Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public License as
  6 * published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it would be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write the Free Software Foundation,
 15 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 16 */
 17
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_bit.h"
 22#include "xfs_log.h"
 23#include "xfs_inum.h"
 
 
 24#include "xfs_trans.h"
 25#include "xfs_trans_priv.h"
 
 26#include "xfs_log_priv.h"
 27#include "xfs_sb.h"
 28#include "xfs_ag.h"
 29#include "xfs_mount.h"
 30#include "xfs_error.h"
 31#include "xfs_alloc.h"
 32#include "xfs_discard.h"
 33
 34/*
 35 * Perform initial CIL structure initialisation. If the CIL is not
 36 * enabled in this filesystem, ensure the log->l_cilp is null so
 37 * we can check this conditional to determine if we are doing delayed
 38 * logging or not.
 39 */
 40int
 41xlog_cil_init(
 42	struct log	*log)
 43{
 44	struct xfs_cil	*cil;
 45	struct xfs_cil_ctx *ctx;
 46
 47	log->l_cilp = NULL;
 48	if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG))
 49		return 0;
 50
 51	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
 52	if (!cil)
 53		return ENOMEM;
 54
 55	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
 56	if (!ctx) {
 57		kmem_free(cil);
 58		return ENOMEM;
 59	}
 60
 61	INIT_LIST_HEAD(&cil->xc_cil);
 62	INIT_LIST_HEAD(&cil->xc_committing);
 63	spin_lock_init(&cil->xc_cil_lock);
 64	init_rwsem(&cil->xc_ctx_lock);
 65	init_waitqueue_head(&cil->xc_commit_wait);
 66
 67	INIT_LIST_HEAD(&ctx->committing);
 68	INIT_LIST_HEAD(&ctx->busy_extents);
 69	ctx->sequence = 1;
 70	ctx->cil = cil;
 71	cil->xc_ctx = ctx;
 72	cil->xc_current_sequence = ctx->sequence;
 73
 74	cil->xc_log = log;
 75	log->l_cilp = cil;
 76	return 0;
 77}
 78
 79void
 80xlog_cil_destroy(
 81	struct log	*log)
 82{
 83	if (!log->l_cilp)
 84		return;
 85
 86	if (log->l_cilp->xc_ctx) {
 87		if (log->l_cilp->xc_ctx->ticket)
 88			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
 89		kmem_free(log->l_cilp->xc_ctx);
 90	}
 91
 92	ASSERT(list_empty(&log->l_cilp->xc_cil));
 93	kmem_free(log->l_cilp);
 94}
 95
 96/*
 97 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
 98 * recover, so we don't allow failure here. Also, we allocate in a context that
 99 * we don't want to be issuing transactions from, so we need to tell the
100 * allocation code this as well.
101 *
102 * We don't reserve any space for the ticket - we are going to steal whatever
103 * space we require from transactions as they commit. To ensure we reserve all
104 * the space required, we need to set the current reservation of the ticket to
105 * zero so that we know to steal the initial transaction overhead from the
106 * first transaction commit.
107 */
108static struct xlog_ticket *
109xlog_cil_ticket_alloc(
110	struct log	*log)
111{
112	struct xlog_ticket *tic;
113
114	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
115				KM_SLEEP|KM_NOFS);
116	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
117
118	/*
119	 * set the current reservation to zero so we know to steal the basic
120	 * transaction overhead reservation from the first transaction commit.
121	 */
122	tic->t_curr_res = 0;
123	return tic;
124}
125
126/*
127 * After the first stage of log recovery is done, we know where the head and
128 * tail of the log are. We need this log initialisation done before we can
129 * initialise the first CIL checkpoint context.
130 *
131 * Here we allocate a log ticket to track space usage during a CIL push.  This
132 * ticket is passed to xlog_write() directly so that we don't slowly leak log
133 * space by failing to account for space used by log headers and additional
134 * region headers for split regions.
135 */
136void
137xlog_cil_init_post_recovery(
138	struct log	*log)
139{
140	if (!log->l_cilp)
141		return;
142
143	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
144	log->l_cilp->xc_ctx->sequence = 1;
145	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
146								log->l_curr_block);
 
 
 
 
 
 
 
147}
148
149/*
150 * Format log item into a flat buffers
151 *
152 * For delayed logging, we need to hold a formatted buffer containing all the
153 * changes on the log item. This enables us to relog the item in memory and
154 * write it out asynchronously without needing to relock the object that was
155 * modified at the time it gets written into the iclog.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156 *
157 * This function builds a vector for the changes in each log item in the
158 * transaction. It then works out the length of the buffer needed for each log
159 * item, allocates them and formats the vector for the item into the buffer.
160 * The buffer is then attached to the log item are then inserted into the
161 * Committed Item List for tracking until the next checkpoint is written out.
162 *
163 * We don't set up region headers during this process; we simply copy the
164 * regions into the flat buffer. We can do this because we still have to do a
165 * formatting step to write the regions into the iclog buffer.  Writing the
166 * ophdrs during the iclog write means that we can support splitting large
167 * regions across iclog boundares without needing a change in the format of the
168 * item/region encapsulation.
169 *
170 * Hence what we need to do now is change the rewrite the vector array to point
171 * to the copied region inside the buffer we just allocated. This allows us to
172 * format the regions into the iclog as though they are being formatted
173 * directly out of the objects themselves.
174 */
175static void
176xlog_cil_format_items(
177	struct log		*log,
178	struct xfs_log_vec	*log_vector)
179{
180	struct xfs_log_vec *lv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
182	ASSERT(log_vector);
183	for (lv = log_vector; lv; lv = lv->lv_next) {
184		void	*ptr;
185		int	index;
186		int	len = 0;
187
188		/* build the vector array and calculate it's length */
189		IOP_FORMAT(lv->lv_item, lv->lv_iovecp);
190		for (index = 0; index < lv->lv_niovecs; index++)
191			len += lv->lv_iovecp[index].i_len;
192
193		lv->lv_buf_len = len;
194		lv->lv_buf = kmem_alloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS);
195		ptr = lv->lv_buf;
196
197		for (index = 0; index < lv->lv_niovecs; index++) {
198			struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
199
200			memcpy(ptr, vec->i_addr, vec->i_len);
201			vec->i_addr = ptr;
202			ptr += vec->i_len;
203		}
204		ASSERT(ptr == lv->lv_buf + lv->lv_buf_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205	}
 
206}
207
208/*
209 * Prepare the log item for insertion into the CIL. Calculate the difference in
210 * log space and vectors it will consume, and if it is a new item pin it as
211 * well.
212 */
213STATIC void
214xfs_cil_prepare_item(
215	struct log		*log,
216	struct xfs_log_vec	*lv,
217	int			*len,
 
218	int			*diff_iovecs)
219{
220	struct xfs_log_vec	*old = lv->lv_item->li_lv;
221
222	if (old) {
223		/* existing lv on log item, space used is a delta */
224		ASSERT(!list_empty(&lv->lv_item->li_cil));
225		ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
226
227		*len += lv->lv_buf_len - old->lv_buf_len;
228		*diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
229		kmem_free(old->lv_buf);
230		kmem_free(old);
231	} else {
232		/* new lv, must pin the log item */
233		ASSERT(!lv->lv_item->li_lv);
234		ASSERT(list_empty(&lv->lv_item->li_cil));
235
236		*len += lv->lv_buf_len;
237		*diff_iovecs += lv->lv_niovecs;
238		IOP_PIN(lv->lv_item);
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	}
241
242	/* attach new log vector to log item */
243	lv->lv_item->li_lv = lv;
244
245	/*
246	 * If this is the first time the item is being committed to the
247	 * CIL, store the sequence number on the log item so we can
248	 * tell in future commits whether this is the first checkpoint
249	 * the item is being committed into.
250	 */
251	if (!lv->lv_item->li_seq)
252		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
253}
254
255/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256 * Insert the log items into the CIL and calculate the difference in space
257 * consumed by the item. Add the space to the checkpoint ticket and calculate
258 * if the change requires additional log metadata. If it does, take that space
259 * as well. Remove the amount of space we addded to the checkpoint ticket from
260 * the current transaction ticket so that the accounting works out correctly.
261 */
262static void
263xlog_cil_insert_items(
264	struct log		*log,
265	struct xfs_log_vec	*log_vector,
266	struct xlog_ticket	*ticket)
267{
268	struct xfs_cil		*cil = log->l_cilp;
269	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
270	struct xfs_log_vec	*lv;
271	int			len = 0;
272	int			diff_iovecs = 0;
273	int			iclog_space;
 
274
275	ASSERT(log_vector);
276
277	/*
278	 * Do all the accounting aggregation and switching of log vectors
279	 * around in a separate loop to the insertion of items into the CIL.
280	 * Then we can do a separate loop to update the CIL within a single
281	 * lock/unlock pair. This reduces the number of round trips on the CIL
282	 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
283	 * hold time for the transaction commit.
284	 *
285	 * If this is the first time the item is being placed into the CIL in
286	 * this context, pin it so it can't be written to disk until the CIL is
287	 * flushed to the iclog and the iclog written to disk.
288	 *
289	 * We can do this safely because the context can't checkpoint until we
290	 * are done so it doesn't matter exactly how we update the CIL.
291	 */
292	for (lv = log_vector; lv; lv = lv->lv_next)
293		xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
294
295	/* account for space used by new iovec headers  */
296	len += diff_iovecs * sizeof(xlog_op_header_t);
297
298	spin_lock(&cil->xc_cil_lock);
299
300	/* move the items to the tail of the CIL */
301	for (lv = log_vector; lv; lv = lv->lv_next)
302		list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
303
304	ctx->nvecs += diff_iovecs;
305
 
 
 
 
306	/*
307	 * Now transfer enough transaction reservation to the context ticket
308	 * for the checkpoint. The context ticket is special - the unit
309	 * reservation has to grow as well as the current reservation as we
310	 * steal from tickets so we can correctly determine the space used
311	 * during the transaction commit.
312	 */
313	if (ctx->ticket->t_curr_res == 0) {
314		/* first commit in checkpoint, steal the header reservation */
315		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
316		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
317		ticket->t_curr_res -= ctx->ticket->t_unit_res;
318	}
319
320	/* do we need space for more log record headers? */
321	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
322	if (len > 0 && (ctx->space_used / iclog_space !=
323				(ctx->space_used + len) / iclog_space)) {
324		int hdrs;
325
326		hdrs = (len + iclog_space - 1) / iclog_space;
327		/* need to take into account split region headers, too */
328		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
329		ctx->ticket->t_unit_res += hdrs;
330		ctx->ticket->t_curr_res += hdrs;
331		ticket->t_curr_res -= hdrs;
332		ASSERT(ticket->t_curr_res >= len);
333	}
334	ticket->t_curr_res -= len;
335	ctx->space_used += len;
336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337	spin_unlock(&cil->xc_cil_lock);
 
 
 
338}
339
340static void
341xlog_cil_free_logvec(
342	struct xfs_log_vec	*log_vector)
343{
344	struct xfs_log_vec	*lv;
345
346	for (lv = log_vector; lv; ) {
347		struct xfs_log_vec *next = lv->lv_next;
348		kmem_free(lv->lv_buf);
349		kmem_free(lv);
350		lv = next;
351	}
352}
353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354/*
355 * Mark all items committed and clear busy extents. We free the log vector
356 * chains in a separate pass so that we unpin the log items as quickly as
357 * possible.
358 */
359static void
360xlog_cil_committed(
361	void	*args,
362	int	abort)
363{
364	struct xfs_cil_ctx	*ctx = args;
365	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
366
 
 
 
 
 
 
 
 
 
 
 
 
 
367	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
368					ctx->start_lsn, abort);
369
370	xfs_alloc_busy_sort(&ctx->busy_extents);
371	xfs_alloc_busy_clear(mp, &ctx->busy_extents,
372			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
373
374	spin_lock(&ctx->cil->xc_cil_lock);
375	list_del(&ctx->committing);
376	spin_unlock(&ctx->cil->xc_cil_lock);
377
378	xlog_cil_free_logvec(ctx->lv_chain);
379
380	if (!list_empty(&ctx->busy_extents)) {
381		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
 
 
 
382
383		xfs_discard_extents(mp, &ctx->busy_extents);
384		xfs_alloc_busy_clear(mp, &ctx->busy_extents, false);
385	}
 
 
 
386
387	kmem_free(ctx);
 
 
 
 
388}
389
390/*
391 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
392 * is a background flush and so we can chose to ignore it. Otherwise, if the
393 * current sequence is the same as @push_seq we need to do a flush. If
394 * @push_seq is less than the current sequence, then it has already been
395 * flushed and we don't need to do anything - the caller will wait for it to
396 * complete if necessary.
397 *
398 * @push_seq is a value rather than a flag because that allows us to do an
399 * unlocked check of the sequence number for a match. Hence we can allows log
400 * forces to run racily and not issue pushes for the same sequence twice. If we
401 * get a race between multiple pushes for the same sequence they will block on
402 * the first one and then abort, hence avoiding needless pushes.
403 */
404STATIC int
405xlog_cil_push(
406	struct log		*log,
407	xfs_lsn_t		push_seq)
408{
409	struct xfs_cil		*cil = log->l_cilp;
410	struct xfs_log_vec	*lv;
411	struct xfs_cil_ctx	*ctx;
412	struct xfs_cil_ctx	*new_ctx;
413	struct xlog_in_core	*commit_iclog;
414	struct xlog_ticket	*tic;
415	int			num_lv;
416	int			num_iovecs;
417	int			len;
418	int			error = 0;
419	struct xfs_trans_header thdr;
420	struct xfs_log_iovec	lhdr;
421	struct xfs_log_vec	lvhdr = { NULL };
422	xfs_lsn_t		commit_lsn;
 
423
424	if (!cil)
425		return 0;
426
427	ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence);
428
429	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
430	new_ctx->ticket = xlog_cil_ticket_alloc(log);
431
432	/*
433	 * Lock out transaction commit, but don't block for background pushes
434	 * unless we are well over the CIL space limit. See the definition of
435	 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic
436	 * used here.
437	 */
438	if (!down_write_trylock(&cil->xc_ctx_lock)) {
439		if (!push_seq &&
440		    cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log))
441			goto out_free_ticket;
442		down_write(&cil->xc_ctx_lock);
443	}
444	ctx = cil->xc_ctx;
445
446	/* check if we've anything to push */
447	if (list_empty(&cil->xc_cil))
448		goto out_skip;
449
450	/* check for spurious background flush */
451	if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
 
 
 
 
 
 
452		goto out_skip;
 
 
453
454	/* check for a previously pushed seqeunce */
455	if (push_seq && push_seq < cil->xc_ctx->sequence)
 
456		goto out_skip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
458	/*
459	 * pull all the log vectors off the items in the CIL, and
460	 * remove the items from the CIL. We don't need the CIL lock
461	 * here because it's only needed on the transaction commit
462	 * side which is currently locked out by the flush lock.
463	 */
464	lv = NULL;
465	num_lv = 0;
466	num_iovecs = 0;
467	len = 0;
468	while (!list_empty(&cil->xc_cil)) {
469		struct xfs_log_item	*item;
470		int			i;
471
472		item = list_first_entry(&cil->xc_cil,
473					struct xfs_log_item, li_cil);
474		list_del_init(&item->li_cil);
475		if (!ctx->lv_chain)
476			ctx->lv_chain = item->li_lv;
477		else
478			lv->lv_next = item->li_lv;
479		lv = item->li_lv;
480		item->li_lv = NULL;
481
482		num_lv++;
483		num_iovecs += lv->lv_niovecs;
484		for (i = 0; i < lv->lv_niovecs; i++)
485			len += lv->lv_iovecp[i].i_len;
486	}
487
488	/*
489	 * initialise the new context and attach it to the CIL. Then attach
490	 * the current context to the CIL committing lsit so it can be found
491	 * during log forces to extract the commit lsn of the sequence that
492	 * needs to be forced.
493	 */
494	INIT_LIST_HEAD(&new_ctx->committing);
495	INIT_LIST_HEAD(&new_ctx->busy_extents);
496	new_ctx->sequence = ctx->sequence + 1;
497	new_ctx->cil = cil;
498	cil->xc_ctx = new_ctx;
499
500	/*
501	 * mirror the new sequence into the cil structure so that we can do
502	 * unlocked checks against the current sequence in log forces without
503	 * risking deferencing a freed context pointer.
504	 */
505	cil->xc_current_sequence = new_ctx->sequence;
506
507	/*
508	 * The switch is now done, so we can drop the context lock and move out
509	 * of a shared context. We can't just go straight to the commit record,
510	 * though - we need to synchronise with previous and future commits so
511	 * that the commit records are correctly ordered in the log to ensure
512	 * that we process items during log IO completion in the correct order.
513	 *
514	 * For example, if we get an EFI in one checkpoint and the EFD in the
515	 * next (e.g. due to log forces), we do not want the checkpoint with
516	 * the EFD to be committed before the checkpoint with the EFI.  Hence
517	 * we must strictly order the commit records of the checkpoints so
518	 * that: a) the checkpoint callbacks are attached to the iclogs in the
519	 * correct order; and b) the checkpoints are replayed in correct order
520	 * in log recovery.
521	 *
522	 * Hence we need to add this context to the committing context list so
523	 * that higher sequences will wait for us to write out a commit record
524	 * before they do.
 
 
 
 
 
 
525	 */
526	spin_lock(&cil->xc_cil_lock);
527	list_add(&ctx->committing, &cil->xc_committing);
528	spin_unlock(&cil->xc_cil_lock);
529	up_write(&cil->xc_ctx_lock);
530
531	/*
532	 * Build a checkpoint transaction header and write it to the log to
533	 * begin the transaction. We need to account for the space used by the
534	 * transaction header here as it is not accounted for in xlog_write().
535	 *
536	 * The LSN we need to pass to the log items on transaction commit is
537	 * the LSN reported by the first log vector write. If we use the commit
538	 * record lsn then we can move the tail beyond the grant write head.
539	 */
540	tic = ctx->ticket;
541	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
542	thdr.th_type = XFS_TRANS_CHECKPOINT;
543	thdr.th_tid = tic->t_tid;
544	thdr.th_num_items = num_iovecs;
545	lhdr.i_addr = &thdr;
546	lhdr.i_len = sizeof(xfs_trans_header_t);
547	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
548	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
549
550	lvhdr.lv_niovecs = 1;
551	lvhdr.lv_iovecp = &lhdr;
552	lvhdr.lv_next = ctx->lv_chain;
553
554	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
555	if (error)
556		goto out_abort_free_ticket;
557
558	/*
559	 * now that we've written the checkpoint into the log, strictly
560	 * order the commit records so replay will get them in the right order.
561	 */
562restart:
563	spin_lock(&cil->xc_cil_lock);
564	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
565		/*
 
 
 
 
 
 
 
 
 
 
566		 * Higher sequences will wait for this one so skip them.
567		 * Don't wait for own own sequence, either.
568		 */
569		if (new_ctx->sequence >= ctx->sequence)
570			continue;
571		if (!new_ctx->commit_lsn) {
572			/*
573			 * It is still being pushed! Wait for the push to
574			 * complete, then start again from the beginning.
575			 */
576			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
577			goto restart;
578		}
579	}
580	spin_unlock(&cil->xc_cil_lock);
581
582	/* xfs_log_done always frees the ticket on error. */
583	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
584	if (commit_lsn == -1)
585		goto out_abort;
586
587	/* attach all the transactions w/ busy extents to iclog */
588	ctx->log_cb.cb_func = xlog_cil_committed;
589	ctx->log_cb.cb_arg = ctx;
590	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
591	if (error)
592		goto out_abort;
 
 
 
 
 
593
594	/*
595	 * now the checkpoint commit is complete and we've attached the
596	 * callbacks to the iclog we can assign the commit LSN to the context
597	 * and wake up anyone who is waiting for the commit to complete.
598	 */
599	spin_lock(&cil->xc_cil_lock);
600	ctx->commit_lsn = commit_lsn;
601	wake_up_all(&cil->xc_commit_wait);
602	spin_unlock(&cil->xc_cil_lock);
603
604	/* release the hounds! */
605	return xfs_log_release_iclog(log->l_mp, commit_iclog);
606
607out_skip:
608	up_write(&cil->xc_ctx_lock);
609out_free_ticket:
610	xfs_log_ticket_put(new_ctx->ticket);
611	kmem_free(new_ctx);
612	return 0;
613
614out_abort_free_ticket:
615	xfs_log_ticket_put(tic);
616out_abort:
617	xlog_cil_committed(ctx, XFS_LI_ABORTED);
618	return XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619}
620
621/*
622 * Commit a transaction with the given vector to the Committed Item List.
623 *
624 * To do this, we need to format the item, pin it in memory if required and
625 * account for the space used by the transaction. Once we have done that we
626 * need to release the unused reservation for the transaction, attach the
627 * transaction to the checkpoint context so we carry the busy extents through
628 * to checkpoint completion, and then unlock all the items in the transaction.
629 *
630 * For more specific information about the order of operations in
631 * xfs_log_commit_cil() please refer to the comments in
632 * xfs_trans_commit_iclog().
633 *
634 * Called with the context lock already held in read mode to lock out
635 * background commit, returns without it held once background commits are
636 * allowed again.
637 */
638void
639xfs_log_commit_cil(
640	struct xfs_mount	*mp,
641	struct xfs_trans	*tp,
642	struct xfs_log_vec	*log_vector,
643	xfs_lsn_t		*commit_lsn,
644	int			flags)
645{
646	struct log		*log = mp->m_log;
647	int			log_flags = 0;
648	int			push = 0;
649
650	if (flags & XFS_TRANS_RELEASE_LOG_RES)
651		log_flags = XFS_LOG_REL_PERM_RESERV;
652
653	/*
654	 * do all the hard work of formatting items (including memory
655	 * allocation) outside the CIL context lock. This prevents stalling CIL
656	 * pushes when we are low on memory and a transaction commit spends a
657	 * lot of time in memory reclaim.
658	 */
659	xlog_cil_format_items(log, log_vector);
660
661	/* lock out background commit */
662	down_read(&log->l_cilp->xc_ctx_lock);
663	if (commit_lsn)
664		*commit_lsn = log->l_cilp->xc_ctx->sequence;
665
666	xlog_cil_insert_items(log, log_vector, tp->t_ticket);
667
668	/* check we didn't blow the reservation */
669	if (tp->t_ticket->t_curr_res < 0)
670		xlog_print_tic_res(log->l_mp, tp->t_ticket);
671
672	/* attach the transaction to the CIL if it has any busy extents */
673	if (!list_empty(&tp->t_busy)) {
674		spin_lock(&log->l_cilp->xc_cil_lock);
675		list_splice_init(&tp->t_busy,
676					&log->l_cilp->xc_ctx->busy_extents);
677		spin_unlock(&log->l_cilp->xc_cil_lock);
678	}
679
680	tp->t_commit_lsn = *commit_lsn;
681	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
682	xfs_trans_unreserve_and_mod_sb(tp);
683
684	/*
685	 * Once all the items of the transaction have been copied to the CIL,
686	 * the items can be unlocked and freed.
687	 *
688	 * This needs to be done before we drop the CIL context lock because we
689	 * have to update state in the log items and unlock them before they go
690	 * to disk. If we don't, then the CIL checkpoint can race with us and
691	 * we can run checkpoint completion before we've updated and unlocked
692	 * the log items. This affects (at least) processing of stale buffers,
693	 * inodes and EFIs.
694	 */
695	xfs_trans_free_items(tp, *commit_lsn, 0);
696
697	/* check for background commit before unlock */
698	if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
699		push = 1;
700
701	up_read(&log->l_cilp->xc_ctx_lock);
702
703	/*
704	 * We need to push CIL every so often so we don't cache more than we
705	 * can fit in the log. The limit really is that a checkpoint can't be
706	 * more than half the log (the current checkpoint is not allowed to
707	 * overwrite the previous checkpoint), but commit latency and memory
708	 * usage limit this to a smaller size in most cases.
709	 */
710	if (push)
711		xlog_cil_push(log, 0);
712}
713
714/*
715 * Conditionally push the CIL based on the sequence passed in.
716 *
717 * We only need to push if we haven't already pushed the sequence
718 * number given. Hence the only time we will trigger a push here is
719 * if the push sequence is the same as the current context.
720 *
721 * We return the current commit lsn to allow the callers to determine if a
722 * iclog flush is necessary following this call.
723 *
724 * XXX: Initially, just push the CIL unconditionally and return whatever
725 * commit lsn is there. It'll be empty, so this is broken for now.
726 */
727xfs_lsn_t
728xlog_cil_force_lsn(
729	struct log	*log,
730	xfs_lsn_t	sequence)
731{
732	struct xfs_cil		*cil = log->l_cilp;
733	struct xfs_cil_ctx	*ctx;
734	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
735
736	ASSERT(sequence <= cil->xc_current_sequence);
737
738	/*
739	 * check to see if we need to force out the current context.
740	 * xlog_cil_push() handles racing pushes for the same sequence,
741	 * so no need to deal with it here.
742	 */
743	if (sequence == cil->xc_current_sequence)
744		xlog_cil_push(log, sequence);
745
746	/*
747	 * See if we can find a previous sequence still committing.
748	 * We need to wait for all previous sequence commits to complete
749	 * before allowing the force of push_seq to go ahead. Hence block
750	 * on commits for those as well.
751	 */
752restart:
753	spin_lock(&cil->xc_cil_lock);
754	list_for_each_entry(ctx, &cil->xc_committing, committing) {
 
 
 
 
 
 
 
755		if (ctx->sequence > sequence)
756			continue;
757		if (!ctx->commit_lsn) {
758			/*
759			 * It is still being pushed! Wait for the push to
760			 * complete, then start again from the beginning.
761			 */
762			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
763			goto restart;
764		}
765		if (ctx->sequence != sequence)
766			continue;
767		/* found it! */
768		commit_lsn = ctx->commit_lsn;
769	}
770	spin_unlock(&cil->xc_cil_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771	return commit_lsn;
 
 
 
 
 
 
 
 
 
 
 
772}
773
774/*
775 * Check if the current log item was first committed in this sequence.
776 * We can't rely on just the log item being in the CIL, we have to check
777 * the recorded commit sequence number.
778 *
779 * Note: for this to be used in a non-racy manner, it has to be called with
780 * CIL flushing locked out. As a result, it should only be used during the
781 * transaction commit process when deciding what to format into the item.
782 */
783bool
784xfs_log_item_in_current_chkpt(
785	struct xfs_log_item *lip)
786{
787	struct xfs_cil_ctx *ctx;
788
789	if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG))
790		return false;
791	if (list_empty(&lip->li_cil))
792		return false;
793
794	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
795
796	/*
797	 * li_seq is written on the first commit of a log item to record the
798	 * first checkpoint it is written to. Hence if it is different to the
799	 * current sequence, we're in a new checkpoint.
800	 */
801	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
802		return false;
803	return true;
804}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_extent_busy.h"
  14#include "xfs_trans.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_log.h"
  17#include "xfs_log_priv.h"
  18#include "xfs_trace.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19
  20struct workqueue_struct *xfs_discard_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22/*
  23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
  24 * recover, so we don't allow failure here. Also, we allocate in a context that
  25 * we don't want to be issuing transactions from, so we need to tell the
  26 * allocation code this as well.
  27 *
  28 * We don't reserve any space for the ticket - we are going to steal whatever
  29 * space we require from transactions as they commit. To ensure we reserve all
  30 * the space required, we need to set the current reservation of the ticket to
  31 * zero so that we know to steal the initial transaction overhead from the
  32 * first transaction commit.
  33 */
  34static struct xlog_ticket *
  35xlog_cil_ticket_alloc(
  36	struct xlog	*log)
  37{
  38	struct xlog_ticket *tic;
  39
  40	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
  41				KM_NOFS);
 
  42
  43	/*
  44	 * set the current reservation to zero so we know to steal the basic
  45	 * transaction overhead reservation from the first transaction commit.
  46	 */
  47	tic->t_curr_res = 0;
  48	return tic;
  49}
  50
  51/*
  52 * After the first stage of log recovery is done, we know where the head and
  53 * tail of the log are. We need this log initialisation done before we can
  54 * initialise the first CIL checkpoint context.
  55 *
  56 * Here we allocate a log ticket to track space usage during a CIL push.  This
  57 * ticket is passed to xlog_write() directly so that we don't slowly leak log
  58 * space by failing to account for space used by log headers and additional
  59 * region headers for split regions.
  60 */
  61void
  62xlog_cil_init_post_recovery(
  63	struct xlog	*log)
  64{
 
 
 
  65	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
  66	log->l_cilp->xc_ctx->sequence = 1;
  67}
  68
  69static inline int
  70xlog_cil_iovec_space(
  71	uint	niovecs)
  72{
  73	return round_up((sizeof(struct xfs_log_vec) +
  74					niovecs * sizeof(struct xfs_log_iovec)),
  75			sizeof(uint64_t));
  76}
  77
  78/*
  79 * Allocate or pin log vector buffers for CIL insertion.
  80 *
  81 * The CIL currently uses disposable buffers for copying a snapshot of the
  82 * modified items into the log during a push. The biggest problem with this is
  83 * the requirement to allocate the disposable buffer during the commit if:
  84 *	a) does not exist; or
  85 *	b) it is too small
  86 *
  87 * If we do this allocation within xlog_cil_insert_format_items(), it is done
  88 * under the xc_ctx_lock, which means that a CIL push cannot occur during
  89 * the memory allocation. This means that we have a potential deadlock situation
  90 * under low memory conditions when we have lots of dirty metadata pinned in
  91 * the CIL and we need a CIL commit to occur to free memory.
  92 *
  93 * To avoid this, we need to move the memory allocation outside the
  94 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
  95 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
  96 * vector buffers between the check and the formatting of the item into the
  97 * log vector buffer within the xc_ctx_lock.
  98 *
  99 * Because the log vector buffer needs to be unchanged during the CIL push
 100 * process, we cannot share the buffer between the transaction commit (which
 101 * modifies the buffer) and the CIL push context that is writing the changes
 102 * into the log. This means skipping preallocation of buffer space is
 103 * unreliable, but we most definitely do not want to be allocating and freeing
 104 * buffers unnecessarily during commits when overwrites can be done safely.
 105 *
 106 * The simplest solution to this problem is to allocate a shadow buffer when a
 107 * log item is committed for the second time, and then to only use this buffer
 108 * if necessary. The buffer can remain attached to the log item until such time
 109 * it is needed, and this is the buffer that is reallocated to match the size of
 110 * the incoming modification. Then during the formatting of the item we can swap
 111 * the active buffer with the new one if we can't reuse the existing buffer. We
 112 * don't free the old buffer as it may be reused on the next modification if
 113 * it's size is right, otherwise we'll free and reallocate it at that point.
 114 *
 115 * This function builds a vector for the changes in each log item in the
 116 * transaction. It then works out the length of the buffer needed for each log
 117 * item, allocates them and attaches the vector to the log item in preparation
 118 * for the formatting step which occurs under the xc_ctx_lock.
 
 119 *
 120 * While this means the memory footprint goes up, it avoids the repeated
 121 * alloc/free pattern that repeated modifications of an item would otherwise
 122 * cause, and hence minimises the CPU overhead of such behaviour.
 
 
 
 
 
 
 
 
 123 */
 124static void
 125xlog_cil_alloc_shadow_bufs(
 126	struct xlog		*log,
 127	struct xfs_trans	*tp)
 128{
 129	struct xfs_log_item	*lip;
 130
 131	list_for_each_entry(lip, &tp->t_items, li_trans) {
 132		struct xfs_log_vec *lv;
 133		int	niovecs = 0;
 134		int	nbytes = 0;
 135		int	buf_size;
 136		bool	ordered = false;
 137
 138		/* Skip items which aren't dirty in this transaction. */
 139		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 140			continue;
 141
 142		/* get number of vecs and size of data to be stored */
 143		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
 144
 145		/*
 146		 * Ordered items need to be tracked but we do not wish to write
 147		 * them. We need a logvec to track the object, but we do not
 148		 * need an iovec or buffer to be allocated for copying data.
 149		 */
 150		if (niovecs == XFS_LOG_VEC_ORDERED) {
 151			ordered = true;
 152			niovecs = 0;
 153			nbytes = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 154		}
 155
 156		/*
 157		 * We 64-bit align the length of each iovec so that the start
 158		 * of the next one is naturally aligned.  We'll need to
 159		 * account for that slack space here. Then round nbytes up
 160		 * to 64-bit alignment so that the initial buffer alignment is
 161		 * easy to calculate and verify.
 162		 */
 163		nbytes += niovecs * sizeof(uint64_t);
 164		nbytes = round_up(nbytes, sizeof(uint64_t));
 165
 166		/*
 167		 * The data buffer needs to start 64-bit aligned, so round up
 168		 * that space to ensure we can align it appropriately and not
 169		 * overrun the buffer.
 170		 */
 171		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
 172
 173		/*
 174		 * if we have no shadow buffer, or it is too small, we need to
 175		 * reallocate it.
 176		 */
 177		if (!lip->li_lv_shadow ||
 178		    buf_size > lip->li_lv_shadow->lv_size) {
 179
 180			/*
 181			 * We free and allocate here as a realloc would copy
 182			 * unecessary data. We don't use kmem_zalloc() for the
 183			 * same reason - we don't need to zero the data area in
 184			 * the buffer, only the log vector header and the iovec
 185			 * storage.
 186			 */
 187			kmem_free(lip->li_lv_shadow);
 188
 189			lv = kmem_alloc_large(buf_size, KM_NOFS);
 190			memset(lv, 0, xlog_cil_iovec_space(niovecs));
 191
 192			lv->lv_item = lip;
 193			lv->lv_size = buf_size;
 194			if (ordered)
 195				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 196			else
 197				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
 198			lip->li_lv_shadow = lv;
 199		} else {
 200			/* same or smaller, optimise common overwrite case */
 201			lv = lip->li_lv_shadow;
 202			if (ordered)
 203				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 204			else
 205				lv->lv_buf_len = 0;
 206			lv->lv_bytes = 0;
 207			lv->lv_next = NULL;
 208		}
 209
 210		/* Ensure the lv is set up according to ->iop_size */
 211		lv->lv_niovecs = niovecs;
 212
 213		/* The allocated data region lies beyond the iovec region */
 214		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
 215	}
 216
 217}
 218
 219/*
 220 * Prepare the log item for insertion into the CIL. Calculate the difference in
 221 * log space and vectors it will consume, and if it is a new item pin it as
 222 * well.
 223 */
 224STATIC void
 225xfs_cil_prepare_item(
 226	struct xlog		*log,
 227	struct xfs_log_vec	*lv,
 228	struct xfs_log_vec	*old_lv,
 229	int			*diff_len,
 230	int			*diff_iovecs)
 231{
 232	/* Account for the new LV being passed in */
 233	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
 234		*diff_len += lv->lv_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235		*diff_iovecs += lv->lv_niovecs;
 236	}
 237
 238	/*
 239	 * If there is no old LV, this is the first time we've seen the item in
 240	 * this CIL context and so we need to pin it. If we are replacing the
 241	 * old_lv, then remove the space it accounts for and make it the shadow
 242	 * buffer for later freeing. In both cases we are now switching to the
 243	 * shadow buffer, so update the the pointer to it appropriately.
 244	 */
 245	if (!old_lv) {
 246		if (lv->lv_item->li_ops->iop_pin)
 247			lv->lv_item->li_ops->iop_pin(lv->lv_item);
 248		lv->lv_item->li_lv_shadow = NULL;
 249	} else if (old_lv != lv) {
 250		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
 251
 252		*diff_len -= old_lv->lv_bytes;
 253		*diff_iovecs -= old_lv->lv_niovecs;
 254		lv->lv_item->li_lv_shadow = old_lv;
 255	}
 256
 257	/* attach new log vector to log item */
 258	lv->lv_item->li_lv = lv;
 259
 260	/*
 261	 * If this is the first time the item is being committed to the
 262	 * CIL, store the sequence number on the log item so we can
 263	 * tell in future commits whether this is the first checkpoint
 264	 * the item is being committed into.
 265	 */
 266	if (!lv->lv_item->li_seq)
 267		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
 268}
 269
 270/*
 271 * Format log item into a flat buffers
 272 *
 273 * For delayed logging, we need to hold a formatted buffer containing all the
 274 * changes on the log item. This enables us to relog the item in memory and
 275 * write it out asynchronously without needing to relock the object that was
 276 * modified at the time it gets written into the iclog.
 277 *
 278 * This function takes the prepared log vectors attached to each log item, and
 279 * formats the changes into the log vector buffer. The buffer it uses is
 280 * dependent on the current state of the vector in the CIL - the shadow lv is
 281 * guaranteed to be large enough for the current modification, but we will only
 282 * use that if we can't reuse the existing lv. If we can't reuse the existing
 283 * lv, then simple swap it out for the shadow lv. We don't free it - that is
 284 * done lazily either by th enext modification or the freeing of the log item.
 285 *
 286 * We don't set up region headers during this process; we simply copy the
 287 * regions into the flat buffer. We can do this because we still have to do a
 288 * formatting step to write the regions into the iclog buffer.  Writing the
 289 * ophdrs during the iclog write means that we can support splitting large
 290 * regions across iclog boundares without needing a change in the format of the
 291 * item/region encapsulation.
 292 *
 293 * Hence what we need to do now is change the rewrite the vector array to point
 294 * to the copied region inside the buffer we just allocated. This allows us to
 295 * format the regions into the iclog as though they are being formatted
 296 * directly out of the objects themselves.
 297 */
 298static void
 299xlog_cil_insert_format_items(
 300	struct xlog		*log,
 301	struct xfs_trans	*tp,
 302	int			*diff_len,
 303	int			*diff_iovecs)
 304{
 305	struct xfs_log_item	*lip;
 306
 307
 308	/* Bail out if we didn't find a log item.  */
 309	if (list_empty(&tp->t_items)) {
 310		ASSERT(0);
 311		return;
 312	}
 313
 314	list_for_each_entry(lip, &tp->t_items, li_trans) {
 315		struct xfs_log_vec *lv;
 316		struct xfs_log_vec *old_lv = NULL;
 317		struct xfs_log_vec *shadow;
 318		bool	ordered = false;
 319
 320		/* Skip items which aren't dirty in this transaction. */
 321		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 322			continue;
 323
 324		/*
 325		 * The formatting size information is already attached to
 326		 * the shadow lv on the log item.
 327		 */
 328		shadow = lip->li_lv_shadow;
 329		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
 330			ordered = true;
 331
 332		/* Skip items that do not have any vectors for writing */
 333		if (!shadow->lv_niovecs && !ordered)
 334			continue;
 335
 336		/* compare to existing item size */
 337		old_lv = lip->li_lv;
 338		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
 339			/* same or smaller, optimise common overwrite case */
 340			lv = lip->li_lv;
 341			lv->lv_next = NULL;
 342
 343			if (ordered)
 344				goto insert;
 345
 346			/*
 347			 * set the item up as though it is a new insertion so
 348			 * that the space reservation accounting is correct.
 349			 */
 350			*diff_iovecs -= lv->lv_niovecs;
 351			*diff_len -= lv->lv_bytes;
 352
 353			/* Ensure the lv is set up according to ->iop_size */
 354			lv->lv_niovecs = shadow->lv_niovecs;
 355
 356			/* reset the lv buffer information for new formatting */
 357			lv->lv_buf_len = 0;
 358			lv->lv_bytes = 0;
 359			lv->lv_buf = (char *)lv +
 360					xlog_cil_iovec_space(lv->lv_niovecs);
 361		} else {
 362			/* switch to shadow buffer! */
 363			lv = shadow;
 364			lv->lv_item = lip;
 365			if (ordered) {
 366				/* track as an ordered logvec */
 367				ASSERT(lip->li_lv == NULL);
 368				goto insert;
 369			}
 370		}
 371
 372		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
 373		lip->li_ops->iop_format(lip, lv);
 374insert:
 375		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
 376	}
 377}
 378
 379/*
 380 * Insert the log items into the CIL and calculate the difference in space
 381 * consumed by the item. Add the space to the checkpoint ticket and calculate
 382 * if the change requires additional log metadata. If it does, take that space
 383 * as well. Remove the amount of space we added to the checkpoint ticket from
 384 * the current transaction ticket so that the accounting works out correctly.
 385 */
 386static void
 387xlog_cil_insert_items(
 388	struct xlog		*log,
 389	struct xfs_trans	*tp)
 
 390{
 391	struct xfs_cil		*cil = log->l_cilp;
 392	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
 393	struct xfs_log_item	*lip;
 394	int			len = 0;
 395	int			diff_iovecs = 0;
 396	int			iclog_space;
 397	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
 398
 399	ASSERT(tp);
 400
 401	/*
 
 
 
 
 
 
 
 
 
 
 
 402	 * We can do this safely because the context can't checkpoint until we
 403	 * are done so it doesn't matter exactly how we update the CIL.
 404	 */
 405	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
 
 
 
 
 406
 407	spin_lock(&cil->xc_cil_lock);
 408
 409	/* account for space used by new iovec headers  */
 410	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
 411	len += iovhdr_res;
 
 412	ctx->nvecs += diff_iovecs;
 413
 414	/* attach the transaction to the CIL if it has any busy extents */
 415	if (!list_empty(&tp->t_busy))
 416		list_splice_init(&tp->t_busy, &ctx->busy_extents);
 417
 418	/*
 419	 * Now transfer enough transaction reservation to the context ticket
 420	 * for the checkpoint. The context ticket is special - the unit
 421	 * reservation has to grow as well as the current reservation as we
 422	 * steal from tickets so we can correctly determine the space used
 423	 * during the transaction commit.
 424	 */
 425	if (ctx->ticket->t_curr_res == 0) {
 426		ctx_res = ctx->ticket->t_unit_res;
 427		ctx->ticket->t_curr_res = ctx_res;
 428		tp->t_ticket->t_curr_res -= ctx_res;
 
 429	}
 430
 431	/* do we need space for more log record headers? */
 432	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
 433	if (len > 0 && (ctx->space_used / iclog_space !=
 434				(ctx->space_used + len) / iclog_space)) {
 435		split_res = (len + iclog_space - 1) / iclog_space;
 
 
 436		/* need to take into account split region headers, too */
 437		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
 438		ctx->ticket->t_unit_res += split_res;
 439		ctx->ticket->t_curr_res += split_res;
 440		tp->t_ticket->t_curr_res -= split_res;
 441		ASSERT(tp->t_ticket->t_curr_res >= len);
 442	}
 443	tp->t_ticket->t_curr_res -= len;
 444	ctx->space_used += len;
 445
 446	/*
 447	 * If we've overrun the reservation, dump the tx details before we move
 448	 * the log items. Shutdown is imminent...
 449	 */
 450	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
 451		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
 452		xfs_warn(log->l_mp,
 453			 "  log items: %d bytes (iov hdrs: %d bytes)",
 454			 len, iovhdr_res);
 455		xfs_warn(log->l_mp, "  split region headers: %d bytes",
 456			 split_res);
 457		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
 458		xlog_print_trans(tp);
 459	}
 460
 461	/*
 462	 * Now (re-)position everything modified at the tail of the CIL.
 463	 * We do this here so we only need to take the CIL lock once during
 464	 * the transaction commit.
 465	 */
 466	list_for_each_entry(lip, &tp->t_items, li_trans) {
 467
 468		/* Skip items which aren't dirty in this transaction. */
 469		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 470			continue;
 471
 472		/*
 473		 * Only move the item if it isn't already at the tail. This is
 474		 * to prevent a transient list_empty() state when reinserting
 475		 * an item that is already the only item in the CIL.
 476		 */
 477		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
 478			list_move_tail(&lip->li_cil, &cil->xc_cil);
 479	}
 480
 481	spin_unlock(&cil->xc_cil_lock);
 482
 483	if (tp->t_ticket->t_curr_res < 0)
 484		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
 485}
 486
 487static void
 488xlog_cil_free_logvec(
 489	struct xfs_log_vec	*log_vector)
 490{
 491	struct xfs_log_vec	*lv;
 492
 493	for (lv = log_vector; lv; ) {
 494		struct xfs_log_vec *next = lv->lv_next;
 
 495		kmem_free(lv);
 496		lv = next;
 497	}
 498}
 499
 500static void
 501xlog_discard_endio_work(
 502	struct work_struct	*work)
 503{
 504	struct xfs_cil_ctx	*ctx =
 505		container_of(work, struct xfs_cil_ctx, discard_endio_work);
 506	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
 507
 508	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
 509	kmem_free(ctx);
 510}
 511
 512/*
 513 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
 514 * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
 515 * get the execution delayed up to 30 seconds for weird reasons.
 516 */
 517static void
 518xlog_discard_endio(
 519	struct bio		*bio)
 520{
 521	struct xfs_cil_ctx	*ctx = bio->bi_private;
 522
 523	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
 524	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
 525	bio_put(bio);
 526}
 527
 528static void
 529xlog_discard_busy_extents(
 530	struct xfs_mount	*mp,
 531	struct xfs_cil_ctx	*ctx)
 532{
 533	struct list_head	*list = &ctx->busy_extents;
 534	struct xfs_extent_busy	*busyp;
 535	struct bio		*bio = NULL;
 536	struct blk_plug		plug;
 537	int			error = 0;
 538
 539	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
 540
 541	blk_start_plug(&plug);
 542	list_for_each_entry(busyp, list, list) {
 543		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
 544					 busyp->length);
 545
 546		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
 547				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
 548				XFS_FSB_TO_BB(mp, busyp->length),
 549				GFP_NOFS, 0, &bio);
 550		if (error && error != -EOPNOTSUPP) {
 551			xfs_info(mp,
 552	 "discard failed for extent [0x%llx,%u], error %d",
 553				 (unsigned long long)busyp->bno,
 554				 busyp->length,
 555				 error);
 556			break;
 557		}
 558	}
 559
 560	if (bio) {
 561		bio->bi_private = ctx;
 562		bio->bi_end_io = xlog_discard_endio;
 563		submit_bio(bio);
 564	} else {
 565		xlog_discard_endio_work(&ctx->discard_endio_work);
 566	}
 567	blk_finish_plug(&plug);
 568}
 569
 570/*
 571 * Mark all items committed and clear busy extents. We free the log vector
 572 * chains in a separate pass so that we unpin the log items as quickly as
 573 * possible.
 574 */
 575static void
 576xlog_cil_committed(
 577	struct xfs_cil_ctx	*ctx,
 578	bool			abort)
 579{
 
 580	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
 581
 582	/*
 583	 * If the I/O failed, we're aborting the commit and already shutdown.
 584	 * Wake any commit waiters before aborting the log items so we don't
 585	 * block async log pushers on callbacks. Async log pushers explicitly do
 586	 * not wait on log force completion because they may be holding locks
 587	 * required to unpin items.
 588	 */
 589	if (abort) {
 590		spin_lock(&ctx->cil->xc_push_lock);
 591		wake_up_all(&ctx->cil->xc_commit_wait);
 592		spin_unlock(&ctx->cil->xc_push_lock);
 593	}
 594
 595	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
 596					ctx->start_lsn, abort);
 597
 598	xfs_extent_busy_sort(&ctx->busy_extents);
 599	xfs_extent_busy_clear(mp, &ctx->busy_extents,
 600			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
 601
 602	spin_lock(&ctx->cil->xc_push_lock);
 603	list_del(&ctx->committing);
 604	spin_unlock(&ctx->cil->xc_push_lock);
 605
 606	xlog_cil_free_logvec(ctx->lv_chain);
 607
 608	if (!list_empty(&ctx->busy_extents))
 609		xlog_discard_busy_extents(mp, ctx);
 610	else
 611		kmem_free(ctx);
 612}
 613
 614void
 615xlog_cil_process_committed(
 616	struct list_head	*list,
 617	bool			aborted)
 618{
 619	struct xfs_cil_ctx	*ctx;
 620
 621	while ((ctx = list_first_entry_or_null(list,
 622			struct xfs_cil_ctx, iclog_entry))) {
 623		list_del(&ctx->iclog_entry);
 624		xlog_cil_committed(ctx, aborted);
 625	}
 626}
 627
 628/*
 629 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
 630 * is a background flush and so we can chose to ignore it. Otherwise, if the
 631 * current sequence is the same as @push_seq we need to do a flush. If
 632 * @push_seq is less than the current sequence, then it has already been
 633 * flushed and we don't need to do anything - the caller will wait for it to
 634 * complete if necessary.
 635 *
 636 * @push_seq is a value rather than a flag because that allows us to do an
 637 * unlocked check of the sequence number for a match. Hence we can allows log
 638 * forces to run racily and not issue pushes for the same sequence twice. If we
 639 * get a race between multiple pushes for the same sequence they will block on
 640 * the first one and then abort, hence avoiding needless pushes.
 641 */
 642STATIC int
 643xlog_cil_push(
 644	struct xlog		*log)
 
 645{
 646	struct xfs_cil		*cil = log->l_cilp;
 647	struct xfs_log_vec	*lv;
 648	struct xfs_cil_ctx	*ctx;
 649	struct xfs_cil_ctx	*new_ctx;
 650	struct xlog_in_core	*commit_iclog;
 651	struct xlog_ticket	*tic;
 
 652	int			num_iovecs;
 
 653	int			error = 0;
 654	struct xfs_trans_header thdr;
 655	struct xfs_log_iovec	lhdr;
 656	struct xfs_log_vec	lvhdr = { NULL };
 657	xfs_lsn_t		commit_lsn;
 658	xfs_lsn_t		push_seq;
 659
 660	if (!cil)
 661		return 0;
 662
 663	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
 
 
 664	new_ctx->ticket = xlog_cil_ticket_alloc(log);
 665
 666	down_write(&cil->xc_ctx_lock);
 
 
 
 
 
 
 
 
 
 
 
 667	ctx = cil->xc_ctx;
 668
 669	spin_lock(&cil->xc_push_lock);
 670	push_seq = cil->xc_push_seq;
 671	ASSERT(push_seq <= ctx->sequence);
 672
 673	/*
 674	 * Check if we've anything to push. If there is nothing, then we don't
 675	 * move on to a new sequence number and so we have to be able to push
 676	 * this sequence again later.
 677	 */
 678	if (list_empty(&cil->xc_cil)) {
 679		cil->xc_push_seq = 0;
 680		spin_unlock(&cil->xc_push_lock);
 681		goto out_skip;
 682	}
 683
 684
 685	/* check for a previously pushed seqeunce */
 686	if (push_seq < cil->xc_ctx->sequence) {
 687		spin_unlock(&cil->xc_push_lock);
 688		goto out_skip;
 689	}
 690
 691	/*
 692	 * We are now going to push this context, so add it to the committing
 693	 * list before we do anything else. This ensures that anyone waiting on
 694	 * this push can easily detect the difference between a "push in
 695	 * progress" and "CIL is empty, nothing to do".
 696	 *
 697	 * IOWs, a wait loop can now check for:
 698	 *	the current sequence not being found on the committing list;
 699	 *	an empty CIL; and
 700	 *	an unchanged sequence number
 701	 * to detect a push that had nothing to do and therefore does not need
 702	 * waiting on. If the CIL is not empty, we get put on the committing
 703	 * list before emptying the CIL and bumping the sequence number. Hence
 704	 * an empty CIL and an unchanged sequence number means we jumped out
 705	 * above after doing nothing.
 706	 *
 707	 * Hence the waiter will either find the commit sequence on the
 708	 * committing list or the sequence number will be unchanged and the CIL
 709	 * still dirty. In that latter case, the push has not yet started, and
 710	 * so the waiter will have to continue trying to check the CIL
 711	 * committing list until it is found. In extreme cases of delay, the
 712	 * sequence may fully commit between the attempts the wait makes to wait
 713	 * on the commit sequence.
 714	 */
 715	list_add(&ctx->committing, &cil->xc_committing);
 716	spin_unlock(&cil->xc_push_lock);
 717
 718	/*
 719	 * pull all the log vectors off the items in the CIL, and
 720	 * remove the items from the CIL. We don't need the CIL lock
 721	 * here because it's only needed on the transaction commit
 722	 * side which is currently locked out by the flush lock.
 723	 */
 724	lv = NULL;
 
 725	num_iovecs = 0;
 
 726	while (!list_empty(&cil->xc_cil)) {
 727		struct xfs_log_item	*item;
 
 728
 729		item = list_first_entry(&cil->xc_cil,
 730					struct xfs_log_item, li_cil);
 731		list_del_init(&item->li_cil);
 732		if (!ctx->lv_chain)
 733			ctx->lv_chain = item->li_lv;
 734		else
 735			lv->lv_next = item->li_lv;
 736		lv = item->li_lv;
 737		item->li_lv = NULL;
 
 
 738		num_iovecs += lv->lv_niovecs;
 
 
 739	}
 740
 741	/*
 742	 * initialise the new context and attach it to the CIL. Then attach
 743	 * the current context to the CIL committing lsit so it can be found
 744	 * during log forces to extract the commit lsn of the sequence that
 745	 * needs to be forced.
 746	 */
 747	INIT_LIST_HEAD(&new_ctx->committing);
 748	INIT_LIST_HEAD(&new_ctx->busy_extents);
 749	new_ctx->sequence = ctx->sequence + 1;
 750	new_ctx->cil = cil;
 751	cil->xc_ctx = new_ctx;
 752
 753	/*
 
 
 
 
 
 
 
 754	 * The switch is now done, so we can drop the context lock and move out
 755	 * of a shared context. We can't just go straight to the commit record,
 756	 * though - we need to synchronise with previous and future commits so
 757	 * that the commit records are correctly ordered in the log to ensure
 758	 * that we process items during log IO completion in the correct order.
 759	 *
 760	 * For example, if we get an EFI in one checkpoint and the EFD in the
 761	 * next (e.g. due to log forces), we do not want the checkpoint with
 762	 * the EFD to be committed before the checkpoint with the EFI.  Hence
 763	 * we must strictly order the commit records of the checkpoints so
 764	 * that: a) the checkpoint callbacks are attached to the iclogs in the
 765	 * correct order; and b) the checkpoints are replayed in correct order
 766	 * in log recovery.
 767	 *
 768	 * Hence we need to add this context to the committing context list so
 769	 * that higher sequences will wait for us to write out a commit record
 770	 * before they do.
 771	 *
 772	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
 773	 * structure atomically with the addition of this sequence to the
 774	 * committing list. This also ensures that we can do unlocked checks
 775	 * against the current sequence in log forces without risking
 776	 * deferencing a freed context pointer.
 777	 */
 778	spin_lock(&cil->xc_push_lock);
 779	cil->xc_current_sequence = new_ctx->sequence;
 780	spin_unlock(&cil->xc_push_lock);
 781	up_write(&cil->xc_ctx_lock);
 782
 783	/*
 784	 * Build a checkpoint transaction header and write it to the log to
 785	 * begin the transaction. We need to account for the space used by the
 786	 * transaction header here as it is not accounted for in xlog_write().
 787	 *
 788	 * The LSN we need to pass to the log items on transaction commit is
 789	 * the LSN reported by the first log vector write. If we use the commit
 790	 * record lsn then we can move the tail beyond the grant write head.
 791	 */
 792	tic = ctx->ticket;
 793	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
 794	thdr.th_type = XFS_TRANS_CHECKPOINT;
 795	thdr.th_tid = tic->t_tid;
 796	thdr.th_num_items = num_iovecs;
 797	lhdr.i_addr = &thdr;
 798	lhdr.i_len = sizeof(xfs_trans_header_t);
 799	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
 800	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
 801
 802	lvhdr.lv_niovecs = 1;
 803	lvhdr.lv_iovecp = &lhdr;
 804	lvhdr.lv_next = ctx->lv_chain;
 805
 806	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
 807	if (error)
 808		goto out_abort_free_ticket;
 809
 810	/*
 811	 * now that we've written the checkpoint into the log, strictly
 812	 * order the commit records so replay will get them in the right order.
 813	 */
 814restart:
 815	spin_lock(&cil->xc_push_lock);
 816	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
 817		/*
 818		 * Avoid getting stuck in this loop because we were woken by the
 819		 * shutdown, but then went back to sleep once already in the
 820		 * shutdown state.
 821		 */
 822		if (XLOG_FORCED_SHUTDOWN(log)) {
 823			spin_unlock(&cil->xc_push_lock);
 824			goto out_abort_free_ticket;
 825		}
 826
 827		/*
 828		 * Higher sequences will wait for this one so skip them.
 829		 * Don't wait for our own sequence, either.
 830		 */
 831		if (new_ctx->sequence >= ctx->sequence)
 832			continue;
 833		if (!new_ctx->commit_lsn) {
 834			/*
 835			 * It is still being pushed! Wait for the push to
 836			 * complete, then start again from the beginning.
 837			 */
 838			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
 839			goto restart;
 840		}
 841	}
 842	spin_unlock(&cil->xc_push_lock);
 843
 844	/* xfs_log_done always frees the ticket on error. */
 845	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
 846	if (commit_lsn == -1)
 847		goto out_abort;
 848
 849	spin_lock(&commit_iclog->ic_callback_lock);
 850	if (commit_iclog->ic_state & XLOG_STATE_IOERROR) {
 851		spin_unlock(&commit_iclog->ic_callback_lock);
 
 
 852		goto out_abort;
 853	}
 854	ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
 855		      commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
 856	list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
 857	spin_unlock(&commit_iclog->ic_callback_lock);
 858
 859	/*
 860	 * now the checkpoint commit is complete and we've attached the
 861	 * callbacks to the iclog we can assign the commit LSN to the context
 862	 * and wake up anyone who is waiting for the commit to complete.
 863	 */
 864	spin_lock(&cil->xc_push_lock);
 865	ctx->commit_lsn = commit_lsn;
 866	wake_up_all(&cil->xc_commit_wait);
 867	spin_unlock(&cil->xc_push_lock);
 868
 869	/* release the hounds! */
 870	return xfs_log_release_iclog(log->l_mp, commit_iclog);
 871
 872out_skip:
 873	up_write(&cil->xc_ctx_lock);
 
 874	xfs_log_ticket_put(new_ctx->ticket);
 875	kmem_free(new_ctx);
 876	return 0;
 877
 878out_abort_free_ticket:
 879	xfs_log_ticket_put(tic);
 880out_abort:
 881	xlog_cil_committed(ctx, true);
 882	return -EIO;
 883}
 884
 885static void
 886xlog_cil_push_work(
 887	struct work_struct	*work)
 888{
 889	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
 890							xc_push_work);
 891	xlog_cil_push(cil->xc_log);
 892}
 893
 894/*
 895 * We need to push CIL every so often so we don't cache more than we can fit in
 896 * the log. The limit really is that a checkpoint can't be more than half the
 897 * log (the current checkpoint is not allowed to overwrite the previous
 898 * checkpoint), but commit latency and memory usage limit this to a smaller
 899 * size.
 900 */
 901static void
 902xlog_cil_push_background(
 903	struct xlog	*log)
 904{
 905	struct xfs_cil	*cil = log->l_cilp;
 906
 907	/*
 908	 * The cil won't be empty because we are called while holding the
 909	 * context lock so whatever we added to the CIL will still be there
 910	 */
 911	ASSERT(!list_empty(&cil->xc_cil));
 912
 913	/*
 914	 * don't do a background push if we haven't used up all the
 915	 * space available yet.
 916	 */
 917	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
 918		return;
 919
 920	spin_lock(&cil->xc_push_lock);
 921	if (cil->xc_push_seq < cil->xc_current_sequence) {
 922		cil->xc_push_seq = cil->xc_current_sequence;
 923		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
 924	}
 925	spin_unlock(&cil->xc_push_lock);
 926
 927}
 928
 929/*
 930 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
 931 * number that is passed. When it returns, the work will be queued for
 932 * @push_seq, but it won't be completed. The caller is expected to do any
 933 * waiting for push_seq to complete if it is required.
 934 */
 935static void
 936xlog_cil_push_now(
 937	struct xlog	*log,
 938	xfs_lsn_t	push_seq)
 939{
 940	struct xfs_cil	*cil = log->l_cilp;
 941
 942	if (!cil)
 943		return;
 944
 945	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
 946
 947	/* start on any pending background push to minimise wait time on it */
 948	flush_work(&cil->xc_push_work);
 949
 950	/*
 951	 * If the CIL is empty or we've already pushed the sequence then
 952	 * there's no work we need to do.
 953	 */
 954	spin_lock(&cil->xc_push_lock);
 955	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
 956		spin_unlock(&cil->xc_push_lock);
 957		return;
 958	}
 959
 960	cil->xc_push_seq = push_seq;
 961	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
 962	spin_unlock(&cil->xc_push_lock);
 963}
 964
 965bool
 966xlog_cil_empty(
 967	struct xlog	*log)
 968{
 969	struct xfs_cil	*cil = log->l_cilp;
 970	bool		empty = false;
 971
 972	spin_lock(&cil->xc_push_lock);
 973	if (list_empty(&cil->xc_cil))
 974		empty = true;
 975	spin_unlock(&cil->xc_push_lock);
 976	return empty;
 977}
 978
 979/*
 980 * Commit a transaction with the given vector to the Committed Item List.
 981 *
 982 * To do this, we need to format the item, pin it in memory if required and
 983 * account for the space used by the transaction. Once we have done that we
 984 * need to release the unused reservation for the transaction, attach the
 985 * transaction to the checkpoint context so we carry the busy extents through
 986 * to checkpoint completion, and then unlock all the items in the transaction.
 987 *
 
 
 
 
 988 * Called with the context lock already held in read mode to lock out
 989 * background commit, returns without it held once background commits are
 990 * allowed again.
 991 */
 992void
 993xfs_log_commit_cil(
 994	struct xfs_mount	*mp,
 995	struct xfs_trans	*tp,
 
 996	xfs_lsn_t		*commit_lsn,
 997	bool			regrant)
 998{
 999	struct xlog		*log = mp->m_log;
1000	struct xfs_cil		*cil = log->l_cilp;
1001	struct xfs_log_item	*lip, *next;
1002	xfs_lsn_t		xc_commit_lsn;
 
 
1003
1004	/*
1005	 * Do all necessary memory allocation before we lock the CIL.
1006	 * This ensures the allocation does not deadlock with a CIL
1007	 * push in memory reclaim (e.g. from kswapd).
 
1008	 */
1009	xlog_cil_alloc_shadow_bufs(log, tp);
1010
1011	/* lock out background commit */
1012	down_read(&cil->xc_ctx_lock);
 
 
 
 
1013
1014	xlog_cil_insert_items(log, tp);
 
 
1015
1016	xc_commit_lsn = cil->xc_ctx->sequence;
1017	if (commit_lsn)
1018		*commit_lsn = xc_commit_lsn;
 
 
 
 
1019
1020	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1021	tp->t_ticket = NULL;
1022	xfs_trans_unreserve_and_mod_sb(tp);
1023
1024	/*
1025	 * Once all the items of the transaction have been copied to the CIL,
1026	 * the items can be unlocked and possibly freed.
1027	 *
1028	 * This needs to be done before we drop the CIL context lock because we
1029	 * have to update state in the log items and unlock them before they go
1030	 * to disk. If we don't, then the CIL checkpoint can race with us and
1031	 * we can run checkpoint completion before we've updated and unlocked
1032	 * the log items. This affects (at least) processing of stale buffers,
1033	 * inodes and EFIs.
1034	 */
1035	trace_xfs_trans_commit_items(tp, _RET_IP_);
1036	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1037		xfs_trans_del_item(lip);
1038		if (lip->li_ops->iop_committing)
1039			lip->li_ops->iop_committing(lip, xc_commit_lsn);
1040	}
1041	xlog_cil_push_background(log);
1042
1043	up_read(&cil->xc_ctx_lock);
 
 
 
 
 
 
 
 
1044}
1045
1046/*
1047 * Conditionally push the CIL based on the sequence passed in.
1048 *
1049 * We only need to push if we haven't already pushed the sequence
1050 * number given. Hence the only time we will trigger a push here is
1051 * if the push sequence is the same as the current context.
1052 *
1053 * We return the current commit lsn to allow the callers to determine if a
1054 * iclog flush is necessary following this call.
 
 
 
1055 */
1056xfs_lsn_t
1057xlog_cil_force_lsn(
1058	struct xlog	*log,
1059	xfs_lsn_t	sequence)
1060{
1061	struct xfs_cil		*cil = log->l_cilp;
1062	struct xfs_cil_ctx	*ctx;
1063	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1064
1065	ASSERT(sequence <= cil->xc_current_sequence);
1066
1067	/*
1068	 * check to see if we need to force out the current context.
1069	 * xlog_cil_push() handles racing pushes for the same sequence,
1070	 * so no need to deal with it here.
1071	 */
1072restart:
1073	xlog_cil_push_now(log, sequence);
1074
1075	/*
1076	 * See if we can find a previous sequence still committing.
1077	 * We need to wait for all previous sequence commits to complete
1078	 * before allowing the force of push_seq to go ahead. Hence block
1079	 * on commits for those as well.
1080	 */
1081	spin_lock(&cil->xc_push_lock);
 
1082	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1083		/*
1084		 * Avoid getting stuck in this loop because we were woken by the
1085		 * shutdown, but then went back to sleep once already in the
1086		 * shutdown state.
1087		 */
1088		if (XLOG_FORCED_SHUTDOWN(log))
1089			goto out_shutdown;
1090		if (ctx->sequence > sequence)
1091			continue;
1092		if (!ctx->commit_lsn) {
1093			/*
1094			 * It is still being pushed! Wait for the push to
1095			 * complete, then start again from the beginning.
1096			 */
1097			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1098			goto restart;
1099		}
1100		if (ctx->sequence != sequence)
1101			continue;
1102		/* found it! */
1103		commit_lsn = ctx->commit_lsn;
1104	}
1105
1106	/*
1107	 * The call to xlog_cil_push_now() executes the push in the background.
1108	 * Hence by the time we have got here it our sequence may not have been
1109	 * pushed yet. This is true if the current sequence still matches the
1110	 * push sequence after the above wait loop and the CIL still contains
1111	 * dirty objects. This is guaranteed by the push code first adding the
1112	 * context to the committing list before emptying the CIL.
1113	 *
1114	 * Hence if we don't find the context in the committing list and the
1115	 * current sequence number is unchanged then the CIL contents are
1116	 * significant.  If the CIL is empty, if means there was nothing to push
1117	 * and that means there is nothing to wait for. If the CIL is not empty,
1118	 * it means we haven't yet started the push, because if it had started
1119	 * we would have found the context on the committing list.
1120	 */
1121	if (sequence == cil->xc_current_sequence &&
1122	    !list_empty(&cil->xc_cil)) {
1123		spin_unlock(&cil->xc_push_lock);
1124		goto restart;
1125	}
1126
1127	spin_unlock(&cil->xc_push_lock);
1128	return commit_lsn;
1129
1130	/*
1131	 * We detected a shutdown in progress. We need to trigger the log force
1132	 * to pass through it's iclog state machine error handling, even though
1133	 * we are already in a shutdown state. Hence we can't return
1134	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1135	 * LSN is already stable), so we return a zero LSN instead.
1136	 */
1137out_shutdown:
1138	spin_unlock(&cil->xc_push_lock);
1139	return 0;
1140}
1141
1142/*
1143 * Check if the current log item was first committed in this sequence.
1144 * We can't rely on just the log item being in the CIL, we have to check
1145 * the recorded commit sequence number.
1146 *
1147 * Note: for this to be used in a non-racy manner, it has to be called with
1148 * CIL flushing locked out. As a result, it should only be used during the
1149 * transaction commit process when deciding what to format into the item.
1150 */
1151bool
1152xfs_log_item_in_current_chkpt(
1153	struct xfs_log_item *lip)
1154{
1155	struct xfs_cil_ctx *ctx;
1156
 
 
1157	if (list_empty(&lip->li_cil))
1158		return false;
1159
1160	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1161
1162	/*
1163	 * li_seq is written on the first commit of a log item to record the
1164	 * first checkpoint it is written to. Hence if it is different to the
1165	 * current sequence, we're in a new checkpoint.
1166	 */
1167	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1168		return false;
1169	return true;
1170}
1171
1172/*
1173 * Perform initial CIL structure initialisation.
1174 */
1175int
1176xlog_cil_init(
1177	struct xlog	*log)
1178{
1179	struct xfs_cil	*cil;
1180	struct xfs_cil_ctx *ctx;
1181
1182	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1183	if (!cil)
1184		return -ENOMEM;
1185
1186	ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
1187	if (!ctx) {
1188		kmem_free(cil);
1189		return -ENOMEM;
1190	}
1191
1192	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1193	INIT_LIST_HEAD(&cil->xc_cil);
1194	INIT_LIST_HEAD(&cil->xc_committing);
1195	spin_lock_init(&cil->xc_cil_lock);
1196	spin_lock_init(&cil->xc_push_lock);
1197	init_rwsem(&cil->xc_ctx_lock);
1198	init_waitqueue_head(&cil->xc_commit_wait);
1199
1200	INIT_LIST_HEAD(&ctx->committing);
1201	INIT_LIST_HEAD(&ctx->busy_extents);
1202	ctx->sequence = 1;
1203	ctx->cil = cil;
1204	cil->xc_ctx = ctx;
1205	cil->xc_current_sequence = ctx->sequence;
1206
1207	cil->xc_log = log;
1208	log->l_cilp = cil;
1209	return 0;
1210}
1211
1212void
1213xlog_cil_destroy(
1214	struct xlog	*log)
1215{
1216	if (log->l_cilp->xc_ctx) {
1217		if (log->l_cilp->xc_ctx->ticket)
1218			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1219		kmem_free(log->l_cilp->xc_ctx);
1220	}
1221
1222	ASSERT(list_empty(&log->l_cilp->xc_cil));
1223	kmem_free(log->l_cilp);
1224}
1225