Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright (C) 2017 Spreadtrum Communications Inc.
  3 *
  4 * SPDX-License-Identifier: GPL-2.0
  5 */
  6
  7#include <linux/bitops.h>
  8#include <linux/delay.h>
  9#include <linux/err.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/platform_device.h>
 13#include <linux/regmap.h>
 14#include <linux/rtc.h>
 15
 16#define SPRD_RTC_SEC_CNT_VALUE		0x0
 17#define SPRD_RTC_MIN_CNT_VALUE		0x4
 18#define SPRD_RTC_HOUR_CNT_VALUE		0x8
 19#define SPRD_RTC_DAY_CNT_VALUE		0xc
 20#define SPRD_RTC_SEC_CNT_UPD		0x10
 21#define SPRD_RTC_MIN_CNT_UPD		0x14
 22#define SPRD_RTC_HOUR_CNT_UPD		0x18
 23#define SPRD_RTC_DAY_CNT_UPD		0x1c
 24#define SPRD_RTC_SEC_ALM_UPD		0x20
 25#define SPRD_RTC_MIN_ALM_UPD		0x24
 26#define SPRD_RTC_HOUR_ALM_UPD		0x28
 27#define SPRD_RTC_DAY_ALM_UPD		0x2c
 28#define SPRD_RTC_INT_EN			0x30
 29#define SPRD_RTC_INT_RAW_STS		0x34
 30#define SPRD_RTC_INT_CLR		0x38
 31#define SPRD_RTC_INT_MASK_STS		0x3C
 32#define SPRD_RTC_SEC_ALM_VALUE		0x40
 33#define SPRD_RTC_MIN_ALM_VALUE		0x44
 34#define SPRD_RTC_HOUR_ALM_VALUE		0x48
 35#define SPRD_RTC_DAY_ALM_VALUE		0x4c
 36#define SPRD_RTC_SPG_VALUE		0x50
 37#define SPRD_RTC_SPG_UPD		0x54
 38#define SPRD_RTC_PWR_CTRL		0x58
 39#define SPRD_RTC_PWR_STS		0x5c
 40#define SPRD_RTC_SEC_AUXALM_UPD		0x60
 41#define SPRD_RTC_MIN_AUXALM_UPD		0x64
 42#define SPRD_RTC_HOUR_AUXALM_UPD	0x68
 43#define SPRD_RTC_DAY_AUXALM_UPD		0x6c
 44
 45/* BIT & MASK definition for SPRD_RTC_INT_* registers */
 46#define SPRD_RTC_SEC_EN			BIT(0)
 47#define SPRD_RTC_MIN_EN			BIT(1)
 48#define SPRD_RTC_HOUR_EN		BIT(2)
 49#define SPRD_RTC_DAY_EN			BIT(3)
 50#define SPRD_RTC_ALARM_EN		BIT(4)
 51#define SPRD_RTC_HRS_FORMAT_EN		BIT(5)
 52#define SPRD_RTC_AUXALM_EN		BIT(6)
 53#define SPRD_RTC_SPG_UPD_EN		BIT(7)
 54#define SPRD_RTC_SEC_UPD_EN		BIT(8)
 55#define SPRD_RTC_MIN_UPD_EN		BIT(9)
 56#define SPRD_RTC_HOUR_UPD_EN		BIT(10)
 57#define SPRD_RTC_DAY_UPD_EN		BIT(11)
 58#define SPRD_RTC_ALMSEC_UPD_EN		BIT(12)
 59#define SPRD_RTC_ALMMIN_UPD_EN		BIT(13)
 60#define SPRD_RTC_ALMHOUR_UPD_EN		BIT(14)
 61#define SPRD_RTC_ALMDAY_UPD_EN		BIT(15)
 62#define SPRD_RTC_INT_MASK		GENMASK(15, 0)
 63
 64#define SPRD_RTC_TIME_INT_MASK				\
 65	(SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN |	\
 66	 SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
 67
 68#define SPRD_RTC_ALMTIME_INT_MASK				\
 69	(SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN |	\
 70	 SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
 71
 72#define SPRD_RTC_ALM_INT_MASK			\
 73	(SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN |	\
 74	 SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN |	\
 75	 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
 76
 77/* second/minute/hour/day values mask definition */
 78#define SPRD_RTC_SEC_MASK		GENMASK(5, 0)
 79#define SPRD_RTC_MIN_MASK		GENMASK(5, 0)
 80#define SPRD_RTC_HOUR_MASK		GENMASK(4, 0)
 81#define SPRD_RTC_DAY_MASK		GENMASK(15, 0)
 82
 83/* alarm lock definition for SPRD_RTC_SPG_UPD register */
 84#define SPRD_RTC_ALMLOCK_MASK		GENMASK(7, 0)
 85#define SPRD_RTC_ALM_UNLOCK		0xa5
 86#define SPRD_RTC_ALM_LOCK		(~SPRD_RTC_ALM_UNLOCK &	\
 87					 SPRD_RTC_ALMLOCK_MASK)
 88
 89/* SPG values definition for SPRD_RTC_SPG_UPD register */
 90#define SPRD_RTC_POWEROFF_ALM_FLAG	BIT(8)
 91
 92/* power control/status definition */
 93#define SPRD_RTC_POWER_RESET_VALUE	0x96
 94#define SPRD_RTC_POWER_STS_CLEAR	GENMASK(7, 0)
 95#define SPRD_RTC_POWER_STS_SHIFT	8
 96#define SPRD_RTC_POWER_STS_VALID	\
 97	(~SPRD_RTC_POWER_RESET_VALUE << SPRD_RTC_POWER_STS_SHIFT)
 98
 99/* timeout of synchronizing time and alarm registers (us) */
100#define SPRD_RTC_POLL_TIMEOUT		200000
101#define SPRD_RTC_POLL_DELAY_US		20000
102
103struct sprd_rtc {
104	struct rtc_device	*rtc;
105	struct regmap		*regmap;
106	struct device		*dev;
107	u32			base;
108	int			irq;
109	bool			valid;
110};
111
112/*
113 * The Spreadtrum RTC controller has 3 groups registers, including time, normal
114 * alarm and auxiliary alarm. The time group registers are used to set RTC time,
115 * the normal alarm registers are used to set normal alarm, and the auxiliary
116 * alarm registers are used to set auxiliary alarm. Both alarm event and
117 * auxiliary alarm event can wake up system from deep sleep, but only alarm
118 * event can power up system from power down status.
119 */
120enum sprd_rtc_reg_types {
121	SPRD_RTC_TIME,
122	SPRD_RTC_ALARM,
123	SPRD_RTC_AUX_ALARM,
124};
125
126static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
127{
128	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
129			    SPRD_RTC_ALM_INT_MASK);
130}
131
132static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
133{
134	int ret;
135	u32 val;
136
137	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
138	if (ret)
139		return ret;
140
141	val &= ~SPRD_RTC_ALMLOCK_MASK;
142	if (lock)
143		val |= SPRD_RTC_ALM_LOCK;
144	else
145		val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
146
147	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
148	if (ret)
149		return ret;
150
151	/* wait until the SPG value is updated successfully */
152	ret = regmap_read_poll_timeout(rtc->regmap,
153				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
154				       (val & SPRD_RTC_SPG_UPD_EN),
155				       SPRD_RTC_POLL_DELAY_US,
156				       SPRD_RTC_POLL_TIMEOUT);
157	if (ret) {
158		dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
159		return ret;
160	}
161
162	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
163			    SPRD_RTC_SPG_UPD_EN);
164}
165
166static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
167			     time64_t *secs)
168{
169	u32 sec_reg, min_reg, hour_reg, day_reg;
170	u32 val, sec, min, hour, day;
171	int ret;
172
173	switch (type) {
174	case SPRD_RTC_TIME:
175		sec_reg = SPRD_RTC_SEC_CNT_VALUE;
176		min_reg = SPRD_RTC_MIN_CNT_VALUE;
177		hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
178		day_reg = SPRD_RTC_DAY_CNT_VALUE;
179		break;
180	case SPRD_RTC_ALARM:
181		sec_reg = SPRD_RTC_SEC_ALM_VALUE;
182		min_reg = SPRD_RTC_MIN_ALM_VALUE;
183		hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
184		day_reg = SPRD_RTC_DAY_ALM_VALUE;
185		break;
186	case SPRD_RTC_AUX_ALARM:
187		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
188		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
189		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
190		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
191		break;
192	default:
193		return -EINVAL;
194	}
195
196	ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
197	if (ret)
198		return ret;
199
200	sec = val & SPRD_RTC_SEC_MASK;
201
202	ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
203	if (ret)
204		return ret;
205
206	min = val & SPRD_RTC_MIN_MASK;
207
208	ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
209	if (ret)
210		return ret;
211
212	hour = val & SPRD_RTC_HOUR_MASK;
213
214	ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
215	if (ret)
216		return ret;
217
218	day = val & SPRD_RTC_DAY_MASK;
219	*secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
220	return 0;
221}
222
223static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
224			     time64_t secs)
225{
226	u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
227	u32 sec, min, hour, day, val;
228	int ret, rem;
229
230	/* convert seconds to RTC time format */
231	day = div_s64_rem(secs, 86400, &rem);
232	hour = rem / 3600;
233	rem -= hour * 3600;
234	min = rem / 60;
235	sec = rem - min * 60;
236
237	switch (type) {
238	case SPRD_RTC_TIME:
239		sec_reg = SPRD_RTC_SEC_CNT_UPD;
240		min_reg = SPRD_RTC_MIN_CNT_UPD;
241		hour_reg = SPRD_RTC_HOUR_CNT_UPD;
242		day_reg = SPRD_RTC_DAY_CNT_UPD;
243		sts_mask = SPRD_RTC_TIME_INT_MASK;
244		break;
245	case SPRD_RTC_ALARM:
246		sec_reg = SPRD_RTC_SEC_ALM_UPD;
247		min_reg = SPRD_RTC_MIN_ALM_UPD;
248		hour_reg = SPRD_RTC_HOUR_ALM_UPD;
249		day_reg = SPRD_RTC_DAY_ALM_UPD;
250		sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
251		break;
252	case SPRD_RTC_AUX_ALARM:
253		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
254		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
255		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
256		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
257		sts_mask = 0;
258		break;
259	default:
260		return -EINVAL;
261	}
262
263	ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
264	if (ret)
265		return ret;
266
267	ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
268	if (ret)
269		return ret;
270
271	ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
272	if (ret)
273		return ret;
274
275	ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
276	if (ret)
277		return ret;
278
279	if (type == SPRD_RTC_AUX_ALARM)
280		return 0;
281
282	/*
283	 * Since the time and normal alarm registers are put in always-power-on
284	 * region supplied by VDDRTC, then these registers changing time will
285	 * be very long, about 125ms. Thus here we should wait until all
286	 * values are updated successfully.
287	 */
288	ret = regmap_read_poll_timeout(rtc->regmap,
289				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
290				       ((val & sts_mask) == sts_mask),
291				       SPRD_RTC_POLL_DELAY_US,
292				       SPRD_RTC_POLL_TIMEOUT);
293	if (ret < 0) {
294		dev_err(rtc->dev, "set time/alarm values timeout\n");
295		return ret;
296	}
297
298	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
299			    sts_mask);
300}
301
302static int sprd_rtc_read_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
303{
304	struct sprd_rtc *rtc = dev_get_drvdata(dev);
305	time64_t secs;
306	u32 val;
307	int ret;
308
309	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_AUX_ALARM, &secs);
310	if (ret)
311		return ret;
312
313	rtc_time64_to_tm(secs, &alrm->time);
314
315	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
316	if (ret)
317		return ret;
318
319	alrm->enabled = !!(val & SPRD_RTC_AUXALM_EN);
320
321	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
322	if (ret)
323		return ret;
324
325	alrm->pending = !!(val & SPRD_RTC_AUXALM_EN);
326	return 0;
327}
328
329static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
330{
331	struct sprd_rtc *rtc = dev_get_drvdata(dev);
332	time64_t secs = rtc_tm_to_time64(&alrm->time);
333	int ret;
334
335	/* clear the auxiliary alarm interrupt status */
336	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
337			   SPRD_RTC_AUXALM_EN);
338	if (ret)
339		return ret;
340
341	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
342	if (ret)
343		return ret;
344
345	if (alrm->enabled) {
346		ret = regmap_update_bits(rtc->regmap,
347					 rtc->base + SPRD_RTC_INT_EN,
348					 SPRD_RTC_AUXALM_EN,
349					 SPRD_RTC_AUXALM_EN);
350	} else {
351		ret = regmap_update_bits(rtc->regmap,
352					 rtc->base + SPRD_RTC_INT_EN,
353					 SPRD_RTC_AUXALM_EN, 0);
354	}
355
356	return ret;
357}
358
359static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
360{
361	struct sprd_rtc *rtc = dev_get_drvdata(dev);
362	time64_t secs;
363	int ret;
364
365	if (!rtc->valid) {
366		dev_warn(dev, "RTC values are invalid\n");
367		return -EINVAL;
368	}
369
370	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
371	if (ret)
372		return ret;
373
374	rtc_time64_to_tm(secs, tm);
375	return 0;
376}
377
378static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
379{
380	struct sprd_rtc *rtc = dev_get_drvdata(dev);
381	time64_t secs = rtc_tm_to_time64(tm);
382	int ret;
383
384	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
385	if (ret)
386		return ret;
387
388	if (!rtc->valid) {
389		/* Clear RTC power status firstly */
390		ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
391				   SPRD_RTC_POWER_STS_CLEAR);
392		if (ret)
393			return ret;
394
395		/*
396		 * Set RTC power status to indicate now RTC has valid time
397		 * values.
398		 */
399		ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
400				   SPRD_RTC_POWER_STS_VALID);
401		if (ret)
402			return ret;
403
404		rtc->valid = true;
405	}
406
407	return 0;
408}
409
410static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
411{
412	struct sprd_rtc *rtc = dev_get_drvdata(dev);
413	time64_t secs;
414	int ret;
415	u32 val;
416
417	/*
418	 * Before RTC device is registered, it will check to see if there is an
419	 * alarm already set in RTC hardware, and we always read the normal
420	 * alarm at this time.
421	 *
422	 * Or if aie_timer is enabled, we should get the normal alarm time.
423	 * Otherwise we should get auxiliary alarm time.
424	 */
425	if (rtc->rtc && rtc->rtc->registered && rtc->rtc->aie_timer.enabled == 0)
426		return sprd_rtc_read_aux_alarm(dev, alrm);
427
428	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
429	if (ret)
430		return ret;
431
432	rtc_time64_to_tm(secs, &alrm->time);
433
434	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
435	if (ret)
436		return ret;
437
438	alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
439
440	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
441	if (ret)
442		return ret;
443
444	alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
445	return 0;
446}
447
448static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
449{
450	struct sprd_rtc *rtc = dev_get_drvdata(dev);
451	time64_t secs = rtc_tm_to_time64(&alrm->time);
452	struct rtc_time aie_time =
453		rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
454	int ret;
455
456	/*
457	 * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
458	 * both normal alarm event and auxiliary alarm event can wake up system
459	 * from deep sleep, but only alarm event can power up system from power
460	 * down status. Moreover we do not need to poll about 125ms when
461	 * updating auxiliary alarm registers. Thus we usually set auxiliary
462	 * alarm when wake up system from deep sleep, and for other scenarios,
463	 * we should set normal alarm with polling status.
464	 *
465	 * So here we check if the alarm time is set by aie_timer, if yes, we
466	 * should set normal alarm, if not, we should set auxiliary alarm which
467	 * means it is just a wake event.
468	 */
469	if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
470		return sprd_rtc_set_aux_alarm(dev, alrm);
471
472	/* clear the alarm interrupt status firstly */
473	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
474			   SPRD_RTC_ALARM_EN);
475	if (ret)
476		return ret;
477
478	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
479	if (ret)
480		return ret;
481
482	if (alrm->enabled) {
483		ret = regmap_update_bits(rtc->regmap,
484					 rtc->base + SPRD_RTC_INT_EN,
485					 SPRD_RTC_ALARM_EN,
486					 SPRD_RTC_ALARM_EN);
487		if (ret)
488			return ret;
489
490		/* unlock the alarm to enable the alarm function. */
491		ret = sprd_rtc_lock_alarm(rtc, false);
492	} else {
493		regmap_update_bits(rtc->regmap,
494				   rtc->base + SPRD_RTC_INT_EN,
495				   SPRD_RTC_ALARM_EN, 0);
496
497		/*
498		 * Lock the alarm function in case fake alarm event will power
499		 * up systems.
500		 */
501		ret = sprd_rtc_lock_alarm(rtc, true);
502	}
503
504	return ret;
505}
506
507static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
508{
509	struct sprd_rtc *rtc = dev_get_drvdata(dev);
510	int ret;
511
512	if (enabled) {
513		ret = regmap_update_bits(rtc->regmap,
514					 rtc->base + SPRD_RTC_INT_EN,
515					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
516					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
517		if (ret)
518			return ret;
519
520		ret = sprd_rtc_lock_alarm(rtc, false);
521	} else {
522		regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
523				   SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
524
525		ret = sprd_rtc_lock_alarm(rtc, true);
526	}
527
528	return ret;
529}
530
531static const struct rtc_class_ops sprd_rtc_ops = {
532	.read_time = sprd_rtc_read_time,
533	.set_time = sprd_rtc_set_time,
534	.read_alarm = sprd_rtc_read_alarm,
535	.set_alarm = sprd_rtc_set_alarm,
536	.alarm_irq_enable = sprd_rtc_alarm_irq_enable,
537};
538
539static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
540{
541	struct sprd_rtc *rtc = dev_id;
542	int ret;
543
544	ret = sprd_rtc_clear_alarm_ints(rtc);
545	if (ret)
546		return IRQ_RETVAL(ret);
547
548	rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
549	return IRQ_HANDLED;
550}
551
552static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
553{
554	u32 val;
555	int ret;
556
557	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_PWR_STS, &val);
558	if (ret)
559		return ret;
560
561	/*
562	 * If the RTC power status value is SPRD_RTC_POWER_RESET_VALUE, which
563	 * means the RTC has been powered down, so the RTC time values are
564	 * invalid.
565	 */
566	rtc->valid = val == SPRD_RTC_POWER_RESET_VALUE ? false : true;
567	return 0;
568}
569
570static int sprd_rtc_check_alarm_int(struct sprd_rtc *rtc)
571{
572	u32 val;
573	int ret;
574
575	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
576	if (ret)
577		return ret;
578
579	/*
580	 * The SPRD_RTC_INT_EN register is not put in always-power-on region
581	 * supplied by VDDRTC, so we should check if we need enable the alarm
582	 * interrupt when system booting.
583	 *
584	 * If we have set SPRD_RTC_POWEROFF_ALM_FLAG which is saved in
585	 * always-power-on region, that means we have set one alarm last time,
586	 * so we should enable the alarm interrupt to help RTC core to see if
587	 * there is an alarm already set in RTC hardware.
588	 */
589	if (!(val & SPRD_RTC_POWEROFF_ALM_FLAG))
590		return 0;
591
592	return regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
593				  SPRD_RTC_ALARM_EN, SPRD_RTC_ALARM_EN);
594}
595
596static int sprd_rtc_probe(struct platform_device *pdev)
597{
598	struct device_node *node = pdev->dev.of_node;
599	struct sprd_rtc *rtc;
600	int ret;
601
602	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
603	if (!rtc)
604		return -ENOMEM;
605
606	rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
607	if (!rtc->regmap)
608		return -ENODEV;
609
610	ret = of_property_read_u32(node, "reg", &rtc->base);
611	if (ret) {
612		dev_err(&pdev->dev, "failed to get RTC base address\n");
613		return ret;
614	}
615
616	rtc->irq = platform_get_irq(pdev, 0);
617	if (rtc->irq < 0)
618		return rtc->irq;
619
620	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
621	if (IS_ERR(rtc->rtc))
622		return PTR_ERR(rtc->rtc);
623
624	rtc->dev = &pdev->dev;
625	platform_set_drvdata(pdev, rtc);
626
627	/* check if we need set the alarm interrupt */
628	ret = sprd_rtc_check_alarm_int(rtc);
629	if (ret) {
630		dev_err(&pdev->dev, "failed to check RTC alarm interrupt\n");
631		return ret;
632	}
633
634	/* check if RTC time values are valid */
635	ret = sprd_rtc_check_power_down(rtc);
636	if (ret) {
637		dev_err(&pdev->dev, "failed to check RTC time values\n");
638		return ret;
639	}
640
641	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
642					sprd_rtc_handler,
643					IRQF_ONESHOT | IRQF_EARLY_RESUME,
644					pdev->name, rtc);
645	if (ret < 0) {
646		dev_err(&pdev->dev, "failed to request RTC irq\n");
647		return ret;
648	}
649
650	device_init_wakeup(&pdev->dev, 1);
651
652	rtc->rtc->ops = &sprd_rtc_ops;
653	rtc->rtc->range_min = 0;
654	rtc->rtc->range_max = 5662310399LL;
655	ret = rtc_register_device(rtc->rtc);
656	if (ret) {
657		device_init_wakeup(&pdev->dev, 0);
658		return ret;
659	}
660
661	return 0;
662}
663
664static int sprd_rtc_remove(struct platform_device *pdev)
665{
666	device_init_wakeup(&pdev->dev, 0);
667	return 0;
668}
669
670static const struct of_device_id sprd_rtc_of_match[] = {
671	{ .compatible = "sprd,sc2731-rtc", },
672	{ },
673};
674MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
675
676static struct platform_driver sprd_rtc_driver = {
677	.driver = {
678		.name = "sprd-rtc",
679		.of_match_table = sprd_rtc_of_match,
680	},
681	.probe	= sprd_rtc_probe,
682	.remove = sprd_rtc_remove,
683};
684module_platform_driver(sprd_rtc_driver);
685
686MODULE_LICENSE("GPL v2");
687MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
688MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");