Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: LGPL-2.1
   2#define _GNU_SOURCE
   3#include <assert.h>
   4#include <pthread.h>
   5#include <sched.h>
   6#include <stdint.h>
   7#include <stdio.h>
   8#include <stdlib.h>
   9#include <string.h>
  10#include <syscall.h>
  11#include <unistd.h>
  12#include <poll.h>
  13#include <sys/types.h>
  14#include <signal.h>
  15#include <errno.h>
  16#include <stddef.h>
  17
  18static inline pid_t gettid(void)
  19{
  20	return syscall(__NR_gettid);
  21}
  22
  23#define NR_INJECT	9
  24static int loop_cnt[NR_INJECT + 1];
  25
  26static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
  27static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
  28static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
  29static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
  30static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
  31static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
  32
  33static int opt_modulo, verbose;
  34
  35static int opt_yield, opt_signal, opt_sleep,
  36		opt_disable_rseq, opt_threads = 200,
  37		opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
  38
  39#ifndef RSEQ_SKIP_FASTPATH
  40static long long opt_reps = 5000;
  41#else
  42static long long opt_reps = 100;
  43#endif
  44
  45static __thread __attribute__((tls_model("initial-exec")))
  46unsigned int signals_delivered;
  47
  48#ifndef BENCHMARK
  49
  50static __thread __attribute__((tls_model("initial-exec"), unused))
  51unsigned int yield_mod_cnt, nr_abort;
  52
  53#define printf_verbose(fmt, ...)			\
  54	do {						\
  55		if (verbose)				\
  56			printf(fmt, ## __VA_ARGS__);	\
  57	} while (0)
  58
  59#ifdef __i386__
  60
  61#define INJECT_ASM_REG	"eax"
  62
  63#define RSEQ_INJECT_CLOBBER \
  64	, INJECT_ASM_REG
  65
  66#define RSEQ_INJECT_ASM(n) \
  67	"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
  68	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
  69	"jz 333f\n\t" \
  70	"222:\n\t" \
  71	"dec %%" INJECT_ASM_REG "\n\t" \
  72	"jnz 222b\n\t" \
  73	"333:\n\t"
  74
  75#elif defined(__x86_64__)
  76
  77#define INJECT_ASM_REG_P	"rax"
  78#define INJECT_ASM_REG		"eax"
  79
  80#define RSEQ_INJECT_CLOBBER \
  81	, INJECT_ASM_REG_P \
  82	, INJECT_ASM_REG
  83
  84#define RSEQ_INJECT_ASM(n) \
  85	"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
  86	"mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
  87	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
  88	"jz 333f\n\t" \
  89	"222:\n\t" \
  90	"dec %%" INJECT_ASM_REG "\n\t" \
  91	"jnz 222b\n\t" \
  92	"333:\n\t"
  93
  94#elif defined(__s390__)
  95
  96#define RSEQ_INJECT_INPUT \
  97	, [loop_cnt_1]"m"(loop_cnt[1]) \
  98	, [loop_cnt_2]"m"(loop_cnt[2]) \
  99	, [loop_cnt_3]"m"(loop_cnt[3]) \
 100	, [loop_cnt_4]"m"(loop_cnt[4]) \
 101	, [loop_cnt_5]"m"(loop_cnt[5]) \
 102	, [loop_cnt_6]"m"(loop_cnt[6])
 103
 104#define INJECT_ASM_REG	"r12"
 105
 106#define RSEQ_INJECT_CLOBBER \
 107	, INJECT_ASM_REG
 108
 109#define RSEQ_INJECT_ASM(n) \
 110	"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 111	"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
 112	"je 333f\n\t" \
 113	"222:\n\t" \
 114	"ahi %%" INJECT_ASM_REG ", -1\n\t" \
 115	"jnz 222b\n\t" \
 116	"333:\n\t"
 117
 118#elif defined(__ARMEL__)
 119
 120#define RSEQ_INJECT_INPUT \
 121	, [loop_cnt_1]"m"(loop_cnt[1]) \
 122	, [loop_cnt_2]"m"(loop_cnt[2]) \
 123	, [loop_cnt_3]"m"(loop_cnt[3]) \
 124	, [loop_cnt_4]"m"(loop_cnt[4]) \
 125	, [loop_cnt_5]"m"(loop_cnt[5]) \
 126	, [loop_cnt_6]"m"(loop_cnt[6])
 127
 128#define INJECT_ASM_REG	"r4"
 129
 130#define RSEQ_INJECT_CLOBBER \
 131	, INJECT_ASM_REG
 132
 133#define RSEQ_INJECT_ASM(n) \
 134	"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 135	"cmp " INJECT_ASM_REG ", #0\n\t" \
 136	"beq 333f\n\t" \
 137	"222:\n\t" \
 138	"subs " INJECT_ASM_REG ", #1\n\t" \
 139	"bne 222b\n\t" \
 140	"333:\n\t"
 141
 142#elif defined(__AARCH64EL__)
 143
 144#define RSEQ_INJECT_INPUT \
 145	, [loop_cnt_1] "Qo" (loop_cnt[1]) \
 146	, [loop_cnt_2] "Qo" (loop_cnt[2]) \
 147	, [loop_cnt_3] "Qo" (loop_cnt[3]) \
 148	, [loop_cnt_4] "Qo" (loop_cnt[4]) \
 149	, [loop_cnt_5] "Qo" (loop_cnt[5]) \
 150	, [loop_cnt_6] "Qo" (loop_cnt[6])
 151
 152#define INJECT_ASM_REG	RSEQ_ASM_TMP_REG32
 153
 154#define RSEQ_INJECT_ASM(n) \
 155	"	ldr	" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n"	\
 156	"	cbz	" INJECT_ASM_REG ", 333f\n"			\
 157	"222:\n"							\
 158	"	sub	" INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n"	\
 159	"	cbnz	" INJECT_ASM_REG ", 222b\n"			\
 160	"333:\n"
 161
 162#elif __PPC__
 163
 164#define RSEQ_INJECT_INPUT \
 165	, [loop_cnt_1]"m"(loop_cnt[1]) \
 166	, [loop_cnt_2]"m"(loop_cnt[2]) \
 167	, [loop_cnt_3]"m"(loop_cnt[3]) \
 168	, [loop_cnt_4]"m"(loop_cnt[4]) \
 169	, [loop_cnt_5]"m"(loop_cnt[5]) \
 170	, [loop_cnt_6]"m"(loop_cnt[6])
 171
 172#define INJECT_ASM_REG	"r18"
 173
 174#define RSEQ_INJECT_CLOBBER \
 175	, INJECT_ASM_REG
 176
 177#define RSEQ_INJECT_ASM(n) \
 178	"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 179	"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
 180	"beq 333f\n\t" \
 181	"222:\n\t" \
 182	"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
 183	"bne 222b\n\t" \
 184	"333:\n\t"
 185
 186#elif defined(__mips__)
 187
 188#define RSEQ_INJECT_INPUT \
 189	, [loop_cnt_1]"m"(loop_cnt[1]) \
 190	, [loop_cnt_2]"m"(loop_cnt[2]) \
 191	, [loop_cnt_3]"m"(loop_cnt[3]) \
 192	, [loop_cnt_4]"m"(loop_cnt[4]) \
 193	, [loop_cnt_5]"m"(loop_cnt[5]) \
 194	, [loop_cnt_6]"m"(loop_cnt[6])
 195
 196#define INJECT_ASM_REG	"$5"
 197
 198#define RSEQ_INJECT_CLOBBER \
 199	, INJECT_ASM_REG
 200
 201#define RSEQ_INJECT_ASM(n) \
 202	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 203	"beqz " INJECT_ASM_REG ", 333f\n\t" \
 204	"222:\n\t" \
 205	"addiu " INJECT_ASM_REG ", -1\n\t" \
 206	"bnez " INJECT_ASM_REG ", 222b\n\t" \
 207	"333:\n\t"
 208
 209#else
 210#error unsupported target
 211#endif
 212
 213#define RSEQ_INJECT_FAILED \
 214	nr_abort++;
 215
 216#define RSEQ_INJECT_C(n) \
 217{ \
 218	int loc_i, loc_nr_loops = loop_cnt[n]; \
 219	\
 220	for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
 221		rseq_barrier(); \
 222	} \
 223	if (loc_nr_loops == -1 && opt_modulo) { \
 224		if (yield_mod_cnt == opt_modulo - 1) { \
 225			if (opt_sleep > 0) \
 226				poll(NULL, 0, opt_sleep); \
 227			if (opt_yield) \
 228				sched_yield(); \
 229			if (opt_signal) \
 230				raise(SIGUSR1); \
 231			yield_mod_cnt = 0; \
 232		} else { \
 233			yield_mod_cnt++; \
 234		} \
 235	} \
 236}
 237
 238#else
 239
 240#define printf_verbose(fmt, ...)
 241
 242#endif /* BENCHMARK */
 243
 244#include "rseq.h"
 245
 246struct percpu_lock_entry {
 247	intptr_t v;
 248} __attribute__((aligned(128)));
 249
 250struct percpu_lock {
 251	struct percpu_lock_entry c[CPU_SETSIZE];
 252};
 253
 254struct test_data_entry {
 255	intptr_t count;
 256} __attribute__((aligned(128)));
 257
 258struct spinlock_test_data {
 259	struct percpu_lock lock;
 260	struct test_data_entry c[CPU_SETSIZE];
 261};
 262
 263struct spinlock_thread_test_data {
 264	struct spinlock_test_data *data;
 265	long long reps;
 266	int reg;
 267};
 268
 269struct inc_test_data {
 270	struct test_data_entry c[CPU_SETSIZE];
 271};
 272
 273struct inc_thread_test_data {
 274	struct inc_test_data *data;
 275	long long reps;
 276	int reg;
 277};
 278
 279struct percpu_list_node {
 280	intptr_t data;
 281	struct percpu_list_node *next;
 282};
 283
 284struct percpu_list_entry {
 285	struct percpu_list_node *head;
 286} __attribute__((aligned(128)));
 287
 288struct percpu_list {
 289	struct percpu_list_entry c[CPU_SETSIZE];
 290};
 291
 292#define BUFFER_ITEM_PER_CPU	100
 293
 294struct percpu_buffer_node {
 295	intptr_t data;
 296};
 297
 298struct percpu_buffer_entry {
 299	intptr_t offset;
 300	intptr_t buflen;
 301	struct percpu_buffer_node **array;
 302} __attribute__((aligned(128)));
 303
 304struct percpu_buffer {
 305	struct percpu_buffer_entry c[CPU_SETSIZE];
 306};
 307
 308#define MEMCPY_BUFFER_ITEM_PER_CPU	100
 309
 310struct percpu_memcpy_buffer_node {
 311	intptr_t data1;
 312	uint64_t data2;
 313};
 314
 315struct percpu_memcpy_buffer_entry {
 316	intptr_t offset;
 317	intptr_t buflen;
 318	struct percpu_memcpy_buffer_node *array;
 319} __attribute__((aligned(128)));
 320
 321struct percpu_memcpy_buffer {
 322	struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
 323};
 324
 325/* A simple percpu spinlock. Grabs lock on current cpu. */
 326static int rseq_this_cpu_lock(struct percpu_lock *lock)
 327{
 328	int cpu;
 329
 330	for (;;) {
 331		int ret;
 332
 333		cpu = rseq_cpu_start();
 334		ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
 335					 0, 1, cpu);
 336		if (rseq_likely(!ret))
 337			break;
 338		/* Retry if comparison fails or rseq aborts. */
 339	}
 340	/*
 341	 * Acquire semantic when taking lock after control dependency.
 342	 * Matches rseq_smp_store_release().
 343	 */
 344	rseq_smp_acquire__after_ctrl_dep();
 345	return cpu;
 346}
 347
 348static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
 349{
 350	assert(lock->c[cpu].v == 1);
 351	/*
 352	 * Release lock, with release semantic. Matches
 353	 * rseq_smp_acquire__after_ctrl_dep().
 354	 */
 355	rseq_smp_store_release(&lock->c[cpu].v, 0);
 356}
 357
 358void *test_percpu_spinlock_thread(void *arg)
 359{
 360	struct spinlock_thread_test_data *thread_data = arg;
 361	struct spinlock_test_data *data = thread_data->data;
 362	long long i, reps;
 363
 364	if (!opt_disable_rseq && thread_data->reg &&
 365	    rseq_register_current_thread())
 366		abort();
 367	reps = thread_data->reps;
 368	for (i = 0; i < reps; i++) {
 369		int cpu = rseq_cpu_start();
 370
 371		cpu = rseq_this_cpu_lock(&data->lock);
 372		data->c[cpu].count++;
 373		rseq_percpu_unlock(&data->lock, cpu);
 374#ifndef BENCHMARK
 375		if (i != 0 && !(i % (reps / 10)))
 376			printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
 377#endif
 378	}
 379	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 380		       (int) gettid(), nr_abort, signals_delivered);
 381	if (!opt_disable_rseq && thread_data->reg &&
 382	    rseq_unregister_current_thread())
 383		abort();
 384	return NULL;
 385}
 386
 387/*
 388 * A simple test which implements a sharded counter using a per-cpu
 389 * lock.  Obviously real applications might prefer to simply use a
 390 * per-cpu increment; however, this is reasonable for a test and the
 391 * lock can be extended to synchronize more complicated operations.
 392 */
 393void test_percpu_spinlock(void)
 394{
 395	const int num_threads = opt_threads;
 396	int i, ret;
 397	uint64_t sum;
 398	pthread_t test_threads[num_threads];
 399	struct spinlock_test_data data;
 400	struct spinlock_thread_test_data thread_data[num_threads];
 401
 402	memset(&data, 0, sizeof(data));
 403	for (i = 0; i < num_threads; i++) {
 404		thread_data[i].reps = opt_reps;
 405		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 406			thread_data[i].reg = 1;
 407		else
 408			thread_data[i].reg = 0;
 409		thread_data[i].data = &data;
 410		ret = pthread_create(&test_threads[i], NULL,
 411				     test_percpu_spinlock_thread,
 412				     &thread_data[i]);
 413		if (ret) {
 414			errno = ret;
 415			perror("pthread_create");
 416			abort();
 417		}
 418	}
 419
 420	for (i = 0; i < num_threads; i++) {
 421		ret = pthread_join(test_threads[i], NULL);
 422		if (ret) {
 423			errno = ret;
 424			perror("pthread_join");
 425			abort();
 426		}
 427	}
 428
 429	sum = 0;
 430	for (i = 0; i < CPU_SETSIZE; i++)
 431		sum += data.c[i].count;
 432
 433	assert(sum == (uint64_t)opt_reps * num_threads);
 434}
 435
 436void *test_percpu_inc_thread(void *arg)
 437{
 438	struct inc_thread_test_data *thread_data = arg;
 439	struct inc_test_data *data = thread_data->data;
 440	long long i, reps;
 441
 442	if (!opt_disable_rseq && thread_data->reg &&
 443	    rseq_register_current_thread())
 444		abort();
 445	reps = thread_data->reps;
 446	for (i = 0; i < reps; i++) {
 447		int ret;
 448
 449		do {
 450			int cpu;
 451
 452			cpu = rseq_cpu_start();
 453			ret = rseq_addv(&data->c[cpu].count, 1, cpu);
 454		} while (rseq_unlikely(ret));
 455#ifndef BENCHMARK
 456		if (i != 0 && !(i % (reps / 10)))
 457			printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
 458#endif
 459	}
 460	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 461		       (int) gettid(), nr_abort, signals_delivered);
 462	if (!opt_disable_rseq && thread_data->reg &&
 463	    rseq_unregister_current_thread())
 464		abort();
 465	return NULL;
 466}
 467
 468void test_percpu_inc(void)
 469{
 470	const int num_threads = opt_threads;
 471	int i, ret;
 472	uint64_t sum;
 473	pthread_t test_threads[num_threads];
 474	struct inc_test_data data;
 475	struct inc_thread_test_data thread_data[num_threads];
 476
 477	memset(&data, 0, sizeof(data));
 478	for (i = 0; i < num_threads; i++) {
 479		thread_data[i].reps = opt_reps;
 480		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 481			thread_data[i].reg = 1;
 482		else
 483			thread_data[i].reg = 0;
 484		thread_data[i].data = &data;
 485		ret = pthread_create(&test_threads[i], NULL,
 486				     test_percpu_inc_thread,
 487				     &thread_data[i]);
 488		if (ret) {
 489			errno = ret;
 490			perror("pthread_create");
 491			abort();
 492		}
 493	}
 494
 495	for (i = 0; i < num_threads; i++) {
 496		ret = pthread_join(test_threads[i], NULL);
 497		if (ret) {
 498			errno = ret;
 499			perror("pthread_join");
 500			abort();
 501		}
 502	}
 503
 504	sum = 0;
 505	for (i = 0; i < CPU_SETSIZE; i++)
 506		sum += data.c[i].count;
 507
 508	assert(sum == (uint64_t)opt_reps * num_threads);
 509}
 510
 511void this_cpu_list_push(struct percpu_list *list,
 512			struct percpu_list_node *node,
 513			int *_cpu)
 514{
 515	int cpu;
 516
 517	for (;;) {
 518		intptr_t *targetptr, newval, expect;
 519		int ret;
 520
 521		cpu = rseq_cpu_start();
 522		/* Load list->c[cpu].head with single-copy atomicity. */
 523		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
 524		newval = (intptr_t)node;
 525		targetptr = (intptr_t *)&list->c[cpu].head;
 526		node->next = (struct percpu_list_node *)expect;
 527		ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
 528		if (rseq_likely(!ret))
 529			break;
 530		/* Retry if comparison fails or rseq aborts. */
 531	}
 532	if (_cpu)
 533		*_cpu = cpu;
 534}
 535
 536/*
 537 * Unlike a traditional lock-less linked list; the availability of a
 538 * rseq primitive allows us to implement pop without concerns over
 539 * ABA-type races.
 540 */
 541struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
 542					   int *_cpu)
 543{
 544	struct percpu_list_node *node = NULL;
 545	int cpu;
 546
 547	for (;;) {
 548		struct percpu_list_node *head;
 549		intptr_t *targetptr, expectnot, *load;
 550		off_t offset;
 551		int ret;
 552
 553		cpu = rseq_cpu_start();
 554		targetptr = (intptr_t *)&list->c[cpu].head;
 555		expectnot = (intptr_t)NULL;
 556		offset = offsetof(struct percpu_list_node, next);
 557		load = (intptr_t *)&head;
 558		ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
 559						   offset, load, cpu);
 560		if (rseq_likely(!ret)) {
 561			node = head;
 562			break;
 563		}
 564		if (ret > 0)
 565			break;
 566		/* Retry if rseq aborts. */
 567	}
 568	if (_cpu)
 569		*_cpu = cpu;
 570	return node;
 571}
 572
 573/*
 574 * __percpu_list_pop is not safe against concurrent accesses. Should
 575 * only be used on lists that are not concurrently modified.
 576 */
 577struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
 578{
 579	struct percpu_list_node *node;
 580
 581	node = list->c[cpu].head;
 582	if (!node)
 583		return NULL;
 584	list->c[cpu].head = node->next;
 585	return node;
 586}
 587
 588void *test_percpu_list_thread(void *arg)
 589{
 590	long long i, reps;
 591	struct percpu_list *list = (struct percpu_list *)arg;
 592
 593	if (!opt_disable_rseq && rseq_register_current_thread())
 594		abort();
 595
 596	reps = opt_reps;
 597	for (i = 0; i < reps; i++) {
 598		struct percpu_list_node *node;
 599
 600		node = this_cpu_list_pop(list, NULL);
 601		if (opt_yield)
 602			sched_yield();  /* encourage shuffling */
 603		if (node)
 604			this_cpu_list_push(list, node, NULL);
 605	}
 606
 607	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 608		       (int) gettid(), nr_abort, signals_delivered);
 609	if (!opt_disable_rseq && rseq_unregister_current_thread())
 610		abort();
 611
 612	return NULL;
 613}
 614
 615/* Simultaneous modification to a per-cpu linked list from many threads.  */
 616void test_percpu_list(void)
 617{
 618	const int num_threads = opt_threads;
 619	int i, j, ret;
 620	uint64_t sum = 0, expected_sum = 0;
 621	struct percpu_list list;
 622	pthread_t test_threads[num_threads];
 623	cpu_set_t allowed_cpus;
 624
 625	memset(&list, 0, sizeof(list));
 626
 627	/* Generate list entries for every usable cpu. */
 628	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 629	for (i = 0; i < CPU_SETSIZE; i++) {
 630		if (!CPU_ISSET(i, &allowed_cpus))
 631			continue;
 632		for (j = 1; j <= 100; j++) {
 633			struct percpu_list_node *node;
 634
 635			expected_sum += j;
 636
 637			node = malloc(sizeof(*node));
 638			assert(node);
 639			node->data = j;
 640			node->next = list.c[i].head;
 641			list.c[i].head = node;
 642		}
 643	}
 644
 645	for (i = 0; i < num_threads; i++) {
 646		ret = pthread_create(&test_threads[i], NULL,
 647				     test_percpu_list_thread, &list);
 648		if (ret) {
 649			errno = ret;
 650			perror("pthread_create");
 651			abort();
 652		}
 653	}
 654
 655	for (i = 0; i < num_threads; i++) {
 656		ret = pthread_join(test_threads[i], NULL);
 657		if (ret) {
 658			errno = ret;
 659			perror("pthread_join");
 660			abort();
 661		}
 662	}
 663
 664	for (i = 0; i < CPU_SETSIZE; i++) {
 665		struct percpu_list_node *node;
 666
 667		if (!CPU_ISSET(i, &allowed_cpus))
 668			continue;
 669
 670		while ((node = __percpu_list_pop(&list, i))) {
 671			sum += node->data;
 672			free(node);
 673		}
 674	}
 675
 676	/*
 677	 * All entries should now be accounted for (unless some external
 678	 * actor is interfering with our allowed affinity while this
 679	 * test is running).
 680	 */
 681	assert(sum == expected_sum);
 682}
 683
 684bool this_cpu_buffer_push(struct percpu_buffer *buffer,
 685			  struct percpu_buffer_node *node,
 686			  int *_cpu)
 687{
 688	bool result = false;
 689	int cpu;
 690
 691	for (;;) {
 692		intptr_t *targetptr_spec, newval_spec;
 693		intptr_t *targetptr_final, newval_final;
 694		intptr_t offset;
 695		int ret;
 696
 697		cpu = rseq_cpu_start();
 698		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 699		if (offset == buffer->c[cpu].buflen)
 700			break;
 701		newval_spec = (intptr_t)node;
 702		targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
 703		newval_final = offset + 1;
 704		targetptr_final = &buffer->c[cpu].offset;
 705		if (opt_mb)
 706			ret = rseq_cmpeqv_trystorev_storev_release(
 707				targetptr_final, offset, targetptr_spec,
 708				newval_spec, newval_final, cpu);
 709		else
 710			ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
 711				offset, targetptr_spec, newval_spec,
 712				newval_final, cpu);
 713		if (rseq_likely(!ret)) {
 714			result = true;
 715			break;
 716		}
 717		/* Retry if comparison fails or rseq aborts. */
 718	}
 719	if (_cpu)
 720		*_cpu = cpu;
 721	return result;
 722}
 723
 724struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
 725					       int *_cpu)
 726{
 727	struct percpu_buffer_node *head;
 728	int cpu;
 729
 730	for (;;) {
 731		intptr_t *targetptr, newval;
 732		intptr_t offset;
 733		int ret;
 734
 735		cpu = rseq_cpu_start();
 736		/* Load offset with single-copy atomicity. */
 737		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 738		if (offset == 0) {
 739			head = NULL;
 740			break;
 741		}
 742		head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
 743		newval = offset - 1;
 744		targetptr = (intptr_t *)&buffer->c[cpu].offset;
 745		ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
 746			(intptr_t *)&buffer->c[cpu].array[offset - 1],
 747			(intptr_t)head, newval, cpu);
 748		if (rseq_likely(!ret))
 749			break;
 750		/* Retry if comparison fails or rseq aborts. */
 751	}
 752	if (_cpu)
 753		*_cpu = cpu;
 754	return head;
 755}
 756
 757/*
 758 * __percpu_buffer_pop is not safe against concurrent accesses. Should
 759 * only be used on buffers that are not concurrently modified.
 760 */
 761struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
 762					       int cpu)
 763{
 764	struct percpu_buffer_node *head;
 765	intptr_t offset;
 766
 767	offset = buffer->c[cpu].offset;
 768	if (offset == 0)
 769		return NULL;
 770	head = buffer->c[cpu].array[offset - 1];
 771	buffer->c[cpu].offset = offset - 1;
 772	return head;
 773}
 774
 775void *test_percpu_buffer_thread(void *arg)
 776{
 777	long long i, reps;
 778	struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
 779
 780	if (!opt_disable_rseq && rseq_register_current_thread())
 781		abort();
 782
 783	reps = opt_reps;
 784	for (i = 0; i < reps; i++) {
 785		struct percpu_buffer_node *node;
 786
 787		node = this_cpu_buffer_pop(buffer, NULL);
 788		if (opt_yield)
 789			sched_yield();  /* encourage shuffling */
 790		if (node) {
 791			if (!this_cpu_buffer_push(buffer, node, NULL)) {
 792				/* Should increase buffer size. */
 793				abort();
 794			}
 795		}
 796	}
 797
 798	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 799		       (int) gettid(), nr_abort, signals_delivered);
 800	if (!opt_disable_rseq && rseq_unregister_current_thread())
 801		abort();
 802
 803	return NULL;
 804}
 805
 806/* Simultaneous modification to a per-cpu buffer from many threads.  */
 807void test_percpu_buffer(void)
 808{
 809	const int num_threads = opt_threads;
 810	int i, j, ret;
 811	uint64_t sum = 0, expected_sum = 0;
 812	struct percpu_buffer buffer;
 813	pthread_t test_threads[num_threads];
 814	cpu_set_t allowed_cpus;
 815
 816	memset(&buffer, 0, sizeof(buffer));
 817
 818	/* Generate list entries for every usable cpu. */
 819	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 820	for (i = 0; i < CPU_SETSIZE; i++) {
 821		if (!CPU_ISSET(i, &allowed_cpus))
 822			continue;
 823		/* Worse-case is every item in same CPU. */
 824		buffer.c[i].array =
 825			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
 826			       BUFFER_ITEM_PER_CPU);
 827		assert(buffer.c[i].array);
 828		buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
 829		for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
 830			struct percpu_buffer_node *node;
 831
 832			expected_sum += j;
 833
 834			/*
 835			 * We could theoretically put the word-sized
 836			 * "data" directly in the buffer. However, we
 837			 * want to model objects that would not fit
 838			 * within a single word, so allocate an object
 839			 * for each node.
 840			 */
 841			node = malloc(sizeof(*node));
 842			assert(node);
 843			node->data = j;
 844			buffer.c[i].array[j - 1] = node;
 845			buffer.c[i].offset++;
 846		}
 847	}
 848
 849	for (i = 0; i < num_threads; i++) {
 850		ret = pthread_create(&test_threads[i], NULL,
 851				     test_percpu_buffer_thread, &buffer);
 852		if (ret) {
 853			errno = ret;
 854			perror("pthread_create");
 855			abort();
 856		}
 857	}
 858
 859	for (i = 0; i < num_threads; i++) {
 860		ret = pthread_join(test_threads[i], NULL);
 861		if (ret) {
 862			errno = ret;
 863			perror("pthread_join");
 864			abort();
 865		}
 866	}
 867
 868	for (i = 0; i < CPU_SETSIZE; i++) {
 869		struct percpu_buffer_node *node;
 870
 871		if (!CPU_ISSET(i, &allowed_cpus))
 872			continue;
 873
 874		while ((node = __percpu_buffer_pop(&buffer, i))) {
 875			sum += node->data;
 876			free(node);
 877		}
 878		free(buffer.c[i].array);
 879	}
 880
 881	/*
 882	 * All entries should now be accounted for (unless some external
 883	 * actor is interfering with our allowed affinity while this
 884	 * test is running).
 885	 */
 886	assert(sum == expected_sum);
 887}
 888
 889bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
 890				 struct percpu_memcpy_buffer_node item,
 891				 int *_cpu)
 892{
 893	bool result = false;
 894	int cpu;
 895
 896	for (;;) {
 897		intptr_t *targetptr_final, newval_final, offset;
 898		char *destptr, *srcptr;
 899		size_t copylen;
 900		int ret;
 901
 902		cpu = rseq_cpu_start();
 903		/* Load offset with single-copy atomicity. */
 904		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 905		if (offset == buffer->c[cpu].buflen)
 906			break;
 907		destptr = (char *)&buffer->c[cpu].array[offset];
 908		srcptr = (char *)&item;
 909		/* copylen must be <= 4kB. */
 910		copylen = sizeof(item);
 911		newval_final = offset + 1;
 912		targetptr_final = &buffer->c[cpu].offset;
 913		if (opt_mb)
 914			ret = rseq_cmpeqv_trymemcpy_storev_release(
 915				targetptr_final, offset,
 916				destptr, srcptr, copylen,
 917				newval_final, cpu);
 918		else
 919			ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 920				offset, destptr, srcptr, copylen,
 921				newval_final, cpu);
 922		if (rseq_likely(!ret)) {
 923			result = true;
 924			break;
 925		}
 926		/* Retry if comparison fails or rseq aborts. */
 927	}
 928	if (_cpu)
 929		*_cpu = cpu;
 930	return result;
 931}
 932
 933bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 934				struct percpu_memcpy_buffer_node *item,
 935				int *_cpu)
 936{
 937	bool result = false;
 938	int cpu;
 939
 940	for (;;) {
 941		intptr_t *targetptr_final, newval_final, offset;
 942		char *destptr, *srcptr;
 943		size_t copylen;
 944		int ret;
 945
 946		cpu = rseq_cpu_start();
 947		/* Load offset with single-copy atomicity. */
 948		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 949		if (offset == 0)
 950			break;
 951		destptr = (char *)item;
 952		srcptr = (char *)&buffer->c[cpu].array[offset - 1];
 953		/* copylen must be <= 4kB. */
 954		copylen = sizeof(*item);
 955		newval_final = offset - 1;
 956		targetptr_final = &buffer->c[cpu].offset;
 957		ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 958			offset, destptr, srcptr, copylen,
 959			newval_final, cpu);
 960		if (rseq_likely(!ret)) {
 961			result = true;
 962			break;
 963		}
 964		/* Retry if comparison fails or rseq aborts. */
 965	}
 966	if (_cpu)
 967		*_cpu = cpu;
 968	return result;
 969}
 970
 971/*
 972 * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
 973 * only be used on buffers that are not concurrently modified.
 974 */
 975bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 976				struct percpu_memcpy_buffer_node *item,
 977				int cpu)
 978{
 979	intptr_t offset;
 980
 981	offset = buffer->c[cpu].offset;
 982	if (offset == 0)
 983		return false;
 984	memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
 985	buffer->c[cpu].offset = offset - 1;
 986	return true;
 987}
 988
 989void *test_percpu_memcpy_buffer_thread(void *arg)
 990{
 991	long long i, reps;
 992	struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
 993
 994	if (!opt_disable_rseq && rseq_register_current_thread())
 995		abort();
 996
 997	reps = opt_reps;
 998	for (i = 0; i < reps; i++) {
 999		struct percpu_memcpy_buffer_node item;
1000		bool result;
1001
1002		result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
1003		if (opt_yield)
1004			sched_yield();  /* encourage shuffling */
1005		if (result) {
1006			if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
1007				/* Should increase buffer size. */
1008				abort();
1009			}
1010		}
1011	}
1012
1013	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
1014		       (int) gettid(), nr_abort, signals_delivered);
1015	if (!opt_disable_rseq && rseq_unregister_current_thread())
1016		abort();
1017
1018	return NULL;
1019}
1020
1021/* Simultaneous modification to a per-cpu buffer from many threads.  */
1022void test_percpu_memcpy_buffer(void)
1023{
1024	const int num_threads = opt_threads;
1025	int i, j, ret;
1026	uint64_t sum = 0, expected_sum = 0;
1027	struct percpu_memcpy_buffer buffer;
1028	pthread_t test_threads[num_threads];
1029	cpu_set_t allowed_cpus;
1030
1031	memset(&buffer, 0, sizeof(buffer));
1032
1033	/* Generate list entries for every usable cpu. */
1034	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
1035	for (i = 0; i < CPU_SETSIZE; i++) {
1036		if (!CPU_ISSET(i, &allowed_cpus))
1037			continue;
1038		/* Worse-case is every item in same CPU. */
1039		buffer.c[i].array =
1040			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
1041			       MEMCPY_BUFFER_ITEM_PER_CPU);
1042		assert(buffer.c[i].array);
1043		buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
1044		for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
1045			expected_sum += 2 * j + 1;
1046
1047			/*
1048			 * We could theoretically put the word-sized
1049			 * "data" directly in the buffer. However, we
1050			 * want to model objects that would not fit
1051			 * within a single word, so allocate an object
1052			 * for each node.
1053			 */
1054			buffer.c[i].array[j - 1].data1 = j;
1055			buffer.c[i].array[j - 1].data2 = j + 1;
1056			buffer.c[i].offset++;
1057		}
1058	}
1059
1060	for (i = 0; i < num_threads; i++) {
1061		ret = pthread_create(&test_threads[i], NULL,
1062				     test_percpu_memcpy_buffer_thread,
1063				     &buffer);
1064		if (ret) {
1065			errno = ret;
1066			perror("pthread_create");
1067			abort();
1068		}
1069	}
1070
1071	for (i = 0; i < num_threads; i++) {
1072		ret = pthread_join(test_threads[i], NULL);
1073		if (ret) {
1074			errno = ret;
1075			perror("pthread_join");
1076			abort();
1077		}
1078	}
1079
1080	for (i = 0; i < CPU_SETSIZE; i++) {
1081		struct percpu_memcpy_buffer_node item;
1082
1083		if (!CPU_ISSET(i, &allowed_cpus))
1084			continue;
1085
1086		while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1087			sum += item.data1;
1088			sum += item.data2;
1089		}
1090		free(buffer.c[i].array);
1091	}
1092
1093	/*
1094	 * All entries should now be accounted for (unless some external
1095	 * actor is interfering with our allowed affinity while this
1096	 * test is running).
1097	 */
1098	assert(sum == expected_sum);
1099}
1100
1101static void test_signal_interrupt_handler(int signo)
1102{
1103	signals_delivered++;
1104}
1105
1106static int set_signal_handler(void)
1107{
1108	int ret = 0;
1109	struct sigaction sa;
1110	sigset_t sigset;
1111
1112	ret = sigemptyset(&sigset);
1113	if (ret < 0) {
1114		perror("sigemptyset");
1115		return ret;
1116	}
1117
1118	sa.sa_handler = test_signal_interrupt_handler;
1119	sa.sa_mask = sigset;
1120	sa.sa_flags = 0;
1121	ret = sigaction(SIGUSR1, &sa, NULL);
1122	if (ret < 0) {
1123		perror("sigaction");
1124		return ret;
1125	}
1126
1127	printf_verbose("Signal handler set for SIGUSR1\n");
1128
1129	return ret;
1130}
1131
1132static void show_usage(int argc, char **argv)
1133{
1134	printf("Usage : %s <OPTIONS>\n",
1135		argv[0]);
1136	printf("OPTIONS:\n");
1137	printf("	[-1 loops] Number of loops for delay injection 1\n");
1138	printf("	[-2 loops] Number of loops for delay injection 2\n");
1139	printf("	[-3 loops] Number of loops for delay injection 3\n");
1140	printf("	[-4 loops] Number of loops for delay injection 4\n");
1141	printf("	[-5 loops] Number of loops for delay injection 5\n");
1142	printf("	[-6 loops] Number of loops for delay injection 6\n");
1143	printf("	[-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1144	printf("	[-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1145	printf("	[-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1146	printf("	[-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1147	printf("	[-y] Yield\n");
1148	printf("	[-k] Kill thread with signal\n");
1149	printf("	[-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1150	printf("	[-t N] Number of threads (default 200)\n");
1151	printf("	[-r N] Number of repetitions per thread (default 5000)\n");
1152	printf("	[-d] Disable rseq system call (no initialization)\n");
1153	printf("	[-D M] Disable rseq for each M threads\n");
1154	printf("	[-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement\n");
1155	printf("	[-M] Push into buffer and memcpy buffer with memory barriers.\n");
1156	printf("	[-v] Verbose output.\n");
1157	printf("	[-h] Show this help.\n");
1158	printf("\n");
1159}
1160
1161int main(int argc, char **argv)
1162{
1163	int i;
1164
1165	for (i = 1; i < argc; i++) {
1166		if (argv[i][0] != '-')
1167			continue;
1168		switch (argv[i][1]) {
1169		case '1':
1170		case '2':
1171		case '3':
1172		case '4':
1173		case '5':
1174		case '6':
1175		case '7':
1176		case '8':
1177		case '9':
1178			if (argc < i + 2) {
1179				show_usage(argc, argv);
1180				goto error;
1181			}
1182			loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1183			i++;
1184			break;
1185		case 'm':
1186			if (argc < i + 2) {
1187				show_usage(argc, argv);
1188				goto error;
1189			}
1190			opt_modulo = atol(argv[i + 1]);
1191			if (opt_modulo < 0) {
1192				show_usage(argc, argv);
1193				goto error;
1194			}
1195			i++;
1196			break;
1197		case 's':
1198			if (argc < i + 2) {
1199				show_usage(argc, argv);
1200				goto error;
1201			}
1202			opt_sleep = atol(argv[i + 1]);
1203			if (opt_sleep < 0) {
1204				show_usage(argc, argv);
1205				goto error;
1206			}
1207			i++;
1208			break;
1209		case 'y':
1210			opt_yield = 1;
1211			break;
1212		case 'k':
1213			opt_signal = 1;
1214			break;
1215		case 'd':
1216			opt_disable_rseq = 1;
1217			break;
1218		case 'D':
1219			if (argc < i + 2) {
1220				show_usage(argc, argv);
1221				goto error;
1222			}
1223			opt_disable_mod = atol(argv[i + 1]);
1224			if (opt_disable_mod < 0) {
1225				show_usage(argc, argv);
1226				goto error;
1227			}
1228			i++;
1229			break;
1230		case 't':
1231			if (argc < i + 2) {
1232				show_usage(argc, argv);
1233				goto error;
1234			}
1235			opt_threads = atol(argv[i + 1]);
1236			if (opt_threads < 0) {
1237				show_usage(argc, argv);
1238				goto error;
1239			}
1240			i++;
1241			break;
1242		case 'r':
1243			if (argc < i + 2) {
1244				show_usage(argc, argv);
1245				goto error;
1246			}
1247			opt_reps = atoll(argv[i + 1]);
1248			if (opt_reps < 0) {
1249				show_usage(argc, argv);
1250				goto error;
1251			}
1252			i++;
1253			break;
1254		case 'h':
1255			show_usage(argc, argv);
1256			goto end;
1257		case 'T':
1258			if (argc < i + 2) {
1259				show_usage(argc, argv);
1260				goto error;
1261			}
1262			opt_test = *argv[i + 1];
1263			switch (opt_test) {
1264			case 's':
1265			case 'l':
1266			case 'i':
1267			case 'b':
1268			case 'm':
1269				break;
1270			default:
1271				show_usage(argc, argv);
1272				goto error;
1273			}
1274			i++;
1275			break;
1276		case 'v':
1277			verbose = 1;
1278			break;
1279		case 'M':
1280			opt_mb = 1;
1281			break;
1282		default:
1283			show_usage(argc, argv);
1284			goto error;
1285		}
1286	}
1287
1288	loop_cnt_1 = loop_cnt[1];
1289	loop_cnt_2 = loop_cnt[2];
1290	loop_cnt_3 = loop_cnt[3];
1291	loop_cnt_4 = loop_cnt[4];
1292	loop_cnt_5 = loop_cnt[5];
1293	loop_cnt_6 = loop_cnt[6];
1294
1295	if (set_signal_handler())
1296		goto error;
1297
1298	if (!opt_disable_rseq && rseq_register_current_thread())
1299		goto error;
1300	switch (opt_test) {
1301	case 's':
1302		printf_verbose("spinlock\n");
1303		test_percpu_spinlock();
1304		break;
1305	case 'l':
1306		printf_verbose("linked list\n");
1307		test_percpu_list();
1308		break;
1309	case 'b':
1310		printf_verbose("buffer\n");
1311		test_percpu_buffer();
1312		break;
1313	case 'm':
1314		printf_verbose("memcpy buffer\n");
1315		test_percpu_memcpy_buffer();
1316		break;
1317	case 'i':
1318		printf_verbose("counter increment\n");
1319		test_percpu_inc();
1320		break;
1321	}
1322	if (!opt_disable_rseq && rseq_unregister_current_thread())
1323		abort();
1324end:
1325	return 0;
1326
1327error:
1328	return -1;
1329}