Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
   3 *
   4 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
   5 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
   6 *
   7 * References:
   8 *  o IOC3 ASIC specification 4.51, 1996-04-18
   9 *  o IEEE 802.3 specification, 2000 edition
  10 *  o DP38840A Specification, National Semiconductor, March 1997
  11 *
  12 * To do:
  13 *
  14 *  o Use prefetching for large packets.  What is a good lower limit for
  15 *    prefetching?
  16 *  o Use hardware checksums.
  17 *  o Convert to using a IOC3 meta driver.
  18 *  o Which PHYs might possibly be attached to the IOC3 in real live,
  19 *    which workarounds are required for them?  Do we ever have Lucent's?
  20 *  o For the 2.5 branch kill the mii-tool ioctls.
  21 */
  22
  23#define IOC3_NAME	"ioc3-eth"
  24#define IOC3_VERSION	"2.6.3-4"
  25
  26#include <linux/delay.h>
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/errno.h>
  30#include <linux/module.h>
  31#include <linux/pci.h>
  32#include <linux/crc32.h>
  33#include <linux/mii.h>
  34#include <linux/in.h>
  35#include <linux/io.h>
  36#include <linux/ip.h>
  37#include <linux/tcp.h>
  38#include <linux/udp.h>
  39#include <linux/gfp.h>
  40
  41#ifdef CONFIG_SERIAL_8250
  42#include <linux/serial_core.h>
  43#include <linux/serial_8250.h>
  44#include <linux/serial_reg.h>
  45#endif
  46
  47#include <linux/netdevice.h>
  48#include <linux/etherdevice.h>
  49#include <linux/ethtool.h>
  50#include <linux/skbuff.h>
  51#include <linux/dma-direct.h>
  52
  53#include <net/ip.h>
  54
  55#include <asm/byteorder.h>
  56#include <asm/pgtable.h>
  57#include <linux/uaccess.h>
  58#include <asm/sn/types.h>
  59#include <asm/sn/ioc3.h>
  60#include <asm/pci/bridge.h>
  61
  62/* Number of RX buffers.  This is tunable in the range of 16 <= x < 512.
  63 * The value must be a power of two.
  64 */
  65#define RX_BUFFS		64
  66#define RX_RING_ENTRIES		512		/* fixed in hardware */
  67#define RX_RING_MASK		(RX_RING_ENTRIES - 1)
  68#define RX_RING_SIZE		(RX_RING_ENTRIES * sizeof(u64))
  69
  70/* 128 TX buffers (not tunable) */
  71#define TX_RING_ENTRIES		128
  72#define TX_RING_MASK		(TX_RING_ENTRIES - 1)
  73#define TX_RING_SIZE		(TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
  74
  75/* IOC3 does dma transfers in 128 byte blocks */
  76#define IOC3_DMA_XFER_LEN	128UL
  77
  78/* Every RX buffer starts with 8 byte descriptor data */
  79#define RX_OFFSET		(sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
  80#define RX_BUF_SIZE		(13 * IOC3_DMA_XFER_LEN)
  81
  82#define ETCSR_FD   ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
  83#define ETCSR_HD   ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
  84
  85/* Private per NIC data of the driver.  */
  86struct ioc3_private {
  87	struct ioc3_ethregs *regs;
  88	struct ioc3 *all_regs;
  89	struct device *dma_dev;
  90	u32 *ssram;
  91	unsigned long *rxr;		/* pointer to receiver ring */
  92	struct ioc3_etxd *txr;
  93	dma_addr_t rxr_dma;
  94	dma_addr_t txr_dma;
  95	struct sk_buff *rx_skbs[RX_RING_ENTRIES];
  96	struct sk_buff *tx_skbs[TX_RING_ENTRIES];
  97	int rx_ci;			/* RX consumer index */
  98	int rx_pi;			/* RX producer index */
  99	int tx_ci;			/* TX consumer index */
 100	int tx_pi;			/* TX producer index */
 101	int txqlen;
 102	u32 emcr, ehar_h, ehar_l;
 103	spinlock_t ioc3_lock;
 104	struct mii_if_info mii;
 105
 106	struct net_device *dev;
 107	struct pci_dev *pdev;
 108
 109	/* Members used by autonegotiation  */
 110	struct timer_list ioc3_timer;
 111};
 112
 113static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 114static void ioc3_set_multicast_list(struct net_device *dev);
 115static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void ioc3_timeout(struct net_device *dev);
 117static inline unsigned int ioc3_hash(const unsigned char *addr);
 118static void ioc3_start(struct ioc3_private *ip);
 119static inline void ioc3_stop(struct ioc3_private *ip);
 120static void ioc3_init(struct net_device *dev);
 121static int ioc3_alloc_rx_bufs(struct net_device *dev);
 122static void ioc3_free_rx_bufs(struct ioc3_private *ip);
 123static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
 124
 125static const char ioc3_str[] = "IOC3 Ethernet";
 126static const struct ethtool_ops ioc3_ethtool_ops;
 127
 128
 129static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
 130{
 131	return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
 132}
 133
 134static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
 135				 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
 136{
 137	struct sk_buff *new_skb;
 138	dma_addr_t d;
 139	int offset;
 140
 141	new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
 142	if (!new_skb)
 143		return -ENOMEM;
 144
 145	/* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
 146	offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
 147	if (offset)
 148		skb_reserve(new_skb, offset);
 149
 150	d = dma_map_single(ip->dma_dev, new_skb->data,
 151			   RX_BUF_SIZE, DMA_FROM_DEVICE);
 152
 153	if (dma_mapping_error(ip->dma_dev, d)) {
 154		dev_kfree_skb_any(new_skb);
 155		return -ENOMEM;
 156	}
 157	*rxb_dma = d;
 158	*rxb = (struct ioc3_erxbuf *)new_skb->data;
 159	skb_reserve(new_skb, RX_OFFSET);
 160	*skb = new_skb;
 161
 162	return 0;
 163}
 164
 165#ifdef CONFIG_PCI_XTALK_BRIDGE
 166static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
 167{
 168	return (addr & ~PCI64_ATTR_BAR) | attr;
 169}
 170
 171#define ERBAR_VAL	(ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
 172#else
 173static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
 174{
 175	return addr;
 176}
 177
 178#define ERBAR_VAL	0
 179#endif
 180
 181#define IOC3_SIZE 0x100000
 182
 183static inline u32 mcr_pack(u32 pulse, u32 sample)
 184{
 185	return (pulse << 10) | (sample << 2);
 186}
 187
 188static int nic_wait(u32 __iomem *mcr)
 189{
 190	u32 m;
 191
 192	do {
 193		m = readl(mcr);
 194	} while (!(m & 2));
 195
 196	return m & 1;
 197}
 198
 199static int nic_reset(u32 __iomem *mcr)
 200{
 201	int presence;
 202
 203	writel(mcr_pack(500, 65), mcr);
 204	presence = nic_wait(mcr);
 205
 206	writel(mcr_pack(0, 500), mcr);
 207	nic_wait(mcr);
 208
 209	return presence;
 210}
 211
 212static inline int nic_read_bit(u32 __iomem *mcr)
 213{
 214	int result;
 215
 216	writel(mcr_pack(6, 13), mcr);
 217	result = nic_wait(mcr);
 218	writel(mcr_pack(0, 100), mcr);
 219	nic_wait(mcr);
 220
 221	return result;
 222}
 223
 224static inline void nic_write_bit(u32 __iomem *mcr, int bit)
 225{
 226	if (bit)
 227		writel(mcr_pack(6, 110), mcr);
 228	else
 229		writel(mcr_pack(80, 30), mcr);
 230
 231	nic_wait(mcr);
 232}
 233
 234/* Read a byte from an iButton device
 235 */
 236static u32 nic_read_byte(u32 __iomem *mcr)
 237{
 238	u32 result = 0;
 239	int i;
 240
 241	for (i = 0; i < 8; i++)
 242		result = (result >> 1) | (nic_read_bit(mcr) << 7);
 243
 244	return result;
 245}
 246
 247/* Write a byte to an iButton device
 248 */
 249static void nic_write_byte(u32 __iomem *mcr, int byte)
 250{
 251	int i, bit;
 252
 253	for (i = 8; i; i--) {
 254		bit = byte & 1;
 255		byte >>= 1;
 256
 257		nic_write_bit(mcr, bit);
 258	}
 259}
 260
 261static u64 nic_find(u32 __iomem *mcr, int *last)
 262{
 263	int a, b, index, disc;
 264	u64 address = 0;
 265
 266	nic_reset(mcr);
 267	/* Search ROM.  */
 268	nic_write_byte(mcr, 0xf0);
 269
 270	/* Algorithm from ``Book of iButton Standards''.  */
 271	for (index = 0, disc = 0; index < 64; index++) {
 272		a = nic_read_bit(mcr);
 273		b = nic_read_bit(mcr);
 274
 275		if (a && b) {
 276			pr_warn("NIC search failed (not fatal).\n");
 277			*last = 0;
 278			return 0;
 279		}
 280
 281		if (!a && !b) {
 282			if (index == *last) {
 283				address |= 1UL << index;
 284			} else if (index > *last) {
 285				address &= ~(1UL << index);
 286				disc = index;
 287			} else if ((address & (1UL << index)) == 0) {
 288				disc = index;
 289			}
 290			nic_write_bit(mcr, address & (1UL << index));
 291			continue;
 292		} else {
 293			if (a)
 294				address |= 1UL << index;
 295			else
 296				address &= ~(1UL << index);
 297			nic_write_bit(mcr, a);
 298			continue;
 299		}
 300	}
 301
 302	*last = disc;
 303
 304	return address;
 305}
 306
 307static int nic_init(u32 __iomem *mcr)
 308{
 309	const char *unknown = "unknown";
 310	const char *type = unknown;
 311	u8 crc;
 312	u8 serial[6];
 313	int save = 0, i;
 314
 315	while (1) {
 316		u64 reg;
 317
 318		reg = nic_find(mcr, &save);
 319
 320		switch (reg & 0xff) {
 321		case 0x91:
 322			type = "DS1981U";
 323			break;
 324		default:
 325			if (save == 0) {
 326				/* Let the caller try again.  */
 327				return -1;
 328			}
 329			continue;
 330		}
 331
 332		nic_reset(mcr);
 333
 334		/* Match ROM.  */
 335		nic_write_byte(mcr, 0x55);
 336		for (i = 0; i < 8; i++)
 337			nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
 338
 339		reg >>= 8; /* Shift out type.  */
 340		for (i = 0; i < 6; i++) {
 341			serial[i] = reg & 0xff;
 342			reg >>= 8;
 343		}
 344		crc = reg & 0xff;
 345		break;
 346	}
 347
 348	pr_info("Found %s NIC", type);
 349	if (type != unknown)
 350		pr_cont(" registration number %pM, CRC %02x", serial, crc);
 351	pr_cont(".\n");
 352
 353	return 0;
 354}
 355
 356/* Read the NIC (Number-In-a-Can) device used to store the MAC address on
 357 * SN0 / SN00 nodeboards and PCI cards.
 358 */
 359static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
 360{
 361	u32 __iomem *mcr = &ip->all_regs->mcr;
 362	int tries = 2; /* There may be some problem with the battery?  */
 363	u8 nic[14];
 364	int i;
 365
 366	writel(1 << 21, &ip->all_regs->gpcr_s);
 367
 368	while (tries--) {
 369		if (!nic_init(mcr))
 370			break;
 371		udelay(500);
 372	}
 373
 374	if (tries < 0) {
 375		pr_err("Failed to read MAC address\n");
 376		return;
 377	}
 378
 379	/* Read Memory.  */
 380	nic_write_byte(mcr, 0xf0);
 381	nic_write_byte(mcr, 0x00);
 382	nic_write_byte(mcr, 0x00);
 383
 384	for (i = 13; i >= 0; i--)
 385		nic[i] = nic_read_byte(mcr);
 386
 387	for (i = 2; i < 8; i++)
 388		ip->dev->dev_addr[i - 2] = nic[i];
 389}
 390
 391/* Ok, this is hosed by design.  It's necessary to know what machine the
 392 * NIC is in in order to know how to read the NIC address.  We also have
 393 * to know if it's a PCI card or a NIC in on the node board ...
 394 */
 395static void ioc3_get_eaddr(struct ioc3_private *ip)
 396{
 397	ioc3_get_eaddr_nic(ip);
 398
 399	pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
 400}
 401
 402static void __ioc3_set_mac_address(struct net_device *dev)
 403{
 404	struct ioc3_private *ip = netdev_priv(dev);
 405
 406	writel((dev->dev_addr[5] <<  8) |
 407	       dev->dev_addr[4],
 408	       &ip->regs->emar_h);
 409	writel((dev->dev_addr[3] << 24) |
 410	       (dev->dev_addr[2] << 16) |
 411	       (dev->dev_addr[1] <<  8) |
 412	       dev->dev_addr[0],
 413	       &ip->regs->emar_l);
 414}
 415
 416static int ioc3_set_mac_address(struct net_device *dev, void *addr)
 417{
 418	struct ioc3_private *ip = netdev_priv(dev);
 419	struct sockaddr *sa = addr;
 420
 421	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
 422
 423	spin_lock_irq(&ip->ioc3_lock);
 424	__ioc3_set_mac_address(dev);
 425	spin_unlock_irq(&ip->ioc3_lock);
 426
 427	return 0;
 428}
 429
 430/* Caller must hold the ioc3_lock ever for MII readers.  This is also
 431 * used to protect the transmitter side but it's low contention.
 432 */
 433static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
 434{
 435	struct ioc3_private *ip = netdev_priv(dev);
 436	struct ioc3_ethregs *regs = ip->regs;
 437
 438	while (readl(&regs->micr) & MICR_BUSY)
 439		;
 440	writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
 441	       &regs->micr);
 442	while (readl(&regs->micr) & MICR_BUSY)
 443		;
 444
 445	return readl(&regs->midr_r) & MIDR_DATA_MASK;
 446}
 447
 448static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
 449{
 450	struct ioc3_private *ip = netdev_priv(dev);
 451	struct ioc3_ethregs *regs = ip->regs;
 452
 453	while (readl(&regs->micr) & MICR_BUSY)
 454		;
 455	writel(data, &regs->midr_w);
 456	writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
 457	while (readl(&regs->micr) & MICR_BUSY)
 458		;
 459}
 460
 461static int ioc3_mii_init(struct ioc3_private *ip);
 462
 463static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
 464{
 465	struct ioc3_private *ip = netdev_priv(dev);
 466	struct ioc3_ethregs *regs = ip->regs;
 467
 468	dev->stats.collisions += readl(&regs->etcdc) & ETCDC_COLLCNT_MASK;
 469	return &dev->stats;
 470}
 471
 472static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
 473{
 474	struct ethhdr *eh = eth_hdr(skb);
 475	unsigned int proto;
 476	unsigned char *cp;
 477	struct iphdr *ih;
 478	u32 csum, ehsum;
 479	u16 *ew;
 480
 481	/* Did hardware handle the checksum at all?  The cases we can handle
 482	 * are:
 483	 *
 484	 * - TCP and UDP checksums of IPv4 only.
 485	 * - IPv6 would be doable but we keep that for later ...
 486	 * - Only unfragmented packets.  Did somebody already tell you
 487	 *   fragmentation is evil?
 488	 * - don't care about packet size.  Worst case when processing a
 489	 *   malformed packet we'll try to access the packet at ip header +
 490	 *   64 bytes which is still inside the skb.  Even in the unlikely
 491	 *   case where the checksum is right the higher layers will still
 492	 *   drop the packet as appropriate.
 493	 */
 494	if (eh->h_proto != htons(ETH_P_IP))
 495		return;
 496
 497	ih = (struct iphdr *)((char *)eh + ETH_HLEN);
 498	if (ip_is_fragment(ih))
 499		return;
 500
 501	proto = ih->protocol;
 502	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
 503		return;
 504
 505	/* Same as tx - compute csum of pseudo header  */
 506	csum = hwsum +
 507	       (ih->tot_len - (ih->ihl << 2)) +
 508	       htons((u16)ih->protocol) +
 509	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
 510	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
 511
 512	/* Sum up ethernet dest addr, src addr and protocol  */
 513	ew = (u16 *)eh;
 514	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
 515
 516	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 517	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 518
 519	csum += 0xffff ^ ehsum;
 520
 521	/* In the next step we also subtract the 1's complement
 522	 * checksum of the trailing ethernet CRC.
 523	 */
 524	cp = (char *)eh + len;	/* points at trailing CRC */
 525	if (len & 1) {
 526		csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
 527		csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
 528	} else {
 529		csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
 530		csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
 531	}
 532
 533	csum = (csum & 0xffff) + (csum >> 16);
 534	csum = (csum & 0xffff) + (csum >> 16);
 535
 536	if (csum == 0xffff)
 537		skb->ip_summed = CHECKSUM_UNNECESSARY;
 538}
 539
 540static inline void ioc3_rx(struct net_device *dev)
 541{
 542	struct ioc3_private *ip = netdev_priv(dev);
 543	struct sk_buff *skb, *new_skb;
 544	int rx_entry, n_entry, len;
 545	struct ioc3_erxbuf *rxb;
 546	unsigned long *rxr;
 547	dma_addr_t d;
 548	u32 w0, err;
 549
 550	rxr = ip->rxr;		/* Ring base */
 551	rx_entry = ip->rx_ci;				/* RX consume index */
 552	n_entry = ip->rx_pi;
 553
 554	skb = ip->rx_skbs[rx_entry];
 555	rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
 556	w0 = be32_to_cpu(rxb->w0);
 557
 558	while (w0 & ERXBUF_V) {
 559		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
 560		if (err & ERXBUF_GOODPKT) {
 561			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
 562			skb_put(skb, len);
 563			skb->protocol = eth_type_trans(skb, dev);
 564
 565			if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
 566				/* Ouch, drop packet and just recycle packet
 567				 * to keep the ring filled.
 568				 */
 569				dev->stats.rx_dropped++;
 570				new_skb = skb;
 571				d = rxr[rx_entry];
 572				goto next;
 573			}
 574
 575			if (likely(dev->features & NETIF_F_RXCSUM))
 576				ioc3_tcpudp_checksum(skb,
 577						     w0 & ERXBUF_IPCKSUM_MASK,
 578						     len);
 579
 580			dma_unmap_single(ip->dma_dev, rxr[rx_entry],
 581					 RX_BUF_SIZE, DMA_FROM_DEVICE);
 582
 583			netif_rx(skb);
 584
 585			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
 586
 587			dev->stats.rx_packets++;		/* Statistics */
 588			dev->stats.rx_bytes += len;
 589		} else {
 590			/* The frame is invalid and the skb never
 591			 * reached the network layer so we can just
 592			 * recycle it.
 593			 */
 594			new_skb = skb;
 595			d = rxr[rx_entry];
 596			dev->stats.rx_errors++;
 597		}
 598		if (err & ERXBUF_CRCERR)	/* Statistics */
 599			dev->stats.rx_crc_errors++;
 600		if (err & ERXBUF_FRAMERR)
 601			dev->stats.rx_frame_errors++;
 602
 603next:
 604		ip->rx_skbs[n_entry] = new_skb;
 605		rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
 606		rxb->w0 = 0;				/* Clear valid flag */
 607		n_entry = (n_entry + 1) & RX_RING_MASK;	/* Update erpir */
 608
 609		/* Now go on to the next ring entry.  */
 610		rx_entry = (rx_entry + 1) & RX_RING_MASK;
 611		skb = ip->rx_skbs[rx_entry];
 612		rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
 613		w0 = be32_to_cpu(rxb->w0);
 614	}
 615	writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
 616	ip->rx_pi = n_entry;
 617	ip->rx_ci = rx_entry;
 618}
 619
 620static inline void ioc3_tx(struct net_device *dev)
 621{
 622	struct ioc3_private *ip = netdev_priv(dev);
 623	struct ioc3_ethregs *regs = ip->regs;
 624	unsigned long packets, bytes;
 625	int tx_entry, o_entry;
 626	struct sk_buff *skb;
 627	u32 etcir;
 628
 629	spin_lock(&ip->ioc3_lock);
 630	etcir = readl(&regs->etcir);
 631
 632	tx_entry = (etcir >> 7) & TX_RING_MASK;
 633	o_entry = ip->tx_ci;
 634	packets = 0;
 635	bytes = 0;
 636
 637	while (o_entry != tx_entry) {
 638		packets++;
 639		skb = ip->tx_skbs[o_entry];
 640		bytes += skb->len;
 641		dev_consume_skb_irq(skb);
 642		ip->tx_skbs[o_entry] = NULL;
 643
 644		o_entry = (o_entry + 1) & TX_RING_MASK;	/* Next */
 645
 646		etcir = readl(&regs->etcir);		/* More pkts sent?  */
 647		tx_entry = (etcir >> 7) & TX_RING_MASK;
 648	}
 649
 650	dev->stats.tx_packets += packets;
 651	dev->stats.tx_bytes += bytes;
 652	ip->txqlen -= packets;
 653
 654	if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
 655		netif_wake_queue(dev);
 656
 657	ip->tx_ci = o_entry;
 658	spin_unlock(&ip->ioc3_lock);
 659}
 660
 661/* Deal with fatal IOC3 errors.  This condition might be caused by a hard or
 662 * software problems, so we should try to recover
 663 * more gracefully if this ever happens.  In theory we might be flooded
 664 * with such error interrupts if something really goes wrong, so we might
 665 * also consider to take the interface down.
 666 */
 667static void ioc3_error(struct net_device *dev, u32 eisr)
 668{
 669	struct ioc3_private *ip = netdev_priv(dev);
 670
 671	spin_lock(&ip->ioc3_lock);
 672
 673	if (eisr & EISR_RXOFLO)
 674		net_err_ratelimited("%s: RX overflow.\n", dev->name);
 675	if (eisr & EISR_RXBUFOFLO)
 676		net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
 677	if (eisr & EISR_RXMEMERR)
 678		net_err_ratelimited("%s: RX PCI error.\n", dev->name);
 679	if (eisr & EISR_RXPARERR)
 680		net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
 681	if (eisr & EISR_TXBUFUFLO)
 682		net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
 683	if (eisr & EISR_TXMEMERR)
 684		net_err_ratelimited("%s: TX PCI error.\n", dev->name);
 685
 686	ioc3_stop(ip);
 687	ioc3_free_rx_bufs(ip);
 688	ioc3_clean_tx_ring(ip);
 689
 690	ioc3_init(dev);
 691	if (ioc3_alloc_rx_bufs(dev)) {
 692		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
 693		spin_unlock(&ip->ioc3_lock);
 694		return;
 695	}
 696	ioc3_start(ip);
 697	ioc3_mii_init(ip);
 698
 699	netif_wake_queue(dev);
 700
 701	spin_unlock(&ip->ioc3_lock);
 702}
 703
 704/* The interrupt handler does all of the Rx thread work and cleans up
 705 * after the Tx thread.
 706 */
 707static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
 708{
 709	struct ioc3_private *ip = netdev_priv(dev_id);
 710	struct ioc3_ethregs *regs = ip->regs;
 711	u32 eisr;
 712
 713	eisr = readl(&regs->eisr);
 714	writel(eisr, &regs->eisr);
 715	readl(&regs->eisr);				/* Flush */
 716
 717	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
 718		    EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
 719		ioc3_error(dev_id, eisr);
 720	if (eisr & EISR_RXTIMERINT)
 721		ioc3_rx(dev_id);
 722	if (eisr & EISR_TXEXPLICIT)
 723		ioc3_tx(dev_id);
 724
 725	return IRQ_HANDLED;
 726}
 727
 728static inline void ioc3_setup_duplex(struct ioc3_private *ip)
 729{
 730	struct ioc3_ethregs *regs = ip->regs;
 731
 732	spin_lock_irq(&ip->ioc3_lock);
 733
 734	if (ip->mii.full_duplex) {
 735		writel(ETCSR_FD, &regs->etcsr);
 736		ip->emcr |= EMCR_DUPLEX;
 737	} else {
 738		writel(ETCSR_HD, &regs->etcsr);
 739		ip->emcr &= ~EMCR_DUPLEX;
 740	}
 741	writel(ip->emcr, &regs->emcr);
 742
 743	spin_unlock_irq(&ip->ioc3_lock);
 744}
 745
 746static void ioc3_timer(struct timer_list *t)
 747{
 748	struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
 749
 750	/* Print the link status if it has changed */
 751	mii_check_media(&ip->mii, 1, 0);
 752	ioc3_setup_duplex(ip);
 753
 754	ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
 755	add_timer(&ip->ioc3_timer);
 756}
 757
 758/* Try to find a PHY.  There is no apparent relation between the MII addresses
 759 * in the SGI documentation and what we find in reality, so we simply probe
 760 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
 761 * onboard IOC3s has the special oddity that probing doesn't seem to find it
 762 * yet the interface seems to work fine, so if probing fails we for now will
 763 * simply default to PHY 31 instead of bailing out.
 764 */
 765static int ioc3_mii_init(struct ioc3_private *ip)
 766{
 767	int ioc3_phy_workaround = 1;
 768	int i, found = 0, res = 0;
 769	u16 word;
 770
 771	for (i = 0; i < 32; i++) {
 772		word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
 773
 774		if (word != 0xffff && word != 0x0000) {
 775			found = 1;
 776			break;			/* Found a PHY		*/
 777		}
 778	}
 779
 780	if (!found) {
 781		if (ioc3_phy_workaround) {
 782			i = 31;
 783		} else {
 784			ip->mii.phy_id = -1;
 785			res = -ENODEV;
 786			goto out;
 787		}
 788	}
 789
 790	ip->mii.phy_id = i;
 791
 792out:
 793	return res;
 794}
 795
 796static void ioc3_mii_start(struct ioc3_private *ip)
 797{
 798	ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10;  /* 1.2 sec. */
 799	add_timer(&ip->ioc3_timer);
 800}
 801
 802static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
 803{
 804	struct ioc3_etxd *desc;
 805	u32 cmd, bufcnt, len;
 806
 807	desc = &ip->txr[entry];
 808	cmd = be32_to_cpu(desc->cmd);
 809	bufcnt = be32_to_cpu(desc->bufcnt);
 810	if (cmd & ETXD_B1V) {
 811		len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
 812		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
 813				 len, DMA_TO_DEVICE);
 814	}
 815	if (cmd & ETXD_B2V) {
 816		len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
 817		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
 818				 len, DMA_TO_DEVICE);
 819	}
 820}
 821
 822static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
 823{
 824	struct sk_buff *skb;
 825	int i;
 826
 827	for (i = 0; i < TX_RING_ENTRIES; i++) {
 828		skb = ip->tx_skbs[i];
 829		if (skb) {
 830			ioc3_tx_unmap(ip, i);
 831			ip->tx_skbs[i] = NULL;
 832			dev_kfree_skb_any(skb);
 833		}
 834		ip->txr[i].cmd = 0;
 835	}
 836	ip->tx_pi = 0;
 837	ip->tx_ci = 0;
 838}
 839
 840static void ioc3_free_rx_bufs(struct ioc3_private *ip)
 841{
 842	int rx_entry, n_entry;
 843	struct sk_buff *skb;
 844
 845	n_entry = ip->rx_ci;
 846	rx_entry = ip->rx_pi;
 847
 848	while (n_entry != rx_entry) {
 849		skb = ip->rx_skbs[n_entry];
 850		if (skb) {
 851			dma_unmap_single(ip->dma_dev,
 852					 be64_to_cpu(ip->rxr[n_entry]),
 853					 RX_BUF_SIZE, DMA_FROM_DEVICE);
 854			dev_kfree_skb_any(skb);
 855		}
 856		n_entry = (n_entry + 1) & RX_RING_MASK;
 857	}
 858}
 859
 860static int ioc3_alloc_rx_bufs(struct net_device *dev)
 861{
 862	struct ioc3_private *ip = netdev_priv(dev);
 863	struct ioc3_erxbuf *rxb;
 864	dma_addr_t d;
 865	int i;
 866
 867	/* Now the rx buffers.  The RX ring may be larger but
 868	 * we only allocate 16 buffers for now.  Need to tune
 869	 * this for performance and memory later.
 870	 */
 871	for (i = 0; i < RX_BUFFS; i++) {
 872		if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
 873			return -ENOMEM;
 874
 875		rxb->w0 = 0;	/* Clear valid flag */
 876		ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
 877	}
 878	ip->rx_ci = 0;
 879	ip->rx_pi = RX_BUFFS;
 880
 881	return 0;
 882}
 883
 884static inline void ioc3_ssram_disc(struct ioc3_private *ip)
 885{
 886	struct ioc3_ethregs *regs = ip->regs;
 887	u32 *ssram0 = &ip->ssram[0x0000];
 888	u32 *ssram1 = &ip->ssram[0x4000];
 889	u32 pattern = 0x5555;
 890
 891	/* Assume the larger size SSRAM and enable parity checking */
 892	writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
 893	readl(&regs->emcr); /* Flush */
 894
 895	writel(pattern, ssram0);
 896	writel(~pattern & IOC3_SSRAM_DM, ssram1);
 897
 898	if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
 899	    (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
 900		/* set ssram size to 64 KB */
 901		ip->emcr |= EMCR_RAMPAR;
 902		writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
 903	} else {
 904		ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
 905	}
 906}
 907
 908static void ioc3_init(struct net_device *dev)
 909{
 910	struct ioc3_private *ip = netdev_priv(dev);
 911	struct ioc3_ethregs *regs = ip->regs;
 912
 913	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
 914
 915	writel(EMCR_RST, &regs->emcr);		/* Reset		*/
 916	readl(&regs->emcr);			/* Flush WB		*/
 917	udelay(4);				/* Give it time ...	*/
 918	writel(0, &regs->emcr);
 919	readl(&regs->emcr);
 920
 921	/* Misc registers  */
 922	writel(ERBAR_VAL, &regs->erbar);
 923	readl(&regs->etcdc);			/* Clear on read */
 924	writel(15, &regs->ercsr);		/* RX low watermark  */
 925	writel(0, &regs->ertr);			/* Interrupt immediately */
 926	__ioc3_set_mac_address(dev);
 927	writel(ip->ehar_h, &regs->ehar_h);
 928	writel(ip->ehar_l, &regs->ehar_l);
 929	writel(42, &regs->ersr);		/* XXX should be random */
 930}
 931
 932static void ioc3_start(struct ioc3_private *ip)
 933{
 934	struct ioc3_ethregs *regs = ip->regs;
 935	unsigned long ring;
 936
 937	/* Now the rx ring base, consume & produce registers.  */
 938	ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
 939	writel(ring >> 32, &regs->erbr_h);
 940	writel(ring & 0xffffffff, &regs->erbr_l);
 941	writel(ip->rx_ci << 3, &regs->ercir);
 942	writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
 943
 944	ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
 945
 946	ip->txqlen = 0;					/* nothing queued  */
 947
 948	/* Now the tx ring base, consume & produce registers.  */
 949	writel(ring >> 32, &regs->etbr_h);
 950	writel(ring & 0xffffffff, &regs->etbr_l);
 951	writel(ip->tx_pi << 7, &regs->etpir);
 952	writel(ip->tx_ci << 7, &regs->etcir);
 953	readl(&regs->etcir);				/* Flush */
 954
 955	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
 956		    EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
 957	writel(ip->emcr, &regs->emcr);
 958	writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
 959	       EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
 960	       EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
 961	readl(&regs->eier);
 962}
 963
 964static inline void ioc3_stop(struct ioc3_private *ip)
 965{
 966	struct ioc3_ethregs *regs = ip->regs;
 967
 968	writel(0, &regs->emcr);			/* Shutup */
 969	writel(0, &regs->eier);			/* Disable interrupts */
 970	readl(&regs->eier);			/* Flush */
 971}
 972
 973static int ioc3_open(struct net_device *dev)
 974{
 975	struct ioc3_private *ip = netdev_priv(dev);
 976
 977	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
 978		netdev_err(dev, "Can't get irq %d\n", dev->irq);
 979
 980		return -EAGAIN;
 981	}
 982
 983	ip->ehar_h = 0;
 984	ip->ehar_l = 0;
 985
 986	ioc3_init(dev);
 987	if (ioc3_alloc_rx_bufs(dev)) {
 988		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
 989		return -ENOMEM;
 990	}
 991	ioc3_start(ip);
 992	ioc3_mii_start(ip);
 993
 994	netif_start_queue(dev);
 995	return 0;
 996}
 997
 998static int ioc3_close(struct net_device *dev)
 999{
1000	struct ioc3_private *ip = netdev_priv(dev);
1001
1002	del_timer_sync(&ip->ioc3_timer);
1003
1004	netif_stop_queue(dev);
1005
1006	ioc3_stop(ip);
1007	free_irq(dev->irq, dev);
1008
1009	ioc3_free_rx_bufs(ip);
1010	ioc3_clean_tx_ring(ip);
1011
1012	return 0;
1013}
1014
1015/* MENET cards have four IOC3 chips, which are attached to two sets of
1016 * PCI slot resources each: the primary connections are on slots
1017 * 0..3 and the secondaries are on 4..7
1018 *
1019 * All four ethernets are brought out to connectors; six serial ports
1020 * (a pair from each of the first three IOC3s) are brought out to
1021 * MiniDINs; all other subdevices are left swinging in the wind, leave
1022 * them disabled.
1023 */
1024
1025static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1026{
1027	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1028	int ret = 0;
1029
1030	if (dev) {
1031		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1032		    dev->device == PCI_DEVICE_ID_SGI_IOC3)
1033			ret = 1;
1034		pci_dev_put(dev);
1035	}
1036
1037	return ret;
1038}
1039
1040static int ioc3_is_menet(struct pci_dev *pdev)
1041{
1042	return !pdev->bus->parent &&
1043	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1044	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1045	       ioc3_adjacent_is_ioc3(pdev, 2);
1046}
1047
1048#ifdef CONFIG_SERIAL_8250
1049/* Note about serial ports and consoles:
1050 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1051 * connected to the master node (look in ip27_setup_console() and
1052 * ip27prom_console_write()).
1053 *
1054 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1055 * addresses on a partitioned machine. Since we currently use the ioc3
1056 * serial ports, we use dynamic serial port discovery that the serial.c
1057 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1058 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1059 * than UARTB's, although UARTA on o200s has traditionally been known as
1060 * port 0. So, we just use one serial port from each ioc3 (since the
1061 * serial driver adds addresses to get to higher ports).
1062 *
1063 * The first one to do a register_console becomes the preferred console
1064 * (if there is no kernel command line console= directive). /dev/console
1065 * (ie 5, 1) is then "aliased" into the device number returned by the
1066 * "device" routine referred to in this console structure
1067 * (ip27prom_console_dev).
1068 *
1069 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1070 * around ioc3 oddities in this respect.
1071 *
1072 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1073 * can be programmed in the SCR register if the DLAB bit is set.
1074 *
1075 * Register to interrupt zero because we share the interrupt with
1076 * the serial driver which we don't properly support yet.
1077 *
1078 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1079 * registered.
1080 */
1081static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1082{
1083#define COSMISC_CONSTANT 6
1084
1085	struct uart_8250_port port = {
1086		.port = {
1087			.irq		= 0,
1088			.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1089			.iotype		= UPIO_MEM,
1090			.regshift	= 0,
1091			.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1092
1093			.membase	= (unsigned char __iomem *)uart,
1094			.mapbase	= (unsigned long)uart,
1095		}
1096	};
1097	unsigned char lcr;
1098
1099	lcr = readb(&uart->iu_lcr);
1100	writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
1101	writeb(COSMISC_CONSTANT, &uart->iu_scr);
1102	writeb(lcr, &uart->iu_lcr);
1103	readb(&uart->iu_lcr);
1104	serial8250_register_8250_port(&port);
1105}
1106
1107static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1108{
1109	u32 sio_iec;
1110
1111	/* We need to recognice and treat the fourth MENET serial as it
1112	 * does not have an SuperIO chip attached to it, therefore attempting
1113	 * to access it will result in bus errors.  We call something an
1114	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1115	 * in it.  This is paranoid but we want to avoid blowing up on a
1116	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1117	 * not paranoid enough ...
1118	 */
1119	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1120		return;
1121
1122	/* Switch IOC3 to PIO mode.  It probably already was but let's be
1123	 * paranoid
1124	 */
1125	writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
1126	readl(&ioc3->gpcr_s);
1127	writel(0, &ioc3->gppr[6]);
1128	readl(&ioc3->gppr[6]);
1129	writel(0, &ioc3->gppr[7]);
1130	readl(&ioc3->gppr[7]);
1131	writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
1132	readl(&ioc3->port_a.sscr);
1133	writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
1134	readl(&ioc3->port_b.sscr);
1135	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1136	sio_iec = readl(&ioc3->sio_iec);
1137	sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1138		     SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1139		     SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1140		     SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1141	sio_iec |= SIO_IR_SA_INT;
1142	sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1143		     SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1144		     SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1145		     SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1146	sio_iec |= SIO_IR_SB_INT;
1147	writel(sio_iec, &ioc3->sio_iec);
1148	writel(0, &ioc3->port_a.sscr);
1149	writel(0, &ioc3->port_b.sscr);
1150
1151	ioc3_8250_register(&ioc3->sregs.uarta);
1152	ioc3_8250_register(&ioc3->sregs.uartb);
1153}
1154#endif
1155
1156static const struct net_device_ops ioc3_netdev_ops = {
1157	.ndo_open		= ioc3_open,
1158	.ndo_stop		= ioc3_close,
1159	.ndo_start_xmit		= ioc3_start_xmit,
1160	.ndo_tx_timeout		= ioc3_timeout,
1161	.ndo_get_stats		= ioc3_get_stats,
1162	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1163	.ndo_do_ioctl		= ioc3_ioctl,
1164	.ndo_validate_addr	= eth_validate_addr,
1165	.ndo_set_mac_address	= ioc3_set_mac_address,
1166};
1167
1168static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1169{
1170	unsigned int sw_physid1, sw_physid2;
1171	struct net_device *dev = NULL;
1172	struct ioc3_private *ip;
1173	struct ioc3 *ioc3;
1174	unsigned long ioc3_base, ioc3_size;
1175	u32 vendor, model, rev;
1176	int err, pci_using_dac;
1177
1178	/* Configure DMA attributes. */
1179	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1180	if (!err) {
1181		pci_using_dac = 1;
1182		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1183		if (err < 0) {
1184			pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
1185			       pci_name(pdev));
1186			goto out;
1187		}
1188	} else {
1189		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1190		if (err) {
1191			pr_err("%s: No usable DMA configuration, aborting.\n",
1192			       pci_name(pdev));
1193			goto out;
1194		}
1195		pci_using_dac = 0;
1196	}
1197
1198	if (pci_enable_device(pdev))
1199		return -ENODEV;
1200
1201	dev = alloc_etherdev(sizeof(struct ioc3_private));
1202	if (!dev) {
1203		err = -ENOMEM;
1204		goto out_disable;
1205	}
1206
1207	if (pci_using_dac)
1208		dev->features |= NETIF_F_HIGHDMA;
1209
1210	err = pci_request_regions(pdev, "ioc3");
1211	if (err)
1212		goto out_free;
1213
1214	SET_NETDEV_DEV(dev, &pdev->dev);
1215
1216	ip = netdev_priv(dev);
1217	ip->dev = dev;
1218	ip->dma_dev = &pdev->dev;
1219
1220	dev->irq = pdev->irq;
1221
1222	ioc3_base = pci_resource_start(pdev, 0);
1223	ioc3_size = pci_resource_len(pdev, 0);
1224	ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
1225	if (!ioc3) {
1226		pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
1227		       pci_name(pdev));
1228		err = -ENOMEM;
1229		goto out_res;
1230	}
1231	ip->regs = &ioc3->eth;
1232	ip->ssram = ioc3->ssram;
1233	ip->all_regs = ioc3;
1234
1235#ifdef CONFIG_SERIAL_8250
1236	ioc3_serial_probe(pdev, ioc3);
1237#endif
1238
1239	spin_lock_init(&ip->ioc3_lock);
1240	timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1241
1242	ioc3_stop(ip);
1243
1244	/* Allocate rx ring.  4kb = 512 entries, must be 4kb aligned */
1245	ip->rxr = dma_direct_alloc_pages(ip->dma_dev, RX_RING_SIZE,
1246					 &ip->rxr_dma, GFP_ATOMIC, 0);
1247	if (!ip->rxr) {
1248		pr_err("ioc3-eth: rx ring allocation failed\n");
1249		err = -ENOMEM;
1250		goto out_stop;
1251	}
1252
1253	/* Allocate tx rings.  16kb = 128 bufs, must be 16kb aligned  */
1254	ip->txr = dma_direct_alloc_pages(ip->dma_dev, TX_RING_SIZE,
1255					 &ip->txr_dma,
1256					 GFP_KERNEL | __GFP_ZERO, 0);
1257	if (!ip->txr) {
1258		pr_err("ioc3-eth: tx ring allocation failed\n");
1259		err = -ENOMEM;
1260		goto out_stop;
1261	}
1262
1263	ioc3_init(dev);
1264
1265	ip->pdev = pdev;
1266
1267	ip->mii.phy_id_mask = 0x1f;
1268	ip->mii.reg_num_mask = 0x1f;
1269	ip->mii.dev = dev;
1270	ip->mii.mdio_read = ioc3_mdio_read;
1271	ip->mii.mdio_write = ioc3_mdio_write;
1272
1273	ioc3_mii_init(ip);
1274
1275	if (ip->mii.phy_id == -1) {
1276		pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1277		       pci_name(pdev));
1278		err = -ENODEV;
1279		goto out_stop;
1280	}
1281
1282	ioc3_mii_start(ip);
1283	ioc3_ssram_disc(ip);
1284	ioc3_get_eaddr(ip);
1285
1286	/* The IOC3-specific entries in the device structure. */
1287	dev->watchdog_timeo	= 5 * HZ;
1288	dev->netdev_ops		= &ioc3_netdev_ops;
1289	dev->ethtool_ops	= &ioc3_ethtool_ops;
1290	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1291	dev->features		= NETIF_F_IP_CSUM;
1292
1293	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1294	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1295
1296	err = register_netdev(dev);
1297	if (err)
1298		goto out_stop;
1299
1300	mii_check_media(&ip->mii, 1, 1);
1301	ioc3_setup_duplex(ip);
1302
1303	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1304	model  = (sw_physid2 >> 4) & 0x3f;
1305	rev    = sw_physid2 & 0xf;
1306	netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
1307		    ip->mii.phy_id, vendor, model, rev);
1308	netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
1309		    ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1310
1311	return 0;
1312
1313out_stop:
1314	del_timer_sync(&ip->ioc3_timer);
1315	if (ip->rxr)
1316		dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1317				      ip->rxr_dma, 0);
1318	if (ip->txr)
1319		dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1320				      ip->txr_dma, 0);
1321out_res:
1322	pci_release_regions(pdev);
1323out_free:
1324	free_netdev(dev);
1325out_disable:
1326	/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1327	 * such a weird device ...
1328	 */
1329out:
1330	return err;
1331}
1332
1333static void ioc3_remove_one(struct pci_dev *pdev)
1334{
1335	struct net_device *dev = pci_get_drvdata(pdev);
1336	struct ioc3_private *ip = netdev_priv(dev);
1337
1338	dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1339			      ip->rxr_dma, 0);
1340	dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1341			      ip->txr_dma, 0);
1342
1343	unregister_netdev(dev);
1344	del_timer_sync(&ip->ioc3_timer);
1345
1346	iounmap(ip->all_regs);
1347	pci_release_regions(pdev);
1348	free_netdev(dev);
1349	/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1350	 * such a weird device ...
1351	 */
1352}
1353
1354static const struct pci_device_id ioc3_pci_tbl[] = {
1355	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1356	{ 0 }
1357};
1358MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1359
1360static struct pci_driver ioc3_driver = {
1361	.name		= "ioc3-eth",
1362	.id_table	= ioc3_pci_tbl,
1363	.probe		= ioc3_probe,
1364	.remove		= ioc3_remove_one,
1365};
1366
1367static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1368{
1369	struct ioc3_private *ip = netdev_priv(dev);
1370	struct ioc3_etxd *desc;
1371	unsigned long data;
1372	unsigned int len;
1373	int produce;
1374	u32 w0 = 0;
1375
1376	/* IOC3 has a fairly simple minded checksumming hardware which simply
1377	 * adds up the 1's complement checksum for the entire packet and
1378	 * inserts it at an offset which can be specified in the descriptor
1379	 * into the transmit packet.  This means we have to compensate for the
1380	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1381	 * manually.
1382	 */
1383	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1384		const struct iphdr *ih = ip_hdr(skb);
1385		const int proto = ntohs(ih->protocol);
1386		unsigned int csoff;
1387		u32 csum, ehsum;
1388		u16 *eh;
1389
1390		/* The MAC header.  skb->mac seem the logic approach
1391		 * to find the MAC header - except it's a NULL pointer ...
1392		 */
1393		eh = (u16 *)skb->data;
1394
1395		/* Sum up dest addr, src addr and protocol  */
1396		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1397
1398		/* Skip IP header; it's sum is always zero and was
1399		 * already filled in by ip_output.c
1400		 */
1401		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1402					  ih->tot_len - (ih->ihl << 2),
1403					  proto, csum_fold(ehsum));
1404
1405		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1406		csum = (csum & 0xffff) + (csum >> 16);
1407
1408		csoff = ETH_HLEN + (ih->ihl << 2);
1409		if (proto == IPPROTO_UDP) {
1410			csoff += offsetof(struct udphdr, check);
1411			udp_hdr(skb)->check = csum;
1412		}
1413		if (proto == IPPROTO_TCP) {
1414			csoff += offsetof(struct tcphdr, check);
1415			tcp_hdr(skb)->check = csum;
1416		}
1417
1418		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1419	}
1420
1421	spin_lock_irq(&ip->ioc3_lock);
1422
1423	data = (unsigned long)skb->data;
1424	len = skb->len;
1425
1426	produce = ip->tx_pi;
1427	desc = &ip->txr[produce];
1428
1429	if (len <= 104) {
1430		/* Short packet, let's copy it directly into the ring.  */
1431		skb_copy_from_linear_data(skb, desc->data, skb->len);
1432		if (len < ETH_ZLEN) {
1433			/* Very short packet, pad with zeros at the end. */
1434			memset(desc->data + len, 0, ETH_ZLEN - len);
1435			len = ETH_ZLEN;
1436		}
1437		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1438		desc->bufcnt = cpu_to_be32(len);
1439	} else if ((data ^ (data + len - 1)) & 0x4000) {
1440		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1441		unsigned long s1 = b2 - data;
1442		unsigned long s2 = data + len - b2;
1443		dma_addr_t d1, d2;
1444
1445		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1446					   ETXD_B1V | ETXD_B2V | w0);
1447		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1448					   (s2 << ETXD_B2CNT_SHIFT));
1449		d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1450		if (dma_mapping_error(ip->dma_dev, d1))
1451			goto drop_packet;
1452		d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1453		if (dma_mapping_error(ip->dma_dev, d2)) {
1454			dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1455			goto drop_packet;
1456		}
1457		desc->p1     = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1458		desc->p2     = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1459	} else {
1460		dma_addr_t d;
1461
1462		/* Normal sized packet that doesn't cross a page boundary. */
1463		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1464		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1465		d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1466		if (dma_mapping_error(ip->dma_dev, d))
1467			goto drop_packet;
1468		desc->p1     = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1469	}
1470
1471	mb(); /* make sure all descriptor changes are visible */
1472
1473	ip->tx_skbs[produce] = skb;			/* Remember skb */
1474	produce = (produce + 1) & TX_RING_MASK;
1475	ip->tx_pi = produce;
1476	writel(produce << 7, &ip->regs->etpir);		/* Fire ... */
1477
1478	ip->txqlen++;
1479
1480	if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1481		netif_stop_queue(dev);
1482
1483	spin_unlock_irq(&ip->ioc3_lock);
1484
1485	return NETDEV_TX_OK;
1486
1487drop_packet:
1488	dev_kfree_skb_any(skb);
1489	dev->stats.tx_dropped++;
1490
1491	spin_unlock_irq(&ip->ioc3_lock);
1492
1493	return NETDEV_TX_OK;
1494}
1495
1496static void ioc3_timeout(struct net_device *dev)
1497{
1498	struct ioc3_private *ip = netdev_priv(dev);
1499
1500	netdev_err(dev, "transmit timed out, resetting\n");
1501
1502	spin_lock_irq(&ip->ioc3_lock);
1503
1504	ioc3_stop(ip);
1505	ioc3_free_rx_bufs(ip);
1506	ioc3_clean_tx_ring(ip);
1507
1508	ioc3_init(dev);
1509	if (ioc3_alloc_rx_bufs(dev)) {
1510		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1511		spin_unlock_irq(&ip->ioc3_lock);
1512		return;
1513	}
1514	ioc3_start(ip);
1515	ioc3_mii_init(ip);
1516	ioc3_mii_start(ip);
1517
1518	spin_unlock_irq(&ip->ioc3_lock);
1519
1520	netif_wake_queue(dev);
1521}
1522
1523/* Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
1526static inline unsigned int ioc3_hash(const unsigned char *addr)
1527{
1528	unsigned int temp = 0;
1529	int bits;
1530	u32 crc;
1531
1532	crc = ether_crc_le(ETH_ALEN, addr);
1533
1534	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1535	for (bits = 6; --bits >= 0; ) {
1536		temp <<= 1;
1537		temp |= (crc & 0x1);
1538		crc >>= 1;
1539	}
1540
1541	return temp;
1542}
1543
1544static void ioc3_get_drvinfo(struct net_device *dev,
1545			     struct ethtool_drvinfo *info)
1546{
1547	struct ioc3_private *ip = netdev_priv(dev);
1548
1549	strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1550	strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1551	strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1552}
1553
1554static int ioc3_get_link_ksettings(struct net_device *dev,
1555				   struct ethtool_link_ksettings *cmd)
1556{
1557	struct ioc3_private *ip = netdev_priv(dev);
1558
1559	spin_lock_irq(&ip->ioc3_lock);
1560	mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1561	spin_unlock_irq(&ip->ioc3_lock);
1562
1563	return 0;
1564}
1565
1566static int ioc3_set_link_ksettings(struct net_device *dev,
1567				   const struct ethtool_link_ksettings *cmd)
1568{
1569	struct ioc3_private *ip = netdev_priv(dev);
1570	int rc;
1571
1572	spin_lock_irq(&ip->ioc3_lock);
1573	rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1574	spin_unlock_irq(&ip->ioc3_lock);
1575
1576	return rc;
1577}
1578
1579static int ioc3_nway_reset(struct net_device *dev)
1580{
1581	struct ioc3_private *ip = netdev_priv(dev);
1582	int rc;
1583
1584	spin_lock_irq(&ip->ioc3_lock);
1585	rc = mii_nway_restart(&ip->mii);
1586	spin_unlock_irq(&ip->ioc3_lock);
1587
1588	return rc;
1589}
1590
1591static u32 ioc3_get_link(struct net_device *dev)
1592{
1593	struct ioc3_private *ip = netdev_priv(dev);
1594	int rc;
1595
1596	spin_lock_irq(&ip->ioc3_lock);
1597	rc = mii_link_ok(&ip->mii);
1598	spin_unlock_irq(&ip->ioc3_lock);
1599
1600	return rc;
1601}
1602
1603static const struct ethtool_ops ioc3_ethtool_ops = {
1604	.get_drvinfo		= ioc3_get_drvinfo,
1605	.nway_reset		= ioc3_nway_reset,
1606	.get_link		= ioc3_get_link,
1607	.get_link_ksettings	= ioc3_get_link_ksettings,
1608	.set_link_ksettings	= ioc3_set_link_ksettings,
1609};
1610
1611static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1612{
1613	struct ioc3_private *ip = netdev_priv(dev);
1614	int rc;
1615
1616	spin_lock_irq(&ip->ioc3_lock);
1617	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1618	spin_unlock_irq(&ip->ioc3_lock);
1619
1620	return rc;
1621}
1622
1623static void ioc3_set_multicast_list(struct net_device *dev)
1624{
1625	struct ioc3_private *ip = netdev_priv(dev);
1626	struct ioc3_ethregs *regs = ip->regs;
1627	struct netdev_hw_addr *ha;
1628	u64 ehar = 0;
1629
1630	spin_lock_irq(&ip->ioc3_lock);
1631
1632	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1633		ip->emcr |= EMCR_PROMISC;
1634		writel(ip->emcr, &regs->emcr);
1635		readl(&regs->emcr);
1636	} else {
1637		ip->emcr &= ~EMCR_PROMISC;
1638		writel(ip->emcr, &regs->emcr);		/* Clear promiscuous. */
1639		readl(&regs->emcr);
1640
1641		if ((dev->flags & IFF_ALLMULTI) ||
1642		    (netdev_mc_count(dev) > 64)) {
1643			/* Too many for hashing to make sense or we want all
1644			 * multicast packets anyway,  so skip computing all the
1645			 * hashes and just accept all packets.
1646			 */
1647			ip->ehar_h = 0xffffffff;
1648			ip->ehar_l = 0xffffffff;
1649		} else {
1650			netdev_for_each_mc_addr(ha, dev) {
1651				ehar |= (1UL << ioc3_hash(ha->addr));
1652			}
1653			ip->ehar_h = ehar >> 32;
1654			ip->ehar_l = ehar & 0xffffffff;
1655		}
1656		writel(ip->ehar_h, &regs->ehar_h);
1657		writel(ip->ehar_l, &regs->ehar_l);
1658	}
1659
1660	spin_unlock_irq(&ip->ioc3_lock);
1661}
1662
1663module_pci_driver(ioc3_driver);
1664MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666MODULE_LICENSE("GPL");