Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2//
  3// helpers.c  --  Voltage/Current Regulator framework helper functions.
  4//
  5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
  6// Copyright 2008 SlimLogic Ltd.
  7
  8#include <linux/kernel.h>
  9#include <linux/err.h>
 10#include <linux/delay.h>
 11#include <linux/regmap.h>
 12#include <linux/regulator/consumer.h>
 13#include <linux/regulator/driver.h>
 14#include <linux/module.h>
 15
 16/**
 17 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 18 *
 19 * @rdev: regulator to operate on
 20 *
 21 * Regulators that use regmap for their register I/O can set the
 22 * enable_reg and enable_mask fields in their descriptor and then use
 23 * this as their is_enabled operation, saving some code.
 24 */
 25int regulator_is_enabled_regmap(struct regulator_dev *rdev)
 26{
 27	unsigned int val;
 28	int ret;
 29
 30	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
 31	if (ret != 0)
 32		return ret;
 33
 34	val &= rdev->desc->enable_mask;
 35
 36	if (rdev->desc->enable_is_inverted) {
 37		if (rdev->desc->enable_val)
 38			return val != rdev->desc->enable_val;
 39		return val == 0;
 40	} else {
 41		if (rdev->desc->enable_val)
 42			return val == rdev->desc->enable_val;
 43		return val != 0;
 44	}
 45}
 46EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
 47
 48/**
 49 * regulator_enable_regmap - standard enable() for regmap users
 50 *
 51 * @rdev: regulator to operate on
 52 *
 53 * Regulators that use regmap for their register I/O can set the
 54 * enable_reg and enable_mask fields in their descriptor and then use
 55 * this as their enable() operation, saving some code.
 56 */
 57int regulator_enable_regmap(struct regulator_dev *rdev)
 58{
 59	unsigned int val;
 60
 61	if (rdev->desc->enable_is_inverted) {
 62		val = rdev->desc->disable_val;
 63	} else {
 64		val = rdev->desc->enable_val;
 65		if (!val)
 66			val = rdev->desc->enable_mask;
 67	}
 68
 69	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 70				  rdev->desc->enable_mask, val);
 71}
 72EXPORT_SYMBOL_GPL(regulator_enable_regmap);
 73
 74/**
 75 * regulator_disable_regmap - standard disable() for regmap users
 76 *
 77 * @rdev: regulator to operate on
 78 *
 79 * Regulators that use regmap for their register I/O can set the
 80 * enable_reg and enable_mask fields in their descriptor and then use
 81 * this as their disable() operation, saving some code.
 82 */
 83int regulator_disable_regmap(struct regulator_dev *rdev)
 84{
 85	unsigned int val;
 86
 87	if (rdev->desc->enable_is_inverted) {
 88		val = rdev->desc->enable_val;
 89		if (!val)
 90			val = rdev->desc->enable_mask;
 91	} else {
 92		val = rdev->desc->disable_val;
 93	}
 94
 95	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 96				  rdev->desc->enable_mask, val);
 97}
 98EXPORT_SYMBOL_GPL(regulator_disable_regmap);
 99
100static int regulator_range_selector_to_index(struct regulator_dev *rdev,
101					     unsigned int rval)
102{
103	int i;
104
105	if (!rdev->desc->linear_range_selectors)
106		return -EINVAL;
107
108	rval &= rdev->desc->vsel_range_mask;
109
110	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
111		if (rdev->desc->linear_range_selectors[i] == rval)
112			return i;
113	}
114	return -EINVAL;
115}
116
117/**
118 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
119 *
120 * @rdev: regulator to operate on
121 *
122 * Regulators that use regmap for their register I/O and use pickable
123 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
124 * fields in their descriptor and then use this as their get_voltage_vsel
125 * operation, saving some code.
126 */
127int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
128{
129	unsigned int r_val;
130	int range;
131	unsigned int val;
132	int ret, i;
133	unsigned int voltages_in_range = 0;
134
135	if (!rdev->desc->linear_ranges)
136		return -EINVAL;
137
138	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
139	if (ret != 0)
140		return ret;
141
142	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
143	if (ret != 0)
144		return ret;
145
146	val &= rdev->desc->vsel_mask;
147	val >>= ffs(rdev->desc->vsel_mask) - 1;
148
149	range = regulator_range_selector_to_index(rdev, r_val);
150	if (range < 0)
151		return -EINVAL;
152
153	for (i = 0; i < range; i++)
154		voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
155				     rdev->desc->linear_ranges[i].min_sel) + 1;
156
157	return val + voltages_in_range;
158}
159EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
160
161/**
162 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
163 *
164 * @rdev: regulator to operate on
165 * @sel: Selector to set
166 *
167 * Regulators that use regmap for their register I/O and use pickable
168 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
169 * fields in their descriptor and then use this as their set_voltage_vsel
170 * operation, saving some code.
171 */
172int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
173					      unsigned int sel)
174{
175	unsigned int range;
176	int ret, i;
177	unsigned int voltages_in_range = 0;
178
179	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
180		voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
181				     rdev->desc->linear_ranges[i].min_sel) + 1;
182		if (sel < voltages_in_range)
183			break;
184		sel -= voltages_in_range;
185	}
186
187	if (i == rdev->desc->n_linear_ranges)
188		return -EINVAL;
189
190	sel <<= ffs(rdev->desc->vsel_mask) - 1;
191	sel += rdev->desc->linear_ranges[i].min_sel;
192
193	range = rdev->desc->linear_range_selectors[i];
194
195	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
196		ret = regmap_update_bits(rdev->regmap,
197					 rdev->desc->vsel_reg,
198					 rdev->desc->vsel_range_mask |
199					 rdev->desc->vsel_mask, sel | range);
200	} else {
201		ret = regmap_update_bits(rdev->regmap,
202					 rdev->desc->vsel_range_reg,
203					 rdev->desc->vsel_range_mask, range);
204		if (ret)
205			return ret;
206
207		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
208				  rdev->desc->vsel_mask, sel);
209	}
210
211	if (ret)
212		return ret;
213
214	if (rdev->desc->apply_bit)
215		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
216					 rdev->desc->apply_bit,
217					 rdev->desc->apply_bit);
218	return ret;
219}
220EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
221
222/**
223 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
224 *
225 * @rdev: regulator to operate on
226 *
227 * Regulators that use regmap for their register I/O can set the
228 * vsel_reg and vsel_mask fields in their descriptor and then use this
229 * as their get_voltage_vsel operation, saving some code.
230 */
231int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
232{
233	unsigned int val;
234	int ret;
235
236	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
237	if (ret != 0)
238		return ret;
239
240	val &= rdev->desc->vsel_mask;
241	val >>= ffs(rdev->desc->vsel_mask) - 1;
242
243	return val;
244}
245EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
246
247/**
248 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
249 *
250 * @rdev: regulator to operate on
251 * @sel: Selector to set
252 *
253 * Regulators that use regmap for their register I/O can set the
254 * vsel_reg and vsel_mask fields in their descriptor and then use this
255 * as their set_voltage_vsel operation, saving some code.
256 */
257int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
258{
259	int ret;
260
261	sel <<= ffs(rdev->desc->vsel_mask) - 1;
262
263	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
264				  rdev->desc->vsel_mask, sel);
265	if (ret)
266		return ret;
267
268	if (rdev->desc->apply_bit)
269		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
270					 rdev->desc->apply_bit,
271					 rdev->desc->apply_bit);
272	return ret;
273}
274EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
275
276/**
277 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
278 *
279 * @rdev: Regulator to operate on
280 * @min_uV: Lower bound for voltage
281 * @max_uV: Upper bound for voltage
282 *
283 * Drivers implementing set_voltage_sel() and list_voltage() can use
284 * this as their map_voltage() operation.  It will find a suitable
285 * voltage by calling list_voltage() until it gets something in bounds
286 * for the requested voltages.
287 */
288int regulator_map_voltage_iterate(struct regulator_dev *rdev,
289				  int min_uV, int max_uV)
290{
291	int best_val = INT_MAX;
292	int selector = 0;
293	int i, ret;
294
295	/* Find the smallest voltage that falls within the specified
296	 * range.
297	 */
298	for (i = 0; i < rdev->desc->n_voltages; i++) {
299		ret = rdev->desc->ops->list_voltage(rdev, i);
300		if (ret < 0)
301			continue;
302
303		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
304			best_val = ret;
305			selector = i;
306		}
307	}
308
309	if (best_val != INT_MAX)
310		return selector;
311	else
312		return -EINVAL;
313}
314EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
315
316/**
317 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
318 *
319 * @rdev: Regulator to operate on
320 * @min_uV: Lower bound for voltage
321 * @max_uV: Upper bound for voltage
322 *
323 * Drivers that have ascendant voltage list can use this as their
324 * map_voltage() operation.
325 */
326int regulator_map_voltage_ascend(struct regulator_dev *rdev,
327				 int min_uV, int max_uV)
328{
329	int i, ret;
330
331	for (i = 0; i < rdev->desc->n_voltages; i++) {
332		ret = rdev->desc->ops->list_voltage(rdev, i);
333		if (ret < 0)
334			continue;
335
336		if (ret > max_uV)
337			break;
338
339		if (ret >= min_uV && ret <= max_uV)
340			return i;
341	}
342
343	return -EINVAL;
344}
345EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
346
347/**
348 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
349 *
350 * @rdev: Regulator to operate on
351 * @min_uV: Lower bound for voltage
352 * @max_uV: Upper bound for voltage
353 *
354 * Drivers providing min_uV and uV_step in their regulator_desc can
355 * use this as their map_voltage() operation.
356 */
357int regulator_map_voltage_linear(struct regulator_dev *rdev,
358				 int min_uV, int max_uV)
359{
360	int ret, voltage;
361
362	/* Allow uV_step to be 0 for fixed voltage */
363	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
364		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
365			return 0;
366		else
367			return -EINVAL;
368	}
369
370	if (!rdev->desc->uV_step) {
371		BUG_ON(!rdev->desc->uV_step);
372		return -EINVAL;
373	}
374
375	if (min_uV < rdev->desc->min_uV)
376		min_uV = rdev->desc->min_uV;
377
378	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
379	if (ret < 0)
380		return ret;
381
382	ret += rdev->desc->linear_min_sel;
383
384	/* Map back into a voltage to verify we're still in bounds */
385	voltage = rdev->desc->ops->list_voltage(rdev, ret);
386	if (voltage < min_uV || voltage > max_uV)
387		return -EINVAL;
388
389	return ret;
390}
391EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
392
393/**
394 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
395 *
396 * @rdev: Regulator to operate on
397 * @min_uV: Lower bound for voltage
398 * @max_uV: Upper bound for voltage
399 *
400 * Drivers providing linear_ranges in their descriptor can use this as
401 * their map_voltage() callback.
402 */
403int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
404				       int min_uV, int max_uV)
405{
406	const struct regulator_linear_range *range;
407	int ret = -EINVAL;
408	int voltage, i;
409
410	if (!rdev->desc->n_linear_ranges) {
411		BUG_ON(!rdev->desc->n_linear_ranges);
412		return -EINVAL;
413	}
414
415	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
416		int linear_max_uV;
417
418		range = &rdev->desc->linear_ranges[i];
419		linear_max_uV = range->min_uV +
420			(range->max_sel - range->min_sel) * range->uV_step;
421
422		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
423			continue;
424
425		if (min_uV <= range->min_uV)
426			min_uV = range->min_uV;
427
428		/* range->uV_step == 0 means fixed voltage range */
429		if (range->uV_step == 0) {
430			ret = 0;
431		} else {
432			ret = DIV_ROUND_UP(min_uV - range->min_uV,
433					   range->uV_step);
434			if (ret < 0)
435				return ret;
436		}
437
438		ret += range->min_sel;
439
440		/*
441		 * Map back into a voltage to verify we're still in bounds.
442		 * If we are not, then continue checking rest of the ranges.
443		 */
444		voltage = rdev->desc->ops->list_voltage(rdev, ret);
445		if (voltage >= min_uV && voltage <= max_uV)
446			break;
447	}
448
449	if (i == rdev->desc->n_linear_ranges)
450		return -EINVAL;
451
452	return ret;
453}
454EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
455
456/**
457 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
458 *
459 * @rdev: Regulator to operate on
460 * @min_uV: Lower bound for voltage
461 * @max_uV: Upper bound for voltage
462 *
463 * Drivers providing pickable linear_ranges in their descriptor can use
464 * this as their map_voltage() callback.
465 */
466int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
467						int min_uV, int max_uV)
468{
469	const struct regulator_linear_range *range;
470	int ret = -EINVAL;
471	int voltage, i;
472	unsigned int selector = 0;
473
474	if (!rdev->desc->n_linear_ranges) {
475		BUG_ON(!rdev->desc->n_linear_ranges);
476		return -EINVAL;
477	}
478
479	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
480		int linear_max_uV;
481
482		range = &rdev->desc->linear_ranges[i];
483		linear_max_uV = range->min_uV +
484			(range->max_sel - range->min_sel) * range->uV_step;
485
486		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
487			selector += (range->max_sel - range->min_sel + 1);
488			continue;
489		}
490
491		if (min_uV <= range->min_uV)
492			min_uV = range->min_uV;
493
494		/* range->uV_step == 0 means fixed voltage range */
495		if (range->uV_step == 0) {
496			ret = 0;
497		} else {
498			ret = DIV_ROUND_UP(min_uV - range->min_uV,
499					   range->uV_step);
500			if (ret < 0)
501				return ret;
502		}
503
504		ret += selector;
505
506		voltage = rdev->desc->ops->list_voltage(rdev, ret);
507
508		/*
509		 * Map back into a voltage to verify we're still in bounds.
510		 * We may have overlapping voltage ranges. Hence we don't
511		 * exit but retry until we have checked all ranges.
512		 */
513		if (voltage < min_uV || voltage > max_uV)
514			selector += (range->max_sel - range->min_sel + 1);
515		else
516			break;
517	}
518
519	if (i == rdev->desc->n_linear_ranges)
520		return -EINVAL;
521
522	return ret;
523}
524EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
525
526/**
527 * regulator_list_voltage_linear - List voltages with simple calculation
528 *
529 * @rdev: Regulator device
530 * @selector: Selector to convert into a voltage
531 *
532 * Regulators with a simple linear mapping between voltages and
533 * selectors can set min_uV and uV_step in the regulator descriptor
534 * and then use this function as their list_voltage() operation,
535 */
536int regulator_list_voltage_linear(struct regulator_dev *rdev,
537				  unsigned int selector)
538{
539	if (selector >= rdev->desc->n_voltages)
540		return -EINVAL;
541	if (selector < rdev->desc->linear_min_sel)
542		return 0;
543
544	selector -= rdev->desc->linear_min_sel;
545
546	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
547}
548EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
549
550/**
551 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
552 *
553 * @rdev: Regulator device
554 * @selector: Selector to convert into a voltage
555 *
556 * list_voltage() operation, intended to be used by drivers utilizing pickable
557 * ranges helpers.
558 */
559int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
560						 unsigned int selector)
561{
562	const struct regulator_linear_range *range;
563	int i;
564	unsigned int all_sels = 0;
565
566	if (!rdev->desc->n_linear_ranges) {
567		BUG_ON(!rdev->desc->n_linear_ranges);
568		return -EINVAL;
569	}
570
571	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
572		unsigned int sels_in_range;
573
574		range = &rdev->desc->linear_ranges[i];
575
576		sels_in_range = range->max_sel - range->min_sel;
577
578		if (all_sels + sels_in_range >= selector) {
579			selector -= all_sels;
580			return range->min_uV + (range->uV_step * selector);
581		}
582
583		all_sels += (sels_in_range + 1);
584	}
585
586	return -EINVAL;
587}
588EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
589
590/**
591 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
592 *
593 * @desc: Regulator desc for regulator which volatges are to be listed
594 * @selector: Selector to convert into a voltage
595 *
596 * Regulators with a series of simple linear mappings between voltages
597 * and selectors who have set linear_ranges in the regulator descriptor
598 * can use this function prior regulator registration to list voltages.
599 * This is useful when voltages need to be listed during device-tree
600 * parsing.
601 */
602int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
603					     unsigned int selector)
604{
605	const struct regulator_linear_range *range;
606	int i;
607
608	if (!desc->n_linear_ranges) {
609		BUG_ON(!desc->n_linear_ranges);
610		return -EINVAL;
611	}
612
613	for (i = 0; i < desc->n_linear_ranges; i++) {
614		range = &desc->linear_ranges[i];
615
616		if (!(selector >= range->min_sel &&
617		      selector <= range->max_sel))
618			continue;
619
620		selector -= range->min_sel;
621
622		return range->min_uV + (range->uV_step * selector);
623	}
624
625	return -EINVAL;
626}
627EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
628
629/**
630 * regulator_list_voltage_linear_range - List voltages for linear ranges
631 *
632 * @rdev: Regulator device
633 * @selector: Selector to convert into a voltage
634 *
635 * Regulators with a series of simple linear mappings between voltages
636 * and selectors can set linear_ranges in the regulator descriptor and
637 * then use this function as their list_voltage() operation,
638 */
639int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
640					unsigned int selector)
641{
642	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
643}
644EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
645
646/**
647 * regulator_list_voltage_table - List voltages with table based mapping
648 *
649 * @rdev: Regulator device
650 * @selector: Selector to convert into a voltage
651 *
652 * Regulators with table based mapping between voltages and
653 * selectors can set volt_table in the regulator descriptor
654 * and then use this function as their list_voltage() operation.
655 */
656int regulator_list_voltage_table(struct regulator_dev *rdev,
657				 unsigned int selector)
658{
659	if (!rdev->desc->volt_table) {
660		BUG_ON(!rdev->desc->volt_table);
661		return -EINVAL;
662	}
663
664	if (selector >= rdev->desc->n_voltages)
665		return -EINVAL;
666
667	return rdev->desc->volt_table[selector];
668}
669EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
670
671/**
672 * regulator_set_bypass_regmap - Default set_bypass() using regmap
673 *
674 * @rdev: device to operate on.
675 * @enable: state to set.
676 */
677int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
678{
679	unsigned int val;
680
681	if (enable) {
682		val = rdev->desc->bypass_val_on;
683		if (!val)
684			val = rdev->desc->bypass_mask;
685	} else {
686		val = rdev->desc->bypass_val_off;
687	}
688
689	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
690				  rdev->desc->bypass_mask, val);
691}
692EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
693
694/**
695 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
696 *
697 * @rdev: device to operate on.
698 */
699int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
700{
701	unsigned int val;
702
703	val = rdev->desc->soft_start_val_on;
704	if (!val)
705		val = rdev->desc->soft_start_mask;
706
707	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
708				  rdev->desc->soft_start_mask, val);
709}
710EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
711
712/**
713 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
714 *
715 * @rdev: device to operate on.
716 */
717int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
718{
719	unsigned int val;
720
721	val = rdev->desc->pull_down_val_on;
722	if (!val)
723		val = rdev->desc->pull_down_mask;
724
725	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
726				  rdev->desc->pull_down_mask, val);
727}
728EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
729
730/**
731 * regulator_get_bypass_regmap - Default get_bypass() using regmap
732 *
733 * @rdev: device to operate on.
734 * @enable: current state.
735 */
736int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
737{
738	unsigned int val;
739	unsigned int val_on = rdev->desc->bypass_val_on;
740	int ret;
741
742	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
743	if (ret != 0)
744		return ret;
745
746	if (!val_on)
747		val_on = rdev->desc->bypass_mask;
748
749	*enable = (val & rdev->desc->bypass_mask) == val_on;
750
751	return 0;
752}
753EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
754
755/**
756 * regulator_set_active_discharge_regmap - Default set_active_discharge()
757 *					   using regmap
758 *
759 * @rdev: device to operate on.
760 * @enable: state to set, 0 to disable and 1 to enable.
761 */
762int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
763					  bool enable)
764{
765	unsigned int val;
766
767	if (enable)
768		val = rdev->desc->active_discharge_on;
769	else
770		val = rdev->desc->active_discharge_off;
771
772	return regmap_update_bits(rdev->regmap,
773				  rdev->desc->active_discharge_reg,
774				  rdev->desc->active_discharge_mask, val);
775}
776EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
777
778/**
779 * regulator_set_current_limit_regmap - set_current_limit for regmap users
780 *
781 * @rdev: regulator to operate on
782 * @min_uA: Lower bound for current limit
783 * @max_uA: Upper bound for current limit
784 *
785 * Regulators that use regmap for their register I/O can set curr_table,
786 * csel_reg and csel_mask fields in their descriptor and then use this
787 * as their set_current_limit operation, saving some code.
788 */
789int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
790				       int min_uA, int max_uA)
791{
792	unsigned int n_currents = rdev->desc->n_current_limits;
793	int i, sel = -1;
794
795	if (n_currents == 0)
796		return -EINVAL;
797
798	if (rdev->desc->curr_table) {
799		const unsigned int *curr_table = rdev->desc->curr_table;
800		bool ascend = curr_table[n_currents - 1] > curr_table[0];
801
802		/* search for closest to maximum */
803		if (ascend) {
804			for (i = n_currents - 1; i >= 0; i--) {
805				if (min_uA <= curr_table[i] &&
806				    curr_table[i] <= max_uA) {
807					sel = i;
808					break;
809				}
810			}
811		} else {
812			for (i = 0; i < n_currents; i++) {
813				if (min_uA <= curr_table[i] &&
814				    curr_table[i] <= max_uA) {
815					sel = i;
816					break;
817				}
818			}
819		}
820	}
821
822	if (sel < 0)
823		return -EINVAL;
824
825	sel <<= ffs(rdev->desc->csel_mask) - 1;
826
827	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
828				  rdev->desc->csel_mask, sel);
829}
830EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
831
832/**
833 * regulator_get_current_limit_regmap - get_current_limit for regmap users
834 *
835 * @rdev: regulator to operate on
836 *
837 * Regulators that use regmap for their register I/O can set the
838 * csel_reg and csel_mask fields in their descriptor and then use this
839 * as their get_current_limit operation, saving some code.
840 */
841int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
842{
843	unsigned int val;
844	int ret;
845
846	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
847	if (ret != 0)
848		return ret;
849
850	val &= rdev->desc->csel_mask;
851	val >>= ffs(rdev->desc->csel_mask) - 1;
852
853	if (rdev->desc->curr_table) {
854		if (val >= rdev->desc->n_current_limits)
855			return -EINVAL;
856
857		return rdev->desc->curr_table[val];
858	}
859
860	return -EINVAL;
861}
862EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
863
864/**
865 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
866 *                                   of regulator_bulk_data structs
867 *
868 * @consumers: array of regulator_bulk_data entries to initialize
869 * @supply_names: array of supply name strings
870 * @num_supplies: number of supply names to initialize
871 *
872 * Note: the 'consumers' array must be the size of 'num_supplies'.
873 */
874void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
875				     const char *const *supply_names,
876				     unsigned int num_supplies)
877{
878	unsigned int i;
879
880	for (i = 0; i < num_supplies; i++)
881		consumers[i].supply = supply_names[i];
882}
883EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);