Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Simple synchronous userspace interface to SPI devices
  3 *
  4 * Copyright (C) 2006 SWAPP
  5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 */
 22
 23#include <linux/init.h>
 24#include <linux/module.h>
 25#include <linux/ioctl.h>
 26#include <linux/fs.h>
 27#include <linux/device.h>
 28#include <linux/err.h>
 29#include <linux/list.h>
 30#include <linux/errno.h>
 31#include <linux/mutex.h>
 32#include <linux/slab.h>
 33#include <linux/compat.h>
 
 
 
 34
 35#include <linux/spi/spi.h>
 36#include <linux/spi/spidev.h>
 37
 38#include <asm/uaccess.h>
 39
 40
 41/*
 42 * This supports access to SPI devices using normal userspace I/O calls.
 43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 44 * and often mask message boundaries, full SPI support requires full duplex
 45 * transfers.  There are several kinds of internal message boundaries to
 46 * handle chipselect management and other protocol options.
 47 *
 48 * SPI has a character major number assigned.  We allocate minor numbers
 49 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 51 * nodes, since there is no fixed association of minor numbers with any
 52 * particular SPI bus or device.
 53 */
 54#define SPIDEV_MAJOR			153	/* assigned */
 55#define N_SPI_MINORS			32	/* ... up to 256 */
 56
 57static DECLARE_BITMAP(minors, N_SPI_MINORS);
 58
 59
 60/* Bit masks for spi_device.mode management.  Note that incorrect
 61 * settings for some settings can cause *lots* of trouble for other
 62 * devices on a shared bus:
 63 *
 64 *  - CS_HIGH ... this device will be active when it shouldn't be
 65 *  - 3WIRE ... when active, it won't behave as it should
 66 *  - NO_CS ... there will be no explicit message boundaries; this
 67 *	is completely incompatible with the shared bus model
 68 *  - READY ... transfers may proceed when they shouldn't.
 69 *
 70 * REVISIT should changing those flags be privileged?
 71 */
 72#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 73				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 74				| SPI_NO_CS | SPI_READY)
 
 75
 76struct spidev_data {
 77	dev_t			devt;
 78	spinlock_t		spi_lock;
 79	struct spi_device	*spi;
 80	struct list_head	device_entry;
 81
 82	/* buffer is NULL unless this device is open (users > 0) */
 83	struct mutex		buf_lock;
 84	unsigned		users;
 85	u8			*buffer;
 
 
 86};
 87
 88static LIST_HEAD(device_list);
 89static DEFINE_MUTEX(device_list_lock);
 90
 91static unsigned bufsiz = 4096;
 92module_param(bufsiz, uint, S_IRUGO);
 93MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 94
 95/*-------------------------------------------------------------------------*/
 96
 97/*
 98 * We can't use the standard synchronous wrappers for file I/O; we
 99 * need to protect against async removal of the underlying spi_device.
100 */
101static void spidev_complete(void *arg)
102{
103	complete(arg);
104}
105
106static ssize_t
107spidev_sync(struct spidev_data *spidev, struct spi_message *message)
108{
109	DECLARE_COMPLETION_ONSTACK(done);
110	int status;
111
112	message->complete = spidev_complete;
113	message->context = &done;
114
115	spin_lock_irq(&spidev->spi_lock);
116	if (spidev->spi == NULL)
 
 
 
117		status = -ESHUTDOWN;
118	else
119		status = spi_async(spidev->spi, message);
120	spin_unlock_irq(&spidev->spi_lock);
 
 
121
122	if (status == 0) {
123		wait_for_completion(&done);
124		status = message->status;
125		if (status == 0)
126			status = message->actual_length;
127	}
128	return status;
129}
130
131static inline ssize_t
132spidev_sync_write(struct spidev_data *spidev, size_t len)
133{
134	struct spi_transfer	t = {
135			.tx_buf		= spidev->buffer,
136			.len		= len,
 
137		};
138	struct spi_message	m;
139
140	spi_message_init(&m);
141	spi_message_add_tail(&t, &m);
142	return spidev_sync(spidev, &m);
143}
144
145static inline ssize_t
146spidev_sync_read(struct spidev_data *spidev, size_t len)
147{
148	struct spi_transfer	t = {
149			.rx_buf		= spidev->buffer,
150			.len		= len,
 
151		};
152	struct spi_message	m;
153
154	spi_message_init(&m);
155	spi_message_add_tail(&t, &m);
156	return spidev_sync(spidev, &m);
157}
158
159/*-------------------------------------------------------------------------*/
160
161/* Read-only message with current device setup */
162static ssize_t
163spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
164{
165	struct spidev_data	*spidev;
166	ssize_t			status = 0;
167
168	/* chipselect only toggles at start or end of operation */
169	if (count > bufsiz)
170		return -EMSGSIZE;
171
172	spidev = filp->private_data;
173
174	mutex_lock(&spidev->buf_lock);
175	status = spidev_sync_read(spidev, count);
176	if (status > 0) {
177		unsigned long	missing;
178
179		missing = copy_to_user(buf, spidev->buffer, status);
180		if (missing == status)
181			status = -EFAULT;
182		else
183			status = status - missing;
184	}
185	mutex_unlock(&spidev->buf_lock);
186
187	return status;
188}
189
190/* Write-only message with current device setup */
191static ssize_t
192spidev_write(struct file *filp, const char __user *buf,
193		size_t count, loff_t *f_pos)
194{
195	struct spidev_data	*spidev;
196	ssize_t			status = 0;
197	unsigned long		missing;
198
199	/* chipselect only toggles at start or end of operation */
200	if (count > bufsiz)
201		return -EMSGSIZE;
202
203	spidev = filp->private_data;
204
205	mutex_lock(&spidev->buf_lock);
206	missing = copy_from_user(spidev->buffer, buf, count);
207	if (missing == 0) {
208		status = spidev_sync_write(spidev, count);
209	} else
210		status = -EFAULT;
211	mutex_unlock(&spidev->buf_lock);
212
213	return status;
214}
215
216static int spidev_message(struct spidev_data *spidev,
217		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
218{
219	struct spi_message	msg;
220	struct spi_transfer	*k_xfers;
221	struct spi_transfer	*k_tmp;
222	struct spi_ioc_transfer *u_tmp;
223	unsigned		n, total;
224	u8			*buf;
225	int			status = -EFAULT;
226
227	spi_message_init(&msg);
228	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
229	if (k_xfers == NULL)
230		return -ENOMEM;
231
232	/* Construct spi_message, copying any tx data to bounce buffer.
233	 * We walk the array of user-provided transfers, using each one
234	 * to initialize a kernel version of the same transfer.
235	 */
236	buf = spidev->buffer;
 
237	total = 0;
 
 
238	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
239			n;
240			n--, k_tmp++, u_tmp++) {
241		k_tmp->len = u_tmp->len;
242
243		total += k_tmp->len;
244		if (total > bufsiz) {
 
 
 
 
 
245			status = -EMSGSIZE;
246			goto done;
247		}
248
249		if (u_tmp->rx_buf) {
250			k_tmp->rx_buf = buf;
251			if (!access_ok(VERIFY_WRITE, (u8 __user *)
252						(uintptr_t) u_tmp->rx_buf,
253						u_tmp->len))
254				goto done;
 
 
 
255		}
256		if (u_tmp->tx_buf) {
257			k_tmp->tx_buf = buf;
258			if (copy_from_user(buf, (const u8 __user *)
 
 
 
 
 
 
259						(uintptr_t) u_tmp->tx_buf,
260					u_tmp->len))
261				goto done;
 
262		}
263		buf += k_tmp->len;
264
265		k_tmp->cs_change = !!u_tmp->cs_change;
 
 
266		k_tmp->bits_per_word = u_tmp->bits_per_word;
267		k_tmp->delay_usecs = u_tmp->delay_usecs;
268		k_tmp->speed_hz = u_tmp->speed_hz;
 
 
 
269#ifdef VERBOSE
270		dev_dbg(&spidev->spi->dev,
271			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
272			u_tmp->len,
273			u_tmp->rx_buf ? "rx " : "",
274			u_tmp->tx_buf ? "tx " : "",
275			u_tmp->cs_change ? "cs " : "",
276			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
277			u_tmp->delay_usecs,
 
278			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
279#endif
280		spi_message_add_tail(k_tmp, &msg);
281	}
282
283	status = spidev_sync(spidev, &msg);
284	if (status < 0)
285		goto done;
286
287	/* copy any rx data out of bounce buffer */
288	buf = spidev->buffer;
289	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
290		if (u_tmp->rx_buf) {
291			if (__copy_to_user((u8 __user *)
292					(uintptr_t) u_tmp->rx_buf, buf,
293					u_tmp->len)) {
294				status = -EFAULT;
295				goto done;
296			}
 
297		}
298		buf += u_tmp->len;
299	}
300	status = total;
301
302done:
303	kfree(k_xfers);
304	return status;
305}
306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307static long
308spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
309{
310	int			err = 0;
311	int			retval = 0;
312	struct spidev_data	*spidev;
313	struct spi_device	*spi;
314	u32			tmp;
315	unsigned		n_ioc;
316	struct spi_ioc_transfer	*ioc;
317
318	/* Check type and command number */
319	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
320		return -ENOTTY;
321
322	/* Check access direction once here; don't repeat below.
323	 * IOC_DIR is from the user perspective, while access_ok is
324	 * from the kernel perspective; so they look reversed.
325	 */
326	if (_IOC_DIR(cmd) & _IOC_READ)
327		err = !access_ok(VERIFY_WRITE,
328				(void __user *)arg, _IOC_SIZE(cmd));
329	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
330		err = !access_ok(VERIFY_READ,
331				(void __user *)arg, _IOC_SIZE(cmd));
332	if (err)
333		return -EFAULT;
334
335	/* guard against device removal before, or while,
336	 * we issue this ioctl.
337	 */
338	spidev = filp->private_data;
339	spin_lock_irq(&spidev->spi_lock);
340	spi = spi_dev_get(spidev->spi);
341	spin_unlock_irq(&spidev->spi_lock);
342
343	if (spi == NULL)
344		return -ESHUTDOWN;
345
346	/* use the buffer lock here for triple duty:
347	 *  - prevent I/O (from us) so calling spi_setup() is safe;
348	 *  - prevent concurrent SPI_IOC_WR_* from morphing
349	 *    data fields while SPI_IOC_RD_* reads them;
350	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
351	 */
352	mutex_lock(&spidev->buf_lock);
353
354	switch (cmd) {
355	/* read requests */
356	case SPI_IOC_RD_MODE:
357		retval = __put_user(spi->mode & SPI_MODE_MASK,
358					(__u8 __user *)arg);
359		break;
 
 
 
 
360	case SPI_IOC_RD_LSB_FIRST:
361		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
362					(__u8 __user *)arg);
363		break;
364	case SPI_IOC_RD_BITS_PER_WORD:
365		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
366		break;
367	case SPI_IOC_RD_MAX_SPEED_HZ:
368		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
369		break;
370
371	/* write requests */
372	case SPI_IOC_WR_MODE:
373		retval = __get_user(tmp, (u8 __user *)arg);
 
 
 
 
374		if (retval == 0) {
375			u8	save = spi->mode;
376
377			if (tmp & ~SPI_MODE_MASK) {
378				retval = -EINVAL;
379				break;
380			}
381
382			tmp |= spi->mode & ~SPI_MODE_MASK;
383			spi->mode = (u8)tmp;
384			retval = spi_setup(spi);
385			if (retval < 0)
386				spi->mode = save;
387			else
388				dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
389		}
390		break;
391	case SPI_IOC_WR_LSB_FIRST:
392		retval = __get_user(tmp, (__u8 __user *)arg);
393		if (retval == 0) {
394			u8	save = spi->mode;
395
396			if (tmp)
397				spi->mode |= SPI_LSB_FIRST;
398			else
399				spi->mode &= ~SPI_LSB_FIRST;
400			retval = spi_setup(spi);
401			if (retval < 0)
402				spi->mode = save;
403			else
404				dev_dbg(&spi->dev, "%csb first\n",
405						tmp ? 'l' : 'm');
406		}
407		break;
408	case SPI_IOC_WR_BITS_PER_WORD:
409		retval = __get_user(tmp, (__u8 __user *)arg);
410		if (retval == 0) {
411			u8	save = spi->bits_per_word;
412
413			spi->bits_per_word = tmp;
414			retval = spi_setup(spi);
415			if (retval < 0)
416				spi->bits_per_word = save;
417			else
418				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
419		}
420		break;
421	case SPI_IOC_WR_MAX_SPEED_HZ:
422		retval = __get_user(tmp, (__u32 __user *)arg);
423		if (retval == 0) {
424			u32	save = spi->max_speed_hz;
425
426			spi->max_speed_hz = tmp;
427			retval = spi_setup(spi);
428			if (retval < 0)
429				spi->max_speed_hz = save;
430			else
431				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
 
432		}
433		break;
434
435	default:
436		/* segmented and/or full-duplex I/O request */
437		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
438				|| _IOC_DIR(cmd) != _IOC_WRITE) {
439			retval = -ENOTTY;
440			break;
441		}
442
443		tmp = _IOC_SIZE(cmd);
444		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
445			retval = -EINVAL;
446			break;
447		}
448		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
449		if (n_ioc == 0)
450			break;
451
452		/* copy into scratch area */
453		ioc = kmalloc(tmp, GFP_KERNEL);
454		if (!ioc) {
455			retval = -ENOMEM;
456			break;
457		}
458		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
459			kfree(ioc);
460			retval = -EFAULT;
461			break;
462		}
 
 
463
464		/* translate to spi_message, execute */
465		retval = spidev_message(spidev, ioc, n_ioc);
466		kfree(ioc);
467		break;
468	}
469
470	mutex_unlock(&spidev->buf_lock);
471	spi_dev_put(spi);
472	return retval;
473}
474
475#ifdef CONFIG_COMPAT
476static long
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
478{
 
 
 
 
 
479	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
480}
481#else
482#define spidev_compat_ioctl NULL
483#endif /* CONFIG_COMPAT */
484
485static int spidev_open(struct inode *inode, struct file *filp)
486{
487	struct spidev_data	*spidev;
488	int			status = -ENXIO;
489
490	mutex_lock(&device_list_lock);
491
492	list_for_each_entry(spidev, &device_list, device_entry) {
493		if (spidev->devt == inode->i_rdev) {
494			status = 0;
495			break;
496		}
497	}
498	if (status == 0) {
499		if (!spidev->buffer) {
500			spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
501			if (!spidev->buffer) {
502				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
503				status = -ENOMEM;
504			}
 
 
 
 
 
505		}
506		if (status == 0) {
507			spidev->users++;
508			filp->private_data = spidev;
509			nonseekable_open(inode, filp);
 
 
 
 
510		}
511	} else
512		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
 
 
 
 
 
 
513
 
 
 
 
514	mutex_unlock(&device_list_lock);
515	return status;
516}
517
518static int spidev_release(struct inode *inode, struct file *filp)
519{
520	struct spidev_data	*spidev;
521	int			status = 0;
522
523	mutex_lock(&device_list_lock);
524	spidev = filp->private_data;
525	filp->private_data = NULL;
526
527	/* last close? */
528	spidev->users--;
529	if (!spidev->users) {
530		int		dofree;
531
532		kfree(spidev->buffer);
533		spidev->buffer = NULL;
 
 
 
534
535		/* ... after we unbound from the underlying device? */
536		spin_lock_irq(&spidev->spi_lock);
 
 
 
 
537		dofree = (spidev->spi == NULL);
538		spin_unlock_irq(&spidev->spi_lock);
539
540		if (dofree)
541			kfree(spidev);
542	}
543	mutex_unlock(&device_list_lock);
544
545	return status;
546}
547
548static const struct file_operations spidev_fops = {
549	.owner =	THIS_MODULE,
550	/* REVISIT switch to aio primitives, so that userspace
551	 * gets more complete API coverage.  It'll simplify things
552	 * too, except for the locking.
553	 */
554	.write =	spidev_write,
555	.read =		spidev_read,
556	.unlocked_ioctl = spidev_ioctl,
557	.compat_ioctl = spidev_compat_ioctl,
558	.open =		spidev_open,
559	.release =	spidev_release,
560	.llseek =	no_llseek,
561};
562
563/*-------------------------------------------------------------------------*/
564
565/* The main reason to have this class is to make mdev/udev create the
566 * /dev/spidevB.C character device nodes exposing our userspace API.
567 * It also simplifies memory management.
568 */
569
570static struct class *spidev_class;
571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572/*-------------------------------------------------------------------------*/
573
574static int __devinit spidev_probe(struct spi_device *spi)
575{
576	struct spidev_data	*spidev;
577	int			status;
578	unsigned long		minor;
579
 
 
 
 
 
 
 
 
 
 
 
580	/* Allocate driver data */
581	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
582	if (!spidev)
583		return -ENOMEM;
584
585	/* Initialize the driver data */
586	spidev->spi = spi;
587	spin_lock_init(&spidev->spi_lock);
588	mutex_init(&spidev->buf_lock);
589
590	INIT_LIST_HEAD(&spidev->device_entry);
591
592	/* If we can allocate a minor number, hook up this device.
593	 * Reusing minors is fine so long as udev or mdev is working.
594	 */
595	mutex_lock(&device_list_lock);
596	minor = find_first_zero_bit(minors, N_SPI_MINORS);
597	if (minor < N_SPI_MINORS) {
598		struct device *dev;
599
600		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
601		dev = device_create(spidev_class, &spi->dev, spidev->devt,
602				    spidev, "spidev%d.%d",
603				    spi->master->bus_num, spi->chip_select);
604		status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
605	} else {
606		dev_dbg(&spi->dev, "no minor number available!\n");
607		status = -ENODEV;
608	}
609	if (status == 0) {
610		set_bit(minor, minors);
611		list_add(&spidev->device_entry, &device_list);
612	}
613	mutex_unlock(&device_list_lock);
614
 
 
615	if (status == 0)
616		spi_set_drvdata(spi, spidev);
617	else
618		kfree(spidev);
619
620	return status;
621}
622
623static int __devexit spidev_remove(struct spi_device *spi)
624{
625	struct spidev_data	*spidev = spi_get_drvdata(spi);
626
627	/* make sure ops on existing fds can abort cleanly */
628	spin_lock_irq(&spidev->spi_lock);
629	spidev->spi = NULL;
630	spi_set_drvdata(spi, NULL);
631	spin_unlock_irq(&spidev->spi_lock);
632
633	/* prevent new opens */
634	mutex_lock(&device_list_lock);
635	list_del(&spidev->device_entry);
636	device_destroy(spidev_class, spidev->devt);
637	clear_bit(MINOR(spidev->devt), minors);
638	if (spidev->users == 0)
639		kfree(spidev);
640	mutex_unlock(&device_list_lock);
641
642	return 0;
643}
644
645static struct spi_driver spidev_spi_driver = {
646	.driver = {
647		.name =		"spidev",
648		.owner =	THIS_MODULE,
 
649	},
650	.probe =	spidev_probe,
651	.remove =	__devexit_p(spidev_remove),
652
653	/* NOTE:  suspend/resume methods are not necessary here.
654	 * We don't do anything except pass the requests to/from
655	 * the underlying controller.  The refrigerator handles
656	 * most issues; the controller driver handles the rest.
657	 */
658};
659
660/*-------------------------------------------------------------------------*/
661
662static int __init spidev_init(void)
663{
664	int status;
665
666	/* Claim our 256 reserved device numbers.  Then register a class
667	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
668	 * the driver which manages those device numbers.
669	 */
670	BUILD_BUG_ON(N_SPI_MINORS > 256);
671	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
672	if (status < 0)
673		return status;
674
675	spidev_class = class_create(THIS_MODULE, "spidev");
676	if (IS_ERR(spidev_class)) {
677		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
678		return PTR_ERR(spidev_class);
679	}
680
681	status = spi_register_driver(&spidev_spi_driver);
682	if (status < 0) {
683		class_destroy(spidev_class);
684		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
685	}
686	return status;
687}
688module_init(spidev_init);
689
690static void __exit spidev_exit(void)
691{
692	spi_unregister_driver(&spidev_spi_driver);
693	class_destroy(spidev_class);
694	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
695}
696module_exit(spidev_exit);
697
698MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
699MODULE_DESCRIPTION("User mode SPI device interface");
700MODULE_LICENSE("GPL");
701MODULE_ALIAS("spi:spidev");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Simple synchronous userspace interface to SPI devices
  4 *
  5 * Copyright (C) 2006 SWAPP
  6 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  7 * Copyright (C) 2007 David Brownell (simplification, cleanup)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/init.h>
 11#include <linux/module.h>
 12#include <linux/ioctl.h>
 13#include <linux/fs.h>
 14#include <linux/device.h>
 15#include <linux/err.h>
 16#include <linux/list.h>
 17#include <linux/errno.h>
 18#include <linux/mutex.h>
 19#include <linux/slab.h>
 20#include <linux/compat.h>
 21#include <linux/of.h>
 22#include <linux/of_device.h>
 23#include <linux/acpi.h>
 24
 25#include <linux/spi/spi.h>
 26#include <linux/spi/spidev.h>
 27
 28#include <linux/uaccess.h>
 29
 30
 31/*
 32 * This supports access to SPI devices using normal userspace I/O calls.
 33 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 34 * and often mask message boundaries, full SPI support requires full duplex
 35 * transfers.  There are several kinds of internal message boundaries to
 36 * handle chipselect management and other protocol options.
 37 *
 38 * SPI has a character major number assigned.  We allocate minor numbers
 39 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 40 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 41 * nodes, since there is no fixed association of minor numbers with any
 42 * particular SPI bus or device.
 43 */
 44#define SPIDEV_MAJOR			153	/* assigned */
 45#define N_SPI_MINORS			32	/* ... up to 256 */
 46
 47static DECLARE_BITMAP(minors, N_SPI_MINORS);
 48
 49
 50/* Bit masks for spi_device.mode management.  Note that incorrect
 51 * settings for some settings can cause *lots* of trouble for other
 52 * devices on a shared bus:
 53 *
 54 *  - CS_HIGH ... this device will be active when it shouldn't be
 55 *  - 3WIRE ... when active, it won't behave as it should
 56 *  - NO_CS ... there will be no explicit message boundaries; this
 57 *	is completely incompatible with the shared bus model
 58 *  - READY ... transfers may proceed when they shouldn't.
 59 *
 60 * REVISIT should changing those flags be privileged?
 61 */
 62#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 63				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 64				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
 65				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
 66
 67struct spidev_data {
 68	dev_t			devt;
 69	spinlock_t		spi_lock;
 70	struct spi_device	*spi;
 71	struct list_head	device_entry;
 72
 73	/* TX/RX buffers are NULL unless this device is open (users > 0) */
 74	struct mutex		buf_lock;
 75	unsigned		users;
 76	u8			*tx_buffer;
 77	u8			*rx_buffer;
 78	u32			speed_hz;
 79};
 80
 81static LIST_HEAD(device_list);
 82static DEFINE_MUTEX(device_list_lock);
 83
 84static unsigned bufsiz = 4096;
 85module_param(bufsiz, uint, S_IRUGO);
 86MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 87
 88/*-------------------------------------------------------------------------*/
 89
 
 
 
 
 
 
 
 
 
 90static ssize_t
 91spidev_sync(struct spidev_data *spidev, struct spi_message *message)
 92{
 
 93	int status;
 94	struct spi_device *spi;
 
 
 95
 96	spin_lock_irq(&spidev->spi_lock);
 97	spi = spidev->spi;
 98	spin_unlock_irq(&spidev->spi_lock);
 99
100	if (spi == NULL)
101		status = -ESHUTDOWN;
102	else
103		status = spi_sync(spi, message);
104
105	if (status == 0)
106		status = message->actual_length;
107
 
 
 
 
 
 
108	return status;
109}
110
111static inline ssize_t
112spidev_sync_write(struct spidev_data *spidev, size_t len)
113{
114	struct spi_transfer	t = {
115			.tx_buf		= spidev->tx_buffer,
116			.len		= len,
117			.speed_hz	= spidev->speed_hz,
118		};
119	struct spi_message	m;
120
121	spi_message_init(&m);
122	spi_message_add_tail(&t, &m);
123	return spidev_sync(spidev, &m);
124}
125
126static inline ssize_t
127spidev_sync_read(struct spidev_data *spidev, size_t len)
128{
129	struct spi_transfer	t = {
130			.rx_buf		= spidev->rx_buffer,
131			.len		= len,
132			.speed_hz	= spidev->speed_hz,
133		};
134	struct spi_message	m;
135
136	spi_message_init(&m);
137	spi_message_add_tail(&t, &m);
138	return spidev_sync(spidev, &m);
139}
140
141/*-------------------------------------------------------------------------*/
142
143/* Read-only message with current device setup */
144static ssize_t
145spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
146{
147	struct spidev_data	*spidev;
148	ssize_t			status = 0;
149
150	/* chipselect only toggles at start or end of operation */
151	if (count > bufsiz)
152		return -EMSGSIZE;
153
154	spidev = filp->private_data;
155
156	mutex_lock(&spidev->buf_lock);
157	status = spidev_sync_read(spidev, count);
158	if (status > 0) {
159		unsigned long	missing;
160
161		missing = copy_to_user(buf, spidev->rx_buffer, status);
162		if (missing == status)
163			status = -EFAULT;
164		else
165			status = status - missing;
166	}
167	mutex_unlock(&spidev->buf_lock);
168
169	return status;
170}
171
172/* Write-only message with current device setup */
173static ssize_t
174spidev_write(struct file *filp, const char __user *buf,
175		size_t count, loff_t *f_pos)
176{
177	struct spidev_data	*spidev;
178	ssize_t			status = 0;
179	unsigned long		missing;
180
181	/* chipselect only toggles at start or end of operation */
182	if (count > bufsiz)
183		return -EMSGSIZE;
184
185	spidev = filp->private_data;
186
187	mutex_lock(&spidev->buf_lock);
188	missing = copy_from_user(spidev->tx_buffer, buf, count);
189	if (missing == 0)
190		status = spidev_sync_write(spidev, count);
191	else
192		status = -EFAULT;
193	mutex_unlock(&spidev->buf_lock);
194
195	return status;
196}
197
198static int spidev_message(struct spidev_data *spidev,
199		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
200{
201	struct spi_message	msg;
202	struct spi_transfer	*k_xfers;
203	struct spi_transfer	*k_tmp;
204	struct spi_ioc_transfer *u_tmp;
205	unsigned		n, total, tx_total, rx_total;
206	u8			*tx_buf, *rx_buf;
207	int			status = -EFAULT;
208
209	spi_message_init(&msg);
210	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
211	if (k_xfers == NULL)
212		return -ENOMEM;
213
214	/* Construct spi_message, copying any tx data to bounce buffer.
215	 * We walk the array of user-provided transfers, using each one
216	 * to initialize a kernel version of the same transfer.
217	 */
218	tx_buf = spidev->tx_buffer;
219	rx_buf = spidev->rx_buffer;
220	total = 0;
221	tx_total = 0;
222	rx_total = 0;
223	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
224			n;
225			n--, k_tmp++, u_tmp++) {
226		k_tmp->len = u_tmp->len;
227
228		total += k_tmp->len;
229		/* Since the function returns the total length of transfers
230		 * on success, restrict the total to positive int values to
231		 * avoid the return value looking like an error.  Also check
232		 * each transfer length to avoid arithmetic overflow.
233		 */
234		if (total > INT_MAX || k_tmp->len > INT_MAX) {
235			status = -EMSGSIZE;
236			goto done;
237		}
238
239		if (u_tmp->rx_buf) {
240			/* this transfer needs space in RX bounce buffer */
241			rx_total += k_tmp->len;
242			if (rx_total > bufsiz) {
243				status = -EMSGSIZE;
244				goto done;
245			}
246			k_tmp->rx_buf = rx_buf;
247			rx_buf += k_tmp->len;
248		}
249		if (u_tmp->tx_buf) {
250			/* this transfer needs space in TX bounce buffer */
251			tx_total += k_tmp->len;
252			if (tx_total > bufsiz) {
253				status = -EMSGSIZE;
254				goto done;
255			}
256			k_tmp->tx_buf = tx_buf;
257			if (copy_from_user(tx_buf, (const u8 __user *)
258						(uintptr_t) u_tmp->tx_buf,
259					u_tmp->len))
260				goto done;
261			tx_buf += k_tmp->len;
262		}
 
263
264		k_tmp->cs_change = !!u_tmp->cs_change;
265		k_tmp->tx_nbits = u_tmp->tx_nbits;
266		k_tmp->rx_nbits = u_tmp->rx_nbits;
267		k_tmp->bits_per_word = u_tmp->bits_per_word;
268		k_tmp->delay_usecs = u_tmp->delay_usecs;
269		k_tmp->speed_hz = u_tmp->speed_hz;
270		k_tmp->word_delay_usecs = u_tmp->word_delay_usecs;
271		if (!k_tmp->speed_hz)
272			k_tmp->speed_hz = spidev->speed_hz;
273#ifdef VERBOSE
274		dev_dbg(&spidev->spi->dev,
275			"  xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
276			u_tmp->len,
277			u_tmp->rx_buf ? "rx " : "",
278			u_tmp->tx_buf ? "tx " : "",
279			u_tmp->cs_change ? "cs " : "",
280			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
281			u_tmp->delay_usecs,
282			u_tmp->word_delay_usecs,
283			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
284#endif
285		spi_message_add_tail(k_tmp, &msg);
286	}
287
288	status = spidev_sync(spidev, &msg);
289	if (status < 0)
290		goto done;
291
292	/* copy any rx data out of bounce buffer */
293	rx_buf = spidev->rx_buffer;
294	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
295		if (u_tmp->rx_buf) {
296			if (copy_to_user((u8 __user *)
297					(uintptr_t) u_tmp->rx_buf, rx_buf,
298					u_tmp->len)) {
299				status = -EFAULT;
300				goto done;
301			}
302			rx_buf += u_tmp->len;
303		}
 
304	}
305	status = total;
306
307done:
308	kfree(k_xfers);
309	return status;
310}
311
312static struct spi_ioc_transfer *
313spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
314		unsigned *n_ioc)
315{
316	u32	tmp;
317
318	/* Check type, command number and direction */
319	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
320			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
321			|| _IOC_DIR(cmd) != _IOC_WRITE)
322		return ERR_PTR(-ENOTTY);
323
324	tmp = _IOC_SIZE(cmd);
325	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
326		return ERR_PTR(-EINVAL);
327	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
328	if (*n_ioc == 0)
329		return NULL;
330
331	/* copy into scratch area */
332	return memdup_user(u_ioc, tmp);
333}
334
335static long
336spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
337{
 
338	int			retval = 0;
339	struct spidev_data	*spidev;
340	struct spi_device	*spi;
341	u32			tmp;
342	unsigned		n_ioc;
343	struct spi_ioc_transfer	*ioc;
344
345	/* Check type and command number */
346	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
347		return -ENOTTY;
348
 
 
 
 
 
 
 
 
 
 
 
 
 
349	/* guard against device removal before, or while,
350	 * we issue this ioctl.
351	 */
352	spidev = filp->private_data;
353	spin_lock_irq(&spidev->spi_lock);
354	spi = spi_dev_get(spidev->spi);
355	spin_unlock_irq(&spidev->spi_lock);
356
357	if (spi == NULL)
358		return -ESHUTDOWN;
359
360	/* use the buffer lock here for triple duty:
361	 *  - prevent I/O (from us) so calling spi_setup() is safe;
362	 *  - prevent concurrent SPI_IOC_WR_* from morphing
363	 *    data fields while SPI_IOC_RD_* reads them;
364	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
365	 */
366	mutex_lock(&spidev->buf_lock);
367
368	switch (cmd) {
369	/* read requests */
370	case SPI_IOC_RD_MODE:
371		retval = put_user(spi->mode & SPI_MODE_MASK,
372					(__u8 __user *)arg);
373		break;
374	case SPI_IOC_RD_MODE32:
375		retval = put_user(spi->mode & SPI_MODE_MASK,
376					(__u32 __user *)arg);
377		break;
378	case SPI_IOC_RD_LSB_FIRST:
379		retval = put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
380					(__u8 __user *)arg);
381		break;
382	case SPI_IOC_RD_BITS_PER_WORD:
383		retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
384		break;
385	case SPI_IOC_RD_MAX_SPEED_HZ:
386		retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
387		break;
388
389	/* write requests */
390	case SPI_IOC_WR_MODE:
391	case SPI_IOC_WR_MODE32:
392		if (cmd == SPI_IOC_WR_MODE)
393			retval = get_user(tmp, (u8 __user *)arg);
394		else
395			retval = get_user(tmp, (u32 __user *)arg);
396		if (retval == 0) {
397			u32	save = spi->mode;
398
399			if (tmp & ~SPI_MODE_MASK) {
400				retval = -EINVAL;
401				break;
402			}
403
404			tmp |= spi->mode & ~SPI_MODE_MASK;
405			spi->mode = (u16)tmp;
406			retval = spi_setup(spi);
407			if (retval < 0)
408				spi->mode = save;
409			else
410				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
411		}
412		break;
413	case SPI_IOC_WR_LSB_FIRST:
414		retval = get_user(tmp, (__u8 __user *)arg);
415		if (retval == 0) {
416			u32	save = spi->mode;
417
418			if (tmp)
419				spi->mode |= SPI_LSB_FIRST;
420			else
421				spi->mode &= ~SPI_LSB_FIRST;
422			retval = spi_setup(spi);
423			if (retval < 0)
424				spi->mode = save;
425			else
426				dev_dbg(&spi->dev, "%csb first\n",
427						tmp ? 'l' : 'm');
428		}
429		break;
430	case SPI_IOC_WR_BITS_PER_WORD:
431		retval = get_user(tmp, (__u8 __user *)arg);
432		if (retval == 0) {
433			u8	save = spi->bits_per_word;
434
435			spi->bits_per_word = tmp;
436			retval = spi_setup(spi);
437			if (retval < 0)
438				spi->bits_per_word = save;
439			else
440				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
441		}
442		break;
443	case SPI_IOC_WR_MAX_SPEED_HZ:
444		retval = get_user(tmp, (__u32 __user *)arg);
445		if (retval == 0) {
446			u32	save = spi->max_speed_hz;
447
448			spi->max_speed_hz = tmp;
449			retval = spi_setup(spi);
450			if (retval >= 0)
451				spidev->speed_hz = tmp;
452			else
453				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
454			spi->max_speed_hz = save;
455		}
456		break;
457
458	default:
459		/* segmented and/or full-duplex I/O request */
460		/* Check message and copy into scratch area */
461		ioc = spidev_get_ioc_message(cmd,
462				(struct spi_ioc_transfer __user *)arg, &n_ioc);
463		if (IS_ERR(ioc)) {
464			retval = PTR_ERR(ioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465			break;
466		}
467		if (!ioc)
468			break;	/* n_ioc is also 0 */
469
470		/* translate to spi_message, execute */
471		retval = spidev_message(spidev, ioc, n_ioc);
472		kfree(ioc);
473		break;
474	}
475
476	mutex_unlock(&spidev->buf_lock);
477	spi_dev_put(spi);
478	return retval;
479}
480
481#ifdef CONFIG_COMPAT
482static long
483spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
484		unsigned long arg)
485{
486	struct spi_ioc_transfer __user	*u_ioc;
487	int				retval = 0;
488	struct spidev_data		*spidev;
489	struct spi_device		*spi;
490	unsigned			n_ioc, n;
491	struct spi_ioc_transfer		*ioc;
492
493	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
494
495	/* guard against device removal before, or while,
496	 * we issue this ioctl.
497	 */
498	spidev = filp->private_data;
499	spin_lock_irq(&spidev->spi_lock);
500	spi = spi_dev_get(spidev->spi);
501	spin_unlock_irq(&spidev->spi_lock);
502
503	if (spi == NULL)
504		return -ESHUTDOWN;
505
506	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
507	mutex_lock(&spidev->buf_lock);
508
509	/* Check message and copy into scratch area */
510	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
511	if (IS_ERR(ioc)) {
512		retval = PTR_ERR(ioc);
513		goto done;
514	}
515	if (!ioc)
516		goto done;	/* n_ioc is also 0 */
517
518	/* Convert buffer pointers */
519	for (n = 0; n < n_ioc; n++) {
520		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
521		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
522	}
523
524	/* translate to spi_message, execute */
525	retval = spidev_message(spidev, ioc, n_ioc);
526	kfree(ioc);
527
528done:
529	mutex_unlock(&spidev->buf_lock);
530	spi_dev_put(spi);
531	return retval;
532}
533
534static long
535spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
536{
537	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
538			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
539			&& _IOC_DIR(cmd) == _IOC_WRITE)
540		return spidev_compat_ioc_message(filp, cmd, arg);
541
542	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
543}
544#else
545#define spidev_compat_ioctl NULL
546#endif /* CONFIG_COMPAT */
547
548static int spidev_open(struct inode *inode, struct file *filp)
549{
550	struct spidev_data	*spidev;
551	int			status = -ENXIO;
552
553	mutex_lock(&device_list_lock);
554
555	list_for_each_entry(spidev, &device_list, device_entry) {
556		if (spidev->devt == inode->i_rdev) {
557			status = 0;
558			break;
559		}
560	}
561
562	if (status) {
563		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
564		goto err_find_dev;
565	}
566
567	if (!spidev->tx_buffer) {
568		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
569		if (!spidev->tx_buffer) {
570			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
571			status = -ENOMEM;
572			goto err_find_dev;
573		}
574	}
575
576	if (!spidev->rx_buffer) {
577		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
578		if (!spidev->rx_buffer) {
579			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
580			status = -ENOMEM;
581			goto err_alloc_rx_buf;
582		}
583	}
584
585	spidev->users++;
586	filp->private_data = spidev;
587	stream_open(inode, filp);
588
589	mutex_unlock(&device_list_lock);
590	return 0;
591
592err_alloc_rx_buf:
593	kfree(spidev->tx_buffer);
594	spidev->tx_buffer = NULL;
595err_find_dev:
596	mutex_unlock(&device_list_lock);
597	return status;
598}
599
600static int spidev_release(struct inode *inode, struct file *filp)
601{
602	struct spidev_data	*spidev;
 
603
604	mutex_lock(&device_list_lock);
605	spidev = filp->private_data;
606	filp->private_data = NULL;
607
608	/* last close? */
609	spidev->users--;
610	if (!spidev->users) {
611		int		dofree;
612
613		kfree(spidev->tx_buffer);
614		spidev->tx_buffer = NULL;
615
616		kfree(spidev->rx_buffer);
617		spidev->rx_buffer = NULL;
618
 
619		spin_lock_irq(&spidev->spi_lock);
620		if (spidev->spi)
621			spidev->speed_hz = spidev->spi->max_speed_hz;
622
623		/* ... after we unbound from the underlying device? */
624		dofree = (spidev->spi == NULL);
625		spin_unlock_irq(&spidev->spi_lock);
626
627		if (dofree)
628			kfree(spidev);
629	}
630	mutex_unlock(&device_list_lock);
631
632	return 0;
633}
634
635static const struct file_operations spidev_fops = {
636	.owner =	THIS_MODULE,
637	/* REVISIT switch to aio primitives, so that userspace
638	 * gets more complete API coverage.  It'll simplify things
639	 * too, except for the locking.
640	 */
641	.write =	spidev_write,
642	.read =		spidev_read,
643	.unlocked_ioctl = spidev_ioctl,
644	.compat_ioctl = spidev_compat_ioctl,
645	.open =		spidev_open,
646	.release =	spidev_release,
647	.llseek =	no_llseek,
648};
649
650/*-------------------------------------------------------------------------*/
651
652/* The main reason to have this class is to make mdev/udev create the
653 * /dev/spidevB.C character device nodes exposing our userspace API.
654 * It also simplifies memory management.
655 */
656
657static struct class *spidev_class;
658
659#ifdef CONFIG_OF
660static const struct of_device_id spidev_dt_ids[] = {
661	{ .compatible = "rohm,dh2228fv" },
662	{ .compatible = "lineartechnology,ltc2488" },
663	{ .compatible = "ge,achc" },
664	{ .compatible = "semtech,sx1301" },
665	{ .compatible = "lwn,bk4" },
666	{ .compatible = "dh,dhcom-board" },
667	{ .compatible = "menlo,m53cpld" },
668	{},
669};
670MODULE_DEVICE_TABLE(of, spidev_dt_ids);
671#endif
672
673#ifdef CONFIG_ACPI
674
675/* Dummy SPI devices not to be used in production systems */
676#define SPIDEV_ACPI_DUMMY	1
677
678static const struct acpi_device_id spidev_acpi_ids[] = {
679	/*
680	 * The ACPI SPT000* devices are only meant for development and
681	 * testing. Systems used in production should have a proper ACPI
682	 * description of the connected peripheral and they should also use
683	 * a proper driver instead of poking directly to the SPI bus.
684	 */
685	{ "SPT0001", SPIDEV_ACPI_DUMMY },
686	{ "SPT0002", SPIDEV_ACPI_DUMMY },
687	{ "SPT0003", SPIDEV_ACPI_DUMMY },
688	{},
689};
690MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
691
692static void spidev_probe_acpi(struct spi_device *spi)
693{
694	const struct acpi_device_id *id;
695
696	if (!has_acpi_companion(&spi->dev))
697		return;
698
699	id = acpi_match_device(spidev_acpi_ids, &spi->dev);
700	if (WARN_ON(!id))
701		return;
702
703	if (id->driver_data == SPIDEV_ACPI_DUMMY)
704		dev_warn(&spi->dev, "do not use this driver in production systems!\n");
705}
706#else
707static inline void spidev_probe_acpi(struct spi_device *spi) {}
708#endif
709
710/*-------------------------------------------------------------------------*/
711
712static int spidev_probe(struct spi_device *spi)
713{
714	struct spidev_data	*spidev;
715	int			status;
716	unsigned long		minor;
717
718	/*
719	 * spidev should never be referenced in DT without a specific
720	 * compatible string, it is a Linux implementation thing
721	 * rather than a description of the hardware.
722	 */
723	WARN(spi->dev.of_node &&
724	     of_device_is_compatible(spi->dev.of_node, "spidev"),
725	     "%pOF: buggy DT: spidev listed directly in DT\n", spi->dev.of_node);
726
727	spidev_probe_acpi(spi);
728
729	/* Allocate driver data */
730	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
731	if (!spidev)
732		return -ENOMEM;
733
734	/* Initialize the driver data */
735	spidev->spi = spi;
736	spin_lock_init(&spidev->spi_lock);
737	mutex_init(&spidev->buf_lock);
738
739	INIT_LIST_HEAD(&spidev->device_entry);
740
741	/* If we can allocate a minor number, hook up this device.
742	 * Reusing minors is fine so long as udev or mdev is working.
743	 */
744	mutex_lock(&device_list_lock);
745	minor = find_first_zero_bit(minors, N_SPI_MINORS);
746	if (minor < N_SPI_MINORS) {
747		struct device *dev;
748
749		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
750		dev = device_create(spidev_class, &spi->dev, spidev->devt,
751				    spidev, "spidev%d.%d",
752				    spi->master->bus_num, spi->chip_select);
753		status = PTR_ERR_OR_ZERO(dev);
754	} else {
755		dev_dbg(&spi->dev, "no minor number available!\n");
756		status = -ENODEV;
757	}
758	if (status == 0) {
759		set_bit(minor, minors);
760		list_add(&spidev->device_entry, &device_list);
761	}
762	mutex_unlock(&device_list_lock);
763
764	spidev->speed_hz = spi->max_speed_hz;
765
766	if (status == 0)
767		spi_set_drvdata(spi, spidev);
768	else
769		kfree(spidev);
770
771	return status;
772}
773
774static int spidev_remove(struct spi_device *spi)
775{
776	struct spidev_data	*spidev = spi_get_drvdata(spi);
777
778	/* make sure ops on existing fds can abort cleanly */
779	spin_lock_irq(&spidev->spi_lock);
780	spidev->spi = NULL;
 
781	spin_unlock_irq(&spidev->spi_lock);
782
783	/* prevent new opens */
784	mutex_lock(&device_list_lock);
785	list_del(&spidev->device_entry);
786	device_destroy(spidev_class, spidev->devt);
787	clear_bit(MINOR(spidev->devt), minors);
788	if (spidev->users == 0)
789		kfree(spidev);
790	mutex_unlock(&device_list_lock);
791
792	return 0;
793}
794
795static struct spi_driver spidev_spi_driver = {
796	.driver = {
797		.name =		"spidev",
798		.of_match_table = of_match_ptr(spidev_dt_ids),
799		.acpi_match_table = ACPI_PTR(spidev_acpi_ids),
800	},
801	.probe =	spidev_probe,
802	.remove =	spidev_remove,
803
804	/* NOTE:  suspend/resume methods are not necessary here.
805	 * We don't do anything except pass the requests to/from
806	 * the underlying controller.  The refrigerator handles
807	 * most issues; the controller driver handles the rest.
808	 */
809};
810
811/*-------------------------------------------------------------------------*/
812
813static int __init spidev_init(void)
814{
815	int status;
816
817	/* Claim our 256 reserved device numbers.  Then register a class
818	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
819	 * the driver which manages those device numbers.
820	 */
821	BUILD_BUG_ON(N_SPI_MINORS > 256);
822	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
823	if (status < 0)
824		return status;
825
826	spidev_class = class_create(THIS_MODULE, "spidev");
827	if (IS_ERR(spidev_class)) {
828		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
829		return PTR_ERR(spidev_class);
830	}
831
832	status = spi_register_driver(&spidev_spi_driver);
833	if (status < 0) {
834		class_destroy(spidev_class);
835		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
836	}
837	return status;
838}
839module_init(spidev_init);
840
841static void __exit spidev_exit(void)
842{
843	spi_unregister_driver(&spidev_spi_driver);
844	class_destroy(spidev_class);
845	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
846}
847module_exit(spidev_exit);
848
849MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
850MODULE_DESCRIPTION("User mode SPI device interface");
851MODULE_LICENSE("GPL");
852MODULE_ALIAS("spi:spidev");