Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/* Copyright(c) 2018-2019  Realtek Corporation
   3 */
   4
   5#include <linux/bcd.h>
   6
   7#include "main.h"
   8#include "reg.h"
   9#include "fw.h"
  10#include "phy.h"
  11#include "debug.h"
  12
  13struct phy_cfg_pair {
  14	u32 addr;
  15	u32 data;
  16};
  17
  18union phy_table_tile {
  19	struct rtw_phy_cond cond;
  20	struct phy_cfg_pair cfg;
  21};
  22
  23struct phy_pg_cfg_pair {
  24	u32 band;
  25	u32 rf_path;
  26	u32 tx_num;
  27	u32 addr;
  28	u32 bitmask;
  29	u32 data;
  30};
  31
  32static const u32 db_invert_table[12][8] = {
  33	{10,		13,		16,		20,
  34	 25,		32,		40,		50},
  35	{64,		80,		101,		128,
  36	 160,		201,		256,		318},
  37	{401,		505,		635,		800,
  38	 1007,		1268,		1596,		2010},
  39	{316,		398,		501,		631,
  40	 794,		1000,		1259,		1585},
  41	{1995,		2512,		3162,		3981,
  42	 5012,		6310,		7943,		10000},
  43	{12589,		15849,		19953,		25119,
  44	 31623,		39811,		50119,		63098},
  45	{79433,		100000,		125893,		158489,
  46	 199526,	251189,		316228,		398107},
  47	{501187,	630957,		794328,		1000000,
  48	 1258925,	1584893,	1995262,	2511886},
  49	{3162278,	3981072,	5011872,	6309573,
  50	 7943282,	1000000,	12589254,	15848932},
  51	{19952623,	25118864,	31622777,	39810717,
  52	 50118723,	63095734,	79432823,	100000000},
  53	{125892541,	158489319,	199526232,	251188643,
  54	 316227766,	398107171,	501187234,	630957345},
  55	{794328235,	1000000000,	1258925412,	1584893192,
  56	 1995262315,	2511886432U,	3162277660U,	3981071706U}
  57};
  58
  59u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
  60u8 rtw_ofdm_rates[] = {
  61	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
  62	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
  63	DESC_RATE48M, DESC_RATE54M
  64};
  65u8 rtw_ht_1s_rates[] = {
  66	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
  67	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
  68	DESC_RATEMCS6, DESC_RATEMCS7
  69};
  70u8 rtw_ht_2s_rates[] = {
  71	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
  72	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
  73	DESC_RATEMCS14, DESC_RATEMCS15
  74};
  75u8 rtw_vht_1s_rates[] = {
  76	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
  77	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
  78	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
  79	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
  80	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
  81};
  82u8 rtw_vht_2s_rates[] = {
  83	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
  84	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
  85	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
  86	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
  87	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
  88};
  89u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
  90	rtw_cck_rates, rtw_ofdm_rates,
  91	rtw_ht_1s_rates, rtw_ht_2s_rates,
  92	rtw_vht_1s_rates, rtw_vht_2s_rates
  93};
  94u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
  95	ARRAY_SIZE(rtw_cck_rates),
  96	ARRAY_SIZE(rtw_ofdm_rates),
  97	ARRAY_SIZE(rtw_ht_1s_rates),
  98	ARRAY_SIZE(rtw_ht_2s_rates),
  99	ARRAY_SIZE(rtw_vht_1s_rates),
 100	ARRAY_SIZE(rtw_vht_2s_rates)
 101};
 102static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
 103static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
 104static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
 105static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
 106static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
 107static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
 108
 109enum rtw_phy_band_type {
 110	PHY_BAND_2G	= 0,
 111	PHY_BAND_5G	= 1,
 112};
 113
 114static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
 115{
 116	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 117	u8 i, j;
 118
 119	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
 120		for (j = 0; j < RTW_RF_PATH_MAX; j++)
 121			dm_info->cck_pd_lv[i][j] = 0;
 122	}
 123
 124	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
 125}
 126
 127void rtw_phy_init(struct rtw_dev *rtwdev)
 128{
 129	struct rtw_chip_info *chip = rtwdev->chip;
 130	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 131	u32 addr, mask;
 132
 133	dm_info->fa_history[3] = 0;
 134	dm_info->fa_history[2] = 0;
 135	dm_info->fa_history[1] = 0;
 136	dm_info->fa_history[0] = 0;
 137	dm_info->igi_bitmap = 0;
 138	dm_info->igi_history[3] = 0;
 139	dm_info->igi_history[2] = 0;
 140	dm_info->igi_history[1] = 0;
 141
 142	addr = chip->dig[0].addr;
 143	mask = chip->dig[0].mask;
 144	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
 145	rtw_phy_cck_pd_init(rtwdev);
 146}
 147
 148void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
 149{
 150	struct rtw_chip_info *chip = rtwdev->chip;
 151	struct rtw_hal *hal = &rtwdev->hal;
 152	u32 addr, mask;
 153	u8 path;
 154
 155	for (path = 0; path < hal->rf_path_num; path++) {
 156		addr = chip->dig[path].addr;
 157		mask = chip->dig[path].mask;
 158		rtw_write32_mask(rtwdev, addr, mask, igi);
 159	}
 160}
 161
 162static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
 163{
 164	struct rtw_chip_info *chip = rtwdev->chip;
 165
 166	chip->ops->false_alarm_statistics(rtwdev);
 167}
 168
 169#define RA_FLOOR_TABLE_SIZE	7
 170#define RA_FLOOR_UP_GAP		3
 171
 172static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
 173{
 174	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
 175	u8 new_level = 0;
 176	int i;
 177
 178	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
 179		if (i >= old_level)
 180			table[i] += RA_FLOOR_UP_GAP;
 181
 182	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
 183		if (rssi < table[i]) {
 184			new_level = i;
 185			break;
 186		}
 187	}
 188
 189	return new_level;
 190}
 191
 192struct rtw_phy_stat_iter_data {
 193	struct rtw_dev *rtwdev;
 194	u8 min_rssi;
 195};
 196
 197static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
 198{
 199	struct rtw_phy_stat_iter_data *iter_data = data;
 200	struct rtw_dev *rtwdev = iter_data->rtwdev;
 201	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
 202	u8 rssi;
 203
 204	rssi = ewma_rssi_read(&si->avg_rssi);
 205	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
 206
 207	rtw_fw_send_rssi_info(rtwdev, si);
 208
 209	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
 210}
 211
 212static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
 213{
 214	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 215	struct rtw_phy_stat_iter_data data = {};
 216
 217	data.rtwdev = rtwdev;
 218	data.min_rssi = U8_MAX;
 219	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
 220
 221	dm_info->pre_min_rssi = dm_info->min_rssi;
 222	dm_info->min_rssi = data.min_rssi;
 223}
 224
 225static void rtw_phy_statistics(struct rtw_dev *rtwdev)
 226{
 227	rtw_phy_stat_rssi(rtwdev);
 228	rtw_phy_stat_false_alarm(rtwdev);
 229}
 230
 231#define DIG_PERF_FA_TH_LOW			250
 232#define DIG_PERF_FA_TH_HIGH			500
 233#define DIG_PERF_FA_TH_EXTRA_HIGH		750
 234#define DIG_PERF_MAX				0x5a
 235#define DIG_PERF_MID				0x40
 236#define DIG_CVRG_FA_TH_LOW			2000
 237#define DIG_CVRG_FA_TH_HIGH			4000
 238#define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
 239#define DIG_CVRG_MAX				0x2a
 240#define DIG_CVRG_MID				0x26
 241#define DIG_CVRG_MIN				0x1c
 242#define DIG_RSSI_GAIN_OFFSET			15
 243
 244static bool
 245rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
 246{
 247	u16 fa_lo = DIG_PERF_FA_TH_LOW;
 248	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
 249	u16 *fa_history;
 250	u8 *igi_history;
 251	u8 damping_rssi;
 252	u8 min_rssi;
 253	u8 diff;
 254	u8 igi_bitmap;
 255	bool damping = false;
 256
 257	min_rssi = dm_info->min_rssi;
 258	if (dm_info->damping) {
 259		damping_rssi = dm_info->damping_rssi;
 260		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
 261						 damping_rssi - min_rssi;
 262		if (diff > 3 || dm_info->damping_cnt++ > 20) {
 263			dm_info->damping = false;
 264			return false;
 265		}
 266
 267		return true;
 268	}
 269
 270	igi_history = dm_info->igi_history;
 271	fa_history = dm_info->fa_history;
 272	igi_bitmap = dm_info->igi_bitmap & 0xf;
 273	switch (igi_bitmap) {
 274	case 5:
 275		/* down -> up -> down -> up */
 276		if (igi_history[0] > igi_history[1] &&
 277		    igi_history[2] > igi_history[3] &&
 278		    igi_history[0] - igi_history[1] >= 2 &&
 279		    igi_history[2] - igi_history[3] >= 2 &&
 280		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
 281		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
 282			damping = true;
 283		break;
 284	case 9:
 285		/* up -> down -> down -> up */
 286		if (igi_history[0] > igi_history[1] &&
 287		    igi_history[3] > igi_history[2] &&
 288		    igi_history[0] - igi_history[1] >= 4 &&
 289		    igi_history[3] - igi_history[2] >= 2 &&
 290		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
 291		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
 292			damping = true;
 293		break;
 294	default:
 295		return false;
 296	}
 297
 298	if (damping) {
 299		dm_info->damping = true;
 300		dm_info->damping_cnt = 0;
 301		dm_info->damping_rssi = min_rssi;
 302	}
 303
 304	return damping;
 305}
 306
 307static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
 308				     u8 *upper, u8 *lower, bool linked)
 309{
 310	u8 dig_max, dig_min, dig_mid;
 311	u8 min_rssi;
 312
 313	if (linked) {
 314		dig_max = DIG_PERF_MAX;
 315		dig_mid = DIG_PERF_MID;
 316		/* 22B=0x1c, 22C=0x20 */
 317		dig_min = 0x1c;
 318		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
 319	} else {
 320		dig_max = DIG_CVRG_MAX;
 321		dig_mid = DIG_CVRG_MID;
 322		dig_min = DIG_CVRG_MIN;
 323		min_rssi = dig_min;
 324	}
 325
 326	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
 327	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
 328
 329	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
 330	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
 331}
 332
 333static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
 334				      u16 *fa_th, u8 *step, bool linked)
 335{
 336	u8 min_rssi, pre_min_rssi;
 337
 338	min_rssi = dm_info->min_rssi;
 339	pre_min_rssi = dm_info->pre_min_rssi;
 340	step[0] = 4;
 341	step[1] = 3;
 342	step[2] = 2;
 343
 344	if (linked) {
 345		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
 346		fa_th[1] = DIG_PERF_FA_TH_HIGH;
 347		fa_th[2] = DIG_PERF_FA_TH_LOW;
 348		if (pre_min_rssi > min_rssi) {
 349			step[0] = 6;
 350			step[1] = 4;
 351			step[2] = 2;
 352		}
 353	} else {
 354		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
 355		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
 356		fa_th[2] = DIG_CVRG_FA_TH_LOW;
 357	}
 358}
 359
 360static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
 361{
 362	u8 *igi_history;
 363	u16 *fa_history;
 364	u8 igi_bitmap;
 365	bool up;
 366
 367	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
 368	igi_history = dm_info->igi_history;
 369	fa_history = dm_info->fa_history;
 370
 371	up = igi > igi_history[0];
 372	igi_bitmap |= up;
 373
 374	igi_history[3] = igi_history[2];
 375	igi_history[2] = igi_history[1];
 376	igi_history[1] = igi_history[0];
 377	igi_history[0] = igi;
 378
 379	fa_history[3] = fa_history[2];
 380	fa_history[2] = fa_history[1];
 381	fa_history[1] = fa_history[0];
 382	fa_history[0] = fa;
 383
 384	dm_info->igi_bitmap = igi_bitmap;
 385}
 386
 387static void rtw_phy_dig(struct rtw_dev *rtwdev)
 388{
 389	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 390	u8 upper_bound, lower_bound;
 391	u8 pre_igi, cur_igi;
 392	u16 fa_th[3], fa_cnt;
 393	u8 level;
 394	u8 step[3];
 395	bool linked;
 396
 397	if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
 398		return;
 399
 400	if (rtw_phy_dig_check_damping(dm_info))
 401		return;
 402
 403	linked = !!rtwdev->sta_cnt;
 404
 405	fa_cnt = dm_info->total_fa_cnt;
 406	pre_igi = dm_info->igi_history[0];
 407
 408	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
 409
 410	/* test the false alarm count from the highest threshold level first,
 411	 * and increase it by corresponding step size
 412	 *
 413	 * note that the step size is offset by -2, compensate it afterall
 414	 */
 415	cur_igi = pre_igi;
 416	for (level = 0; level < 3; level++) {
 417		if (fa_cnt > fa_th[level]) {
 418			cur_igi += step[level];
 419			break;
 420		}
 421	}
 422	cur_igi -= 2;
 423
 424	/* calculate the upper/lower bound by the minimum rssi we have among
 425	 * the peers connected with us, meanwhile make sure the igi value does
 426	 * not beyond the hardware limitation
 427	 */
 428	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
 429	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
 430
 431	/* record current igi value and false alarm statistics for further
 432	 * damping checks, and record the trend of igi values
 433	 */
 434	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
 435
 436	if (cur_igi != pre_igi)
 437		rtw_phy_dig_write(rtwdev, cur_igi);
 438}
 439
 440static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
 441{
 442	struct rtw_dev *rtwdev = data;
 443	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
 444
 445	rtw_update_sta_info(rtwdev, si);
 446}
 447
 448static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
 449{
 450	if (rtwdev->watch_dog_cnt & 0x3)
 451		return;
 452
 453	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
 454}
 455
 456static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
 457{
 458	struct rtw_chip_info *chip = rtwdev->chip;
 459
 460	if (chip->ops->dpk_track)
 461		chip->ops->dpk_track(rtwdev);
 462}
 463
 464#define CCK_PD_LV_MAX		5
 465#define CCK_PD_FA_LV1_MIN	1000
 466#define CCK_PD_FA_LV0_MAX	500
 467
 468static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
 469{
 470	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 471	u32 cck_fa_avg = dm_info->cck_fa_avg;
 472
 473	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
 474		return 1;
 475
 476	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
 477		return 0;
 478
 479	return CCK_PD_LV_MAX;
 480}
 481
 482#define CCK_PD_IGI_LV4_VAL 0x38
 483#define CCK_PD_IGI_LV3_VAL 0x2a
 484#define CCK_PD_IGI_LV2_VAL 0x24
 485#define CCK_PD_RSSI_LV4_VAL 32
 486#define CCK_PD_RSSI_LV3_VAL 32
 487#define CCK_PD_RSSI_LV2_VAL 24
 488
 489static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
 490{
 491	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 492	u8 igi = dm_info->igi_history[0];
 493	u8 rssi = dm_info->min_rssi;
 494	u32 cck_fa_avg = dm_info->cck_fa_avg;
 495
 496	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
 497		return 4;
 498	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
 499		return 3;
 500	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
 501		return 2;
 502	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
 503		return 1;
 504	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
 505		return 0;
 506
 507	return CCK_PD_LV_MAX;
 508}
 509
 510static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
 511{
 512	if (!rtw_is_assoc(rtwdev))
 513		return rtw_phy_cck_pd_lv_unlink(rtwdev);
 514	else
 515		return rtw_phy_cck_pd_lv_link(rtwdev);
 516}
 517
 518static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
 519{
 520	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 521	struct rtw_chip_info *chip = rtwdev->chip;
 522	u32 cck_fa = dm_info->cck_fa_cnt;
 523	u8 level;
 524
 525	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
 526		return;
 527
 528	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
 529		dm_info->cck_fa_avg = cck_fa;
 530	else
 531		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
 532
 533	level = rtw_phy_cck_pd_lv(rtwdev);
 534
 535	if (level >= CCK_PD_LV_MAX)
 536		return;
 537
 538	if (chip->ops->cck_pd_set)
 539		chip->ops->cck_pd_set(rtwdev, level);
 540}
 541
 542void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
 543{
 544	/* for further calculation */
 545	rtw_phy_statistics(rtwdev);
 546	rtw_phy_dig(rtwdev);
 547	rtw_phy_cck_pd(rtwdev);
 548	rtw_phy_ra_info_update(rtwdev);
 549	rtw_phy_dpk_track(rtwdev);
 550}
 551
 552#define FRAC_BITS 3
 553
 554static u8 rtw_phy_power_2_db(s8 power)
 555{
 556	if (power <= -100 || power >= 20)
 557		return 0;
 558	else if (power >= 0)
 559		return 100;
 560	else
 561		return 100 + power;
 562}
 563
 564static u64 rtw_phy_db_2_linear(u8 power_db)
 565{
 566	u8 i, j;
 567	u64 linear;
 568
 569	if (power_db > 96)
 570		power_db = 96;
 571	else if (power_db < 1)
 572		return 1;
 573
 574	/* 1dB ~ 96dB */
 575	i = (power_db - 1) >> 3;
 576	j = (power_db - 1) - (i << 3);
 577
 578	linear = db_invert_table[i][j];
 579	linear = i > 2 ? linear << FRAC_BITS : linear;
 580
 581	return linear;
 582}
 583
 584static u8 rtw_phy_linear_2_db(u64 linear)
 585{
 586	u8 i;
 587	u8 j;
 588	u32 dB;
 589
 590	if (linear >= db_invert_table[11][7])
 591		return 96; /* maximum 96 dB */
 592
 593	for (i = 0; i < 12; i++) {
 594		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
 595			break;
 596		else if (i > 2 && linear <= db_invert_table[i][7])
 597			break;
 598	}
 599
 600	for (j = 0; j < 8; j++) {
 601		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
 602			break;
 603		else if (i > 2 && linear <= db_invert_table[i][j])
 604			break;
 605	}
 606
 607	if (j == 0 && i == 0)
 608		goto end;
 609
 610	if (j == 0) {
 611		if (i != 3) {
 612			if (db_invert_table[i][0] - linear >
 613			    linear - db_invert_table[i - 1][7]) {
 614				i = i - 1;
 615				j = 7;
 616			}
 617		} else {
 618			if (db_invert_table[3][0] - linear >
 619			    linear - db_invert_table[2][7]) {
 620				i = 2;
 621				j = 7;
 622			}
 623		}
 624	} else {
 625		if (db_invert_table[i][j] - linear >
 626		    linear - db_invert_table[i][j - 1]) {
 627			j = j - 1;
 628		}
 629	}
 630end:
 631	dB = (i << 3) + j + 1;
 632
 633	return dB;
 634}
 635
 636u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
 637{
 638	s8 power;
 639	u8 power_db;
 640	u64 linear;
 641	u64 sum = 0;
 642	u8 path;
 643
 644	for (path = 0; path < path_num; path++) {
 645		power = rf_power[path];
 646		power_db = rtw_phy_power_2_db(power);
 647		linear = rtw_phy_db_2_linear(power_db);
 648		sum += linear;
 649	}
 650
 651	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
 652	switch (path_num) {
 653	case 2:
 654		sum >>= 1;
 655		break;
 656	case 3:
 657		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
 658		break;
 659	case 4:
 660		sum >>= 2;
 661		break;
 662	default:
 663		break;
 664	}
 665
 666	return rtw_phy_linear_2_db(sum);
 667}
 668
 669u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 670		    u32 addr, u32 mask)
 671{
 672	struct rtw_hal *hal = &rtwdev->hal;
 673	struct rtw_chip_info *chip = rtwdev->chip;
 674	const u32 *base_addr = chip->rf_base_addr;
 675	u32 val, direct_addr;
 676
 677	if (rf_path >= hal->rf_path_num) {
 678		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 679		return INV_RF_DATA;
 680	}
 681
 682	addr &= 0xff;
 683	direct_addr = base_addr[rf_path] + (addr << 2);
 684	mask &= RFREG_MASK;
 685
 686	val = rtw_read32_mask(rtwdev, direct_addr, mask);
 687
 688	return val;
 689}
 690
 691bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 692			       u32 addr, u32 mask, u32 data)
 693{
 694	struct rtw_hal *hal = &rtwdev->hal;
 695	struct rtw_chip_info *chip = rtwdev->chip;
 696	u32 *sipi_addr = chip->rf_sipi_addr;
 697	u32 data_and_addr;
 698	u32 old_data = 0;
 699	u32 shift;
 700
 701	if (rf_path >= hal->rf_path_num) {
 702		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 703		return false;
 704	}
 705
 706	addr &= 0xff;
 707	mask &= RFREG_MASK;
 708
 709	if (mask != RFREG_MASK) {
 710		old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
 711
 712		if (old_data == INV_RF_DATA) {
 713			rtw_err(rtwdev, "Write fail, rf is disabled\n");
 714			return false;
 715		}
 716
 717		shift = __ffs(mask);
 718		data = ((old_data) & (~mask)) | (data << shift);
 719	}
 720
 721	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
 722
 723	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
 724
 725	udelay(13);
 726
 727	return true;
 728}
 729
 730bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 731			  u32 addr, u32 mask, u32 data)
 732{
 733	struct rtw_hal *hal = &rtwdev->hal;
 734	struct rtw_chip_info *chip = rtwdev->chip;
 735	const u32 *base_addr = chip->rf_base_addr;
 736	u32 direct_addr;
 737
 738	if (rf_path >= hal->rf_path_num) {
 739		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 740		return false;
 741	}
 742
 743	addr &= 0xff;
 744	direct_addr = base_addr[rf_path] + (addr << 2);
 745	mask &= RFREG_MASK;
 746
 747	if (addr == RF_CFGCH) {
 748		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
 749		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
 750	}
 751
 752	rtw_write32_mask(rtwdev, direct_addr, mask, data);
 753
 754	udelay(1);
 755
 756	if (addr == RF_CFGCH) {
 757		rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
 758		rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
 759	}
 760
 761	return true;
 762}
 763
 764bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 765			      u32 addr, u32 mask, u32 data)
 766{
 767	if (addr != 0x00)
 768		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
 769
 770	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
 771}
 772
 773void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
 774{
 775	struct rtw_hal *hal = &rtwdev->hal;
 776	struct rtw_efuse *efuse = &rtwdev->efuse;
 777	struct rtw_phy_cond cond = {0};
 778
 779	cond.cut = hal->cut_version ? hal->cut_version : 15;
 780	cond.pkg = pkg ? pkg : 15;
 781	cond.plat = 0x04;
 782	cond.rfe = efuse->rfe_option;
 783
 784	switch (rtw_hci_type(rtwdev)) {
 785	case RTW_HCI_TYPE_USB:
 786		cond.intf = INTF_USB;
 787		break;
 788	case RTW_HCI_TYPE_SDIO:
 789		cond.intf = INTF_SDIO;
 790		break;
 791	case RTW_HCI_TYPE_PCIE:
 792	default:
 793		cond.intf = INTF_PCIE;
 794		break;
 795	}
 796
 797	hal->phy_cond = cond;
 798
 799	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
 800}
 801
 802static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
 803{
 804	struct rtw_hal *hal = &rtwdev->hal;
 805	struct rtw_phy_cond drv_cond = hal->phy_cond;
 806
 807	if (cond.cut && cond.cut != drv_cond.cut)
 808		return false;
 809
 810	if (cond.pkg && cond.pkg != drv_cond.pkg)
 811		return false;
 812
 813	if (cond.intf && cond.intf != drv_cond.intf)
 814		return false;
 815
 816	if (cond.rfe != drv_cond.rfe)
 817		return false;
 818
 819	return true;
 820}
 821
 822void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
 823{
 824	const union phy_table_tile *p = tbl->data;
 825	const union phy_table_tile *end = p + tbl->size / 2;
 826	struct rtw_phy_cond pos_cond = {0};
 827	bool is_matched = true, is_skipped = false;
 828
 829	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
 830
 831	for (; p < end; p++) {
 832		if (p->cond.pos) {
 833			switch (p->cond.branch) {
 834			case BRANCH_ENDIF:
 835				is_matched = true;
 836				is_skipped = false;
 837				break;
 838			case BRANCH_ELSE:
 839				is_matched = is_skipped ? false : true;
 840				break;
 841			case BRANCH_IF:
 842			case BRANCH_ELIF:
 843			default:
 844				pos_cond = p->cond;
 845				break;
 846			}
 847		} else if (p->cond.neg) {
 848			if (!is_skipped) {
 849				if (check_positive(rtwdev, pos_cond)) {
 850					is_matched = true;
 851					is_skipped = true;
 852				} else {
 853					is_matched = false;
 854					is_skipped = false;
 855				}
 856			} else {
 857				is_matched = false;
 858			}
 859		} else if (is_matched) {
 860			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
 861		}
 862	}
 863}
 864
 865#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
 866
 867static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
 868{
 869	if (rtwdev->chip->is_pwr_by_rate_dec)
 870		return bcd_to_dec_pwr_by_rate(hex, i);
 871
 872	return (hex >> (i * 8)) & 0xFF;
 873}
 874
 875static void
 876rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
 877					 u32 addr, u32 mask, u32 val, u8 *rate,
 878					 u8 *pwr_by_rate, u8 *rate_num)
 879{
 880	int i;
 881
 882	switch (addr) {
 883	case 0xE00:
 884	case 0x830:
 885		rate[0] = DESC_RATE6M;
 886		rate[1] = DESC_RATE9M;
 887		rate[2] = DESC_RATE12M;
 888		rate[3] = DESC_RATE18M;
 889		for (i = 0; i < 4; ++i)
 890			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 891		*rate_num = 4;
 892		break;
 893	case 0xE04:
 894	case 0x834:
 895		rate[0] = DESC_RATE24M;
 896		rate[1] = DESC_RATE36M;
 897		rate[2] = DESC_RATE48M;
 898		rate[3] = DESC_RATE54M;
 899		for (i = 0; i < 4; ++i)
 900			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 901		*rate_num = 4;
 902		break;
 903	case 0xE08:
 904		rate[0] = DESC_RATE1M;
 905		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
 906		*rate_num = 1;
 907		break;
 908	case 0x86C:
 909		if (mask == 0xffffff00) {
 910			rate[0] = DESC_RATE2M;
 911			rate[1] = DESC_RATE5_5M;
 912			rate[2] = DESC_RATE11M;
 913			for (i = 1; i < 4; ++i)
 914				pwr_by_rate[i - 1] =
 915					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 916			*rate_num = 3;
 917		} else if (mask == 0x000000ff) {
 918			rate[0] = DESC_RATE11M;
 919			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
 920			*rate_num = 1;
 921		}
 922		break;
 923	case 0xE10:
 924	case 0x83C:
 925		rate[0] = DESC_RATEMCS0;
 926		rate[1] = DESC_RATEMCS1;
 927		rate[2] = DESC_RATEMCS2;
 928		rate[3] = DESC_RATEMCS3;
 929		for (i = 0; i < 4; ++i)
 930			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 931		*rate_num = 4;
 932		break;
 933	case 0xE14:
 934	case 0x848:
 935		rate[0] = DESC_RATEMCS4;
 936		rate[1] = DESC_RATEMCS5;
 937		rate[2] = DESC_RATEMCS6;
 938		rate[3] = DESC_RATEMCS7;
 939		for (i = 0; i < 4; ++i)
 940			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 941		*rate_num = 4;
 942		break;
 943	case 0xE18:
 944	case 0x84C:
 945		rate[0] = DESC_RATEMCS8;
 946		rate[1] = DESC_RATEMCS9;
 947		rate[2] = DESC_RATEMCS10;
 948		rate[3] = DESC_RATEMCS11;
 949		for (i = 0; i < 4; ++i)
 950			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 951		*rate_num = 4;
 952		break;
 953	case 0xE1C:
 954	case 0x868:
 955		rate[0] = DESC_RATEMCS12;
 956		rate[1] = DESC_RATEMCS13;
 957		rate[2] = DESC_RATEMCS14;
 958		rate[3] = DESC_RATEMCS15;
 959		for (i = 0; i < 4; ++i)
 960			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 961		*rate_num = 4;
 962		break;
 963	case 0x838:
 964		rate[0] = DESC_RATE1M;
 965		rate[1] = DESC_RATE2M;
 966		rate[2] = DESC_RATE5_5M;
 967		for (i = 1; i < 4; ++i)
 968			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
 969								    val, i);
 970		*rate_num = 3;
 971		break;
 972	case 0xC20:
 973	case 0xE20:
 974	case 0x1820:
 975	case 0x1A20:
 976		rate[0] = DESC_RATE1M;
 977		rate[1] = DESC_RATE2M;
 978		rate[2] = DESC_RATE5_5M;
 979		rate[3] = DESC_RATE11M;
 980		for (i = 0; i < 4; ++i)
 981			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 982		*rate_num = 4;
 983		break;
 984	case 0xC24:
 985	case 0xE24:
 986	case 0x1824:
 987	case 0x1A24:
 988		rate[0] = DESC_RATE6M;
 989		rate[1] = DESC_RATE9M;
 990		rate[2] = DESC_RATE12M;
 991		rate[3] = DESC_RATE18M;
 992		for (i = 0; i < 4; ++i)
 993			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 994		*rate_num = 4;
 995		break;
 996	case 0xC28:
 997	case 0xE28:
 998	case 0x1828:
 999	case 0x1A28:
1000		rate[0] = DESC_RATE24M;
1001		rate[1] = DESC_RATE36M;
1002		rate[2] = DESC_RATE48M;
1003		rate[3] = DESC_RATE54M;
1004		for (i = 0; i < 4; ++i)
1005			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1006		*rate_num = 4;
1007		break;
1008	case 0xC2C:
1009	case 0xE2C:
1010	case 0x182C:
1011	case 0x1A2C:
1012		rate[0] = DESC_RATEMCS0;
1013		rate[1] = DESC_RATEMCS1;
1014		rate[2] = DESC_RATEMCS2;
1015		rate[3] = DESC_RATEMCS3;
1016		for (i = 0; i < 4; ++i)
1017			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1018		*rate_num = 4;
1019		break;
1020	case 0xC30:
1021	case 0xE30:
1022	case 0x1830:
1023	case 0x1A30:
1024		rate[0] = DESC_RATEMCS4;
1025		rate[1] = DESC_RATEMCS5;
1026		rate[2] = DESC_RATEMCS6;
1027		rate[3] = DESC_RATEMCS7;
1028		for (i = 0; i < 4; ++i)
1029			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1030		*rate_num = 4;
1031		break;
1032	case 0xC34:
1033	case 0xE34:
1034	case 0x1834:
1035	case 0x1A34:
1036		rate[0] = DESC_RATEMCS8;
1037		rate[1] = DESC_RATEMCS9;
1038		rate[2] = DESC_RATEMCS10;
1039		rate[3] = DESC_RATEMCS11;
1040		for (i = 0; i < 4; ++i)
1041			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1042		*rate_num = 4;
1043		break;
1044	case 0xC38:
1045	case 0xE38:
1046	case 0x1838:
1047	case 0x1A38:
1048		rate[0] = DESC_RATEMCS12;
1049		rate[1] = DESC_RATEMCS13;
1050		rate[2] = DESC_RATEMCS14;
1051		rate[3] = DESC_RATEMCS15;
1052		for (i = 0; i < 4; ++i)
1053			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1054		*rate_num = 4;
1055		break;
1056	case 0xC3C:
1057	case 0xE3C:
1058	case 0x183C:
1059	case 0x1A3C:
1060		rate[0] = DESC_RATEVHT1SS_MCS0;
1061		rate[1] = DESC_RATEVHT1SS_MCS1;
1062		rate[2] = DESC_RATEVHT1SS_MCS2;
1063		rate[3] = DESC_RATEVHT1SS_MCS3;
1064		for (i = 0; i < 4; ++i)
1065			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1066		*rate_num = 4;
1067		break;
1068	case 0xC40:
1069	case 0xE40:
1070	case 0x1840:
1071	case 0x1A40:
1072		rate[0] = DESC_RATEVHT1SS_MCS4;
1073		rate[1] = DESC_RATEVHT1SS_MCS5;
1074		rate[2] = DESC_RATEVHT1SS_MCS6;
1075		rate[3] = DESC_RATEVHT1SS_MCS7;
1076		for (i = 0; i < 4; ++i)
1077			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1078		*rate_num = 4;
1079		break;
1080	case 0xC44:
1081	case 0xE44:
1082	case 0x1844:
1083	case 0x1A44:
1084		rate[0] = DESC_RATEVHT1SS_MCS8;
1085		rate[1] = DESC_RATEVHT1SS_MCS9;
1086		rate[2] = DESC_RATEVHT2SS_MCS0;
1087		rate[3] = DESC_RATEVHT2SS_MCS1;
1088		for (i = 0; i < 4; ++i)
1089			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1090		*rate_num = 4;
1091		break;
1092	case 0xC48:
1093	case 0xE48:
1094	case 0x1848:
1095	case 0x1A48:
1096		rate[0] = DESC_RATEVHT2SS_MCS2;
1097		rate[1] = DESC_RATEVHT2SS_MCS3;
1098		rate[2] = DESC_RATEVHT2SS_MCS4;
1099		rate[3] = DESC_RATEVHT2SS_MCS5;
1100		for (i = 0; i < 4; ++i)
1101			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1102		*rate_num = 4;
1103		break;
1104	case 0xC4C:
1105	case 0xE4C:
1106	case 0x184C:
1107	case 0x1A4C:
1108		rate[0] = DESC_RATEVHT2SS_MCS6;
1109		rate[1] = DESC_RATEVHT2SS_MCS7;
1110		rate[2] = DESC_RATEVHT2SS_MCS8;
1111		rate[3] = DESC_RATEVHT2SS_MCS9;
1112		for (i = 0; i < 4; ++i)
1113			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1114		*rate_num = 4;
1115		break;
1116	case 0xCD8:
1117	case 0xED8:
1118	case 0x18D8:
1119	case 0x1AD8:
1120		rate[0] = DESC_RATEMCS16;
1121		rate[1] = DESC_RATEMCS17;
1122		rate[2] = DESC_RATEMCS18;
1123		rate[3] = DESC_RATEMCS19;
1124		for (i = 0; i < 4; ++i)
1125			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1126		*rate_num = 4;
1127		break;
1128	case 0xCDC:
1129	case 0xEDC:
1130	case 0x18DC:
1131	case 0x1ADC:
1132		rate[0] = DESC_RATEMCS20;
1133		rate[1] = DESC_RATEMCS21;
1134		rate[2] = DESC_RATEMCS22;
1135		rate[3] = DESC_RATEMCS23;
1136		for (i = 0; i < 4; ++i)
1137			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1138		*rate_num = 4;
1139		break;
1140	case 0xCE0:
1141	case 0xEE0:
1142	case 0x18E0:
1143	case 0x1AE0:
1144		rate[0] = DESC_RATEVHT3SS_MCS0;
1145		rate[1] = DESC_RATEVHT3SS_MCS1;
1146		rate[2] = DESC_RATEVHT3SS_MCS2;
1147		rate[3] = DESC_RATEVHT3SS_MCS3;
1148		for (i = 0; i < 4; ++i)
1149			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1150		*rate_num = 4;
1151		break;
1152	case 0xCE4:
1153	case 0xEE4:
1154	case 0x18E4:
1155	case 0x1AE4:
1156		rate[0] = DESC_RATEVHT3SS_MCS4;
1157		rate[1] = DESC_RATEVHT3SS_MCS5;
1158		rate[2] = DESC_RATEVHT3SS_MCS6;
1159		rate[3] = DESC_RATEVHT3SS_MCS7;
1160		for (i = 0; i < 4; ++i)
1161			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1162		*rate_num = 4;
1163		break;
1164	case 0xCE8:
1165	case 0xEE8:
1166	case 0x18E8:
1167	case 0x1AE8:
1168		rate[0] = DESC_RATEVHT3SS_MCS8;
1169		rate[1] = DESC_RATEVHT3SS_MCS9;
1170		for (i = 0; i < 2; ++i)
1171			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1172		*rate_num = 2;
1173		break;
1174	default:
1175		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1176		break;
1177	}
1178}
1179
1180static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1181					   u32 band, u32 rfpath, u32 txnum,
1182					   u32 regaddr, u32 bitmask, u32 data)
1183{
1184	struct rtw_hal *hal = &rtwdev->hal;
1185	u8 rate_num = 0;
1186	u8 rate;
1187	u8 rates[RTW_RF_PATH_MAX] = {0};
1188	s8 offset;
1189	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1190	int i;
1191
1192	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1193						 rates, pwr_by_rate, &rate_num);
1194
1195	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1196		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1197		    rate_num > RTW_RF_PATH_MAX))
1198		return;
1199
1200	for (i = 0; i < rate_num; i++) {
1201		offset = pwr_by_rate[i];
1202		rate = rates[i];
1203		if (band == PHY_BAND_2G)
1204			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1205		else if (band == PHY_BAND_5G)
1206			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1207		else
1208			continue;
1209	}
1210}
1211
1212void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1213{
1214	const struct phy_pg_cfg_pair *p = tbl->data;
1215	const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
1216
1217	BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
1218
1219	for (; p < end; p++) {
1220		if (p->addr == 0xfe || p->addr == 0xffe) {
1221			msleep(50);
1222			continue;
1223		}
1224		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1225					       p->tx_num, p->addr, p->bitmask,
1226					       p->data);
1227	}
1228}
1229
1230static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1231	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1232	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1233	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1234	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1235	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1236	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1237	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1238
1239static int rtw_channel_to_idx(u8 band, u8 channel)
1240{
1241	int ch_idx;
1242	u8 n_channel;
1243
1244	if (band == PHY_BAND_2G) {
1245		ch_idx = channel - 1;
1246		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1247	} else if (band == PHY_BAND_5G) {
1248		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1249		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1250			if (rtw_channel_idx_5g[ch_idx] == channel)
1251				break;
1252	} else {
1253		return -1;
1254	}
1255
1256	if (ch_idx >= n_channel)
1257		return -1;
1258
1259	return ch_idx;
1260}
1261
1262static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1263				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1264{
1265	struct rtw_hal *hal = &rtwdev->hal;
1266	u8 max_power_index = rtwdev->chip->max_power_index;
1267	s8 ww;
1268	int ch_idx;
1269
1270	pwr_limit = clamp_t(s8, pwr_limit,
1271			    -max_power_index, max_power_index);
1272	ch_idx = rtw_channel_to_idx(band, ch);
1273
1274	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1275	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1276		WARN(1,
1277		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1278		     regd, band, bw, rs, ch_idx, pwr_limit);
1279		return;
1280	}
1281
1282	if (band == PHY_BAND_2G) {
1283		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1284		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1285		ww = min_t(s8, ww, pwr_limit);
1286		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1287	} else if (band == PHY_BAND_5G) {
1288		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1289		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1290		ww = min_t(s8, ww, pwr_limit);
1291		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1292	}
1293}
1294
1295/* cross-reference 5G power limits if values are not assigned */
1296static void
1297rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1298		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1299{
1300	struct rtw_hal *hal = &rtwdev->hal;
1301	u8 max_power_index = rtwdev->chip->max_power_index;
1302	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1303	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1304
1305	if (lmt_ht == lmt_vht)
1306		return;
1307
1308	if (lmt_ht == max_power_index)
1309		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1310
1311	else if (lmt_vht == max_power_index)
1312		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1313}
1314
1315/* cross-reference power limits for ht and vht */
1316static void
1317rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1318{
1319	u8 rs_idx, rs_ht, rs_vht;
1320	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1321			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1322
1323	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1324		rs_ht = rs_cmp[rs_idx][0];
1325		rs_vht = rs_cmp[rs_idx][1];
1326
1327		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1328	}
1329}
1330
1331/* cross-reference power limits for 5G channels */
1332static void
1333rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1334{
1335	u8 ch_idx;
1336
1337	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1338		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1339}
1340
1341/* cross-reference power limits for 20/40M bandwidth */
1342static void
1343rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1344{
1345	u8 bw;
1346
1347	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1348		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1349}
1350
1351/* cross-reference power limits */
1352static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1353{
1354	u8 regd;
1355
1356	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1357		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1358}
1359
1360void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1361			     const struct rtw_table *tbl)
1362{
1363	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1364	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1365
1366	for (; p < end; p++) {
1367		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1368					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1369	}
1370
1371	rtw_xref_txpwr_lmt(rtwdev);
1372}
1373
1374void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1375		     u32 addr, u32 data)
1376{
1377	rtw_write8(rtwdev, addr, data);
1378}
1379
1380void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1381		     u32 addr, u32 data)
1382{
1383	rtw_write32(rtwdev, addr, data);
1384}
1385
1386void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1387		    u32 addr, u32 data)
1388{
1389	if (addr == 0xfe)
1390		msleep(50);
1391	else if (addr == 0xfd)
1392		mdelay(5);
1393	else if (addr == 0xfc)
1394		mdelay(1);
1395	else if (addr == 0xfb)
1396		usleep_range(50, 60);
1397	else if (addr == 0xfa)
1398		udelay(5);
1399	else if (addr == 0xf9)
1400		udelay(1);
1401	else
1402		rtw_write32(rtwdev, addr, data);
1403}
1404
1405void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1406		    u32 addr, u32 data)
1407{
1408	if (addr == 0xffe) {
1409		msleep(50);
1410	} else if (addr == 0xfe) {
1411		usleep_range(100, 110);
1412	} else {
1413		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1414		udelay(1);
1415	}
1416}
1417
1418static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1419{
1420	struct rtw_chip_info *chip = rtwdev->chip;
1421	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1422
1423	if (!chip->rfk_init_tbl)
1424		return;
1425
1426	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1427	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1428	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1429	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1430	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1431
1432	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1433
1434	dpk_info->is_dpk_pwr_on = 1;
1435}
1436
1437void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1438{
1439	struct rtw_chip_info *chip = rtwdev->chip;
1440	u8 rf_path;
1441
1442	rtw_load_table(rtwdev, chip->mac_tbl);
1443	rtw_load_table(rtwdev, chip->bb_tbl);
1444	rtw_load_table(rtwdev, chip->agc_tbl);
1445	rtw_load_rfk_table(rtwdev);
1446
1447	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1448		const struct rtw_table *tbl;
1449
1450		tbl = chip->rf_tbl[rf_path];
1451		rtw_load_table(rtwdev, tbl);
1452	}
1453}
1454
1455static u8 rtw_get_channel_group(u8 channel)
1456{
1457	switch (channel) {
1458	default:
1459		WARN_ON(1);
1460		/* fall through */
1461	case 1:
1462	case 2:
1463	case 36:
1464	case 38:
1465	case 40:
1466	case 42:
1467		return 0;
1468	case 3:
1469	case 4:
1470	case 5:
1471	case 44:
1472	case 46:
1473	case 48:
1474	case 50:
1475		return 1;
1476	case 6:
1477	case 7:
1478	case 8:
1479	case 52:
1480	case 54:
1481	case 56:
1482	case 58:
1483		return 2;
1484	case 9:
1485	case 10:
1486	case 11:
1487	case 60:
1488	case 62:
1489	case 64:
1490		return 3;
1491	case 12:
1492	case 13:
1493	case 100:
1494	case 102:
1495	case 104:
1496	case 106:
1497		return 4;
1498	case 14:
1499	case 108:
1500	case 110:
1501	case 112:
1502	case 114:
1503		return 5;
1504	case 116:
1505	case 118:
1506	case 120:
1507	case 122:
1508		return 6;
1509	case 124:
1510	case 126:
1511	case 128:
1512	case 130:
1513		return 7;
1514	case 132:
1515	case 134:
1516	case 136:
1517	case 138:
1518		return 8;
1519	case 140:
1520	case 142:
1521	case 144:
1522		return 9;
1523	case 149:
1524	case 151:
1525	case 153:
1526	case 155:
1527		return 10;
1528	case 157:
1529	case 159:
1530	case 161:
1531		return 11;
1532	case 165:
1533	case 167:
1534	case 169:
1535	case 171:
1536		return 12;
1537	case 173:
1538	case 175:
1539	case 177:
1540		return 13;
1541	}
1542}
1543
1544static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1545{
1546	struct rtw_chip_info *chip = rtwdev->chip;
1547	s8 dpd_diff = 0;
1548
1549	if (!chip->en_dis_dpd)
1550		return 0;
1551
1552#define RTW_DPD_RATE_CHECK(_rate)					\
1553	case DESC_RATE ## _rate:					\
1554	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1555		dpd_diff = -6 * chip->txgi_factor;			\
1556	break
1557
1558	switch (rate) {
1559	RTW_DPD_RATE_CHECK(6M);
1560	RTW_DPD_RATE_CHECK(9M);
1561	RTW_DPD_RATE_CHECK(MCS0);
1562	RTW_DPD_RATE_CHECK(MCS1);
1563	RTW_DPD_RATE_CHECK(MCS8);
1564	RTW_DPD_RATE_CHECK(MCS9);
1565	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1566	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1567	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1568	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1569	}
1570#undef RTW_DPD_RATE_CHECK
1571
1572	return dpd_diff;
1573}
1574
1575static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1576					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1577					enum rtw_bandwidth bandwidth,
1578					u8 rate, u8 group)
1579{
1580	struct rtw_chip_info *chip = rtwdev->chip;
1581	u8 tx_power;
1582	bool mcs_rate;
1583	bool above_2ss;
1584	u8 factor = chip->txgi_factor;
1585
1586	if (rate <= DESC_RATE11M)
1587		tx_power = pwr_idx_2g->cck_base[group];
1588	else
1589		tx_power = pwr_idx_2g->bw40_base[group];
1590
1591	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1592		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1593
1594	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1595		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1596		    rate <= DESC_RATEVHT2SS_MCS9);
1597	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1598		    (rate >= DESC_RATEVHT2SS_MCS0);
1599
1600	if (!mcs_rate)
1601		return tx_power;
1602
1603	switch (bandwidth) {
1604	default:
1605		WARN_ON(1);
1606		/* fall through */
1607	case RTW_CHANNEL_WIDTH_20:
1608		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1609		if (above_2ss)
1610			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1611		break;
1612	case RTW_CHANNEL_WIDTH_40:
1613		/* bw40 is the base power */
1614		if (above_2ss)
1615			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1616		break;
1617	}
1618
1619	return tx_power;
1620}
1621
1622static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1623					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1624					enum rtw_bandwidth bandwidth,
1625					u8 rate, u8 group)
1626{
1627	struct rtw_chip_info *chip = rtwdev->chip;
1628	u8 tx_power;
1629	u8 upper, lower;
1630	bool mcs_rate;
1631	bool above_2ss;
1632	u8 factor = chip->txgi_factor;
1633
1634	tx_power = pwr_idx_5g->bw40_base[group];
1635
1636	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1637		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1638		    rate <= DESC_RATEVHT2SS_MCS9);
1639	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1640		    (rate >= DESC_RATEVHT2SS_MCS0);
1641
1642	if (!mcs_rate) {
1643		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1644		return tx_power;
1645	}
1646
1647	switch (bandwidth) {
1648	default:
1649		WARN_ON(1);
1650		/* fall through */
1651	case RTW_CHANNEL_WIDTH_20:
1652		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1653		if (above_2ss)
1654			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1655		break;
1656	case RTW_CHANNEL_WIDTH_40:
1657		/* bw40 is the base power */
1658		if (above_2ss)
1659			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1660		break;
1661	case RTW_CHANNEL_WIDTH_80:
1662		/* the base idx of bw80 is the average of bw40+/bw40- */
1663		lower = pwr_idx_5g->bw40_base[group];
1664		upper = pwr_idx_5g->bw40_base[group + 1];
1665
1666		tx_power = (lower + upper) / 2;
1667		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1668		if (above_2ss)
1669			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1670		break;
1671	}
1672
1673	return tx_power;
1674}
1675
1676static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1677				     enum rtw_bandwidth bw, u8 rf_path,
1678				     u8 rate, u8 channel, u8 regd)
1679{
1680	struct rtw_hal *hal = &rtwdev->hal;
1681	u8 *cch_by_bw = hal->cch_by_bw;
1682	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1683	u8 rs;
1684	int ch_idx;
1685	u8 cur_bw, cur_ch;
1686	s8 cur_lmt;
1687
1688	if (regd > RTW_REGD_WW)
1689		return power_limit;
1690
1691	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1692		rs = RTW_RATE_SECTION_CCK;
1693	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1694		rs = RTW_RATE_SECTION_OFDM;
1695	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1696		rs = RTW_RATE_SECTION_HT_1S;
1697	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1698		rs = RTW_RATE_SECTION_HT_2S;
1699	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1700		rs = RTW_RATE_SECTION_VHT_1S;
1701	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1702		rs = RTW_RATE_SECTION_VHT_2S;
1703	else
1704		goto err;
1705
1706	/* only 20M BW with cck and ofdm */
1707	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1708		bw = RTW_CHANNEL_WIDTH_20;
1709
1710	/* only 20/40M BW with ht */
1711	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1712		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1713
1714	/* select min power limit among [20M BW ~ current BW] */
1715	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1716		cur_ch = cch_by_bw[cur_bw];
1717
1718		ch_idx = rtw_channel_to_idx(band, cur_ch);
1719		if (ch_idx < 0)
1720			goto err;
1721
1722		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1723			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1724			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1725
1726		power_limit = min_t(s8, cur_lmt, power_limit);
1727	}
1728
1729	return power_limit;
1730
1731err:
1732	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1733	     band, bw, rf_path, rate, channel);
1734	return (s8)rtwdev->chip->max_power_index;
1735}
1736
1737void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1738			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1739{
1740	struct rtw_hal *hal = &rtwdev->hal;
1741	struct rtw_txpwr_idx *pwr_idx;
1742	u8 group, band;
1743	u8 *base = &pwr_param->pwr_base;
1744	s8 *offset = &pwr_param->pwr_offset;
1745	s8 *limit = &pwr_param->pwr_limit;
1746
1747	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1748	group = rtw_get_channel_group(ch);
1749
1750	/* base power index for 2.4G/5G */
1751	if (ch <= 14) {
1752		band = PHY_BAND_2G;
1753		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1754						      &pwr_idx->pwr_idx_2g,
1755						      bw, rate, group);
1756		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1757	} else {
1758		band = PHY_BAND_5G;
1759		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1760						      &pwr_idx->pwr_idx_5g,
1761						      bw, rate, group);
1762		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1763	}
1764
1765	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1766					    rate, ch, regd);
1767}
1768
1769u8
1770rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1771			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1772{
1773	struct rtw_power_params pwr_param = {0};
1774	u8 tx_power;
1775	s8 offset;
1776
1777	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1778				channel, regd, &pwr_param);
1779
1780	tx_power = pwr_param.pwr_base;
1781	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1782
1783	if (rtwdev->chip->en_dis_dpd)
1784		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1785
1786	tx_power += offset;
1787
1788	if (tx_power > rtwdev->chip->max_power_index)
1789		tx_power = rtwdev->chip->max_power_index;
1790
1791	return tx_power;
1792}
1793
1794static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1795					     u8 ch, u8 path, u8 rs)
1796{
1797	struct rtw_hal *hal = &rtwdev->hal;
1798	u8 regd = rtwdev->regd.txpwr_regd;
1799	u8 *rates;
1800	u8 size;
1801	u8 rate;
1802	u8 pwr_idx;
1803	u8 bw;
1804	int i;
1805
1806	if (rs >= RTW_RATE_SECTION_MAX)
1807		return;
1808
1809	rates = rtw_rate_section[rs];
1810	size = rtw_rate_size[rs];
1811	bw = hal->current_band_width;
1812	for (i = 0; i < size; i++) {
1813		rate = rates[i];
1814		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1815						     bw, ch, regd);
1816		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1817	}
1818}
1819
1820/* set tx power level by path for each rates, note that the order of the rates
1821 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1822 * power index into a four-byte power index register, and calls set_tx_agc to
1823 * write these values into hardware
1824 */
1825static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1826					       u8 ch, u8 path)
1827{
1828	struct rtw_hal *hal = &rtwdev->hal;
1829	u8 rs;
1830
1831	/* do not need cck rates if we are not in 2.4G */
1832	if (hal->current_band_type == RTW_BAND_2G)
1833		rs = RTW_RATE_SECTION_CCK;
1834	else
1835		rs = RTW_RATE_SECTION_OFDM;
1836
1837	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1838		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1839}
1840
1841void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1842{
1843	struct rtw_chip_info *chip = rtwdev->chip;
1844	struct rtw_hal *hal = &rtwdev->hal;
1845	u8 path;
1846
1847	mutex_lock(&hal->tx_power_mutex);
1848
1849	for (path = 0; path < hal->rf_path_num; path++)
1850		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1851
1852	chip->ops->set_tx_power_index(rtwdev);
1853	mutex_unlock(&hal->tx_power_mutex);
1854}
1855
1856static void
1857rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1858					u8 rs, u8 size, u8 *rates)
1859{
1860	u8 rate;
1861	u8 base_idx, rate_idx;
1862	s8 base_2g, base_5g;
1863
1864	if (rs >= RTW_RATE_SECTION_VHT_1S)
1865		base_idx = rates[size - 3];
1866	else
1867		base_idx = rates[size - 1];
1868	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1869	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1870	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1871	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1872	for (rate = 0; rate < size; rate++) {
1873		rate_idx = rates[rate];
1874		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1875		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1876	}
1877}
1878
1879void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1880{
1881	u8 path;
1882
1883	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1884		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1885				RTW_RATE_SECTION_CCK,
1886				rtw_cck_size, rtw_cck_rates);
1887		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1888				RTW_RATE_SECTION_OFDM,
1889				rtw_ofdm_size, rtw_ofdm_rates);
1890		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1891				RTW_RATE_SECTION_HT_1S,
1892				rtw_ht_1s_size, rtw_ht_1s_rates);
1893		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1894				RTW_RATE_SECTION_HT_2S,
1895				rtw_ht_2s_size, rtw_ht_2s_rates);
1896		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1897				RTW_RATE_SECTION_VHT_1S,
1898				rtw_vht_1s_size, rtw_vht_1s_rates);
1899		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1900				RTW_RATE_SECTION_VHT_2S,
1901				rtw_vht_2s_size, rtw_vht_2s_rates);
1902	}
1903}
1904
1905static void
1906__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1907{
1908	s8 base;
1909	u8 ch;
1910
1911	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1912		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1913		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1914	}
1915
1916	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1917		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1918		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1919	}
1920}
1921
1922void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1923{
1924	u8 regd, bw, rs;
1925
1926	/* default at channel 1 */
1927	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1928
1929	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1930		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1931			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1932				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1933}
1934
1935static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1936					u8 regd, u8 bw, u8 rs)
1937{
1938	struct rtw_hal *hal = &rtwdev->hal;
1939	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1940	u8 ch;
1941
1942	/* 2.4G channels */
1943	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1944		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1945
1946	/* 5G channels */
1947	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1948		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1949}
1950
1951void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1952{
1953	struct rtw_hal *hal = &rtwdev->hal;
1954	u8 regd, path, rate, rs, bw;
1955
1956	/* init tx power by rate offset */
1957	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1958		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1959			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1960			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1961		}
1962	}
1963
1964	/* init tx power limit */
1965	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1966		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1967			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1968				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1969							    rs);
1970}