Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
 
  1/*
  2 * kernel/power/main.c - PM subsystem core functionality.
  3 *
  4 * Copyright (c) 2003 Patrick Mochel
  5 * Copyright (c) 2003 Open Source Development Lab
  6 * 
  7 * This file is released under the GPLv2
  8 *
  9 */
 10
 
 11#include <linux/kobject.h>
 12#include <linux/string.h>
 13#include <linux/resume-trace.h>
 14#include <linux/workqueue.h>
 
 
 
 
 
 15
 16#include "power.h"
 17
 18DEFINE_MUTEX(pm_mutex);
 19
 20#ifdef CONFIG_PM_SLEEP
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22/* Routines for PM-transition notifications */
 23
 24static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
 25
 26int register_pm_notifier(struct notifier_block *nb)
 27{
 28	return blocking_notifier_chain_register(&pm_chain_head, nb);
 29}
 30EXPORT_SYMBOL_GPL(register_pm_notifier);
 31
 32int unregister_pm_notifier(struct notifier_block *nb)
 33{
 34	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
 35}
 36EXPORT_SYMBOL_GPL(unregister_pm_notifier);
 37
 38int pm_notifier_call_chain(unsigned long val)
 39{
 40	int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
 
 
 
 41
 42	return notifier_to_errno(ret);
 43}
 
 
 
 
 44
 45/* If set, devices may be suspended and resumed asynchronously. */
 46int pm_async_enabled = 1;
 47
 48static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
 49			     char *buf)
 50{
 51	return sprintf(buf, "%d\n", pm_async_enabled);
 52}
 53
 54static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
 55			      const char *buf, size_t n)
 56{
 57	unsigned long val;
 58
 59	if (strict_strtoul(buf, 10, &val))
 60		return -EINVAL;
 61
 62	if (val > 1)
 63		return -EINVAL;
 64
 65	pm_async_enabled = val;
 66	return n;
 67}
 68
 69power_attr(pm_async);
 70
 71#ifdef CONFIG_PM_DEBUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72int pm_test_level = TEST_NONE;
 73
 74static const char * const pm_tests[__TEST_AFTER_LAST] = {
 75	[TEST_NONE] = "none",
 76	[TEST_CORE] = "core",
 77	[TEST_CPUS] = "processors",
 78	[TEST_PLATFORM] = "platform",
 79	[TEST_DEVICES] = "devices",
 80	[TEST_FREEZER] = "freezer",
 81};
 82
 83static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
 84				char *buf)
 85{
 86	char *s = buf;
 87	int level;
 88
 89	for (level = TEST_FIRST; level <= TEST_MAX; level++)
 90		if (pm_tests[level]) {
 91			if (level == pm_test_level)
 92				s += sprintf(s, "[%s] ", pm_tests[level]);
 93			else
 94				s += sprintf(s, "%s ", pm_tests[level]);
 95		}
 96
 97	if (s != buf)
 98		/* convert the last space to a newline */
 99		*(s-1) = '\n';
100
101	return (s - buf);
102}
103
104static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
105				const char *buf, size_t n)
106{
107	const char * const *s;
108	int level;
109	char *p;
110	int len;
111	int error = -EINVAL;
112
113	p = memchr(buf, '\n', n);
114	len = p ? p - buf : n;
115
116	mutex_lock(&pm_mutex);
117
118	level = TEST_FIRST;
119	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
120		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
121			pm_test_level = level;
122			error = 0;
123			break;
124		}
125
126	mutex_unlock(&pm_mutex);
127
128	return error ? error : n;
129}
130
131power_attr(pm_test);
132#endif /* CONFIG_PM_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
134#endif /* CONFIG_PM_SLEEP */
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136struct kobject *power_kobj;
137
138/**
139 *	state - control system power state.
140 *
141 *	show() returns what states are supported, which is hard-coded to
142 *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
143 *	'disk' (Suspend-to-Disk).
 
144 *
145 *	store() accepts one of those strings, translates it into the 
146 *	proper enumerated value, and initiates a suspend transition.
147 */
148static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
149			  char *buf)
150{
151	char *s = buf;
152#ifdef CONFIG_SUSPEND
153	int i;
154
155	for (i = 0; i < PM_SUSPEND_MAX; i++) {
156		if (pm_states[i] && valid_state(i))
157			s += sprintf(s,"%s ", pm_states[i]);
158	}
159#endif
160#ifdef CONFIG_HIBERNATION
161	s += sprintf(s, "%s\n", "disk");
162#else
163	if (s != buf)
164		/* convert the last space to a newline */
165		*(s-1) = '\n';
166#endif
167	return (s - buf);
168}
169
170static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
171			   const char *buf, size_t n)
172{
173#ifdef CONFIG_SUSPEND
174	suspend_state_t state = PM_SUSPEND_STANDBY;
175	const char * const *s;
176#endif
177	char *p;
178	int len;
179	int error = -EINVAL;
180
181	p = memchr(buf, '\n', n);
182	len = p ? p - buf : n;
183
184	/* First, check if we are requested to hibernate */
185	if (len == 4 && !strncmp(buf, "disk", len)) {
186		error = hibernate();
187  goto Exit;
188	}
189
190#ifdef CONFIG_SUSPEND
191	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
192		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
193			break;
 
 
194	}
195	if (state < PM_SUSPEND_MAX && *s)
196		error = enter_state(state);
197#endif
198
199 Exit:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200	return error ? error : n;
201}
202
203power_attr(state);
204
205#ifdef CONFIG_PM_SLEEP
206/*
207 * The 'wakeup_count' attribute, along with the functions defined in
208 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
209 * handled in a non-racy way.
210 *
211 * If a wakeup event occurs when the system is in a sleep state, it simply is
212 * woken up.  In turn, if an event that would wake the system up from a sleep
213 * state occurs when it is undergoing a transition to that sleep state, the
214 * transition should be aborted.  Moreover, if such an event occurs when the
215 * system is in the working state, an attempt to start a transition to the
216 * given sleep state should fail during certain period after the detection of
217 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
218 * these requirements, because a wakeup event may occur exactly when 'state'
219 * is being written to and may be delivered to user space right before it is
220 * frozen, so the event will remain only partially processed until the system is
221 * woken up by another event.  In particular, it won't cause the transition to
222 * a sleep state to be aborted.
223 *
224 * This difficulty may be overcome if user space uses 'wakeup_count' before
225 * writing to 'state'.  It first should read from 'wakeup_count' and store
226 * the read value.  Then, after carrying out its own preparations for the system
227 * transition to a sleep state, it should write the stored value to
228 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
229 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
230 * is allowed to write to 'state', but the transition will be aborted if there
231 * are any wakeup events detected after 'wakeup_count' was written to.
232 */
233
234static ssize_t wakeup_count_show(struct kobject *kobj,
235				struct kobj_attribute *attr,
236				char *buf)
237{
238	unsigned int val;
239
240	return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR;
 
241}
242
243static ssize_t wakeup_count_store(struct kobject *kobj,
244				struct kobj_attribute *attr,
245				const char *buf, size_t n)
246{
247	unsigned int val;
 
248
 
 
 
 
 
 
 
 
 
 
249	if (sscanf(buf, "%u", &val) == 1) {
250		if (pm_save_wakeup_count(val))
251			return n;
 
 
252	}
253	return -EINVAL;
 
 
 
254}
255
256power_attr(wakeup_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257#endif /* CONFIG_PM_SLEEP */
258
259#ifdef CONFIG_PM_TRACE
260int pm_trace_enabled;
261
262static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
263			     char *buf)
264{
265	return sprintf(buf, "%d\n", pm_trace_enabled);
266}
267
268static ssize_t
269pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
270	       const char *buf, size_t n)
271{
272	int val;
273
274	if (sscanf(buf, "%d", &val) == 1) {
275		pm_trace_enabled = !!val;
 
 
 
 
276		return n;
277	}
278	return -EINVAL;
279}
280
281power_attr(pm_trace);
282
283static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
284				       struct kobj_attribute *attr,
285				       char *buf)
286{
287	return show_trace_dev_match(buf, PAGE_SIZE);
288}
289
290static ssize_t
291pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
292			 const char *buf, size_t n)
 
 
 
 
293{
294	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
295}
296
297power_attr(pm_trace_dev_match);
298
299#endif /* CONFIG_PM_TRACE */
300
301static struct attribute * g[] = {
302	&state_attr.attr,
303#ifdef CONFIG_PM_TRACE
304	&pm_trace_attr.attr,
305	&pm_trace_dev_match_attr.attr,
306#endif
307#ifdef CONFIG_PM_SLEEP
308	&pm_async_attr.attr,
309	&wakeup_count_attr.attr,
310#ifdef CONFIG_PM_DEBUG
 
 
 
 
 
 
 
 
 
 
311	&pm_test_attr.attr,
 
 
 
312#endif
313#endif
 
 
 
314	NULL,
315};
316
317static struct attribute_group attr_group = {
318	.attrs = g,
319};
320
321#ifdef CONFIG_PM_RUNTIME
 
 
 
 
 
 
 
322struct workqueue_struct *pm_wq;
323EXPORT_SYMBOL_GPL(pm_wq);
324
325static int __init pm_start_workqueue(void)
326{
327	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
328
329	return pm_wq ? 0 : -ENOMEM;
330}
331#else
332static inline int pm_start_workqueue(void) { return 0; }
333#endif
334
335static int __init pm_init(void)
336{
337	int error = pm_start_workqueue();
338	if (error)
339		return error;
340	hibernate_image_size_init();
341	hibernate_reserved_size_init();
 
342	power_kobj = kobject_create_and_add("power", NULL);
343	if (!power_kobj)
344		return -ENOMEM;
345	return sysfs_create_group(power_kobj, &attr_group);
 
 
 
 
346}
347
348core_initcall(pm_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kernel/power/main.c - PM subsystem core functionality.
  4 *
  5 * Copyright (c) 2003 Patrick Mochel
  6 * Copyright (c) 2003 Open Source Development Lab
 
 
 
  7 */
  8
  9#include <linux/export.h>
 10#include <linux/kobject.h>
 11#include <linux/string.h>
 12#include <linux/pm-trace.h>
 13#include <linux/workqueue.h>
 14#include <linux/debugfs.h>
 15#include <linux/seq_file.h>
 16#include <linux/suspend.h>
 17#include <linux/syscalls.h>
 18#include <linux/pm_runtime.h>
 19
 20#include "power.h"
 21
 
 
 22#ifdef CONFIG_PM_SLEEP
 23
 24void lock_system_sleep(void)
 25{
 26	current->flags |= PF_FREEZER_SKIP;
 27	mutex_lock(&system_transition_mutex);
 28}
 29EXPORT_SYMBOL_GPL(lock_system_sleep);
 30
 31void unlock_system_sleep(void)
 32{
 33	/*
 34	 * Don't use freezer_count() because we don't want the call to
 35	 * try_to_freeze() here.
 36	 *
 37	 * Reason:
 38	 * Fundamentally, we just don't need it, because freezing condition
 39	 * doesn't come into effect until we release the
 40	 * system_transition_mutex lock, since the freezer always works with
 41	 * system_transition_mutex held.
 42	 *
 43	 * More importantly, in the case of hibernation,
 44	 * unlock_system_sleep() gets called in snapshot_read() and
 45	 * snapshot_write() when the freezing condition is still in effect.
 46	 * Which means, if we use try_to_freeze() here, it would make them
 47	 * enter the refrigerator, thus causing hibernation to lockup.
 48	 */
 49	current->flags &= ~PF_FREEZER_SKIP;
 50	mutex_unlock(&system_transition_mutex);
 51}
 52EXPORT_SYMBOL_GPL(unlock_system_sleep);
 53
 54void ksys_sync_helper(void)
 55{
 56	ktime_t start;
 57	long elapsed_msecs;
 58
 59	start = ktime_get();
 60	ksys_sync();
 61	elapsed_msecs = ktime_to_ms(ktime_sub(ktime_get(), start));
 62	pr_info("Filesystems sync: %ld.%03ld seconds\n",
 63		elapsed_msecs / MSEC_PER_SEC, elapsed_msecs % MSEC_PER_SEC);
 64}
 65EXPORT_SYMBOL_GPL(ksys_sync_helper);
 66
 67/* Routines for PM-transition notifications */
 68
 69static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
 70
 71int register_pm_notifier(struct notifier_block *nb)
 72{
 73	return blocking_notifier_chain_register(&pm_chain_head, nb);
 74}
 75EXPORT_SYMBOL_GPL(register_pm_notifier);
 76
 77int unregister_pm_notifier(struct notifier_block *nb)
 78{
 79	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
 80}
 81EXPORT_SYMBOL_GPL(unregister_pm_notifier);
 82
 83int __pm_notifier_call_chain(unsigned long val, int nr_to_call, int *nr_calls)
 84{
 85	int ret;
 86
 87	ret = __blocking_notifier_call_chain(&pm_chain_head, val, NULL,
 88						nr_to_call, nr_calls);
 89
 90	return notifier_to_errno(ret);
 91}
 92int pm_notifier_call_chain(unsigned long val)
 93{
 94	return __pm_notifier_call_chain(val, -1, NULL);
 95}
 96
 97/* If set, devices may be suspended and resumed asynchronously. */
 98int pm_async_enabled = 1;
 99
100static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
101			     char *buf)
102{
103	return sprintf(buf, "%d\n", pm_async_enabled);
104}
105
106static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
107			      const char *buf, size_t n)
108{
109	unsigned long val;
110
111	if (kstrtoul(buf, 10, &val))
112		return -EINVAL;
113
114	if (val > 1)
115		return -EINVAL;
116
117	pm_async_enabled = val;
118	return n;
119}
120
121power_attr(pm_async);
122
123#ifdef CONFIG_SUSPEND
124static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
125			      char *buf)
126{
127	char *s = buf;
128	suspend_state_t i;
129
130	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
131		if (mem_sleep_states[i]) {
132			const char *label = mem_sleep_states[i];
133
134			if (mem_sleep_current == i)
135				s += sprintf(s, "[%s] ", label);
136			else
137				s += sprintf(s, "%s ", label);
138		}
139
140	/* Convert the last space to a newline if needed. */
141	if (s != buf)
142		*(s-1) = '\n';
143
144	return (s - buf);
145}
146
147static suspend_state_t decode_suspend_state(const char *buf, size_t n)
148{
149	suspend_state_t state;
150	char *p;
151	int len;
152
153	p = memchr(buf, '\n', n);
154	len = p ? p - buf : n;
155
156	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
157		const char *label = mem_sleep_states[state];
158
159		if (label && len == strlen(label) && !strncmp(buf, label, len))
160			return state;
161	}
162
163	return PM_SUSPEND_ON;
164}
165
166static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
167			       const char *buf, size_t n)
168{
169	suspend_state_t state;
170	int error;
171
172	error = pm_autosleep_lock();
173	if (error)
174		return error;
175
176	if (pm_autosleep_state() > PM_SUSPEND_ON) {
177		error = -EBUSY;
178		goto out;
179	}
180
181	state = decode_suspend_state(buf, n);
182	if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
183		mem_sleep_current = state;
184	else
185		error = -EINVAL;
186
187 out:
188	pm_autosleep_unlock();
189	return error ? error : n;
190}
191
192power_attr(mem_sleep);
193#endif /* CONFIG_SUSPEND */
194
195#ifdef CONFIG_PM_SLEEP_DEBUG
196int pm_test_level = TEST_NONE;
197
198static const char * const pm_tests[__TEST_AFTER_LAST] = {
199	[TEST_NONE] = "none",
200	[TEST_CORE] = "core",
201	[TEST_CPUS] = "processors",
202	[TEST_PLATFORM] = "platform",
203	[TEST_DEVICES] = "devices",
204	[TEST_FREEZER] = "freezer",
205};
206
207static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
208				char *buf)
209{
210	char *s = buf;
211	int level;
212
213	for (level = TEST_FIRST; level <= TEST_MAX; level++)
214		if (pm_tests[level]) {
215			if (level == pm_test_level)
216				s += sprintf(s, "[%s] ", pm_tests[level]);
217			else
218				s += sprintf(s, "%s ", pm_tests[level]);
219		}
220
221	if (s != buf)
222		/* convert the last space to a newline */
223		*(s-1) = '\n';
224
225	return (s - buf);
226}
227
228static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
229				const char *buf, size_t n)
230{
231	const char * const *s;
232	int level;
233	char *p;
234	int len;
235	int error = -EINVAL;
236
237	p = memchr(buf, '\n', n);
238	len = p ? p - buf : n;
239
240	lock_system_sleep();
241
242	level = TEST_FIRST;
243	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
244		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
245			pm_test_level = level;
246			error = 0;
247			break;
248		}
249
250	unlock_system_sleep();
251
252	return error ? error : n;
253}
254
255power_attr(pm_test);
256#endif /* CONFIG_PM_SLEEP_DEBUG */
257
258static char *suspend_step_name(enum suspend_stat_step step)
259{
260	switch (step) {
261	case SUSPEND_FREEZE:
262		return "freeze";
263	case SUSPEND_PREPARE:
264		return "prepare";
265	case SUSPEND_SUSPEND:
266		return "suspend";
267	case SUSPEND_SUSPEND_NOIRQ:
268		return "suspend_noirq";
269	case SUSPEND_RESUME_NOIRQ:
270		return "resume_noirq";
271	case SUSPEND_RESUME:
272		return "resume";
273	default:
274		return "";
275	}
276}
277
278#define suspend_attr(_name)					\
279static ssize_t _name##_show(struct kobject *kobj,		\
280		struct kobj_attribute *attr, char *buf)		\
281{								\
282	return sprintf(buf, "%d\n", suspend_stats._name);	\
283}								\
284static struct kobj_attribute _name = __ATTR_RO(_name)
285
286suspend_attr(success);
287suspend_attr(fail);
288suspend_attr(failed_freeze);
289suspend_attr(failed_prepare);
290suspend_attr(failed_suspend);
291suspend_attr(failed_suspend_late);
292suspend_attr(failed_suspend_noirq);
293suspend_attr(failed_resume);
294suspend_attr(failed_resume_early);
295suspend_attr(failed_resume_noirq);
296
297static ssize_t last_failed_dev_show(struct kobject *kobj,
298		struct kobj_attribute *attr, char *buf)
299{
300	int index;
301	char *last_failed_dev = NULL;
302
303	index = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
304	index %= REC_FAILED_NUM;
305	last_failed_dev = suspend_stats.failed_devs[index];
306
307	return sprintf(buf, "%s\n", last_failed_dev);
308}
309static struct kobj_attribute last_failed_dev = __ATTR_RO(last_failed_dev);
310
311static ssize_t last_failed_errno_show(struct kobject *kobj,
312		struct kobj_attribute *attr, char *buf)
313{
314	int index;
315	int last_failed_errno;
316
317	index = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
318	index %= REC_FAILED_NUM;
319	last_failed_errno = suspend_stats.errno[index];
320
321	return sprintf(buf, "%d\n", last_failed_errno);
322}
323static struct kobj_attribute last_failed_errno = __ATTR_RO(last_failed_errno);
324
325static ssize_t last_failed_step_show(struct kobject *kobj,
326		struct kobj_attribute *attr, char *buf)
327{
328	int index;
329	enum suspend_stat_step step;
330	char *last_failed_step = NULL;
331
332	index = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
333	index %= REC_FAILED_NUM;
334	step = suspend_stats.failed_steps[index];
335	last_failed_step = suspend_step_name(step);
336
337	return sprintf(buf, "%s\n", last_failed_step);
338}
339static struct kobj_attribute last_failed_step = __ATTR_RO(last_failed_step);
340
341static struct attribute *suspend_attrs[] = {
342	&success.attr,
343	&fail.attr,
344	&failed_freeze.attr,
345	&failed_prepare.attr,
346	&failed_suspend.attr,
347	&failed_suspend_late.attr,
348	&failed_suspend_noirq.attr,
349	&failed_resume.attr,
350	&failed_resume_early.attr,
351	&failed_resume_noirq.attr,
352	&last_failed_dev.attr,
353	&last_failed_errno.attr,
354	&last_failed_step.attr,
355	NULL,
356};
357
358static struct attribute_group suspend_attr_group = {
359	.name = "suspend_stats",
360	.attrs = suspend_attrs,
361};
362
363#ifdef CONFIG_DEBUG_FS
364static int suspend_stats_show(struct seq_file *s, void *unused)
365{
366	int i, index, last_dev, last_errno, last_step;
367
368	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
369	last_dev %= REC_FAILED_NUM;
370	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
371	last_errno %= REC_FAILED_NUM;
372	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
373	last_step %= REC_FAILED_NUM;
374	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
375			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
376			"success", suspend_stats.success,
377			"fail", suspend_stats.fail,
378			"failed_freeze", suspend_stats.failed_freeze,
379			"failed_prepare", suspend_stats.failed_prepare,
380			"failed_suspend", suspend_stats.failed_suspend,
381			"failed_suspend_late",
382				suspend_stats.failed_suspend_late,
383			"failed_suspend_noirq",
384				suspend_stats.failed_suspend_noirq,
385			"failed_resume", suspend_stats.failed_resume,
386			"failed_resume_early",
387				suspend_stats.failed_resume_early,
388			"failed_resume_noirq",
389				suspend_stats.failed_resume_noirq);
390	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
391			suspend_stats.failed_devs[last_dev]);
392	for (i = 1; i < REC_FAILED_NUM; i++) {
393		index = last_dev + REC_FAILED_NUM - i;
394		index %= REC_FAILED_NUM;
395		seq_printf(s, "\t\t\t%-s\n",
396			suspend_stats.failed_devs[index]);
397	}
398	seq_printf(s,	"  last_failed_errno:\t%-d\n",
399			suspend_stats.errno[last_errno]);
400	for (i = 1; i < REC_FAILED_NUM; i++) {
401		index = last_errno + REC_FAILED_NUM - i;
402		index %= REC_FAILED_NUM;
403		seq_printf(s, "\t\t\t%-d\n",
404			suspend_stats.errno[index]);
405	}
406	seq_printf(s,	"  last_failed_step:\t%-s\n",
407			suspend_step_name(
408				suspend_stats.failed_steps[last_step]));
409	for (i = 1; i < REC_FAILED_NUM; i++) {
410		index = last_step + REC_FAILED_NUM - i;
411		index %= REC_FAILED_NUM;
412		seq_printf(s, "\t\t\t%-s\n",
413			suspend_step_name(
414				suspend_stats.failed_steps[index]));
415	}
416
417	return 0;
418}
419DEFINE_SHOW_ATTRIBUTE(suspend_stats);
420
421static int __init pm_debugfs_init(void)
422{
423	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
424			NULL, NULL, &suspend_stats_fops);
425	return 0;
426}
427
428late_initcall(pm_debugfs_init);
429#endif /* CONFIG_DEBUG_FS */
430
431#endif /* CONFIG_PM_SLEEP */
432
433#ifdef CONFIG_PM_SLEEP_DEBUG
434/*
435 * pm_print_times: print time taken by devices to suspend and resume.
436 *
437 * show() returns whether printing of suspend and resume times is enabled.
438 * store() accepts 0 or 1.  0 disables printing and 1 enables it.
439 */
440bool pm_print_times_enabled;
441
442static ssize_t pm_print_times_show(struct kobject *kobj,
443				   struct kobj_attribute *attr, char *buf)
444{
445	return sprintf(buf, "%d\n", pm_print_times_enabled);
446}
447
448static ssize_t pm_print_times_store(struct kobject *kobj,
449				    struct kobj_attribute *attr,
450				    const char *buf, size_t n)
451{
452	unsigned long val;
453
454	if (kstrtoul(buf, 10, &val))
455		return -EINVAL;
456
457	if (val > 1)
458		return -EINVAL;
459
460	pm_print_times_enabled = !!val;
461	return n;
462}
463
464power_attr(pm_print_times);
465
466static inline void pm_print_times_init(void)
467{
468	pm_print_times_enabled = !!initcall_debug;
469}
470
471static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
472					struct kobj_attribute *attr,
473					char *buf)
474{
475	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
476}
477
478power_attr_ro(pm_wakeup_irq);
479
480bool pm_debug_messages_on __read_mostly;
481
482static ssize_t pm_debug_messages_show(struct kobject *kobj,
483				      struct kobj_attribute *attr, char *buf)
484{
485	return sprintf(buf, "%d\n", pm_debug_messages_on);
486}
487
488static ssize_t pm_debug_messages_store(struct kobject *kobj,
489				       struct kobj_attribute *attr,
490				       const char *buf, size_t n)
491{
492	unsigned long val;
493
494	if (kstrtoul(buf, 10, &val))
495		return -EINVAL;
496
497	if (val > 1)
498		return -EINVAL;
499
500	pm_debug_messages_on = !!val;
501	return n;
502}
503
504power_attr(pm_debug_messages);
505
506/**
507 * __pm_pr_dbg - Print a suspend debug message to the kernel log.
508 * @defer: Whether or not to use printk_deferred() to print the message.
509 * @fmt: Message format.
510 *
511 * The message will be emitted if enabled through the pm_debug_messages
512 * sysfs attribute.
513 */
514void __pm_pr_dbg(bool defer, const char *fmt, ...)
515{
516	struct va_format vaf;
517	va_list args;
518
519	if (!pm_debug_messages_on)
520		return;
521
522	va_start(args, fmt);
523
524	vaf.fmt = fmt;
525	vaf.va = &args;
526
527	if (defer)
528		printk_deferred(KERN_DEBUG "PM: %pV", &vaf);
529	else
530		printk(KERN_DEBUG "PM: %pV", &vaf);
531
532	va_end(args);
533}
534
535#else /* !CONFIG_PM_SLEEP_DEBUG */
536static inline void pm_print_times_init(void) {}
537#endif /* CONFIG_PM_SLEEP_DEBUG */
538
539struct kobject *power_kobj;
540
541/**
542 * state - control system sleep states.
543 *
544 * show() returns available sleep state labels, which may be "mem", "standby",
545 * "freeze" and "disk" (hibernation).
546 * See Documentation/admin-guide/pm/sleep-states.rst for a description of
547 * what they mean.
548 *
549 * store() accepts one of those strings, translates it into the proper
550 * enumerated value, and initiates a suspend transition.
551 */
552static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
553			  char *buf)
554{
555	char *s = buf;
556#ifdef CONFIG_SUSPEND
557	suspend_state_t i;
558
559	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
560		if (pm_states[i])
561			s += sprintf(s,"%s ", pm_states[i]);
562
563#endif
564	if (hibernation_available())
565		s += sprintf(s, "disk ");
 
566	if (s != buf)
567		/* convert the last space to a newline */
568		*(s-1) = '\n';
 
569	return (s - buf);
570}
571
572static suspend_state_t decode_state(const char *buf, size_t n)
 
573{
574#ifdef CONFIG_SUSPEND
575	suspend_state_t state;
 
576#endif
577	char *p;
578	int len;
 
579
580	p = memchr(buf, '\n', n);
581	len = p ? p - buf : n;
582
583	/* Check hibernation first. */
584	if (len == 4 && str_has_prefix(buf, "disk"))
585		return PM_SUSPEND_MAX;
 
 
586
587#ifdef CONFIG_SUSPEND
588	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
589		const char *label = pm_states[state];
590
591		if (label && len == strlen(label) && !strncmp(buf, label, len))
592			return state;
593	}
 
 
594#endif
595
596	return PM_SUSPEND_ON;
597}
598
599static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
600			   const char *buf, size_t n)
601{
602	suspend_state_t state;
603	int error;
604
605	error = pm_autosleep_lock();
606	if (error)
607		return error;
608
609	if (pm_autosleep_state() > PM_SUSPEND_ON) {
610		error = -EBUSY;
611		goto out;
612	}
613
614	state = decode_state(buf, n);
615	if (state < PM_SUSPEND_MAX) {
616		if (state == PM_SUSPEND_MEM)
617			state = mem_sleep_current;
618
619		error = pm_suspend(state);
620	} else if (state == PM_SUSPEND_MAX) {
621		error = hibernate();
622	} else {
623		error = -EINVAL;
624	}
625
626 out:
627	pm_autosleep_unlock();
628	return error ? error : n;
629}
630
631power_attr(state);
632
633#ifdef CONFIG_PM_SLEEP
634/*
635 * The 'wakeup_count' attribute, along with the functions defined in
636 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
637 * handled in a non-racy way.
638 *
639 * If a wakeup event occurs when the system is in a sleep state, it simply is
640 * woken up.  In turn, if an event that would wake the system up from a sleep
641 * state occurs when it is undergoing a transition to that sleep state, the
642 * transition should be aborted.  Moreover, if such an event occurs when the
643 * system is in the working state, an attempt to start a transition to the
644 * given sleep state should fail during certain period after the detection of
645 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
646 * these requirements, because a wakeup event may occur exactly when 'state'
647 * is being written to and may be delivered to user space right before it is
648 * frozen, so the event will remain only partially processed until the system is
649 * woken up by another event.  In particular, it won't cause the transition to
650 * a sleep state to be aborted.
651 *
652 * This difficulty may be overcome if user space uses 'wakeup_count' before
653 * writing to 'state'.  It first should read from 'wakeup_count' and store
654 * the read value.  Then, after carrying out its own preparations for the system
655 * transition to a sleep state, it should write the stored value to
656 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
657 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
658 * is allowed to write to 'state', but the transition will be aborted if there
659 * are any wakeup events detected after 'wakeup_count' was written to.
660 */
661
662static ssize_t wakeup_count_show(struct kobject *kobj,
663				struct kobj_attribute *attr,
664				char *buf)
665{
666	unsigned int val;
667
668	return pm_get_wakeup_count(&val, true) ?
669		sprintf(buf, "%u\n", val) : -EINTR;
670}
671
672static ssize_t wakeup_count_store(struct kobject *kobj,
673				struct kobj_attribute *attr,
674				const char *buf, size_t n)
675{
676	unsigned int val;
677	int error;
678
679	error = pm_autosleep_lock();
680	if (error)
681		return error;
682
683	if (pm_autosleep_state() > PM_SUSPEND_ON) {
684		error = -EBUSY;
685		goto out;
686	}
687
688	error = -EINVAL;
689	if (sscanf(buf, "%u", &val) == 1) {
690		if (pm_save_wakeup_count(val))
691			error = n;
692		else
693			pm_print_active_wakeup_sources();
694	}
695
696 out:
697	pm_autosleep_unlock();
698	return error;
699}
700
701power_attr(wakeup_count);
702
703#ifdef CONFIG_PM_AUTOSLEEP
704static ssize_t autosleep_show(struct kobject *kobj,
705			      struct kobj_attribute *attr,
706			      char *buf)
707{
708	suspend_state_t state = pm_autosleep_state();
709
710	if (state == PM_SUSPEND_ON)
711		return sprintf(buf, "off\n");
712
713#ifdef CONFIG_SUSPEND
714	if (state < PM_SUSPEND_MAX)
715		return sprintf(buf, "%s\n", pm_states[state] ?
716					pm_states[state] : "error");
717#endif
718#ifdef CONFIG_HIBERNATION
719	return sprintf(buf, "disk\n");
720#else
721	return sprintf(buf, "error");
722#endif
723}
724
725static ssize_t autosleep_store(struct kobject *kobj,
726			       struct kobj_attribute *attr,
727			       const char *buf, size_t n)
728{
729	suspend_state_t state = decode_state(buf, n);
730	int error;
731
732	if (state == PM_SUSPEND_ON
733	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
734		return -EINVAL;
735
736	if (state == PM_SUSPEND_MEM)
737		state = mem_sleep_current;
738
739	error = pm_autosleep_set_state(state);
740	return error ? error : n;
741}
742
743power_attr(autosleep);
744#endif /* CONFIG_PM_AUTOSLEEP */
745
746#ifdef CONFIG_PM_WAKELOCKS
747static ssize_t wake_lock_show(struct kobject *kobj,
748			      struct kobj_attribute *attr,
749			      char *buf)
750{
751	return pm_show_wakelocks(buf, true);
752}
753
754static ssize_t wake_lock_store(struct kobject *kobj,
755			       struct kobj_attribute *attr,
756			       const char *buf, size_t n)
757{
758	int error = pm_wake_lock(buf);
759	return error ? error : n;
760}
761
762power_attr(wake_lock);
763
764static ssize_t wake_unlock_show(struct kobject *kobj,
765				struct kobj_attribute *attr,
766				char *buf)
767{
768	return pm_show_wakelocks(buf, false);
769}
770
771static ssize_t wake_unlock_store(struct kobject *kobj,
772				 struct kobj_attribute *attr,
773				 const char *buf, size_t n)
774{
775	int error = pm_wake_unlock(buf);
776	return error ? error : n;
777}
778
779power_attr(wake_unlock);
780
781#endif /* CONFIG_PM_WAKELOCKS */
782#endif /* CONFIG_PM_SLEEP */
783
784#ifdef CONFIG_PM_TRACE
785int pm_trace_enabled;
786
787static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
788			     char *buf)
789{
790	return sprintf(buf, "%d\n", pm_trace_enabled);
791}
792
793static ssize_t
794pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
795	       const char *buf, size_t n)
796{
797	int val;
798
799	if (sscanf(buf, "%d", &val) == 1) {
800		pm_trace_enabled = !!val;
801		if (pm_trace_enabled) {
802			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
803				"PM: Correct system time has to be restored manually after resume.\n");
804		}
805		return n;
806	}
807	return -EINVAL;
808}
809
810power_attr(pm_trace);
811
812static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
813				       struct kobj_attribute *attr,
814				       char *buf)
815{
816	return show_trace_dev_match(buf, PAGE_SIZE);
817}
818
819power_attr_ro(pm_trace_dev_match);
820
821#endif /* CONFIG_PM_TRACE */
822
823#ifdef CONFIG_FREEZER
824static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
825				      struct kobj_attribute *attr, char *buf)
826{
827	return sprintf(buf, "%u\n", freeze_timeout_msecs);
828}
829
830static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
831				       struct kobj_attribute *attr,
832				       const char *buf, size_t n)
833{
834	unsigned long val;
835
836	if (kstrtoul(buf, 10, &val))
837		return -EINVAL;
838
839	freeze_timeout_msecs = val;
840	return n;
841}
842
843power_attr(pm_freeze_timeout);
844
845#endif	/* CONFIG_FREEZER*/
846
847static struct attribute * g[] = {
848	&state_attr.attr,
849#ifdef CONFIG_PM_TRACE
850	&pm_trace_attr.attr,
851	&pm_trace_dev_match_attr.attr,
852#endif
853#ifdef CONFIG_PM_SLEEP
854	&pm_async_attr.attr,
855	&wakeup_count_attr.attr,
856#ifdef CONFIG_SUSPEND
857	&mem_sleep_attr.attr,
858#endif
859#ifdef CONFIG_PM_AUTOSLEEP
860	&autosleep_attr.attr,
861#endif
862#ifdef CONFIG_PM_WAKELOCKS
863	&wake_lock_attr.attr,
864	&wake_unlock_attr.attr,
865#endif
866#ifdef CONFIG_PM_SLEEP_DEBUG
867	&pm_test_attr.attr,
868	&pm_print_times_attr.attr,
869	&pm_wakeup_irq_attr.attr,
870	&pm_debug_messages_attr.attr,
871#endif
872#endif
873#ifdef CONFIG_FREEZER
874	&pm_freeze_timeout_attr.attr,
875#endif
876	NULL,
877};
878
879static const struct attribute_group attr_group = {
880	.attrs = g,
881};
882
883static const struct attribute_group *attr_groups[] = {
884	&attr_group,
885#ifdef CONFIG_PM_SLEEP
886	&suspend_attr_group,
887#endif
888	NULL,
889};
890
891struct workqueue_struct *pm_wq;
892EXPORT_SYMBOL_GPL(pm_wq);
893
894static int __init pm_start_workqueue(void)
895{
896	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
897
898	return pm_wq ? 0 : -ENOMEM;
899}
 
 
 
900
901static int __init pm_init(void)
902{
903	int error = pm_start_workqueue();
904	if (error)
905		return error;
906	hibernate_image_size_init();
907	hibernate_reserved_size_init();
908	pm_states_init();
909	power_kobj = kobject_create_and_add("power", NULL);
910	if (!power_kobj)
911		return -ENOMEM;
912	error = sysfs_create_groups(power_kobj, attr_groups);
913	if (error)
914		return error;
915	pm_print_times_init();
916	return pm_autosleep_init();
917}
918
919core_initcall(pm_init);