Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/* ePAPR hypervisor byte channel device driver
  3 *
  4 * Copyright 2009-2011 Freescale Semiconductor, Inc.
  5 *
  6 * Author: Timur Tabi <timur@freescale.com>
  7 *
  8 * This driver support three distinct interfaces, all of which are related to
  9 * ePAPR hypervisor byte channels.
 10 *
 11 * 1) An early-console (udbg) driver.  This provides early console output
 12 * through a byte channel.  The byte channel handle must be specified in a
 13 * Kconfig option.
 14 *
 15 * 2) A normal console driver.  Output is sent to the byte channel designated
 16 * for stdout in the device tree.  The console driver is for handling kernel
 17 * printk calls.
 18 *
 19 * 3) A tty driver, which is used to handle user-space input and output.  The
 20 * byte channel used for the console is designated as the default tty.
 21 */
 22
 23#include <linux/init.h>
 24#include <linux/slab.h>
 25#include <linux/err.h>
 26#include <linux/interrupt.h>
 27#include <linux/fs.h>
 28#include <linux/poll.h>
 29#include <asm/epapr_hcalls.h>
 30#include <linux/of.h>
 31#include <linux/of_irq.h>
 32#include <linux/platform_device.h>
 33#include <linux/cdev.h>
 34#include <linux/console.h>
 35#include <linux/tty.h>
 36#include <linux/tty_flip.h>
 37#include <linux/circ_buf.h>
 38#include <asm/udbg.h>
 39
 40/* The size of the transmit circular buffer.  This must be a power of two. */
 41#define BUF_SIZE	2048
 42
 43/* Per-byte channel private data */
 44struct ehv_bc_data {
 45	struct device *dev;
 46	struct tty_port port;
 47	uint32_t handle;
 48	unsigned int rx_irq;
 49	unsigned int tx_irq;
 50
 51	spinlock_t lock;	/* lock for transmit buffer */
 52	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
 53	unsigned int head;	/* circular buffer head */
 54	unsigned int tail;	/* circular buffer tail */
 55
 56	int tx_irq_enabled;	/* true == TX interrupt is enabled */
 57};
 58
 59/* Array of byte channel objects */
 60static struct ehv_bc_data *bcs;
 61
 62/* Byte channel handle for stdout (and stdin), taken from device tree */
 63static unsigned int stdout_bc;
 64
 65/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
 66static unsigned int stdout_irq;
 67
 68/**************************** SUPPORT FUNCTIONS ****************************/
 69
 70/*
 71 * Enable the transmit interrupt
 72 *
 73 * Unlike a serial device, byte channels have no mechanism for disabling their
 74 * own receive or transmit interrupts.  To emulate that feature, we toggle
 75 * the IRQ in the kernel.
 76 *
 77 * We cannot just blindly call enable_irq() or disable_irq(), because these
 78 * calls are reference counted.  This means that we cannot call enable_irq()
 79 * if interrupts are already enabled.  This can happen in two situations:
 80 *
 81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
 82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
 83 *
 84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
 85 */
 86static void enable_tx_interrupt(struct ehv_bc_data *bc)
 87{
 88	if (!bc->tx_irq_enabled) {
 89		enable_irq(bc->tx_irq);
 90		bc->tx_irq_enabled = 1;
 91	}
 92}
 93
 94static void disable_tx_interrupt(struct ehv_bc_data *bc)
 95{
 96	if (bc->tx_irq_enabled) {
 97		disable_irq_nosync(bc->tx_irq);
 98		bc->tx_irq_enabled = 0;
 99	}
100}
101
102/*
103 * find the byte channel handle to use for the console
104 *
105 * The byte channel to be used for the console is specified via a "stdout"
106 * property in the /chosen node.
107 */
108static int find_console_handle(void)
109{
110	struct device_node *np = of_stdout;
111	const uint32_t *iprop;
112
113	/* We don't care what the aliased node is actually called.  We only
114	 * care if it's compatible with "epapr,hv-byte-channel", because that
115	 * indicates that it's a byte channel node.
116	 */
117	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
118		return 0;
119
120	stdout_irq = irq_of_parse_and_map(np, 0);
121	if (stdout_irq == NO_IRQ) {
122		pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np);
123		return 0;
124	}
125
126	/*
127	 * The 'hv-handle' property contains the handle for this byte channel.
128	 */
129	iprop = of_get_property(np, "hv-handle", NULL);
130	if (!iprop) {
131		pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
132		       np);
133		return 0;
134	}
135	stdout_bc = be32_to_cpu(*iprop);
136	return 1;
137}
138
139/*************************** EARLY CONSOLE DRIVER ***************************/
140
141#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
142
143/*
144 * send a byte to a byte channel, wait if necessary
145 *
146 * This function sends a byte to a byte channel, and it waits and
147 * retries if the byte channel is full.  It returns if the character
148 * has been sent, or if some error has occurred.
149 *
150 */
151static void byte_channel_spin_send(const char data)
152{
153	int ret, count;
154
155	do {
156		count = 1;
157		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
158					   &count, &data);
159	} while (ret == EV_EAGAIN);
160}
161
162/*
163 * The udbg subsystem calls this function to display a single character.
164 * We convert CR to a CR/LF.
165 */
166static void ehv_bc_udbg_putc(char c)
167{
168	if (c == '\n')
169		byte_channel_spin_send('\r');
170
171	byte_channel_spin_send(c);
172}
173
174/*
175 * early console initialization
176 *
177 * PowerPC kernels support an early printk console, also known as udbg.
178 * This function must be called via the ppc_md.init_early function pointer.
179 * At this point, the device tree has been unflattened, so we can obtain the
180 * byte channel handle for stdout.
181 *
182 * We only support displaying of characters (putc).  We do not support
183 * keyboard input.
184 */
185void __init udbg_init_ehv_bc(void)
186{
187	unsigned int rx_count, tx_count;
188	unsigned int ret;
189
190	/* Verify the byte channel handle */
191	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
192				   &rx_count, &tx_count);
193	if (ret)
194		return;
195
196	udbg_putc = ehv_bc_udbg_putc;
197	register_early_udbg_console();
198
199	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
200		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
201}
202
203#endif
204
205/****************************** CONSOLE DRIVER ******************************/
206
207static struct tty_driver *ehv_bc_driver;
208
209/*
210 * Byte channel console sending worker function.
211 *
212 * For consoles, if the output buffer is full, we should just spin until it
213 * clears.
214 */
215static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
216			     unsigned int count)
217{
218	unsigned int len;
219	int ret = 0;
220
221	while (count) {
222		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
223		do {
224			ret = ev_byte_channel_send(handle, &len, s);
225		} while (ret == EV_EAGAIN);
226		count -= len;
227		s += len;
228	}
229
230	return ret;
231}
232
233/*
234 * write a string to the console
235 *
236 * This function gets called to write a string from the kernel, typically from
237 * a printk().  This function spins until all data is written.
238 *
239 * We copy the data to a temporary buffer because we need to insert a \r in
240 * front of every \n.  It's more efficient to copy the data to the buffer than
241 * it is to make multiple hcalls for each character or each newline.
242 */
243static void ehv_bc_console_write(struct console *co, const char *s,
244				 unsigned int count)
245{
246	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
247	unsigned int i, j = 0;
248	char c;
249
250	for (i = 0; i < count; i++) {
251		c = *s++;
252
253		if (c == '\n')
254			s2[j++] = '\r';
255
256		s2[j++] = c;
257		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
258			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
259				return;
260			j = 0;
261		}
262	}
263
264	if (j)
265		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
266}
267
268/*
269 * When /dev/console is opened, the kernel iterates the console list looking
270 * for one with ->device and then calls that method. On success, it expects
271 * the passed-in int* to contain the minor number to use.
272 */
273static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
274{
275	*index = co->index;
276
277	return ehv_bc_driver;
278}
279
280static struct console ehv_bc_console = {
281	.name		= "ttyEHV",
282	.write		= ehv_bc_console_write,
283	.device		= ehv_bc_console_device,
284	.flags		= CON_PRINTBUFFER | CON_ENABLED,
285};
286
287/*
288 * Console initialization
289 *
290 * This is the first function that is called after the device tree is
291 * available, so here is where we determine the byte channel handle and IRQ for
292 * stdout/stdin, even though that information is used by the tty and character
293 * drivers.
294 */
295static int __init ehv_bc_console_init(void)
296{
297	if (!find_console_handle()) {
298		pr_debug("ehv-bc: stdout is not a byte channel\n");
299		return -ENODEV;
300	}
301
302#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
303	/* Print a friendly warning if the user chose the wrong byte channel
304	 * handle for udbg.
305	 */
306	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
307		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
308			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
309#endif
310
311	/* add_preferred_console() must be called before register_console(),
312	   otherwise it won't work.  However, we don't want to enumerate all the
313	   byte channels here, either, since we only care about one. */
314
315	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
316	register_console(&ehv_bc_console);
317
318	pr_info("ehv-bc: registered console driver for byte channel %u\n",
319		stdout_bc);
320
321	return 0;
322}
323console_initcall(ehv_bc_console_init);
324
325/******************************** TTY DRIVER ********************************/
326
327/*
328 * byte channel receive interrupt handler
329 *
330 * This ISR is called whenever data is available on a byte channel.
331 */
332static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
333{
334	struct ehv_bc_data *bc = data;
335	unsigned int rx_count, tx_count, len;
336	int count;
337	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
338	int ret;
339
340	/* Find out how much data needs to be read, and then ask the TTY layer
341	 * if it can handle that much.  We want to ensure that every byte we
342	 * read from the byte channel will be accepted by the TTY layer.
343	 */
344	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
345	count = tty_buffer_request_room(&bc->port, rx_count);
346
347	/* 'count' is the maximum amount of data the TTY layer can accept at
348	 * this time.  However, during testing, I was never able to get 'count'
349	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
350	 * correctly.
351	 */
352
353	while (count > 0) {
354		len = min_t(unsigned int, count, sizeof(buffer));
355
356		/* Read some data from the byte channel.  This function will
357		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
358		 */
359		ev_byte_channel_receive(bc->handle, &len, buffer);
360
361		/* 'len' is now the amount of data that's been received. 'len'
362		 * can't be zero, and most likely it's equal to one.
363		 */
364
365		/* Pass the received data to the tty layer. */
366		ret = tty_insert_flip_string(&bc->port, buffer, len);
367
368		/* 'ret' is the number of bytes that the TTY layer accepted.
369		 * If it's not equal to 'len', then it means the buffer is
370		 * full, which should never happen.  If it does happen, we can
371		 * exit gracefully, but we drop the last 'len - ret' characters
372		 * that we read from the byte channel.
373		 */
374		if (ret != len)
375			break;
376
377		count -= len;
378	}
379
380	/* Tell the tty layer that we're done. */
381	tty_flip_buffer_push(&bc->port);
382
383	return IRQ_HANDLED;
384}
385
386/*
387 * dequeue the transmit buffer to the hypervisor
388 *
389 * This function, which can be called in interrupt context, dequeues as much
390 * data as possible from the transmit buffer to the byte channel.
391 */
392static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
393{
394	unsigned int count;
395	unsigned int len, ret;
396	unsigned long flags;
397
398	do {
399		spin_lock_irqsave(&bc->lock, flags);
400		len = min_t(unsigned int,
401			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
402			    EV_BYTE_CHANNEL_MAX_BYTES);
403
404		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
405
406		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
407		if (!ret || (ret == EV_EAGAIN))
408			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
409
410		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
411		spin_unlock_irqrestore(&bc->lock, flags);
412	} while (count && !ret);
413
414	spin_lock_irqsave(&bc->lock, flags);
415	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
416		/*
417		 * If we haven't emptied the buffer, then enable the TX IRQ.
418		 * We'll get an interrupt when there's more room in the
419		 * hypervisor's output buffer.
420		 */
421		enable_tx_interrupt(bc);
422	else
423		disable_tx_interrupt(bc);
424	spin_unlock_irqrestore(&bc->lock, flags);
425}
426
427/*
428 * byte channel transmit interrupt handler
429 *
430 * This ISR is called whenever space becomes available for transmitting
431 * characters on a byte channel.
432 */
433static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
434{
435	struct ehv_bc_data *bc = data;
436
437	ehv_bc_tx_dequeue(bc);
438	tty_port_tty_wakeup(&bc->port);
439
440	return IRQ_HANDLED;
441}
442
443/*
444 * This function is called when the tty layer has data for us send.  We store
445 * the data first in a circular buffer, and then dequeue as much of that data
446 * as possible.
447 *
448 * We don't need to worry about whether there is enough room in the buffer for
449 * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
450 * layer how much data it can safely send to us.  We guarantee that
451 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
452 * too much data.
453 */
454static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
455			    int count)
456{
457	struct ehv_bc_data *bc = ttys->driver_data;
458	unsigned long flags;
459	unsigned int len;
460	unsigned int written = 0;
461
462	while (1) {
463		spin_lock_irqsave(&bc->lock, flags);
464		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
465		if (count < len)
466			len = count;
467		if (len) {
468			memcpy(bc->buf + bc->head, s, len);
469			bc->head = (bc->head + len) & (BUF_SIZE - 1);
470		}
471		spin_unlock_irqrestore(&bc->lock, flags);
472		if (!len)
473			break;
474
475		s += len;
476		count -= len;
477		written += len;
478	}
479
480	ehv_bc_tx_dequeue(bc);
481
482	return written;
483}
484
485/*
486 * This function can be called multiple times for a given tty_struct, which is
487 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
488 *
489 * The tty layer will still call this function even if the device was not
490 * registered (i.e. tty_register_device() was not called).  This happens
491 * because tty_register_device() is optional and some legacy drivers don't
492 * use it.  So we need to check for that.
493 */
494static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
495{
496	struct ehv_bc_data *bc = &bcs[ttys->index];
497
498	if (!bc->dev)
499		return -ENODEV;
500
501	return tty_port_open(&bc->port, ttys, filp);
502}
503
504/*
505 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
506 * still call this function to close the tty device.  So we can't assume that
507 * the tty port has been initialized.
508 */
509static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
510{
511	struct ehv_bc_data *bc = &bcs[ttys->index];
512
513	if (bc->dev)
514		tty_port_close(&bc->port, ttys, filp);
515}
516
517/*
518 * Return the amount of space in the output buffer
519 *
520 * This is actually a contract between the driver and the tty layer outlining
521 * how much write room the driver can guarantee will be sent OR BUFFERED.  This
522 * driver MUST honor the return value.
523 */
524static int ehv_bc_tty_write_room(struct tty_struct *ttys)
525{
526	struct ehv_bc_data *bc = ttys->driver_data;
527	unsigned long flags;
528	int count;
529
530	spin_lock_irqsave(&bc->lock, flags);
531	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
532	spin_unlock_irqrestore(&bc->lock, flags);
533
534	return count;
535}
536
537/*
538 * Stop sending data to the tty layer
539 *
540 * This function is called when the tty layer's input buffers are getting full,
541 * so the driver should stop sending it data.  The easiest way to do this is to
542 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
543 * called.
544 *
545 * The hypervisor will continue to queue up any incoming data.  If there is any
546 * data in the queue when the RX interrupt is enabled, we'll immediately get an
547 * RX interrupt.
548 */
549static void ehv_bc_tty_throttle(struct tty_struct *ttys)
550{
551	struct ehv_bc_data *bc = ttys->driver_data;
552
553	disable_irq(bc->rx_irq);
554}
555
556/*
557 * Resume sending data to the tty layer
558 *
559 * This function is called after previously calling ehv_bc_tty_throttle().  The
560 * tty layer's input buffers now have more room, so the driver can resume
561 * sending it data.
562 */
563static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
564{
565	struct ehv_bc_data *bc = ttys->driver_data;
566
567	/* If there is any data in the queue when the RX interrupt is enabled,
568	 * we'll immediately get an RX interrupt.
569	 */
570	enable_irq(bc->rx_irq);
571}
572
573static void ehv_bc_tty_hangup(struct tty_struct *ttys)
574{
575	struct ehv_bc_data *bc = ttys->driver_data;
576
577	ehv_bc_tx_dequeue(bc);
578	tty_port_hangup(&bc->port);
579}
580
581/*
582 * TTY driver operations
583 *
584 * If we could ask the hypervisor how much data is still in the TX buffer, or
585 * at least how big the TX buffers are, then we could implement the
586 * .wait_until_sent and .chars_in_buffer functions.
587 */
588static const struct tty_operations ehv_bc_ops = {
589	.open		= ehv_bc_tty_open,
590	.close		= ehv_bc_tty_close,
591	.write		= ehv_bc_tty_write,
592	.write_room	= ehv_bc_tty_write_room,
593	.throttle	= ehv_bc_tty_throttle,
594	.unthrottle	= ehv_bc_tty_unthrottle,
595	.hangup		= ehv_bc_tty_hangup,
596};
597
598/*
599 * initialize the TTY port
600 *
601 * This function will only be called once, no matter how many times
602 * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
603 * why we initialize tty_struct-related variables here.
604 */
605static int ehv_bc_tty_port_activate(struct tty_port *port,
606				    struct tty_struct *ttys)
607{
608	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
609	int ret;
610
611	ttys->driver_data = bc;
612
613	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
614	if (ret < 0) {
615		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
616		       bc->rx_irq, ret);
617		return ret;
618	}
619
620	/* request_irq also enables the IRQ */
621	bc->tx_irq_enabled = 1;
622
623	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
624	if (ret < 0) {
625		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
626		       bc->tx_irq, ret);
627		free_irq(bc->rx_irq, bc);
628		return ret;
629	}
630
631	/* The TX IRQ is enabled only when we can't write all the data to the
632	 * byte channel at once, so by default it's disabled.
633	 */
634	disable_tx_interrupt(bc);
635
636	return 0;
637}
638
639static void ehv_bc_tty_port_shutdown(struct tty_port *port)
640{
641	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
642
643	free_irq(bc->tx_irq, bc);
644	free_irq(bc->rx_irq, bc);
645}
646
647static const struct tty_port_operations ehv_bc_tty_port_ops = {
648	.activate = ehv_bc_tty_port_activate,
649	.shutdown = ehv_bc_tty_port_shutdown,
650};
651
652static int ehv_bc_tty_probe(struct platform_device *pdev)
653{
654	struct device_node *np = pdev->dev.of_node;
655	struct ehv_bc_data *bc;
656	const uint32_t *iprop;
657	unsigned int handle;
658	int ret;
659	static unsigned int index = 1;
660	unsigned int i;
661
662	iprop = of_get_property(np, "hv-handle", NULL);
663	if (!iprop) {
664		dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n",
665			np);
666		return -ENODEV;
667	}
668
669	/* We already told the console layer that the index for the console
670	 * device is zero, so we need to make sure that we use that index when
671	 * we probe the console byte channel node.
672	 */
673	handle = be32_to_cpu(*iprop);
674	i = (handle == stdout_bc) ? 0 : index++;
675	bc = &bcs[i];
676
677	bc->handle = handle;
678	bc->head = 0;
679	bc->tail = 0;
680	spin_lock_init(&bc->lock);
681
682	bc->rx_irq = irq_of_parse_and_map(np, 0);
683	bc->tx_irq = irq_of_parse_and_map(np, 1);
684	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
685		dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n",
686			np);
687		ret = -ENODEV;
688		goto error;
689	}
690
691	tty_port_init(&bc->port);
692	bc->port.ops = &ehv_bc_tty_port_ops;
693
694	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
695			&pdev->dev);
696	if (IS_ERR(bc->dev)) {
697		ret = PTR_ERR(bc->dev);
698		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
699		goto error;
700	}
701
702	dev_set_drvdata(&pdev->dev, bc);
703
704	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
705		ehv_bc_driver->name, i, bc->handle);
706
707	return 0;
708
709error:
710	tty_port_destroy(&bc->port);
711	irq_dispose_mapping(bc->tx_irq);
712	irq_dispose_mapping(bc->rx_irq);
713
714	memset(bc, 0, sizeof(struct ehv_bc_data));
715	return ret;
716}
717
718static const struct of_device_id ehv_bc_tty_of_ids[] = {
719	{ .compatible = "epapr,hv-byte-channel" },
720	{}
721};
722
723static struct platform_driver ehv_bc_tty_driver = {
724	.driver = {
725		.name = "ehv-bc",
726		.of_match_table = ehv_bc_tty_of_ids,
727		.suppress_bind_attrs = true,
728	},
729	.probe		= ehv_bc_tty_probe,
730};
731
732/**
733 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
734 *
735 * This function is called when this driver is loaded.
736 */
737static int __init ehv_bc_init(void)
738{
739	struct device_node *np;
740	unsigned int count = 0; /* Number of elements in bcs[] */
741	int ret;
742
743	pr_info("ePAPR hypervisor byte channel driver\n");
744
745	/* Count the number of byte channels */
746	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
747		count++;
748
749	if (!count)
750		return -ENODEV;
751
752	/* The array index of an element in bcs[] is the same as the tty index
753	 * for that element.  If you know the address of an element in the
754	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
755	 * tty index.
756	 */
757	bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL);
758	if (!bcs)
759		return -ENOMEM;
760
761	ehv_bc_driver = alloc_tty_driver(count);
762	if (!ehv_bc_driver) {
763		ret = -ENOMEM;
764		goto err_free_bcs;
765	}
766
767	ehv_bc_driver->driver_name = "ehv-bc";
768	ehv_bc_driver->name = ehv_bc_console.name;
769	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
770	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
771	ehv_bc_driver->init_termios = tty_std_termios;
772	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
773	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
774
775	ret = tty_register_driver(ehv_bc_driver);
776	if (ret) {
777		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
778		goto err_put_tty_driver;
779	}
780
781	ret = platform_driver_register(&ehv_bc_tty_driver);
782	if (ret) {
783		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
784		       ret);
785		goto err_deregister_tty_driver;
786	}
787
788	return 0;
789
790err_deregister_tty_driver:
791	tty_unregister_driver(ehv_bc_driver);
792err_put_tty_driver:
793	put_tty_driver(ehv_bc_driver);
794err_free_bcs:
795	kfree(bcs);
796
797	return ret;
798}
799device_initcall(ehv_bc_init);