Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Xilinx USB peripheral controller driver
   4 *
   5 * Copyright (C) 2004 by Thomas Rathbone
   6 * Copyright (C) 2005 by HP Labs
   7 * Copyright (C) 2005 by David Brownell
   8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   9 *
  10 * Some parts of this driver code is based on the driver for at91-series
  11 * USB peripheral controller (at91_udc.c).
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_platform.h>
  23#include <linux/of_irq.h>
  24#include <linux/prefetch.h>
  25#include <linux/usb/ch9.h>
  26#include <linux/usb/gadget.h>
  27
  28/* Register offsets for the USB device.*/
  29#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
  30#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
  31#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
  32#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
  33#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
  34#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
  35#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
  36#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
  37#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
  38#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
  39#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
  40#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
  41#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
  42#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
  43#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
  44
  45/* Endpoint Configuration Space offsets */
  46#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
  47#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
  48#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
  49
  50#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
  51#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
  52
  53/* Interrupt register related masks.*/
  54#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
  55#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
  56#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
  57#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
  58#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
  59#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
  60#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
  61#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
  62#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
  63#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
  64#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
  65#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
  66#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
  67#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
  68#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
  69#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
  70/* Suspend,Reset,Suspend and Disconnect Mask */
  71#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
  72/* Buffers  completion Mask */
  73#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
  74/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  75#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
  76#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
  77
  78/* Endpoint Configuration Status Register */
  79#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
  80#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
  81#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
  82
  83/* USB device specific global configuration constants.*/
  84#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
  85#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
  86/* DPRAM is the source address for DMA transfer */
  87#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
  88#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
  89#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
  90/*
  91 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  92 * DMA transfer completion.
  93 */
  94#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
  95/* Phase States */
  96#define SETUP_PHASE			0x0000	/* Setup Phase */
  97#define DATA_PHASE			0x0001  /* Data Phase */
  98#define STATUS_PHASE			0x0002  /* Status Phase */
  99
 100#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
 101#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
 102#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
 103
 104/* container_of helper macros */
 105#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
 106#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
 107#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 108
 109/**
 110 * struct xusb_req - Xilinx USB device request structure
 111 * @usb_req: Linux usb request structure
 112 * @queue: usb device request queue
 113 * @ep: pointer to xusb_endpoint structure
 114 */
 115struct xusb_req {
 116	struct usb_request usb_req;
 117	struct list_head queue;
 118	struct xusb_ep *ep;
 119};
 120
 121/**
 122 * struct xusb_ep - USB end point structure.
 123 * @ep_usb: usb endpoint instance
 124 * @queue: endpoint message queue
 125 * @udc: xilinx usb peripheral driver instance pointer
 126 * @desc: pointer to the usb endpoint descriptor
 127 * @rambase: the endpoint buffer address
 128 * @offset: the endpoint register offset value
 129 * @name: name of the endpoint
 130 * @epnumber: endpoint number
 131 * @maxpacket: maximum packet size the endpoint can store
 132 * @buffer0count: the size of the packet recieved in the first buffer
 133 * @buffer1count: the size of the packet received in the second buffer
 134 * @curbufnum: current buffer of endpoint that will be processed next
 135 * @buffer0ready: the busy state of first buffer
 136 * @buffer1ready: the busy state of second buffer
 137 * @is_in: endpoint direction (IN or OUT)
 138 * @is_iso: endpoint type(isochronous or non isochronous)
 139 */
 140struct xusb_ep {
 141	struct usb_ep ep_usb;
 142	struct list_head queue;
 143	struct xusb_udc *udc;
 144	const struct usb_endpoint_descriptor *desc;
 145	u32  rambase;
 146	u32  offset;
 147	char name[4];
 148	u16  epnumber;
 149	u16  maxpacket;
 150	u16  buffer0count;
 151	u16  buffer1count;
 152	u8   curbufnum;
 153	bool buffer0ready;
 154	bool buffer1ready;
 155	bool is_in;
 156	bool is_iso;
 157};
 158
 159/**
 160 * struct xusb_udc -  USB peripheral driver structure
 161 * @gadget: USB gadget driver instance
 162 * @ep: an array of endpoint structures
 163 * @driver: pointer to the usb gadget driver instance
 164 * @setup: usb_ctrlrequest structure for control requests
 165 * @req: pointer to dummy request for get status command
 166 * @dev: pointer to device structure in gadget
 167 * @usb_state: device in suspended state or not
 168 * @remote_wkp: remote wakeup enabled by host
 169 * @setupseqtx: tx status
 170 * @setupseqrx: rx status
 171 * @addr: the usb device base address
 172 * @lock: instance of spinlock
 173 * @dma_enabled: flag indicating whether the dma is included in the system
 174 * @read_fn: function pointer to read device registers
 175 * @write_fn: function pointer to write to device registers
 176 */
 177struct xusb_udc {
 178	struct usb_gadget gadget;
 179	struct xusb_ep ep[8];
 180	struct usb_gadget_driver *driver;
 181	struct usb_ctrlrequest setup;
 182	struct xusb_req *req;
 183	struct device *dev;
 184	u32 usb_state;
 185	u32 remote_wkp;
 186	u32 setupseqtx;
 187	u32 setupseqrx;
 188	void __iomem *addr;
 189	spinlock_t lock;
 190	bool dma_enabled;
 191
 192	unsigned int (*read_fn)(void __iomem *);
 193	void (*write_fn)(void __iomem *, u32, u32);
 194};
 195
 196/* Endpoint buffer start addresses in the core */
 197static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 198			  0x1600 };
 199
 200static const char driver_name[] = "xilinx-udc";
 201static const char ep0name[] = "ep0";
 202
 203/* Control endpoint configuration.*/
 204static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 205	.bLength		= USB_DT_ENDPOINT_SIZE,
 206	.bDescriptorType	= USB_DT_ENDPOINT,
 207	.bEndpointAddress	= USB_DIR_OUT,
 208	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
 209	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
 210};
 211
 212/**
 213 * xudc_write32 - little endian write to device registers
 214 * @addr: base addr of device registers
 215 * @offset: register offset
 216 * @val: data to be written
 217 */
 218static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 219{
 220	iowrite32(val, addr + offset);
 221}
 222
 223/**
 224 * xudc_read32 - little endian read from device registers
 225 * @addr: addr of device register
 226 * Return: value at addr
 227 */
 228static unsigned int xudc_read32(void __iomem *addr)
 229{
 230	return ioread32(addr);
 231}
 232
 233/**
 234 * xudc_write32_be - big endian write to device registers
 235 * @addr: base addr of device registers
 236 * @offset: register offset
 237 * @val: data to be written
 238 */
 239static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 240{
 241	iowrite32be(val, addr + offset);
 242}
 243
 244/**
 245 * xudc_read32_be - big endian read from device registers
 246 * @addr: addr of device register
 247 * Return: value at addr
 248 */
 249static unsigned int xudc_read32_be(void __iomem *addr)
 250{
 251	return ioread32be(addr);
 252}
 253
 254/**
 255 * xudc_wrstatus - Sets up the usb device status stages.
 256 * @udc: pointer to the usb device controller structure.
 257 */
 258static void xudc_wrstatus(struct xusb_udc *udc)
 259{
 260	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 261	u32 epcfgreg;
 262
 263	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 264				XUSB_EP_CFG_DATA_TOGGLE_MASK;
 265	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 266	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 267	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 268}
 269
 270/**
 271 * xudc_epconfig - Configures the given endpoint.
 272 * @ep: pointer to the usb device endpoint structure.
 273 * @udc: pointer to the usb peripheral controller structure.
 274 *
 275 * This function configures a specific endpoint with the given configuration
 276 * data.
 277 */
 278static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 279{
 280	u32 epcfgreg;
 281
 282	/*
 283	 * Configure the end point direction, type, Max Packet Size and the
 284	 * EP buffer location.
 285	 */
 286	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 287		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 288	udc->write_fn(udc->addr, ep->offset, epcfgreg);
 289
 290	/* Set the Buffer count and the Buffer ready bits.*/
 291	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 292		      ep->buffer0count);
 293	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 294		      ep->buffer1count);
 295	if (ep->buffer0ready)
 296		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 297			      1 << ep->epnumber);
 298	if (ep->buffer1ready)
 299		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 300			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 301}
 302
 303/**
 304 * xudc_start_dma - Starts DMA transfer.
 305 * @ep: pointer to the usb device endpoint structure.
 306 * @src: DMA source address.
 307 * @dst: DMA destination address.
 308 * @length: number of bytes to transfer.
 309 *
 310 * Return: 0 on success, error code on failure
 311 *
 312 * This function starts DMA transfer by writing to DMA source,
 313 * destination and lenth registers.
 314 */
 315static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 316			  dma_addr_t dst, u32 length)
 317{
 318	struct xusb_udc *udc = ep->udc;
 319	int rc = 0;
 320	u32 timeout = 500;
 321	u32 reg;
 322
 323	/*
 324	 * Set the addresses in the DMA source and
 325	 * destination registers and then set the length
 326	 * into the DMA length register.
 327	 */
 328	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 329	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 330	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 331
 332	/*
 333	 * Wait till DMA transaction is complete and
 334	 * check whether the DMA transaction was
 335	 * successful.
 336	 */
 337	do {
 338		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 339		if (!(reg &  XUSB_DMA_DMASR_BUSY))
 340			break;
 341
 342		/*
 343		 * We can't sleep here, because it's also called from
 344		 * interrupt context.
 345		 */
 346		timeout--;
 347		if (!timeout) {
 348			dev_err(udc->dev, "DMA timeout\n");
 349			return -ETIMEDOUT;
 350		}
 351		udelay(1);
 352	} while (1);
 353
 354	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 355			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 356		dev_err(udc->dev, "DMA Error\n");
 357		rc = -EINVAL;
 358	}
 359
 360	return rc;
 361}
 362
 363/**
 364 * xudc_dma_send - Sends IN data using DMA.
 365 * @ep: pointer to the usb device endpoint structure.
 366 * @req: pointer to the usb request structure.
 367 * @buffer: pointer to data to be sent.
 368 * @length: number of bytes to send.
 369 *
 370 * Return: 0 on success, -EAGAIN if no buffer is free and error
 371 *	   code on failure.
 372 *
 373 * This function sends data using DMA.
 374 */
 375static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 376			 u8 *buffer, u32 length)
 377{
 378	u32 *eprambase;
 379	dma_addr_t src;
 380	dma_addr_t dst;
 381	struct xusb_udc *udc = ep->udc;
 382
 383	src = req->usb_req.dma + req->usb_req.actual;
 384	if (req->usb_req.length)
 385		dma_sync_single_for_device(udc->dev, src,
 386					   length, DMA_TO_DEVICE);
 387	if (!ep->curbufnum && !ep->buffer0ready) {
 388		/* Get the Buffer address and copy the transmit data.*/
 389		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 390		dst = virt_to_phys(eprambase);
 391		udc->write_fn(udc->addr, ep->offset +
 392			      XUSB_EP_BUF0COUNT_OFFSET, length);
 393		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 394			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 395		ep->buffer0ready = 1;
 396		ep->curbufnum = 1;
 397	} else if (ep->curbufnum && !ep->buffer1ready) {
 398		/* Get the Buffer address and copy the transmit data.*/
 399		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 400			     ep->ep_usb.maxpacket);
 401		dst = virt_to_phys(eprambase);
 402		udc->write_fn(udc->addr, ep->offset +
 403			      XUSB_EP_BUF1COUNT_OFFSET, length);
 404		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 405			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 406			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 407		ep->buffer1ready = 1;
 408		ep->curbufnum = 0;
 409	} else {
 410		/* None of ping pong buffers are ready currently .*/
 411		return -EAGAIN;
 412	}
 413
 414	return xudc_start_dma(ep, src, dst, length);
 415}
 416
 417/**
 418 * xudc_dma_receive - Receives OUT data using DMA.
 419 * @ep: pointer to the usb device endpoint structure.
 420 * @req: pointer to the usb request structure.
 421 * @buffer: pointer to storage buffer of received data.
 422 * @length: number of bytes to receive.
 423 *
 424 * Return: 0 on success, -EAGAIN if no buffer is free and error
 425 *	   code on failure.
 426 *
 427 * This function receives data using DMA.
 428 */
 429static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 430			    u8 *buffer, u32 length)
 431{
 432	u32 *eprambase;
 433	dma_addr_t src;
 434	dma_addr_t dst;
 435	struct xusb_udc *udc = ep->udc;
 436
 437	dst = req->usb_req.dma + req->usb_req.actual;
 438	if (!ep->curbufnum && !ep->buffer0ready) {
 439		/* Get the Buffer address and copy the transmit data */
 440		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 441		src = virt_to_phys(eprambase);
 442		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 443			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 444			      (1 << ep->epnumber));
 445		ep->buffer0ready = 1;
 446		ep->curbufnum = 1;
 447	} else if (ep->curbufnum && !ep->buffer1ready) {
 448		/* Get the Buffer address and copy the transmit data */
 449		eprambase = (u32 __force *)(udc->addr +
 450			     ep->rambase + ep->ep_usb.maxpacket);
 451		src = virt_to_phys(eprambase);
 452		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 453			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 454			      (1 << (ep->epnumber +
 455			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 456		ep->buffer1ready = 1;
 457		ep->curbufnum = 0;
 458	} else {
 459		/* None of the ping-pong buffers are ready currently */
 460		return -EAGAIN;
 461	}
 462
 463	return xudc_start_dma(ep, src, dst, length);
 464}
 465
 466/**
 467 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 468 * @ep: pointer to the usb endpoint configuration structure.
 469 * @req: pointer to the usb request structure.
 470 * @bufferptr: pointer to buffer containing the data to be sent.
 471 * @bufferlen: The number of data bytes to be sent.
 472 *
 473 * Return: 0 on success, -EAGAIN if no buffer is free.
 474 *
 475 * This function copies the transmit/receive data to/from the end point buffer
 476 * and enables the buffer for transmission/reception.
 477 */
 478static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 479		       u8 *bufferptr, u32 bufferlen)
 480{
 481	u32 *eprambase;
 482	u32 bytestosend;
 483	int rc = 0;
 484	struct xusb_udc *udc = ep->udc;
 485
 486	bytestosend = bufferlen;
 487	if (udc->dma_enabled) {
 488		if (ep->is_in)
 489			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 490		else
 491			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 492		return rc;
 493	}
 494	/* Put the transmit buffer into the correct ping-pong buffer.*/
 495	if (!ep->curbufnum && !ep->buffer0ready) {
 496		/* Get the Buffer address and copy the transmit data.*/
 497		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 498		if (ep->is_in) {
 499			memcpy(eprambase, bufferptr, bytestosend);
 500			udc->write_fn(udc->addr, ep->offset +
 501				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 502		} else {
 503			memcpy(bufferptr, eprambase, bytestosend);
 504		}
 505		/*
 506		 * Enable the buffer for transmission.
 507		 */
 508		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 509			      1 << ep->epnumber);
 510		ep->buffer0ready = 1;
 511		ep->curbufnum = 1;
 512	} else if (ep->curbufnum && !ep->buffer1ready) {
 513		/* Get the Buffer address and copy the transmit data.*/
 514		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 515			     ep->ep_usb.maxpacket);
 516		if (ep->is_in) {
 517			memcpy(eprambase, bufferptr, bytestosend);
 518			udc->write_fn(udc->addr, ep->offset +
 519				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 520		} else {
 521			memcpy(bufferptr, eprambase, bytestosend);
 522		}
 523		/*
 524		 * Enable the buffer for transmission.
 525		 */
 526		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 527			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 528		ep->buffer1ready = 1;
 529		ep->curbufnum = 0;
 530	} else {
 531		/* None of the ping-pong buffers are ready currently */
 532		return -EAGAIN;
 533	}
 534	return rc;
 535}
 536
 537/**
 538 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 539 * @ep: pointer to the usb device endpoint structure.
 540 * @req: pointer to the usb request structure.
 541 * @status: Status of the data transfer.
 542 *
 543 * Deletes the message from the queue and updates data transfer completion
 544 * status.
 545 */
 546static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 547{
 548	struct xusb_udc *udc = ep->udc;
 549
 550	list_del_init(&req->queue);
 551
 552	if (req->usb_req.status == -EINPROGRESS)
 553		req->usb_req.status = status;
 554	else
 555		status = req->usb_req.status;
 556
 557	if (status && status != -ESHUTDOWN)
 558		dev_dbg(udc->dev, "%s done %p, status %d\n",
 559			ep->ep_usb.name, req, status);
 560	/* unmap request if DMA is present*/
 561	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 562		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 563					 ep->is_in);
 564
 565	if (req->usb_req.complete) {
 566		spin_unlock(&udc->lock);
 567		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 568		spin_lock(&udc->lock);
 569	}
 570}
 571
 572/**
 573 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 574 * @ep: pointer to the usb device endpoint structure.
 575 * @req: pointer to the usb request structure.
 576 *
 577 * Return: 0 if request is completed and -EAGAIN if not completed.
 578 *
 579 * Pulls OUT packet data from the endpoint buffer.
 580 */
 581static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 582{
 583	u8 *buf;
 584	u32 is_short, count, bufferspace;
 585	u8 bufoffset;
 586	u8 two_pkts = 0;
 587	int ret;
 588	int retval = -EAGAIN;
 589	struct xusb_udc *udc = ep->udc;
 590
 591	if (ep->buffer0ready && ep->buffer1ready) {
 592		dev_dbg(udc->dev, "Packet NOT ready!\n");
 593		return retval;
 594	}
 595top:
 596	if (ep->curbufnum)
 597		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 598	else
 599		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 600
 601	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 602
 603	if (!ep->buffer0ready && !ep->buffer1ready)
 604		two_pkts = 1;
 605
 606	buf = req->usb_req.buf + req->usb_req.actual;
 607	prefetchw(buf);
 608	bufferspace = req->usb_req.length - req->usb_req.actual;
 609	is_short = count < ep->ep_usb.maxpacket;
 610
 611	if (unlikely(!bufferspace)) {
 612		/*
 613		 * This happens when the driver's buffer
 614		 * is smaller than what the host sent.
 615		 * discard the extra data.
 616		 */
 617		if (req->usb_req.status != -EOVERFLOW)
 618			dev_dbg(udc->dev, "%s overflow %d\n",
 619				ep->ep_usb.name, count);
 620		req->usb_req.status = -EOVERFLOW;
 621		xudc_done(ep, req, -EOVERFLOW);
 622		return 0;
 623	}
 624
 625	ret = xudc_eptxrx(ep, req, buf, count);
 626	switch (ret) {
 627	case 0:
 628		req->usb_req.actual += min(count, bufferspace);
 629		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 630			ep->ep_usb.name, count, is_short ? "/S" : "", req,
 631			req->usb_req.actual, req->usb_req.length);
 632		bufferspace -= count;
 633		/* Completion */
 634		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 635			if (udc->dma_enabled && req->usb_req.length)
 636				dma_sync_single_for_cpu(udc->dev,
 637							req->usb_req.dma,
 638							req->usb_req.actual,
 639							DMA_FROM_DEVICE);
 640			xudc_done(ep, req, 0);
 641			return 0;
 642		}
 643		if (two_pkts) {
 644			two_pkts = 0;
 645			goto top;
 646		}
 647		break;
 648	case -EAGAIN:
 649		dev_dbg(udc->dev, "receive busy\n");
 650		break;
 651	case -EINVAL:
 652	case -ETIMEDOUT:
 653		/* DMA error, dequeue the request */
 654		xudc_done(ep, req, -ECONNRESET);
 655		retval = 0;
 656		break;
 657	}
 658
 659	return retval;
 660}
 661
 662/**
 663 * xudc_write_fifo - Writes data into the given endpoint buffer.
 664 * @ep: pointer to the usb device endpoint structure.
 665 * @req: pointer to the usb request structure.
 666 *
 667 * Return: 0 if request is completed and -EAGAIN if not completed.
 668 *
 669 * Loads endpoint buffer for an IN packet.
 670 */
 671static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 672{
 673	u32 max;
 674	u32 length;
 675	int ret;
 676	int retval = -EAGAIN;
 677	struct xusb_udc *udc = ep->udc;
 678	int is_last, is_short = 0;
 679	u8 *buf;
 680
 681	max = le16_to_cpu(ep->desc->wMaxPacketSize);
 682	buf = req->usb_req.buf + req->usb_req.actual;
 683	prefetch(buf);
 684	length = req->usb_req.length - req->usb_req.actual;
 685	length = min(length, max);
 686
 687	ret = xudc_eptxrx(ep, req, buf, length);
 688	switch (ret) {
 689	case 0:
 690		req->usb_req.actual += length;
 691		if (unlikely(length != max)) {
 692			is_last = is_short = 1;
 693		} else {
 694			if (likely(req->usb_req.length !=
 695				   req->usb_req.actual) || req->usb_req.zero)
 696				is_last = 0;
 697			else
 698				is_last = 1;
 699		}
 700		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 701			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 702			is_short ? "/S" : "",
 703			req->usb_req.length - req->usb_req.actual, req);
 704		/* completion */
 705		if (is_last) {
 706			xudc_done(ep, req, 0);
 707			retval = 0;
 708		}
 709		break;
 710	case -EAGAIN:
 711		dev_dbg(udc->dev, "Send busy\n");
 712		break;
 713	case -EINVAL:
 714	case -ETIMEDOUT:
 715		/* DMA error, dequeue the request */
 716		xudc_done(ep, req, -ECONNRESET);
 717		retval = 0;
 718		break;
 719	}
 720
 721	return retval;
 722}
 723
 724/**
 725 * xudc_nuke - Cleans up the data transfer message list.
 726 * @ep: pointer to the usb device endpoint structure.
 727 * @status: Status of the data transfer.
 728 */
 729static void xudc_nuke(struct xusb_ep *ep, int status)
 730{
 731	struct xusb_req *req;
 732
 733	while (!list_empty(&ep->queue)) {
 734		req = list_first_entry(&ep->queue, struct xusb_req, queue);
 735		xudc_done(ep, req, status);
 736	}
 737}
 738
 739/**
 740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 741 * @_ep: pointer to the usb device endpoint structure.
 742 * @value: value to indicate stall/unstall.
 743 *
 744 * Return: 0 for success and error value on failure
 745 */
 746static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 747{
 748	struct xusb_ep *ep = to_xusb_ep(_ep);
 749	struct xusb_udc *udc;
 750	unsigned long flags;
 751	u32 epcfgreg;
 752
 753	if (!_ep || (!ep->desc && ep->epnumber)) {
 754		pr_debug("%s: bad ep or descriptor\n", __func__);
 755		return -EINVAL;
 756	}
 757	udc = ep->udc;
 758
 759	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 760		dev_dbg(udc->dev, "requests pending can't halt\n");
 761		return -EAGAIN;
 762	}
 763
 764	if (ep->buffer0ready || ep->buffer1ready) {
 765		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 766		return -EAGAIN;
 767	}
 768
 769	spin_lock_irqsave(&udc->lock, flags);
 770
 771	if (value) {
 772		/* Stall the device.*/
 773		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 774		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 775		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 776	} else {
 777		/* Unstall the device.*/
 778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781		if (ep->epnumber) {
 782			/* Reset the toggle bit.*/
 783			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 784			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 785			udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786		}
 787	}
 788
 789	spin_unlock_irqrestore(&udc->lock, flags);
 790	return 0;
 791}
 792
 793/**
 794 * xudc_ep_enable - Enables the given endpoint.
 795 * @ep: pointer to the xusb endpoint structure.
 796 * @desc: pointer to usb endpoint descriptor.
 797 *
 798 * Return: 0 for success and error value on failure
 799 */
 800static int __xudc_ep_enable(struct xusb_ep *ep,
 801			    const struct usb_endpoint_descriptor *desc)
 802{
 803	struct xusb_udc *udc = ep->udc;
 804	u32 tmp;
 805	u32 epcfg;
 806	u32 ier;
 807	u16 maxpacket;
 808
 809	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 810	/* Bit 3...0:endpoint number */
 811	ep->epnumber = (desc->bEndpointAddress & 0x0f);
 812	ep->desc = desc;
 813	ep->ep_usb.desc = desc;
 814	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 815	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 816
 817	switch (tmp) {
 818	case USB_ENDPOINT_XFER_CONTROL:
 819		dev_dbg(udc->dev, "only one control endpoint\n");
 820		/* NON- ISO */
 821		ep->is_iso = 0;
 822		return -EINVAL;
 823	case USB_ENDPOINT_XFER_INT:
 824		/* NON- ISO */
 825		ep->is_iso = 0;
 826		if (maxpacket > 64) {
 827			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 828			return -EINVAL;
 829		}
 830		break;
 831	case USB_ENDPOINT_XFER_BULK:
 832		/* NON- ISO */
 833		ep->is_iso = 0;
 834		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 835				maxpacket <= 512)) {
 836			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 837			return -EINVAL;
 838		}
 839		break;
 840	case USB_ENDPOINT_XFER_ISOC:
 841		/* ISO */
 842		ep->is_iso = 1;
 843		break;
 844	}
 845
 846	ep->buffer0ready = 0;
 847	ep->buffer1ready = 0;
 848	ep->curbufnum = 0;
 849	ep->rambase = rambase[ep->epnumber];
 850	xudc_epconfig(ep, udc);
 851
 852	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 853		ep->epnumber, maxpacket);
 854
 855	/* Enable the End point.*/
 856	epcfg = udc->read_fn(udc->addr + ep->offset);
 857	epcfg |= XUSB_EP_CFG_VALID_MASK;
 858	udc->write_fn(udc->addr, ep->offset, epcfg);
 859	if (ep->epnumber)
 860		ep->rambase <<= 2;
 861
 862	/* Enable buffer completion interrupts for endpoint */
 863	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 864	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 865	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 866
 867	/* for OUT endpoint set buffers ready to receive */
 868	if (ep->epnumber && !ep->is_in) {
 869		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 870			      1 << ep->epnumber);
 871		ep->buffer0ready = 1;
 872		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 873			     (1 << (ep->epnumber +
 874			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 875		ep->buffer1ready = 1;
 876	}
 877
 878	return 0;
 879}
 880
 881/**
 882 * xudc_ep_enable - Enables the given endpoint.
 883 * @_ep: pointer to the usb endpoint structure.
 884 * @desc: pointer to usb endpoint descriptor.
 885 *
 886 * Return: 0 for success and error value on failure
 887 */
 888static int xudc_ep_enable(struct usb_ep *_ep,
 889			  const struct usb_endpoint_descriptor *desc)
 890{
 891	struct xusb_ep *ep;
 892	struct xusb_udc *udc;
 893	unsigned long flags;
 894	int ret;
 895
 896	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 897		pr_debug("%s: bad ep or descriptor\n", __func__);
 898		return -EINVAL;
 899	}
 900
 901	ep = to_xusb_ep(_ep);
 902	udc = ep->udc;
 903
 904	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 905		dev_dbg(udc->dev, "bogus device state\n");
 906		return -ESHUTDOWN;
 907	}
 908
 909	spin_lock_irqsave(&udc->lock, flags);
 910	ret = __xudc_ep_enable(ep, desc);
 911	spin_unlock_irqrestore(&udc->lock, flags);
 912
 913	return ret;
 914}
 915
 916/**
 917 * xudc_ep_disable - Disables the given endpoint.
 918 * @_ep: pointer to the usb endpoint structure.
 919 *
 920 * Return: 0 for success and error value on failure
 921 */
 922static int xudc_ep_disable(struct usb_ep *_ep)
 923{
 924	struct xusb_ep *ep;
 925	unsigned long flags;
 926	u32 epcfg;
 927	struct xusb_udc *udc;
 928
 929	if (!_ep) {
 930		pr_debug("%s: invalid ep\n", __func__);
 931		return -EINVAL;
 932	}
 933
 934	ep = to_xusb_ep(_ep);
 935	udc = ep->udc;
 936
 937	spin_lock_irqsave(&udc->lock, flags);
 938
 939	xudc_nuke(ep, -ESHUTDOWN);
 940
 941	/* Restore the endpoint's pristine config */
 942	ep->desc = NULL;
 943	ep->ep_usb.desc = NULL;
 944
 945	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 946	/* Disable the endpoint.*/
 947	epcfg = udc->read_fn(udc->addr + ep->offset);
 948	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 949	udc->write_fn(udc->addr, ep->offset, epcfg);
 950
 951	spin_unlock_irqrestore(&udc->lock, flags);
 952	return 0;
 953}
 954
 955/**
 956 * xudc_ep_alloc_request - Initializes the request queue.
 957 * @_ep: pointer to the usb endpoint structure.
 958 * @gfp_flags: Flags related to the request call.
 959 *
 960 * Return: pointer to request structure on success and a NULL on failure.
 961 */
 962static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 963						 gfp_t gfp_flags)
 964{
 965	struct xusb_ep *ep = to_xusb_ep(_ep);
 966	struct xusb_req *req;
 967
 968	req = kzalloc(sizeof(*req), gfp_flags);
 969	if (!req)
 970		return NULL;
 971
 972	req->ep = ep;
 973	INIT_LIST_HEAD(&req->queue);
 974	return &req->usb_req;
 975}
 976
 977/**
 978 * xudc_free_request - Releases the request from queue.
 979 * @_ep: pointer to the usb device endpoint structure.
 980 * @_req: pointer to the usb request structure.
 981 */
 982static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 983{
 984	struct xusb_req *req = to_xusb_req(_req);
 985
 986	kfree(req);
 987}
 988
 989/**
 990 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
 991 * @ep0: pointer to the xusb endpoint 0 structure.
 992 * @req: pointer to the xusb request structure.
 993 *
 994 * Return: 0 for success and error value on failure
 995 */
 996static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
 997{
 998	struct xusb_udc *udc = ep0->udc;
 999	u32 length;
1000	u8 *corebuf;
1001
1002	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004		return -EINVAL;
1005	}
1006	if (!list_empty(&ep0->queue)) {
1007		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008		return -EBUSY;
1009	}
1010
1011	req->usb_req.status = -EINPROGRESS;
1012	req->usb_req.actual = 0;
1013
1014	list_add_tail(&req->queue, &ep0->queue);
1015
1016	if (udc->setup.bRequestType & USB_DIR_IN) {
1017		prefetch(req->usb_req.buf);
1018		length = req->usb_req.length;
1019		corebuf = (void __force *) ((ep0->rambase << 2) +
1020			   udc->addr);
1021		length = req->usb_req.actual = min_t(u32, length,
1022						     EP0_MAX_PACKET);
1023		memcpy(corebuf, req->usb_req.buf, length);
1024		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026	} else {
1027		if (udc->setup.wLength) {
1028			/* Enable EP0 buffer to receive data */
1029			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031		} else {
1032			xudc_wrstatus(udc);
1033		}
1034	}
1035
1036	return 0;
1037}
1038
1039/**
1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041 * @_ep: pointer to the usb endpoint 0 structure.
1042 * @_req: pointer to the usb request structure.
1043 * @gfp_flags: Flags related to the request call.
1044 *
1045 * Return: 0 for success and error value on failure
1046 */
1047static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048			  gfp_t gfp_flags)
1049{
1050	struct xusb_req *req	= to_xusb_req(_req);
1051	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1052	struct xusb_udc *udc	= ep0->udc;
1053	unsigned long flags;
1054	int ret;
1055
1056	spin_lock_irqsave(&udc->lock, flags);
1057	ret = __xudc_ep0_queue(ep0, req);
1058	spin_unlock_irqrestore(&udc->lock, flags);
1059
1060	return ret;
1061}
1062
1063/**
1064 * xudc_ep_queue - Adds the request to endpoint queue.
1065 * @_ep: pointer to the usb endpoint structure.
1066 * @_req: pointer to the usb request structure.
1067 * @gfp_flags: Flags related to the request call.
1068 *
1069 * Return: 0 for success and error value on failure
1070 */
1071static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072			 gfp_t gfp_flags)
1073{
1074	struct xusb_req *req = to_xusb_req(_req);
1075	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1076	struct xusb_udc *udc = ep->udc;
1077	int  ret;
1078	unsigned long flags;
1079
1080	if (!ep->desc) {
1081		dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1082			__func__, ep->name);
1083		return -ESHUTDOWN;
1084	}
1085
1086	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088		return -EINVAL;
1089	}
1090
1091	spin_lock_irqsave(&udc->lock, flags);
1092
1093	_req->status = -EINPROGRESS;
1094	_req->actual = 0;
1095
1096	if (udc->dma_enabled) {
1097		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098					     ep->is_in);
1099		if (ret) {
1100			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101				ep->epnumber);
1102			spin_unlock_irqrestore(&udc->lock, flags);
1103			return -EAGAIN;
1104		}
1105	}
1106
1107	if (list_empty(&ep->queue)) {
1108		if (ep->is_in) {
1109			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110			if (!xudc_write_fifo(ep, req))
1111				req = NULL;
1112		} else {
1113			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114			if (!xudc_read_fifo(ep, req))
1115				req = NULL;
1116		}
1117	}
1118
1119	if (req != NULL)
1120		list_add_tail(&req->queue, &ep->queue);
1121
1122	spin_unlock_irqrestore(&udc->lock, flags);
1123	return 0;
1124}
1125
1126/**
1127 * xudc_ep_dequeue - Removes the request from the queue.
1128 * @_ep: pointer to the usb device endpoint structure.
1129 * @_req: pointer to the usb request structure.
1130 *
1131 * Return: 0 for success and error value on failure
1132 */
1133static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134{
1135	struct xusb_ep *ep	= to_xusb_ep(_ep);
1136	struct xusb_req *req	= to_xusb_req(_req);
1137	struct xusb_udc *udc	= ep->udc;
1138	unsigned long flags;
1139
1140	spin_lock_irqsave(&udc->lock, flags);
1141	/* Make sure it's actually queued on this endpoint */
1142	list_for_each_entry(req, &ep->queue, queue) {
1143		if (&req->usb_req == _req)
1144			break;
1145	}
1146	if (&req->usb_req != _req) {
1147		spin_unlock_irqrestore(&udc->lock, flags);
1148		return -EINVAL;
1149	}
1150	xudc_done(ep, req, -ECONNRESET);
1151	spin_unlock_irqrestore(&udc->lock, flags);
1152
1153	return 0;
1154}
1155
1156/**
1157 * xudc_ep0_enable - Enables the given endpoint.
1158 * @ep: pointer to the usb endpoint structure.
1159 * @desc: pointer to usb endpoint descriptor.
1160 *
1161 * Return: error always.
1162 *
1163 * endpoint 0 enable should not be called by gadget layer.
1164 */
1165static int xudc_ep0_enable(struct usb_ep *ep,
1166			   const struct usb_endpoint_descriptor *desc)
1167{
1168	return -EINVAL;
1169}
1170
1171/**
1172 * xudc_ep0_disable - Disables the given endpoint.
1173 * @ep: pointer to the usb endpoint structure.
1174 *
1175 * Return: error always.
1176 *
1177 * endpoint 0 disable should not be called by gadget layer.
1178 */
1179static int xudc_ep0_disable(struct usb_ep *ep)
1180{
1181	return -EINVAL;
1182}
1183
1184static const struct usb_ep_ops xusb_ep0_ops = {
1185	.enable		= xudc_ep0_enable,
1186	.disable	= xudc_ep0_disable,
1187	.alloc_request	= xudc_ep_alloc_request,
1188	.free_request	= xudc_free_request,
1189	.queue		= xudc_ep0_queue,
1190	.dequeue	= xudc_ep_dequeue,
1191	.set_halt	= xudc_ep_set_halt,
1192};
1193
1194static const struct usb_ep_ops xusb_ep_ops = {
1195	.enable		= xudc_ep_enable,
1196	.disable	= xudc_ep_disable,
1197	.alloc_request	= xudc_ep_alloc_request,
1198	.free_request	= xudc_free_request,
1199	.queue		= xudc_ep_queue,
1200	.dequeue	= xudc_ep_dequeue,
1201	.set_halt	= xudc_ep_set_halt,
1202};
1203
1204/**
1205 * xudc_get_frame - Reads the current usb frame number.
1206 * @gadget: pointer to the usb gadget structure.
1207 *
1208 * Return: current frame number for success and error value on failure.
1209 */
1210static int xudc_get_frame(struct usb_gadget *gadget)
1211{
1212	struct xusb_udc *udc;
1213	int frame;
1214
1215	if (!gadget)
1216		return -ENODEV;
1217
1218	udc = to_udc(gadget);
1219	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220	return frame;
1221}
1222
1223/**
1224 * xudc_wakeup - Send remote wakeup signal to host
1225 * @gadget: pointer to the usb gadget structure.
1226 *
1227 * Return: 0 on success and error on failure
1228 */
1229static int xudc_wakeup(struct usb_gadget *gadget)
1230{
1231	struct xusb_udc *udc = to_udc(gadget);
1232	u32 crtlreg;
1233	int status = -EINVAL;
1234	unsigned long flags;
1235
1236	spin_lock_irqsave(&udc->lock, flags);
1237
1238	/* Remote wake up not enabled by host */
1239	if (!udc->remote_wkp)
1240		goto done;
1241
1242	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244	/* set remote wake up bit */
1245	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246	/*
1247	 * wait for a while and reset remote wake up bit since this bit
1248	 * is not cleared by HW after sending remote wakeup to host.
1249	 */
1250	mdelay(2);
1251
1252	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254	status = 0;
1255done:
1256	spin_unlock_irqrestore(&udc->lock, flags);
1257	return status;
1258}
1259
1260/**
1261 * xudc_pullup - start/stop USB traffic
1262 * @gadget: pointer to the usb gadget structure.
1263 * @is_on: flag to start or stop
1264 *
1265 * Return: 0 always
1266 *
1267 * This function starts/stops SIE engine of IP based on is_on.
1268 */
1269static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270{
1271	struct xusb_udc *udc = to_udc(gadget);
1272	unsigned long flags;
1273	u32 crtlreg;
1274
1275	spin_lock_irqsave(&udc->lock, flags);
1276
1277	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278	if (is_on)
1279		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280	else
1281		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285	spin_unlock_irqrestore(&udc->lock, flags);
1286
1287	return 0;
1288}
1289
1290/**
1291 * xudc_eps_init - initialize endpoints.
1292 * @udc: pointer to the usb device controller structure.
1293 */
1294static void xudc_eps_init(struct xusb_udc *udc)
1295{
1296	u32 ep_number;
1297
1298	INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301		struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303		if (ep_number) {
1304			list_add_tail(&ep->ep_usb.ep_list,
1305				      &udc->gadget.ep_list);
1306			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307						  (unsigned short) ~0);
1308			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309			ep->ep_usb.name = ep->name;
1310			ep->ep_usb.ops = &xusb_ep_ops;
1311
1312			ep->ep_usb.caps.type_iso = true;
1313			ep->ep_usb.caps.type_bulk = true;
1314			ep->ep_usb.caps.type_int = true;
1315		} else {
1316			ep->ep_usb.name = ep0name;
1317			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318			ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320			ep->ep_usb.caps.type_control = true;
1321		}
1322
1323		ep->ep_usb.caps.dir_in = true;
1324		ep->ep_usb.caps.dir_out = true;
1325
1326		ep->udc = udc;
1327		ep->epnumber = ep_number;
1328		ep->desc = NULL;
1329		/*
1330		 * The configuration register address offset between
1331		 * each endpoint is 0x10.
1332		 */
1333		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334		ep->is_in = 0;
1335		ep->is_iso = 0;
1336		ep->maxpacket = 0;
1337		xudc_epconfig(ep, udc);
1338
1339		/* Initialize one queue per endpoint */
1340		INIT_LIST_HEAD(&ep->queue);
1341	}
1342}
1343
1344/**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
1348static void xudc_stop_activity(struct xusb_udc *udc)
1349{
1350	int i;
1351	struct xusb_ep *ep;
1352
1353	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354		ep = &udc->ep[i];
1355		xudc_nuke(ep, -ESHUTDOWN);
1356	}
1357}
1358
1359/**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
1366static int xudc_start(struct usb_gadget *gadget,
1367		      struct usb_gadget_driver *driver)
1368{
1369	struct xusb_udc *udc	= to_udc(gadget);
1370	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1371	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372	unsigned long flags;
1373	int ret = 0;
1374
1375	spin_lock_irqsave(&udc->lock, flags);
1376
1377	if (udc->driver) {
1378		dev_err(udc->dev, "%s is already bound to %s\n",
1379			udc->gadget.name, udc->driver->driver.name);
1380		ret = -EBUSY;
1381		goto err;
1382	}
1383
1384	/* hook up the driver */
1385	udc->driver = driver;
1386	udc->gadget.speed = driver->max_speed;
1387
1388	/* Enable the control endpoint. */
1389	ret = __xudc_ep_enable(ep0, desc);
1390
1391	/* Set device address and remote wakeup to 0 */
1392	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393	udc->remote_wkp = 0;
1394err:
1395	spin_unlock_irqrestore(&udc->lock, flags);
1396	return ret;
1397}
1398
1399/**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 * @driver: pointer to usb gadget driver structure
1403 *
1404 * Return: zero always
1405 */
1406static int xudc_stop(struct usb_gadget *gadget)
1407{
1408	struct xusb_udc *udc = to_udc(gadget);
1409	unsigned long flags;
1410
1411	spin_lock_irqsave(&udc->lock, flags);
1412
1413	udc->gadget.speed = USB_SPEED_UNKNOWN;
1414	udc->driver = NULL;
1415
1416	/* Set device address and remote wakeup to 0 */
1417	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1418	udc->remote_wkp = 0;
1419
1420	xudc_stop_activity(udc);
1421
1422	spin_unlock_irqrestore(&udc->lock, flags);
1423
1424	return 0;
1425}
1426
1427static const struct usb_gadget_ops xusb_udc_ops = {
1428	.get_frame	= xudc_get_frame,
1429	.wakeup		= xudc_wakeup,
1430	.pullup		= xudc_pullup,
1431	.udc_start	= xudc_start,
1432	.udc_stop	= xudc_stop,
1433};
1434
1435/**
1436 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1437 * @udc: pointer to the udc structure.
1438 */
1439static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1440{
1441	struct xusb_ep *ep;
1442	u32 epcfgreg;
1443	int i;
1444
1445	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1446		ep = &udc->ep[i];
1447		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1448		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1449		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1450		if (ep->epnumber) {
1451			/* Reset the toggle bit.*/
1452			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1453			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1454			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1455		}
1456	}
1457}
1458
1459/**
1460 * xudc_startup_handler - The usb device controller interrupt handler.
1461 * @udc: pointer to the udc structure.
1462 * @intrstatus: The mask value containing the interrupt sources.
1463 *
1464 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1465 */
1466static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1467{
1468	u32 intrreg;
1469
1470	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1471
1472		dev_dbg(udc->dev, "Reset\n");
1473
1474		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1475			udc->gadget.speed = USB_SPEED_HIGH;
1476		else
1477			udc->gadget.speed = USB_SPEED_FULL;
1478
1479		xudc_stop_activity(udc);
1480		xudc_clear_stall_all_ep(udc);
1481		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1482
1483		/* Set device address and remote wakeup to 0 */
1484		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1485		udc->remote_wkp = 0;
1486
1487		/* Enable the suspend, resume and disconnect */
1488		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1489		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1490			   XUSB_STATUS_DISCONNECT_MASK;
1491		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1492	}
1493	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1494
1495		dev_dbg(udc->dev, "Suspend\n");
1496
1497		/* Enable the reset, resume and disconnect */
1498		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1499		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1500			   XUSB_STATUS_DISCONNECT_MASK;
1501		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1502
1503		udc->usb_state = USB_STATE_SUSPENDED;
1504
1505		if (udc->driver->suspend) {
1506			spin_unlock(&udc->lock);
1507			udc->driver->suspend(&udc->gadget);
1508			spin_lock(&udc->lock);
1509		}
1510	}
1511	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1512		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1513
1514		dev_WARN_ONCE(udc->dev, condition,
1515				"Resume IRQ while not suspended\n");
1516
1517		dev_dbg(udc->dev, "Resume\n");
1518
1519		/* Enable the reset, suspend and disconnect */
1520		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1521		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1522			   XUSB_STATUS_DISCONNECT_MASK;
1523		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1524
1525		udc->usb_state = 0;
1526
1527		if (udc->driver->resume) {
1528			spin_unlock(&udc->lock);
1529			udc->driver->resume(&udc->gadget);
1530			spin_lock(&udc->lock);
1531		}
1532	}
1533	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1534
1535		dev_dbg(udc->dev, "Disconnect\n");
1536
1537		/* Enable the reset, resume and suspend */
1538		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1539		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1540			   XUSB_STATUS_SUSPEND_MASK;
1541		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1542
1543		if (udc->driver && udc->driver->disconnect) {
1544			spin_unlock(&udc->lock);
1545			udc->driver->disconnect(&udc->gadget);
1546			spin_lock(&udc->lock);
1547		}
1548	}
1549}
1550
1551/**
1552 * xudc_ep0_stall - Stall endpoint zero.
1553 * @udc: pointer to the udc structure.
1554 *
1555 * This function stalls endpoint zero.
1556 */
1557static void xudc_ep0_stall(struct xusb_udc *udc)
1558{
1559	u32 epcfgreg;
1560	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1561
1562	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1563	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1564	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1565}
1566
1567/**
1568 * xudc_setaddress - executes SET_ADDRESS command
1569 * @udc: pointer to the udc structure.
1570 *
1571 * This function executes USB SET_ADDRESS command
1572 */
1573static void xudc_setaddress(struct xusb_udc *udc)
1574{
1575	struct xusb_ep *ep0	= &udc->ep[0];
1576	struct xusb_req *req	= udc->req;
1577	int ret;
1578
1579	req->usb_req.length = 0;
1580	ret = __xudc_ep0_queue(ep0, req);
1581	if (ret == 0)
1582		return;
1583
1584	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1585	xudc_ep0_stall(udc);
1586}
1587
1588/**
1589 * xudc_getstatus - executes GET_STATUS command
1590 * @udc: pointer to the udc structure.
1591 *
1592 * This function executes USB GET_STATUS command
1593 */
1594static void xudc_getstatus(struct xusb_udc *udc)
1595{
1596	struct xusb_ep *ep0	= &udc->ep[0];
1597	struct xusb_req *req	= udc->req;
1598	struct xusb_ep *target_ep;
1599	u16 status = 0;
1600	u32 epcfgreg;
1601	int epnum;
1602	u32 halt;
1603	int ret;
1604
1605	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1606	case USB_RECIP_DEVICE:
1607		/* Get device status */
1608		status = 1 << USB_DEVICE_SELF_POWERED;
1609		if (udc->remote_wkp)
1610			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1611		break;
1612	case USB_RECIP_INTERFACE:
1613		break;
1614	case USB_RECIP_ENDPOINT:
1615		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1616		target_ep = &udc->ep[epnum];
1617		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1618		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1619		if (udc->setup.wIndex & USB_DIR_IN) {
1620			if (!target_ep->is_in)
1621				goto stall;
1622		} else {
1623			if (target_ep->is_in)
1624				goto stall;
1625		}
1626		if (halt)
1627			status = 1 << USB_ENDPOINT_HALT;
1628		break;
1629	default:
1630		goto stall;
1631	}
1632
1633	req->usb_req.length = 2;
1634	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1635	ret = __xudc_ep0_queue(ep0, req);
1636	if (ret == 0)
1637		return;
1638stall:
1639	dev_err(udc->dev, "Can't respond to getstatus request\n");
1640	xudc_ep0_stall(udc);
1641}
1642
1643/**
1644 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1645 * @udc: pointer to the usb device controller structure.
1646 *
1647 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1648 */
1649static void xudc_set_clear_feature(struct xusb_udc *udc)
1650{
1651	struct xusb_ep *ep0	= &udc->ep[0];
1652	struct xusb_req *req	= udc->req;
1653	struct xusb_ep *target_ep;
1654	u8 endpoint;
1655	u8 outinbit;
1656	u32 epcfgreg;
1657	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1658	int ret;
1659
1660	switch (udc->setup.bRequestType) {
1661	case USB_RECIP_DEVICE:
1662		switch (udc->setup.wValue) {
1663		case USB_DEVICE_TEST_MODE:
1664			/*
1665			 * The Test Mode will be executed
1666			 * after the status phase.
1667			 */
1668			break;
1669		case USB_DEVICE_REMOTE_WAKEUP:
1670			if (flag)
1671				udc->remote_wkp = 1;
1672			else
1673				udc->remote_wkp = 0;
1674			break;
1675		default:
1676			xudc_ep0_stall(udc);
1677			break;
1678		}
1679		break;
1680	case USB_RECIP_ENDPOINT:
1681		if (!udc->setup.wValue) {
1682			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1683			target_ep = &udc->ep[endpoint];
1684			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1685			outinbit = outinbit >> 7;
1686
1687			/* Make sure direction matches.*/
1688			if (outinbit != target_ep->is_in) {
1689				xudc_ep0_stall(udc);
1690				return;
1691			}
1692			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1693			if (!endpoint) {
1694				/* Clear the stall.*/
1695				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1696				udc->write_fn(udc->addr,
1697					      target_ep->offset, epcfgreg);
1698			} else {
1699				if (flag) {
1700					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1701					udc->write_fn(udc->addr,
1702						      target_ep->offset,
1703						      epcfgreg);
1704				} else {
1705					/* Unstall the endpoint.*/
1706					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1707						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1708					udc->write_fn(udc->addr,
1709						      target_ep->offset,
1710						      epcfgreg);
1711				}
1712			}
1713		}
1714		break;
1715	default:
1716		xudc_ep0_stall(udc);
1717		return;
1718	}
1719
1720	req->usb_req.length = 0;
1721	ret = __xudc_ep0_queue(ep0, req);
1722	if (ret == 0)
1723		return;
1724
1725	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1726	xudc_ep0_stall(udc);
1727}
1728
1729/**
1730 * xudc_handle_setup - Processes the setup packet.
1731 * @udc: pointer to the usb device controller structure.
1732 *
1733 * Process setup packet and delegate to gadget layer.
1734 */
1735static void xudc_handle_setup(struct xusb_udc *udc)
1736{
1737	struct xusb_ep *ep0 = &udc->ep[0];
1738	struct usb_ctrlrequest setup;
1739	u32 *ep0rambase;
1740
1741	/* Load up the chapter 9 command buffer.*/
1742	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743	memcpy(&setup, ep0rambase, 8);
1744
1745	udc->setup = setup;
1746	udc->setup.wValue = cpu_to_le16(setup.wValue);
1747	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748	udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750	/* Clear previous requests */
1751	xudc_nuke(ep0, -ECONNRESET);
1752
1753	if (udc->setup.bRequestType & USB_DIR_IN) {
1754		/* Execute the get command.*/
1755		udc->setupseqrx = STATUS_PHASE;
1756		udc->setupseqtx = DATA_PHASE;
1757	} else {
1758		/* Execute the put command.*/
1759		udc->setupseqrx = DATA_PHASE;
1760		udc->setupseqtx = STATUS_PHASE;
1761	}
1762
1763	switch (udc->setup.bRequest) {
1764	case USB_REQ_GET_STATUS:
1765		/* Data+Status phase form udc */
1766		if ((udc->setup.bRequestType &
1767				(USB_DIR_IN | USB_TYPE_MASK)) !=
1768				(USB_DIR_IN | USB_TYPE_STANDARD))
1769			break;
1770		xudc_getstatus(udc);
1771		return;
1772	case USB_REQ_SET_ADDRESS:
1773		/* Status phase from udc */
1774		if (udc->setup.bRequestType != (USB_DIR_OUT |
1775				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776			break;
1777		xudc_setaddress(udc);
1778		return;
1779	case USB_REQ_CLEAR_FEATURE:
1780	case USB_REQ_SET_FEATURE:
1781		/* Requests with no data phase, status phase from udc */
1782		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783				!= USB_TYPE_STANDARD)
1784			break;
1785		xudc_set_clear_feature(udc);
1786		return;
1787	default:
1788		break;
1789	}
1790
1791	spin_unlock(&udc->lock);
1792	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793		xudc_ep0_stall(udc);
1794	spin_lock(&udc->lock);
1795}
1796
1797/**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
1801static void xudc_ep0_out(struct xusb_udc *udc)
1802{
1803	struct xusb_ep *ep0 = &udc->ep[0];
1804	struct xusb_req *req;
1805	u8 *ep0rambase;
1806	unsigned int bytes_to_rx;
1807	void *buffer;
1808
1809	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811	switch (udc->setupseqrx) {
1812	case STATUS_PHASE:
1813		/*
1814		 * This resets both state machines for the next
1815		 * Setup packet.
1816		 */
1817		udc->setupseqrx = SETUP_PHASE;
1818		udc->setupseqtx = SETUP_PHASE;
1819		req->usb_req.actual = req->usb_req.length;
1820		xudc_done(ep0, req, 0);
1821		break;
1822	case DATA_PHASE:
1823		bytes_to_rx = udc->read_fn(udc->addr +
1824					   XUSB_EP_BUF0COUNT_OFFSET);
1825		/* Copy the data to be received from the DPRAM. */
1826		ep0rambase = (u8 __force *) (udc->addr +
1827			     (ep0->rambase << 2));
1828		buffer = req->usb_req.buf + req->usb_req.actual;
1829		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830		memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832		if (req->usb_req.length == req->usb_req.actual) {
1833			/* Data transfer completed get ready for Status stage */
1834			xudc_wrstatus(udc);
1835		} else {
1836			/* Enable EP0 buffer to receive data */
1837			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839		}
1840		break;
1841	default:
1842		break;
1843	}
1844}
1845
1846/**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
1850static void xudc_ep0_in(struct xusb_udc *udc)
1851{
1852	struct xusb_ep *ep0 = &udc->ep[0];
1853	struct xusb_req *req;
1854	unsigned int bytes_to_tx;
1855	void *buffer;
1856	u32 epcfgreg;
1857	u16 count = 0;
1858	u16 length;
1859	u8 *ep0rambase;
1860	u8 test_mode = udc->setup.wIndex >> 8;
1861
1862	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865	switch (udc->setupseqtx) {
1866	case STATUS_PHASE:
1867		switch (udc->setup.bRequest) {
1868		case USB_REQ_SET_ADDRESS:
1869			/* Set the address of the device.*/
1870			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871				      udc->setup.wValue);
1872			break;
1873		case USB_REQ_SET_FEATURE:
1874			if (udc->setup.bRequestType ==
1875					USB_RECIP_DEVICE) {
1876				if (udc->setup.wValue ==
1877						USB_DEVICE_TEST_MODE)
1878					udc->write_fn(udc->addr,
1879						      XUSB_TESTMODE_OFFSET,
1880						      test_mode);
1881			}
1882			break;
1883		}
1884		req->usb_req.actual = req->usb_req.length;
1885		xudc_done(ep0, req, 0);
1886		break;
1887	case DATA_PHASE:
1888		if (!bytes_to_tx) {
1889			/*
1890			 * We're done with data transfer, next
1891			 * will be zero length OUT with data toggle of
1892			 * 1. Setup data_toggle.
1893			 */
1894			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897			udc->setupseqtx = STATUS_PHASE;
1898		} else {
1899			length = count = min_t(u32, bytes_to_tx,
1900					       EP0_MAX_PACKET);
1901			/* Copy the data to be transmitted into the DPRAM. */
1902			ep0rambase = (u8 __force *) (udc->addr +
1903				     (ep0->rambase << 2));
1904			buffer = req->usb_req.buf + req->usb_req.actual;
1905			req->usb_req.actual = req->usb_req.actual + length;
1906			memcpy(ep0rambase, buffer, length);
1907		}
1908		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910		break;
1911	default:
1912		break;
1913	}
1914}
1915
1916/**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
1923static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924{
1925
1926	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927		xudc_handle_setup(udc);
1928	} else {
1929		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930			xudc_ep0_out(udc);
1931		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932			xudc_ep0_in(udc);
1933	}
1934}
1935
1936/**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus:	mask value for interrupt sources of endpoints other
1941 *		than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
1945static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946				    u32 intrstatus)
1947{
1948
1949	struct xusb_req *req;
1950	struct xusb_ep *ep;
1951
1952	ep = &udc->ep[epnum];
1953	/* Process the End point interrupts.*/
1954	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955		ep->buffer0ready = 0;
1956	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957		ep->buffer1ready = 0;
1958
1959	if (list_empty(&ep->queue))
1960		return;
1961
1962	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964	if (ep->is_in)
1965		xudc_write_fifo(ep, req);
1966	else
1967		xudc_read_fifo(ep, req);
1968}
1969
1970/**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
1977static irqreturn_t xudc_irq(int irq, void *_udc)
1978{
1979	struct xusb_udc *udc = _udc;
1980	u32 intrstatus;
1981	u32 ier;
1982	u8 index;
1983	u32 bufintr;
1984	unsigned long flags;
1985
1986	spin_lock_irqsave(&udc->lock, flags);
1987
1988	/*
1989	 * Event interrupts are level sensitive hence first disable
1990	 * IER, read ISR and figure out active interrupts.
1991	 */
1992	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996	/* Read the Interrupt Status Register.*/
1997	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999	/* Call the handler for the event interrupt.*/
2000	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001		/*
2002		 * Check if there is any action to be done for :
2003		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007		 */
2008		xudc_startup_handler(udc, intrstatus);
2009	}
2010
2011	/* Check the buffer completion interrupts */
2012	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013		/* Enable Reset, Suspend, Resume and Disconnect  */
2014		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019			xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021		for (index = 1; index < 8; index++) {
2022			bufintr = ((intrstatus &
2023				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024				  (index - 1))) || (intrstatus &
2025				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026				  (index - 1))));
2027			if (bufintr) {
2028				xudc_nonctrl_ep_handler(udc, index,
2029							intrstatus);
2030			}
2031		}
2032	}
2033
2034	spin_unlock_irqrestore(&udc->lock, flags);
2035	return IRQ_HANDLED;
2036}
2037
2038/**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
2044static int xudc_probe(struct platform_device *pdev)
2045{
2046	struct device_node *np = pdev->dev.of_node;
2047	struct resource *res;
2048	struct xusb_udc *udc;
2049	int irq;
2050	int ret;
2051	u32 ier;
2052	u8 *buff;
2053
2054	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055	if (!udc)
2056		return -ENOMEM;
2057
2058	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060				GFP_KERNEL);
2061	if (!udc->req)
2062		return -ENOMEM;
2063
2064	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065	if (!buff)
2066		return -ENOMEM;
2067
2068	udc->req->usb_req.buf = buff;
2069
2070	/* Map the registers */
2071	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073	if (IS_ERR(udc->addr))
2074		return PTR_ERR(udc->addr);
2075
2076	irq = platform_get_irq(pdev, 0);
2077	if (irq < 0)
2078		return irq;
2079	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2080			       dev_name(&pdev->dev), udc);
2081	if (ret < 0) {
2082		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2083		goto fail;
2084	}
2085
2086	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2087
2088	/* Setup gadget structure */
2089	udc->gadget.ops = &xusb_udc_ops;
2090	udc->gadget.max_speed = USB_SPEED_HIGH;
2091	udc->gadget.speed = USB_SPEED_UNKNOWN;
2092	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2093	udc->gadget.name = driver_name;
2094
2095	spin_lock_init(&udc->lock);
2096
2097	/* Check for IP endianness */
2098	udc->write_fn = xudc_write32_be;
2099	udc->read_fn = xudc_read32_be;
2100	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2101	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2102			!= TEST_J) {
2103		udc->write_fn = xudc_write32;
2104		udc->read_fn = xudc_read32;
2105	}
2106	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2107
2108	xudc_eps_init(udc);
2109
2110	/* Set device address to 0.*/
2111	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2112
2113	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2114	if (ret)
2115		goto fail;
2116
2117	udc->dev = &udc->gadget.dev;
2118
2119	/* Enable the interrupts.*/
2120	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2121	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2122	      XUSB_STATUS_SETUP_PACKET_MASK |
2123	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2124
2125	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2126
2127	platform_set_drvdata(pdev, udc);
2128
2129	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2130		 driver_name, (u32)res->start, udc->addr,
2131		 udc->dma_enabled ? "with DMA" : "without DMA");
2132
2133	return 0;
2134fail:
2135	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2136	return ret;
2137}
2138
2139/**
2140 * xudc_remove - Releases the resources allocated during the initialization.
2141 * @pdev: pointer to the platform device structure.
2142 *
2143 * Return: 0 always
2144 */
2145static int xudc_remove(struct platform_device *pdev)
2146{
2147	struct xusb_udc *udc = platform_get_drvdata(pdev);
2148
2149	usb_del_gadget_udc(&udc->gadget);
2150
2151	return 0;
2152}
2153
2154/* Match table for of_platform binding */
2155static const struct of_device_id usb_of_match[] = {
2156	{ .compatible = "xlnx,usb2-device-4.00.a", },
2157	{ /* end of list */ },
2158};
2159MODULE_DEVICE_TABLE(of, usb_of_match);
2160
2161static struct platform_driver xudc_driver = {
2162	.driver = {
2163		.name = driver_name,
2164		.of_match_table = usb_of_match,
2165	},
2166	.probe = xudc_probe,
2167	.remove = xudc_remove,
2168};
2169
2170module_platform_driver(xudc_driver);
2171
2172MODULE_DESCRIPTION("Xilinx udc driver");
2173MODULE_AUTHOR("Xilinx, Inc");
2174MODULE_LICENSE("GPL");