1		/* start at the top */
3410	movel	#73,%d7
3411	lea	%pc@(L(that_penguin)),%a1
3412L(console_penguin_row):
3413	movel	#31,%d6
3414L(console_penguin_pixel_pair):
3415	moveb	%a1@,%d2
3416	lsrb	#4,%d2
3417	console_plot_pixel %d0,%d1,%d2
3418	addq	#1,%d0
3419	moveb	%a1@+,%d2
3420	console_plot_pixel %d0,%d1,%d2
3421	addq	#1,%d0
3422	dbra	%d6,L(console_penguin_pixel_pair)
3423
3424	subil	#64,%d0
3425	addq	#1,%d1
3426	dbra	%d7,L(console_penguin_row)
3427
3428func_return	console_put_penguin
3429
3430/* include penguin bitmap */
3431L(that_penguin):
3432#include "../mac/mac_penguin.S"
3433#endif
3434
3435	/*
3436	 * Calculate source and destination addresses
3437	 *	output	a1 = dest
3438	 *		a2 = source
3439	 */
3440
3441func_start	console_scroll,%a0-%a4/%d0-%d7
3442	lea	%pc@(L(mac_videobase)),%a0
3443	movel	%a0@,%a1
3444	movel	%a1,%a2
3445	lea	%pc@(L(mac_rowbytes)),%a0
3446	movel	%a0@,%d5
3447	movel	%pc@(L(console_font)),%a0
3448	tstl	%a0
3449	jeq	1f
3450	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3451	addal	%d5,%a2
3452
3453	/*
3454	 * Get dimensions
3455	 */
3456	lea	%pc@(L(mac_dimensions)),%a0
3457	movel	%a0@,%d3
3458	movel	%d3,%d4
3459	swap	%d4
3460	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3461	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3462
3463	/*
3464	 * Calculate number of bytes to move
3465	 */
3466	lea	%pc@(L(mac_rowbytes)),%a0
3467	movel	%a0@,%d6
3468	movel	%pc@(L(console_font)),%a0
3469	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3470	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3471	divul	#32,%d6		/* we'll move 8 longs at a time */
3472	subq	#1,%d6
3473
3474L(console_scroll_loop):
3475	movel	%a2@+,%a1@+
3476	movel	%a2@+,%a1@+
3477	movel	%a2@+,%a1@+
3478	movel	%a2@+,%a1@+
3479	movel	%a2@+,%a1@+
3480	movel	%a2@+,%a1@+
3481	movel	%a2@+,%a1@+
3482	movel	%a2@+,%a1@+
3483	dbra	%d6,L(console_scroll_loop)
3484
3485	lea	%pc@(L(mac_rowbytes)),%a0
3486	movel	%a0@,%d6
3487	movel	%pc@(L(console_font)),%a0
3488	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3489	divul	#32,%d6			/* we'll move 8 words at a time */
3490	subq	#1,%d6
3491
3492	moveq	#-1,%d0
3493L(console_scroll_clear_loop):
3494	movel	%d0,%a1@+
3495	movel	%d0,%a1@+
3496	movel	%d0,%a1@+
3497	movel	%d0,%a1@+
3498	movel	%d0,%a1@+
3499	movel	%d0,%a1@+
3500	movel	%d0,%a1@+
3501	movel	%d0,%a1@+
3502	dbra	%d6,L(console_scroll_clear_loop)
3503
35041:
3505func_return	console_scroll
3506
3507
3508func_start	console_putc,%a0/%a1/%d0-%d7
3509
3510	is_not_mac(L(console_exit))
3511	tstl	%pc@(L(console_font))
3512	jeq	L(console_exit)
3513
3514	/* Output character in d7 on console.
3515	 */
3516	movel	ARG1,%d7
3517	cmpib	#'\n',%d7
3518	jbne	1f
3519
3520	/* A little safe recursion is good for the soul */
3521	console_putc	#'\r'
35221:
3523	lea	%pc@(L(console_globals)),%a0
3524
3525	cmpib	#10,%d7
3526	jne	L(console_not_lf)
3527	movel	%a0@(Lconsole_struct_cur_row),%d0
3528	addil	#1,%d0
3529	movel	%d0,%a0@(Lconsole_struct_cur_row)
3530	movel	%a0@(Lconsole_struct_num_rows),%d1
3531	cmpl	%d1,%d0
3532	jcs	1f
3533	subil	#1,%d0
3534	movel	%d0,%a0@(Lconsole_struct_cur_row)
3535	console_scroll
35361:
3537	jra	L(console_exit)
3538
3539L(console_not_lf):
3540	cmpib	#13,%d7
3541	jne	L(console_not_cr)
3542	clrl	%a0@(Lconsole_struct_cur_column)
3543	jra	L(console_exit)
3544
3545L(console_not_cr):
3546	cmpib	#1,%d7
3547	jne	L(console_not_home)
3548	clrl	%a0@(Lconsole_struct_cur_row)
3549	clrl	%a0@(Lconsole_struct_cur_column)
3550	jra	L(console_exit)
3551
3552/*
3553 *	At this point we know that the %d7 character is going to be
3554 *	rendered on the screen.  Register usage is -
3555 *		a0 = pointer to console globals
3556 *		a1 = font data
3557 *		d0 = cursor column
3558 *		d1 = cursor row to draw the character
3559 *		d7 = character number
3560 */
3561L(console_not_home):
3562	movel	%a0@(Lconsole_struct_cur_column),%d0
3563	addql	#1,%a0@(Lconsole_struct_cur_column)
3564	movel	%a0@(Lconsole_struct_num_columns),%d1
3565	cmpl	%d1,%d0
3566	jcs	1f
3567	console_putc	#'\n'	/* recursion is OK! */
35681:
3569	movel	%a0@(Lconsole_struct_cur_row),%d1
3570
3571	/*
3572	 *	At this point we make a shift in register usage
3573	 *	a0 = address of pointer to font data (fbcon_font_desc)
3574	 */
3575	movel	%pc@(L(console_font)),%a0
3576	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3577	andl	#0x000000ff,%d7
3578		/* ASSERT: a0 = contents of Lconsole_font */
3579	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3580	addl	%d7,%a1			/* a1 = points to char image */
3581
3582	/*
3583	 *	At this point we make a shift in register usage
3584	 *	d0 = pixel coordinate, x
3585	 *	d1 = pixel coordinate, y
3586	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3587	 *	d3 = font scan line data (8 pixels)
3588	 *	d6 = count down for the font's pixel width (8)
3589	 *	d7 = count down for the font's pixel count in height
3590	 */
3591		/* ASSERT: a0 = contents of Lconsole_font */
3592	mulul	%a0@(FONT_DESC_WIDTH),%d0
3593	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3594	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3595	subq	#1,%d7
3596L(console_read_char_scanline):
3597	moveb	%a1@+,%d3
3598
3599		/* ASSERT: a0 = contents of Lconsole_font */
3600	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3601	subql	#1,%d6
3602
3603L(console_do_font_scanline):
3604	lslb	#1,%d3
3605	scsb	%d2		/* convert 1 bit into a byte */
3606	console_plot_pixel %d0,%d1,%d2
3607	addq	#1,%d0
3608	dbra	%d6,L(console_do_font_scanline)
3609
3610		/* ASSERT: a0 = contents of Lconsole_font */
3611	subl	%a0@(FONT_DESC_WIDTH),%d0
3612	addq	#1,%d1
3613	dbra	%d7,L(console_read_char_scanline)
3614
3615L(console_exit):
3616func_return	console_putc
3617
3618	/*
3619	 *	Input:
3620	 *		d0 = x coordinate
3621	 *		d1 = y coordinate
3622	 *		d2 = (bit 0) 1/0 for white/black (!)
3623	 *	All registers are preserved
3624	 */
3625func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3626
3627	movel	%pc@(L(mac_videobase)),%a1
3628	movel	%pc@(L(mac_videodepth)),%d3
3629	movel	ARG1,%d0
3630	movel	ARG2,%d1
3631	mulul	%pc@(L(mac_rowbytes)),%d1
3632	movel	ARG3,%d2
3633
3634	/*
3635	 *	Register usage:
3636	 *		d0 = x coord becomes byte offset into frame buffer
3637	 *		d1 = y coord
3638	 *		d2 = black or white (0/1)
3639	 *		d3 = video depth
3640	 *		d4 = temp of x (d0) for many bit depths
3641	 */
3642L(test_1bit):
3643	cmpb	#1,%d3
3644	jbne	L(test_2bit)
3645	movel	%d0,%d4		/* we need the low order 3 bits! */
3646	divul	#8,%d0
3647	addal	%d0,%a1
3648	addal	%d1,%a1
3649	andb	#7,%d4
3650	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3651	andb	#1,%d2
3652	jbne	L(white_1)
3653	bsetb	%d4,%a1@
3654	jbra	L(console_plot_pixel_exit)
3655L(white_1):
3656	bclrb	%d4,%a1@
3657	jbra	L(console_plot_pixel_exit)
3658
3659L(test_2bit):
3660	cmpb	#2,%d3
3661	jbne	L(test_4bit)
3662	movel	%d0,%d4		/* we need the low order 2 bits! */
3663	divul	#4,%d0
3664	addal	%d0,%a1
3665	addal	%d1,%a1
3666	andb	#3,%d4
3667	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3668	lsll	#1,%d4		/* ! */
3669	andb	#1,%d2
3670	jbne	L(white_2)
3671	bsetb	%d4,%a1@
3672	addq	#1,%d4
3673	bsetb	%d4,%a1@
3674	jbra	L(console_plot_pixel_exit)
3675L(white_2):
3676	bclrb	%d4,%a1@
3677	addq	#1,%d4
3678	bclrb	%d4,%a1@
3679	jbra	L(console_plot_pixel_exit)
3680
3681L(test_4bit):
3682	cmpb	#4,%d3
3683	jbne	L(test_8bit)
3684	movel	%d0,%d4		/* we need the low order bit! */
3685	divul	#2,%d0
3686	addal	%d0,%a1
3687	addal	%d1,%a1
3688	andb	#1,%d4
3689	eorb	#1,%d4
3690	lsll	#2,%d4		/* ! */
3691	andb	#1,%d2
3692	jbne	L(white_4)
3693	bsetb	%d4,%a1@
3694	addq	#1,%d4
3695	bsetb	%d4,%a1@
3696	addq	#1,%d4
3697	bsetb	%d4,%a1@
3698	addq	#1,%d4
3699	bsetb	%d4,%a1@
3700	jbra	L(console_plot_pixel_exit)
3701L(white_4):
3702	bclrb	%d4,%a1@
3703	addq	#1,%d4
3704	bclrb	%d4,%a1@
3705	addq	#1,%d4
3706	bclrb	%d4,%a1@
3707	addq	#1,%d4
3708	bclrb	%d4,%a1@
3709	jbra	L(console_plot_pixel_exit)
3710
3711L(test_8bit):
3712	cmpb	#8,%d3
3713	jbne	L(test_16bit)
3714	addal	%d0,%a1
3715	addal	%d1,%a1
3716	andb	#1,%d2
3717	jbne	L(white_8)
3718	moveb	#0xff,%a1@
3719	jbra	L(console_plot_pixel_exit)
3720L(white_8):
3721	clrb	%a1@
3722	jbra	L(console_plot_pixel_exit)
3723
3724L(test_16bit):
3725	cmpb	#16,%d3
3726	jbne	L(console_plot_pixel_exit)
3727	addal	%d0,%a1
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d2
3731	jbne	L(white_16)
3732	clrw	%a1@
3733	jbra	L(console_plot_pixel_exit)
3734L(white_16):
3735	movew	#0x0fff,%a1@
3736	jbra	L(console_plot_pixel_exit)
3737
3738L(console_plot_pixel_exit):
3739func_return	console_plot_pixel
3740#endif /* CONSOLE_DEBUG */
3741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742
3743__INITDATA
3744	.align	4
3745
3746m68k_init_mapped_size:
3747	.long	0
3748
3749#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3750    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3751L(custom):
3752L(iobase):
3753	.long 0
3754#endif
3755
3756#ifdef CONSOLE_DEBUG
3757L(console_globals):
3758	.long	0		/* cursor column */
3759	.long	0		/* cursor row */
3760	.long	0		/* max num columns */
3761	.long	0		/* max num rows */
3762	.long	0		/* left edge */
 
3763L(console_font):
3764	.long	0		/* pointer to console font (struct font_desc) */
3765L(console_font_data):
3766	.long	0		/* pointer to console font data */
3767#endif /* CONSOLE_DEBUG */
3768
3769#if defined(MMU_PRINT)
3770L(mmu_print_data):
3771	.long	0		/* valid flag */
3772	.long	0		/* start logical */
3773	.long	0		/* next logical */
3774	.long	0		/* start physical */
3775	.long	0		/* next physical */
3776#endif /* MMU_PRINT */
3777
3778L(cputype):
3779	.long	0
3780L(mmu_cached_pointer_tables):
3781	.long	0
3782L(mmu_num_pointer_tables):
3783	.long	0
3784L(phys_kernel_start):
3785	.long	0
3786L(kernel_end):
3787	.long	0
3788L(memory_start):
3789	.long	0
3790L(kernel_pgdir_ptr):
3791	.long	0
3792L(temp_mmap_mem):
3793	.long	0
3794
3795#if defined (CONFIG_MVME147)
3796M147_SCC_CTRL_A = 0xfffe3002
3797M147_SCC_DATA_A = 0xfffe3003
3798#endif
3799
3800#if defined (CONFIG_MVME16x)
3801M162_SCC_CTRL_A = 0xfff45005
3802M167_CYCAR = 0xfff450ee
3803M167_CYIER = 0xfff45011
3804M167_CYLICR = 0xfff45026
3805M167_CYTEOIR = 0xfff45085
3806M167_CYTDR = 0xfff450f8
3807M167_PCSCCMICR = 0xfff4201d
3808M167_PCSCCTICR = 0xfff4201e
3809M167_PCSCCRICR = 0xfff4201f
3810M167_PCTPIACKR = 0xfff42025
3811#endif
3812
3813#if defined (CONFIG_BVME6000)
3814BVME_SCC_CTRL_A	= 0xffb0000b
3815BVME_SCC_DATA_A	= 0xffb0000f
3816#endif
3817
3818#if defined(CONFIG_MAC)
 
 
3819L(mac_videobase):
3820	.long	0
3821L(mac_videodepth):
3822	.long	0
3823L(mac_dimensions):
3824	.long	0
3825L(mac_rowbytes):
3826	.long	0
 
3827L(mac_sccbase):
3828	.long	0
3829#endif /* CONFIG_MAC */
 
3830
3831#if defined (CONFIG_APOLLO)
3832LSRB0        = 0x10412
3833LTHRB0       = 0x10416
3834LCPUCTRL     = 0x10100
3835#endif
3836
3837#if defined(CONFIG_HP300)
3838DCADATA	     = 0x11
3839DCALSR	     = 0x1b
3840APCIDATA     = 0x00
3841APCILSR      = 0x14
3842L(uartbase):
3843	.long	0
3844L(uart_scode):
3845	.long	-1
3846#endif
3847
3848__FINIT
3849	.data
3850	.align	4
3851
3852availmem:
3853	.long	0
3854m68k_pgtable_cachemode:
3855	.long	0
3856m68k_supervisor_cachemode:
3857	.long	0
3858#if defined(CONFIG_MVME16x)
3859mvme_bdid:
3860	.long	0,0,0,0,0,0,0,0
3861#endif
3862#if defined(CONFIG_Q40)
3863q40_mem_cptr:
3864	.long	0
3865L(q40_do_debug):
3866	.long	0
3867#endif