Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   4 * Ethernet adapters. Based on earlier sk98lin, e100 and
   5 * FreeBSD if_sk drivers.
   6 *
   7 * This driver intentionally does not support all the features
   8 * of the original driver such as link fail-over and link management because
   9 * those should be done at higher levels.
  10 *
  11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/in.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/ethtool.h>
  23#include <linux/pci.h>
  24#include <linux/if_vlan.h>
  25#include <linux/ip.h>
  26#include <linux/delay.h>
  27#include <linux/crc32.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/mii.h>
  33#include <linux/slab.h>
  34#include <linux/dmi.h>
  35#include <linux/prefetch.h>
  36#include <asm/irq.h>
  37
  38#include "skge.h"
  39
  40#define DRV_NAME		"skge"
  41#define DRV_VERSION		"1.14"
  42
  43#define DEFAULT_TX_RING_SIZE	128
  44#define DEFAULT_RX_RING_SIZE	512
  45#define MAX_TX_RING_SIZE	1024
  46#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
  47#define MAX_RX_RING_SIZE	4096
  48#define RX_COPY_THRESHOLD	128
  49#define RX_BUF_SIZE		1536
  50#define PHY_RETRIES	        1000
  51#define ETH_JUMBO_MTU		9000
  52#define TX_WATCHDOG		(5 * HZ)
  53#define NAPI_WEIGHT		64
  54#define BLINK_MS		250
  55#define LINK_HZ			HZ
  56
  57#define SKGE_EEPROM_MAGIC	0x9933aabb
  58
  59
  60MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62MODULE_LICENSE("GPL");
  63MODULE_VERSION(DRV_VERSION);
  64
  65static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67				NETIF_MSG_IFDOWN);
  68
  69static int debug = -1;	/* defaults above */
  70module_param(debug, int, 0);
  71MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  72
  73static const struct pci_device_id skge_id_table[] = {
  74	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
  75	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
  76#ifdef CONFIG_SKGE_GENESIS
  77	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  78#endif
  79	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  80	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
  81	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
  82	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
  83	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
  84	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
  85	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
  86	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
  87	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  88	{ 0 }
  89};
  90MODULE_DEVICE_TABLE(pci, skge_id_table);
  91
  92static int skge_up(struct net_device *dev);
  93static int skge_down(struct net_device *dev);
  94static void skge_phy_reset(struct skge_port *skge);
  95static void skge_tx_clean(struct net_device *dev);
  96static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99static void yukon_get_stats(struct skge_port *skge, u64 *data);
 100static void yukon_init(struct skge_hw *hw, int port);
 101static void genesis_mac_init(struct skge_hw *hw, int port);
 102static void genesis_link_up(struct skge_port *skge);
 103static void skge_set_multicast(struct net_device *dev);
 104static irqreturn_t skge_intr(int irq, void *dev_id);
 105
 106/* Avoid conditionals by using array */
 107static const int txqaddr[] = { Q_XA1, Q_XA2 };
 108static const int rxqaddr[] = { Q_R1, Q_R2 };
 109static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 110static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 111static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 112static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 113
 114static inline bool is_genesis(const struct skge_hw *hw)
 115{
 116#ifdef CONFIG_SKGE_GENESIS
 117	return hw->chip_id == CHIP_ID_GENESIS;
 118#else
 119	return false;
 120#endif
 121}
 122
 123static int skge_get_regs_len(struct net_device *dev)
 124{
 125	return 0x4000;
 126}
 127
 128/*
 129 * Returns copy of whole control register region
 130 * Note: skip RAM address register because accessing it will
 131 * 	 cause bus hangs!
 132 */
 133static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 134			  void *p)
 135{
 136	const struct skge_port *skge = netdev_priv(dev);
 137	const void __iomem *io = skge->hw->regs;
 138
 139	regs->version = 1;
 140	memset(p, 0, regs->len);
 141	memcpy_fromio(p, io, B3_RAM_ADDR);
 142
 143	if (regs->len > B3_RI_WTO_R1) {
 144		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 145			      regs->len - B3_RI_WTO_R1);
 146	}
 147}
 148
 149/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 150static u32 wol_supported(const struct skge_hw *hw)
 151{
 152	if (is_genesis(hw))
 153		return 0;
 154
 155	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 156		return 0;
 157
 158	return WAKE_MAGIC | WAKE_PHY;
 159}
 160
 161static void skge_wol_init(struct skge_port *skge)
 162{
 163	struct skge_hw *hw = skge->hw;
 164	int port = skge->port;
 165	u16 ctrl;
 166
 167	skge_write16(hw, B0_CTST, CS_RST_CLR);
 168	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 169
 170	/* Turn on Vaux */
 171	skge_write8(hw, B0_POWER_CTRL,
 172		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 173
 174	/* WA code for COMA mode -- clear PHY reset */
 175	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 176	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 177		u32 reg = skge_read32(hw, B2_GP_IO);
 178		reg |= GP_DIR_9;
 179		reg &= ~GP_IO_9;
 180		skge_write32(hw, B2_GP_IO, reg);
 181	}
 182
 183	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 184		     GPC_DIS_SLEEP |
 185		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 186		     GPC_ANEG_1 | GPC_RST_SET);
 187
 188	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 189		     GPC_DIS_SLEEP |
 190		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 191		     GPC_ANEG_1 | GPC_RST_CLR);
 192
 193	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 194
 195	/* Force to 10/100 skge_reset will re-enable on resume	 */
 196	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 197		     (PHY_AN_100FULL | PHY_AN_100HALF |
 198		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 199	/* no 1000 HD/FD */
 200	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 201	gm_phy_write(hw, port, PHY_MARV_CTRL,
 202		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 203		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 204
 205
 206	/* Set GMAC to no flow control and auto update for speed/duplex */
 207	gma_write16(hw, port, GM_GP_CTRL,
 208		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 209		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 210
 211	/* Set WOL address */
 212	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 213		    skge->netdev->dev_addr, ETH_ALEN);
 214
 215	/* Turn on appropriate WOL control bits */
 216	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 217	ctrl = 0;
 218	if (skge->wol & WAKE_PHY)
 219		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 220	else
 221		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 222
 223	if (skge->wol & WAKE_MAGIC)
 224		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 225	else
 226		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 227
 228	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 229	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 230
 231	/* block receiver */
 232	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 233}
 234
 235static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 236{
 237	struct skge_port *skge = netdev_priv(dev);
 238
 239	wol->supported = wol_supported(skge->hw);
 240	wol->wolopts = skge->wol;
 241}
 242
 243static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 244{
 245	struct skge_port *skge = netdev_priv(dev);
 246	struct skge_hw *hw = skge->hw;
 247
 248	if ((wol->wolopts & ~wol_supported(hw)) ||
 249	    !device_can_wakeup(&hw->pdev->dev))
 250		return -EOPNOTSUPP;
 251
 252	skge->wol = wol->wolopts;
 253
 254	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 255
 256	return 0;
 257}
 258
 259/* Determine supported/advertised modes based on hardware.
 260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 261 */
 262static u32 skge_supported_modes(const struct skge_hw *hw)
 263{
 264	u32 supported;
 265
 266	if (hw->copper) {
 267		supported = (SUPPORTED_10baseT_Half |
 268			     SUPPORTED_10baseT_Full |
 269			     SUPPORTED_100baseT_Half |
 270			     SUPPORTED_100baseT_Full |
 271			     SUPPORTED_1000baseT_Half |
 272			     SUPPORTED_1000baseT_Full |
 273			     SUPPORTED_Autoneg |
 274			     SUPPORTED_TP);
 275
 276		if (is_genesis(hw))
 277			supported &= ~(SUPPORTED_10baseT_Half |
 278				       SUPPORTED_10baseT_Full |
 279				       SUPPORTED_100baseT_Half |
 280				       SUPPORTED_100baseT_Full);
 281
 282		else if (hw->chip_id == CHIP_ID_YUKON)
 283			supported &= ~SUPPORTED_1000baseT_Half;
 284	} else
 285		supported = (SUPPORTED_1000baseT_Full |
 286			     SUPPORTED_1000baseT_Half |
 287			     SUPPORTED_FIBRE |
 288			     SUPPORTED_Autoneg);
 289
 290	return supported;
 291}
 292
 293static int skge_get_link_ksettings(struct net_device *dev,
 294				   struct ethtool_link_ksettings *cmd)
 295{
 296	struct skge_port *skge = netdev_priv(dev);
 297	struct skge_hw *hw = skge->hw;
 298	u32 supported, advertising;
 299
 300	supported = skge_supported_modes(hw);
 301
 302	if (hw->copper) {
 303		cmd->base.port = PORT_TP;
 304		cmd->base.phy_address = hw->phy_addr;
 305	} else
 306		cmd->base.port = PORT_FIBRE;
 307
 308	advertising = skge->advertising;
 309	cmd->base.autoneg = skge->autoneg;
 310	cmd->base.speed = skge->speed;
 311	cmd->base.duplex = skge->duplex;
 312
 313	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 314						supported);
 315	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 316						advertising);
 317
 318	return 0;
 319}
 320
 321static int skge_set_link_ksettings(struct net_device *dev,
 322				   const struct ethtool_link_ksettings *cmd)
 323{
 324	struct skge_port *skge = netdev_priv(dev);
 325	const struct skge_hw *hw = skge->hw;
 326	u32 supported = skge_supported_modes(hw);
 327	int err = 0;
 328	u32 advertising;
 329
 330	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 331						cmd->link_modes.advertising);
 332
 333	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 334		advertising = supported;
 335		skge->duplex = -1;
 336		skge->speed = -1;
 337	} else {
 338		u32 setting;
 339		u32 speed = cmd->base.speed;
 340
 341		switch (speed) {
 342		case SPEED_1000:
 343			if (cmd->base.duplex == DUPLEX_FULL)
 344				setting = SUPPORTED_1000baseT_Full;
 345			else if (cmd->base.duplex == DUPLEX_HALF)
 346				setting = SUPPORTED_1000baseT_Half;
 347			else
 348				return -EINVAL;
 349			break;
 350		case SPEED_100:
 351			if (cmd->base.duplex == DUPLEX_FULL)
 352				setting = SUPPORTED_100baseT_Full;
 353			else if (cmd->base.duplex == DUPLEX_HALF)
 354				setting = SUPPORTED_100baseT_Half;
 355			else
 356				return -EINVAL;
 357			break;
 358
 359		case SPEED_10:
 360			if (cmd->base.duplex == DUPLEX_FULL)
 361				setting = SUPPORTED_10baseT_Full;
 362			else if (cmd->base.duplex == DUPLEX_HALF)
 363				setting = SUPPORTED_10baseT_Half;
 364			else
 365				return -EINVAL;
 366			break;
 367		default:
 368			return -EINVAL;
 369		}
 370
 371		if ((setting & supported) == 0)
 372			return -EINVAL;
 373
 374		skge->speed = speed;
 375		skge->duplex = cmd->base.duplex;
 376	}
 377
 378	skge->autoneg = cmd->base.autoneg;
 379	skge->advertising = advertising;
 380
 381	if (netif_running(dev)) {
 382		skge_down(dev);
 383		err = skge_up(dev);
 384		if (err) {
 385			dev_close(dev);
 386			return err;
 387		}
 388	}
 389
 390	return 0;
 391}
 392
 393static void skge_get_drvinfo(struct net_device *dev,
 394			     struct ethtool_drvinfo *info)
 395{
 396	struct skge_port *skge = netdev_priv(dev);
 397
 398	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 399	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 400	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 401		sizeof(info->bus_info));
 402}
 403
 404static const struct skge_stat {
 405	char 	   name[ETH_GSTRING_LEN];
 406	u16	   xmac_offset;
 407	u16	   gma_offset;
 408} skge_stats[] = {
 409	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
 410	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
 411
 412	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
 413	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
 414	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
 415	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
 416	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
 417	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
 418	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 419	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 420
 421	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 422	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 423	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 424	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 425	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 426	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 427
 428	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 429	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 430	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
 431	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 432	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 433};
 434
 435static int skge_get_sset_count(struct net_device *dev, int sset)
 436{
 437	switch (sset) {
 438	case ETH_SS_STATS:
 439		return ARRAY_SIZE(skge_stats);
 440	default:
 441		return -EOPNOTSUPP;
 442	}
 443}
 444
 445static void skge_get_ethtool_stats(struct net_device *dev,
 446				   struct ethtool_stats *stats, u64 *data)
 447{
 448	struct skge_port *skge = netdev_priv(dev);
 449
 450	if (is_genesis(skge->hw))
 451		genesis_get_stats(skge, data);
 452	else
 453		yukon_get_stats(skge, data);
 454}
 455
 456/* Use hardware MIB variables for critical path statistics and
 457 * transmit feedback not reported at interrupt.
 458 * Other errors are accounted for in interrupt handler.
 459 */
 460static struct net_device_stats *skge_get_stats(struct net_device *dev)
 461{
 462	struct skge_port *skge = netdev_priv(dev);
 463	u64 data[ARRAY_SIZE(skge_stats)];
 464
 465	if (is_genesis(skge->hw))
 466		genesis_get_stats(skge, data);
 467	else
 468		yukon_get_stats(skge, data);
 469
 470	dev->stats.tx_bytes = data[0];
 471	dev->stats.rx_bytes = data[1];
 472	dev->stats.tx_packets = data[2] + data[4] + data[6];
 473	dev->stats.rx_packets = data[3] + data[5] + data[7];
 474	dev->stats.multicast = data[3] + data[5];
 475	dev->stats.collisions = data[10];
 476	dev->stats.tx_aborted_errors = data[12];
 477
 478	return &dev->stats;
 479}
 480
 481static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 482{
 483	int i;
 484
 485	switch (stringset) {
 486	case ETH_SS_STATS:
 487		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 488			memcpy(data + i * ETH_GSTRING_LEN,
 489			       skge_stats[i].name, ETH_GSTRING_LEN);
 490		break;
 491	}
 492}
 493
 494static void skge_get_ring_param(struct net_device *dev,
 495				struct ethtool_ringparam *p)
 496{
 497	struct skge_port *skge = netdev_priv(dev);
 498
 499	p->rx_max_pending = MAX_RX_RING_SIZE;
 500	p->tx_max_pending = MAX_TX_RING_SIZE;
 501
 502	p->rx_pending = skge->rx_ring.count;
 503	p->tx_pending = skge->tx_ring.count;
 504}
 505
 506static int skge_set_ring_param(struct net_device *dev,
 507			       struct ethtool_ringparam *p)
 508{
 509	struct skge_port *skge = netdev_priv(dev);
 510	int err = 0;
 511
 512	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 513	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 514		return -EINVAL;
 515
 516	skge->rx_ring.count = p->rx_pending;
 517	skge->tx_ring.count = p->tx_pending;
 518
 519	if (netif_running(dev)) {
 520		skge_down(dev);
 521		err = skge_up(dev);
 522		if (err)
 523			dev_close(dev);
 524	}
 525
 526	return err;
 527}
 528
 529static u32 skge_get_msglevel(struct net_device *netdev)
 530{
 531	struct skge_port *skge = netdev_priv(netdev);
 532	return skge->msg_enable;
 533}
 534
 535static void skge_set_msglevel(struct net_device *netdev, u32 value)
 536{
 537	struct skge_port *skge = netdev_priv(netdev);
 538	skge->msg_enable = value;
 539}
 540
 541static int skge_nway_reset(struct net_device *dev)
 542{
 543	struct skge_port *skge = netdev_priv(dev);
 544
 545	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 546		return -EINVAL;
 547
 548	skge_phy_reset(skge);
 549	return 0;
 550}
 551
 552static void skge_get_pauseparam(struct net_device *dev,
 553				struct ethtool_pauseparam *ecmd)
 554{
 555	struct skge_port *skge = netdev_priv(dev);
 556
 557	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 558			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 559	ecmd->tx_pause = (ecmd->rx_pause ||
 560			  (skge->flow_control == FLOW_MODE_LOC_SEND));
 561
 562	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 563}
 564
 565static int skge_set_pauseparam(struct net_device *dev,
 566			       struct ethtool_pauseparam *ecmd)
 567{
 568	struct skge_port *skge = netdev_priv(dev);
 569	struct ethtool_pauseparam old;
 570	int err = 0;
 571
 572	skge_get_pauseparam(dev, &old);
 573
 574	if (ecmd->autoneg != old.autoneg)
 575		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 576	else {
 577		if (ecmd->rx_pause && ecmd->tx_pause)
 578			skge->flow_control = FLOW_MODE_SYMMETRIC;
 579		else if (ecmd->rx_pause && !ecmd->tx_pause)
 580			skge->flow_control = FLOW_MODE_SYM_OR_REM;
 581		else if (!ecmd->rx_pause && ecmd->tx_pause)
 582			skge->flow_control = FLOW_MODE_LOC_SEND;
 583		else
 584			skge->flow_control = FLOW_MODE_NONE;
 585	}
 586
 587	if (netif_running(dev)) {
 588		skge_down(dev);
 589		err = skge_up(dev);
 590		if (err) {
 591			dev_close(dev);
 592			return err;
 593		}
 594	}
 595
 596	return 0;
 597}
 598
 599/* Chip internal frequency for clock calculations */
 600static inline u32 hwkhz(const struct skge_hw *hw)
 601{
 602	return is_genesis(hw) ? 53125 : 78125;
 603}
 604
 605/* Chip HZ to microseconds */
 606static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 607{
 608	return (ticks * 1000) / hwkhz(hw);
 609}
 610
 611/* Microseconds to chip HZ */
 612static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 613{
 614	return hwkhz(hw) * usec / 1000;
 615}
 616
 617static int skge_get_coalesce(struct net_device *dev,
 618			     struct ethtool_coalesce *ecmd)
 619{
 620	struct skge_port *skge = netdev_priv(dev);
 621	struct skge_hw *hw = skge->hw;
 622	int port = skge->port;
 623
 624	ecmd->rx_coalesce_usecs = 0;
 625	ecmd->tx_coalesce_usecs = 0;
 626
 627	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 628		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 629		u32 msk = skge_read32(hw, B2_IRQM_MSK);
 630
 631		if (msk & rxirqmask[port])
 632			ecmd->rx_coalesce_usecs = delay;
 633		if (msk & txirqmask[port])
 634			ecmd->tx_coalesce_usecs = delay;
 635	}
 636
 637	return 0;
 638}
 639
 640/* Note: interrupt timer is per board, but can turn on/off per port */
 641static int skge_set_coalesce(struct net_device *dev,
 642			     struct ethtool_coalesce *ecmd)
 643{
 644	struct skge_port *skge = netdev_priv(dev);
 645	struct skge_hw *hw = skge->hw;
 646	int port = skge->port;
 647	u32 msk = skge_read32(hw, B2_IRQM_MSK);
 648	u32 delay = 25;
 649
 650	if (ecmd->rx_coalesce_usecs == 0)
 651		msk &= ~rxirqmask[port];
 652	else if (ecmd->rx_coalesce_usecs < 25 ||
 653		 ecmd->rx_coalesce_usecs > 33333)
 654		return -EINVAL;
 655	else {
 656		msk |= rxirqmask[port];
 657		delay = ecmd->rx_coalesce_usecs;
 658	}
 659
 660	if (ecmd->tx_coalesce_usecs == 0)
 661		msk &= ~txirqmask[port];
 662	else if (ecmd->tx_coalesce_usecs < 25 ||
 663		 ecmd->tx_coalesce_usecs > 33333)
 664		return -EINVAL;
 665	else {
 666		msk |= txirqmask[port];
 667		delay = min(delay, ecmd->rx_coalesce_usecs);
 668	}
 669
 670	skge_write32(hw, B2_IRQM_MSK, msk);
 671	if (msk == 0)
 672		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 673	else {
 674		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 675		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 676	}
 677	return 0;
 678}
 679
 680enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 681static void skge_led(struct skge_port *skge, enum led_mode mode)
 682{
 683	struct skge_hw *hw = skge->hw;
 684	int port = skge->port;
 685
 686	spin_lock_bh(&hw->phy_lock);
 687	if (is_genesis(hw)) {
 688		switch (mode) {
 689		case LED_MODE_OFF:
 690			if (hw->phy_type == SK_PHY_BCOM)
 691				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 692			else {
 693				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 694				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 695			}
 696			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 697			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 698			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 699			break;
 700
 701		case LED_MODE_ON:
 702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 703			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 704
 705			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 706			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 707
 708			break;
 709
 710		case LED_MODE_TST:
 711			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 712			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 713			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 714
 715			if (hw->phy_type == SK_PHY_BCOM)
 716				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 717			else {
 718				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 719				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 720				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 721			}
 722
 723		}
 724	} else {
 725		switch (mode) {
 726		case LED_MODE_OFF:
 727			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 728			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 729				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 730				     PHY_M_LED_MO_10(MO_LED_OFF)   |
 731				     PHY_M_LED_MO_100(MO_LED_OFF)  |
 732				     PHY_M_LED_MO_1000(MO_LED_OFF) |
 733				     PHY_M_LED_MO_RX(MO_LED_OFF));
 734			break;
 735		case LED_MODE_ON:
 736			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 737				     PHY_M_LED_PULS_DUR(PULS_170MS) |
 738				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 739				     PHY_M_LEDC_TX_CTRL |
 740				     PHY_M_LEDC_DP_CTRL);
 741
 742			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 743				     PHY_M_LED_MO_RX(MO_LED_OFF) |
 744				     (skge->speed == SPEED_100 ?
 745				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 746			break;
 747		case LED_MODE_TST:
 748			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 749			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 750				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 751				     PHY_M_LED_MO_10(MO_LED_ON)   |
 752				     PHY_M_LED_MO_100(MO_LED_ON)  |
 753				     PHY_M_LED_MO_1000(MO_LED_ON) |
 754				     PHY_M_LED_MO_RX(MO_LED_ON));
 755		}
 756	}
 757	spin_unlock_bh(&hw->phy_lock);
 758}
 759
 760/* blink LED's for finding board */
 761static int skge_set_phys_id(struct net_device *dev,
 762			    enum ethtool_phys_id_state state)
 763{
 764	struct skge_port *skge = netdev_priv(dev);
 765
 766	switch (state) {
 767	case ETHTOOL_ID_ACTIVE:
 768		return 2;	/* cycle on/off twice per second */
 769
 770	case ETHTOOL_ID_ON:
 771		skge_led(skge, LED_MODE_TST);
 772		break;
 773
 774	case ETHTOOL_ID_OFF:
 775		skge_led(skge, LED_MODE_OFF);
 776		break;
 777
 778	case ETHTOOL_ID_INACTIVE:
 779		/* back to regular LED state */
 780		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 781	}
 782
 783	return 0;
 784}
 785
 786static int skge_get_eeprom_len(struct net_device *dev)
 787{
 788	struct skge_port *skge = netdev_priv(dev);
 789	u32 reg2;
 790
 791	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 792	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 793}
 794
 795static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 796{
 797	u32 val;
 798
 799	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 800
 801	do {
 802		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 803	} while (!(offset & PCI_VPD_ADDR_F));
 804
 805	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 806	return val;
 807}
 808
 809static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 810{
 811	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 812	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 813			      offset | PCI_VPD_ADDR_F);
 814
 815	do {
 816		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 817	} while (offset & PCI_VPD_ADDR_F);
 818}
 819
 820static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 821			   u8 *data)
 822{
 823	struct skge_port *skge = netdev_priv(dev);
 824	struct pci_dev *pdev = skge->hw->pdev;
 825	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 826	int length = eeprom->len;
 827	u16 offset = eeprom->offset;
 828
 829	if (!cap)
 830		return -EINVAL;
 831
 832	eeprom->magic = SKGE_EEPROM_MAGIC;
 833
 834	while (length > 0) {
 835		u32 val = skge_vpd_read(pdev, cap, offset);
 836		int n = min_t(int, length, sizeof(val));
 837
 838		memcpy(data, &val, n);
 839		length -= n;
 840		data += n;
 841		offset += n;
 842	}
 843	return 0;
 844}
 845
 846static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 847			   u8 *data)
 848{
 849	struct skge_port *skge = netdev_priv(dev);
 850	struct pci_dev *pdev = skge->hw->pdev;
 851	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 852	int length = eeprom->len;
 853	u16 offset = eeprom->offset;
 854
 855	if (!cap)
 856		return -EINVAL;
 857
 858	if (eeprom->magic != SKGE_EEPROM_MAGIC)
 859		return -EINVAL;
 860
 861	while (length > 0) {
 862		u32 val;
 863		int n = min_t(int, length, sizeof(val));
 864
 865		if (n < sizeof(val))
 866			val = skge_vpd_read(pdev, cap, offset);
 867		memcpy(&val, data, n);
 868
 869		skge_vpd_write(pdev, cap, offset, val);
 870
 871		length -= n;
 872		data += n;
 873		offset += n;
 874	}
 875	return 0;
 876}
 877
 878static const struct ethtool_ops skge_ethtool_ops = {
 879	.get_drvinfo	= skge_get_drvinfo,
 880	.get_regs_len	= skge_get_regs_len,
 881	.get_regs	= skge_get_regs,
 882	.get_wol	= skge_get_wol,
 883	.set_wol	= skge_set_wol,
 884	.get_msglevel	= skge_get_msglevel,
 885	.set_msglevel	= skge_set_msglevel,
 886	.nway_reset	= skge_nway_reset,
 887	.get_link	= ethtool_op_get_link,
 888	.get_eeprom_len	= skge_get_eeprom_len,
 889	.get_eeprom	= skge_get_eeprom,
 890	.set_eeprom	= skge_set_eeprom,
 891	.get_ringparam	= skge_get_ring_param,
 892	.set_ringparam	= skge_set_ring_param,
 893	.get_pauseparam = skge_get_pauseparam,
 894	.set_pauseparam = skge_set_pauseparam,
 895	.get_coalesce	= skge_get_coalesce,
 896	.set_coalesce	= skge_set_coalesce,
 897	.get_strings	= skge_get_strings,
 898	.set_phys_id	= skge_set_phys_id,
 899	.get_sset_count = skge_get_sset_count,
 900	.get_ethtool_stats = skge_get_ethtool_stats,
 901	.get_link_ksettings = skge_get_link_ksettings,
 902	.set_link_ksettings = skge_set_link_ksettings,
 903};
 904
 905/*
 906 * Allocate ring elements and chain them together
 907 * One-to-one association of board descriptors with ring elements
 908 */
 909static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 910{
 911	struct skge_tx_desc *d;
 912	struct skge_element *e;
 913	int i;
 914
 915	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 916	if (!ring->start)
 917		return -ENOMEM;
 918
 919	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 920		e->desc = d;
 921		if (i == ring->count - 1) {
 922			e->next = ring->start;
 923			d->next_offset = base;
 924		} else {
 925			e->next = e + 1;
 926			d->next_offset = base + (i+1) * sizeof(*d);
 927		}
 928	}
 929	ring->to_use = ring->to_clean = ring->start;
 930
 931	return 0;
 932}
 933
 934/* Allocate and setup a new buffer for receiving */
 935static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 936			 struct sk_buff *skb, unsigned int bufsize)
 937{
 938	struct skge_rx_desc *rd = e->desc;
 939	dma_addr_t map;
 940
 941	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 942			     PCI_DMA_FROMDEVICE);
 943
 944	if (pci_dma_mapping_error(skge->hw->pdev, map))
 945		return -1;
 946
 947	rd->dma_lo = lower_32_bits(map);
 948	rd->dma_hi = upper_32_bits(map);
 949	e->skb = skb;
 950	rd->csum1_start = ETH_HLEN;
 951	rd->csum2_start = ETH_HLEN;
 952	rd->csum1 = 0;
 953	rd->csum2 = 0;
 954
 955	wmb();
 956
 957	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 958	dma_unmap_addr_set(e, mapaddr, map);
 959	dma_unmap_len_set(e, maplen, bufsize);
 960	return 0;
 961}
 962
 963/* Resume receiving using existing skb,
 964 * Note: DMA address is not changed by chip.
 965 * 	 MTU not changed while receiver active.
 966 */
 967static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 968{
 969	struct skge_rx_desc *rd = e->desc;
 970
 971	rd->csum2 = 0;
 972	rd->csum2_start = ETH_HLEN;
 973
 974	wmb();
 975
 976	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 977}
 978
 979
 980/* Free all  buffers in receive ring, assumes receiver stopped */
 981static void skge_rx_clean(struct skge_port *skge)
 982{
 983	struct skge_hw *hw = skge->hw;
 984	struct skge_ring *ring = &skge->rx_ring;
 985	struct skge_element *e;
 986
 987	e = ring->start;
 988	do {
 989		struct skge_rx_desc *rd = e->desc;
 990		rd->control = 0;
 991		if (e->skb) {
 992			pci_unmap_single(hw->pdev,
 993					 dma_unmap_addr(e, mapaddr),
 994					 dma_unmap_len(e, maplen),
 995					 PCI_DMA_FROMDEVICE);
 996			dev_kfree_skb(e->skb);
 997			e->skb = NULL;
 998		}
 999	} while ((e = e->next) != ring->start);
1000}
1001
1002
1003/* Allocate buffers for receive ring
1004 * For receive:  to_clean is next received frame.
1005 */
1006static int skge_rx_fill(struct net_device *dev)
1007{
1008	struct skge_port *skge = netdev_priv(dev);
1009	struct skge_ring *ring = &skge->rx_ring;
1010	struct skge_element *e;
1011
1012	e = ring->start;
1013	do {
1014		struct sk_buff *skb;
1015
1016		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1017					 GFP_KERNEL);
1018		if (!skb)
1019			return -ENOMEM;
1020
1021		skb_reserve(skb, NET_IP_ALIGN);
1022		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1023			dev_kfree_skb(skb);
1024			return -EIO;
1025		}
1026	} while ((e = e->next) != ring->start);
1027
1028	ring->to_clean = ring->start;
1029	return 0;
1030}
1031
1032static const char *skge_pause(enum pause_status status)
1033{
1034	switch (status) {
1035	case FLOW_STAT_NONE:
1036		return "none";
1037	case FLOW_STAT_REM_SEND:
1038		return "rx only";
1039	case FLOW_STAT_LOC_SEND:
1040		return "tx_only";
1041	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1042		return "both";
1043	default:
1044		return "indeterminated";
1045	}
1046}
1047
1048
1049static void skge_link_up(struct skge_port *skge)
1050{
1051	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1052		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1053
1054	netif_carrier_on(skge->netdev);
1055	netif_wake_queue(skge->netdev);
1056
1057	netif_info(skge, link, skge->netdev,
1058		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1059		   skge->speed,
1060		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1061		   skge_pause(skge->flow_status));
1062}
1063
1064static void skge_link_down(struct skge_port *skge)
1065{
1066	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1067	netif_carrier_off(skge->netdev);
1068	netif_stop_queue(skge->netdev);
1069
1070	netif_info(skge, link, skge->netdev, "Link is down\n");
1071}
1072
1073static void xm_link_down(struct skge_hw *hw, int port)
1074{
1075	struct net_device *dev = hw->dev[port];
1076	struct skge_port *skge = netdev_priv(dev);
1077
1078	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1079
1080	if (netif_carrier_ok(dev))
1081		skge_link_down(skge);
1082}
1083
1084static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1085{
1086	int i;
1087
1088	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1089	*val = xm_read16(hw, port, XM_PHY_DATA);
1090
1091	if (hw->phy_type == SK_PHY_XMAC)
1092		goto ready;
1093
1094	for (i = 0; i < PHY_RETRIES; i++) {
1095		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1096			goto ready;
1097		udelay(1);
1098	}
1099
1100	return -ETIMEDOUT;
1101 ready:
1102	*val = xm_read16(hw, port, XM_PHY_DATA);
1103
1104	return 0;
1105}
1106
1107static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1108{
1109	u16 v = 0;
1110	if (__xm_phy_read(hw, port, reg, &v))
1111		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1112	return v;
1113}
1114
1115static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1116{
1117	int i;
1118
1119	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1120	for (i = 0; i < PHY_RETRIES; i++) {
1121		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1122			goto ready;
1123		udelay(1);
1124	}
1125	return -EIO;
1126
1127 ready:
1128	xm_write16(hw, port, XM_PHY_DATA, val);
1129	for (i = 0; i < PHY_RETRIES; i++) {
1130		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1131			return 0;
1132		udelay(1);
1133	}
1134	return -ETIMEDOUT;
1135}
1136
1137static void genesis_init(struct skge_hw *hw)
1138{
1139	/* set blink source counter */
1140	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1141	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1142
1143	/* configure mac arbiter */
1144	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1145
1146	/* configure mac arbiter timeout values */
1147	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1148	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1149	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1150	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1151
1152	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1153	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1154	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1155	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1156
1157	/* configure packet arbiter timeout */
1158	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1159	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1160	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1161	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1162	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1163}
1164
1165static void genesis_reset(struct skge_hw *hw, int port)
1166{
1167	static const u8 zero[8]  = { 0 };
1168	u32 reg;
1169
1170	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1171
1172	/* reset the statistics module */
1173	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1174	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1175	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1176	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1177	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1178
1179	/* disable Broadcom PHY IRQ */
1180	if (hw->phy_type == SK_PHY_BCOM)
1181		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1182
1183	xm_outhash(hw, port, XM_HSM, zero);
1184
1185	/* Flush TX and RX fifo */
1186	reg = xm_read32(hw, port, XM_MODE);
1187	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1188	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1189}
1190
1191/* Convert mode to MII values  */
1192static const u16 phy_pause_map[] = {
1193	[FLOW_MODE_NONE] =	0,
1194	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1195	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1196	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1197};
1198
1199/* special defines for FIBER (88E1011S only) */
1200static const u16 fiber_pause_map[] = {
1201	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1202	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1203	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1204	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1205};
1206
1207
1208/* Check status of Broadcom phy link */
1209static void bcom_check_link(struct skge_hw *hw, int port)
1210{
1211	struct net_device *dev = hw->dev[port];
1212	struct skge_port *skge = netdev_priv(dev);
1213	u16 status;
1214
1215	/* read twice because of latch */
1216	xm_phy_read(hw, port, PHY_BCOM_STAT);
1217	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1218
1219	if ((status & PHY_ST_LSYNC) == 0) {
1220		xm_link_down(hw, port);
1221		return;
1222	}
1223
1224	if (skge->autoneg == AUTONEG_ENABLE) {
1225		u16 lpa, aux;
1226
1227		if (!(status & PHY_ST_AN_OVER))
1228			return;
1229
1230		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1231		if (lpa & PHY_B_AN_RF) {
1232			netdev_notice(dev, "remote fault\n");
1233			return;
1234		}
1235
1236		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1237
1238		/* Check Duplex mismatch */
1239		switch (aux & PHY_B_AS_AN_RES_MSK) {
1240		case PHY_B_RES_1000FD:
1241			skge->duplex = DUPLEX_FULL;
1242			break;
1243		case PHY_B_RES_1000HD:
1244			skge->duplex = DUPLEX_HALF;
1245			break;
1246		default:
1247			netdev_notice(dev, "duplex mismatch\n");
1248			return;
1249		}
1250
1251		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1252		switch (aux & PHY_B_AS_PAUSE_MSK) {
1253		case PHY_B_AS_PAUSE_MSK:
1254			skge->flow_status = FLOW_STAT_SYMMETRIC;
1255			break;
1256		case PHY_B_AS_PRR:
1257			skge->flow_status = FLOW_STAT_REM_SEND;
1258			break;
1259		case PHY_B_AS_PRT:
1260			skge->flow_status = FLOW_STAT_LOC_SEND;
1261			break;
1262		default:
1263			skge->flow_status = FLOW_STAT_NONE;
1264		}
1265		skge->speed = SPEED_1000;
1266	}
1267
1268	if (!netif_carrier_ok(dev))
1269		genesis_link_up(skge);
1270}
1271
1272/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1273 * Phy on for 100 or 10Mbit operation
1274 */
1275static void bcom_phy_init(struct skge_port *skge)
1276{
1277	struct skge_hw *hw = skge->hw;
1278	int port = skge->port;
1279	int i;
1280	u16 id1, r, ext, ctl;
1281
1282	/* magic workaround patterns for Broadcom */
1283	static const struct {
1284		u16 reg;
1285		u16 val;
1286	} A1hack[] = {
1287		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1288		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1289		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1290		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1291	}, C0hack[] = {
1292		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1293		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1294	};
1295
1296	/* read Id from external PHY (all have the same address) */
1297	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1298
1299	/* Optimize MDIO transfer by suppressing preamble. */
1300	r = xm_read16(hw, port, XM_MMU_CMD);
1301	r |=  XM_MMU_NO_PRE;
1302	xm_write16(hw, port, XM_MMU_CMD, r);
1303
1304	switch (id1) {
1305	case PHY_BCOM_ID1_C0:
1306		/*
1307		 * Workaround BCOM Errata for the C0 type.
1308		 * Write magic patterns to reserved registers.
1309		 */
1310		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1311			xm_phy_write(hw, port,
1312				     C0hack[i].reg, C0hack[i].val);
1313
1314		break;
1315	case PHY_BCOM_ID1_A1:
1316		/*
1317		 * Workaround BCOM Errata for the A1 type.
1318		 * Write magic patterns to reserved registers.
1319		 */
1320		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1321			xm_phy_write(hw, port,
1322				     A1hack[i].reg, A1hack[i].val);
1323		break;
1324	}
1325
1326	/*
1327	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1328	 * Disable Power Management after reset.
1329	 */
1330	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1331	r |= PHY_B_AC_DIS_PM;
1332	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1333
1334	/* Dummy read */
1335	xm_read16(hw, port, XM_ISRC);
1336
1337	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1338	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1339
1340	if (skge->autoneg == AUTONEG_ENABLE) {
1341		/*
1342		 * Workaround BCOM Errata #1 for the C5 type.
1343		 * 1000Base-T Link Acquisition Failure in Slave Mode
1344		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345		 */
1346		u16 adv = PHY_B_1000C_RD;
1347		if (skge->advertising & ADVERTISED_1000baseT_Half)
1348			adv |= PHY_B_1000C_AHD;
1349		if (skge->advertising & ADVERTISED_1000baseT_Full)
1350			adv |= PHY_B_1000C_AFD;
1351		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1352
1353		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1354	} else {
1355		if (skge->duplex == DUPLEX_FULL)
1356			ctl |= PHY_CT_DUP_MD;
1357		/* Force to slave */
1358		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1359	}
1360
1361	/* Set autonegotiation pause parameters */
1362	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1363		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1364
1365	/* Handle Jumbo frames */
1366	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1367		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1368			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1369
1370		ext |= PHY_B_PEC_HIGH_LA;
1371
1372	}
1373
1374	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1375	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1376
1377	/* Use link status change interrupt */
1378	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1379}
1380
1381static void xm_phy_init(struct skge_port *skge)
1382{
1383	struct skge_hw *hw = skge->hw;
1384	int port = skge->port;
1385	u16 ctrl = 0;
1386
1387	if (skge->autoneg == AUTONEG_ENABLE) {
1388		if (skge->advertising & ADVERTISED_1000baseT_Half)
1389			ctrl |= PHY_X_AN_HD;
1390		if (skge->advertising & ADVERTISED_1000baseT_Full)
1391			ctrl |= PHY_X_AN_FD;
1392
1393		ctrl |= fiber_pause_map[skge->flow_control];
1394
1395		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1396
1397		/* Restart Auto-negotiation */
1398		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1399	} else {
1400		/* Set DuplexMode in Config register */
1401		if (skge->duplex == DUPLEX_FULL)
1402			ctrl |= PHY_CT_DUP_MD;
1403		/*
1404		 * Do NOT enable Auto-negotiation here. This would hold
1405		 * the link down because no IDLEs are transmitted
1406		 */
1407	}
1408
1409	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1410
1411	/* Poll PHY for status changes */
1412	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1413}
1414
1415static int xm_check_link(struct net_device *dev)
1416{
1417	struct skge_port *skge = netdev_priv(dev);
1418	struct skge_hw *hw = skge->hw;
1419	int port = skge->port;
1420	u16 status;
1421
1422	/* read twice because of latch */
1423	xm_phy_read(hw, port, PHY_XMAC_STAT);
1424	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1425
1426	if ((status & PHY_ST_LSYNC) == 0) {
1427		xm_link_down(hw, port);
1428		return 0;
1429	}
1430
1431	if (skge->autoneg == AUTONEG_ENABLE) {
1432		u16 lpa, res;
1433
1434		if (!(status & PHY_ST_AN_OVER))
1435			return 0;
1436
1437		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1438		if (lpa & PHY_B_AN_RF) {
1439			netdev_notice(dev, "remote fault\n");
1440			return 0;
1441		}
1442
1443		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1444
1445		/* Check Duplex mismatch */
1446		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1447		case PHY_X_RS_FD:
1448			skge->duplex = DUPLEX_FULL;
1449			break;
1450		case PHY_X_RS_HD:
1451			skge->duplex = DUPLEX_HALF;
1452			break;
1453		default:
1454			netdev_notice(dev, "duplex mismatch\n");
1455			return 0;
1456		}
1457
1458		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1459		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1460		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1461		    (lpa & PHY_X_P_SYM_MD))
1462			skge->flow_status = FLOW_STAT_SYMMETRIC;
1463		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1464			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1465			/* Enable PAUSE receive, disable PAUSE transmit */
1466			skge->flow_status  = FLOW_STAT_REM_SEND;
1467		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1468			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1469			/* Disable PAUSE receive, enable PAUSE transmit */
1470			skge->flow_status = FLOW_STAT_LOC_SEND;
1471		else
1472			skge->flow_status = FLOW_STAT_NONE;
1473
1474		skge->speed = SPEED_1000;
1475	}
1476
1477	if (!netif_carrier_ok(dev))
1478		genesis_link_up(skge);
1479	return 1;
1480}
1481
1482/* Poll to check for link coming up.
1483 *
1484 * Since internal PHY is wired to a level triggered pin, can't
1485 * get an interrupt when carrier is detected, need to poll for
1486 * link coming up.
1487 */
1488static void xm_link_timer(struct timer_list *t)
1489{
1490	struct skge_port *skge = from_timer(skge, t, link_timer);
1491	struct net_device *dev = skge->netdev;
1492	struct skge_hw *hw = skge->hw;
1493	int port = skge->port;
1494	int i;
1495	unsigned long flags;
1496
1497	if (!netif_running(dev))
1498		return;
1499
1500	spin_lock_irqsave(&hw->phy_lock, flags);
1501
1502	/*
1503	 * Verify that the link by checking GPIO register three times.
1504	 * This pin has the signal from the link_sync pin connected to it.
1505	 */
1506	for (i = 0; i < 3; i++) {
1507		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1508			goto link_down;
1509	}
1510
1511	/* Re-enable interrupt to detect link down */
1512	if (xm_check_link(dev)) {
1513		u16 msk = xm_read16(hw, port, XM_IMSK);
1514		msk &= ~XM_IS_INP_ASS;
1515		xm_write16(hw, port, XM_IMSK, msk);
1516		xm_read16(hw, port, XM_ISRC);
1517	} else {
1518link_down:
1519		mod_timer(&skge->link_timer,
1520			  round_jiffies(jiffies + LINK_HZ));
1521	}
1522	spin_unlock_irqrestore(&hw->phy_lock, flags);
1523}
1524
1525static void genesis_mac_init(struct skge_hw *hw, int port)
1526{
1527	struct net_device *dev = hw->dev[port];
1528	struct skge_port *skge = netdev_priv(dev);
1529	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1530	int i;
1531	u32 r;
1532	static const u8 zero[6]  = { 0 };
1533
1534	for (i = 0; i < 10; i++) {
1535		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1536			     MFF_SET_MAC_RST);
1537		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1538			goto reset_ok;
1539		udelay(1);
1540	}
1541
1542	netdev_warn(dev, "genesis reset failed\n");
1543
1544 reset_ok:
1545	/* Unreset the XMAC. */
1546	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1547
1548	/*
1549	 * Perform additional initialization for external PHYs,
1550	 * namely for the 1000baseTX cards that use the XMAC's
1551	 * GMII mode.
1552	 */
1553	if (hw->phy_type != SK_PHY_XMAC) {
1554		/* Take external Phy out of reset */
1555		r = skge_read32(hw, B2_GP_IO);
1556		if (port == 0)
1557			r |= GP_DIR_0|GP_IO_0;
1558		else
1559			r |= GP_DIR_2|GP_IO_2;
1560
1561		skge_write32(hw, B2_GP_IO, r);
1562
1563		/* Enable GMII interface */
1564		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1565	}
1566
1567
1568	switch (hw->phy_type) {
1569	case SK_PHY_XMAC:
1570		xm_phy_init(skge);
1571		break;
1572	case SK_PHY_BCOM:
1573		bcom_phy_init(skge);
1574		bcom_check_link(hw, port);
1575	}
1576
1577	/* Set Station Address */
1578	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1579
1580	/* We don't use match addresses so clear */
1581	for (i = 1; i < 16; i++)
1582		xm_outaddr(hw, port, XM_EXM(i), zero);
1583
1584	/* Clear MIB counters */
1585	xm_write16(hw, port, XM_STAT_CMD,
1586			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1587	/* Clear two times according to Errata #3 */
1588	xm_write16(hw, port, XM_STAT_CMD,
1589			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1590
1591	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1592	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1593
1594	/* We don't need the FCS appended to the packet. */
1595	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1596	if (jumbo)
1597		r |= XM_RX_BIG_PK_OK;
1598
1599	if (skge->duplex == DUPLEX_HALF) {
1600		/*
1601		 * If in manual half duplex mode the other side might be in
1602		 * full duplex mode, so ignore if a carrier extension is not seen
1603		 * on frames received
1604		 */
1605		r |= XM_RX_DIS_CEXT;
1606	}
1607	xm_write16(hw, port, XM_RX_CMD, r);
1608
1609	/* We want short frames padded to 60 bytes. */
1610	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1611
1612	/* Increase threshold for jumbo frames on dual port */
1613	if (hw->ports > 1 && jumbo)
1614		xm_write16(hw, port, XM_TX_THR, 1020);
1615	else
1616		xm_write16(hw, port, XM_TX_THR, 512);
1617
1618	/*
1619	 * Enable the reception of all error frames. This is is
1620	 * a necessary evil due to the design of the XMAC. The
1621	 * XMAC's receive FIFO is only 8K in size, however jumbo
1622	 * frames can be up to 9000 bytes in length. When bad
1623	 * frame filtering is enabled, the XMAC's RX FIFO operates
1624	 * in 'store and forward' mode. For this to work, the
1625	 * entire frame has to fit into the FIFO, but that means
1626	 * that jumbo frames larger than 8192 bytes will be
1627	 * truncated. Disabling all bad frame filtering causes
1628	 * the RX FIFO to operate in streaming mode, in which
1629	 * case the XMAC will start transferring frames out of the
1630	 * RX FIFO as soon as the FIFO threshold is reached.
1631	 */
1632	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1633
1634
1635	/*
1636	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1637	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1638	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1639	 */
1640	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1641
1642	/*
1643	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1644	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1645	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1646	 */
1647	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1648
1649	/* Configure MAC arbiter */
1650	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1651
1652	/* configure timeout values */
1653	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1654	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1655	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1656	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1657
1658	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1659	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1660	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1661	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1662
1663	/* Configure Rx MAC FIFO */
1664	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1665	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1666	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1667
1668	/* Configure Tx MAC FIFO */
1669	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1670	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1671	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1672
1673	if (jumbo) {
1674		/* Enable frame flushing if jumbo frames used */
1675		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1676	} else {
1677		/* enable timeout timers if normal frames */
1678		skge_write16(hw, B3_PA_CTRL,
1679			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1680	}
1681}
1682
1683static void genesis_stop(struct skge_port *skge)
1684{
1685	struct skge_hw *hw = skge->hw;
1686	int port = skge->port;
1687	unsigned retries = 1000;
1688	u16 cmd;
1689
1690	/* Disable Tx and Rx */
1691	cmd = xm_read16(hw, port, XM_MMU_CMD);
1692	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1693	xm_write16(hw, port, XM_MMU_CMD, cmd);
1694
1695	genesis_reset(hw, port);
1696
1697	/* Clear Tx packet arbiter timeout IRQ */
1698	skge_write16(hw, B3_PA_CTRL,
1699		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1700
1701	/* Reset the MAC */
1702	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1703	do {
1704		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1705		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1706			break;
1707	} while (--retries > 0);
1708
1709	/* For external PHYs there must be special handling */
1710	if (hw->phy_type != SK_PHY_XMAC) {
1711		u32 reg = skge_read32(hw, B2_GP_IO);
1712		if (port == 0) {
1713			reg |= GP_DIR_0;
1714			reg &= ~GP_IO_0;
1715		} else {
1716			reg |= GP_DIR_2;
1717			reg &= ~GP_IO_2;
1718		}
1719		skge_write32(hw, B2_GP_IO, reg);
1720		skge_read32(hw, B2_GP_IO);
1721	}
1722
1723	xm_write16(hw, port, XM_MMU_CMD,
1724			xm_read16(hw, port, XM_MMU_CMD)
1725			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1726
1727	xm_read16(hw, port, XM_MMU_CMD);
1728}
1729
1730
1731static void genesis_get_stats(struct skge_port *skge, u64 *data)
1732{
1733	struct skge_hw *hw = skge->hw;
1734	int port = skge->port;
1735	int i;
1736	unsigned long timeout = jiffies + HZ;
1737
1738	xm_write16(hw, port,
1739			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1740
1741	/* wait for update to complete */
1742	while (xm_read16(hw, port, XM_STAT_CMD)
1743	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1744		if (time_after(jiffies, timeout))
1745			break;
1746		udelay(10);
1747	}
1748
1749	/* special case for 64 bit octet counter */
1750	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1751		| xm_read32(hw, port, XM_TXO_OK_LO);
1752	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1753		| xm_read32(hw, port, XM_RXO_OK_LO);
1754
1755	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1756		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1757}
1758
1759static void genesis_mac_intr(struct skge_hw *hw, int port)
1760{
1761	struct net_device *dev = hw->dev[port];
1762	struct skge_port *skge = netdev_priv(dev);
1763	u16 status = xm_read16(hw, port, XM_ISRC);
1764
1765	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1766		     "mac interrupt status 0x%x\n", status);
1767
1768	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1769		xm_link_down(hw, port);
1770		mod_timer(&skge->link_timer, jiffies + 1);
1771	}
1772
1773	if (status & XM_IS_TXF_UR) {
1774		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1775		++dev->stats.tx_fifo_errors;
1776	}
1777}
1778
1779static void genesis_link_up(struct skge_port *skge)
1780{
1781	struct skge_hw *hw = skge->hw;
1782	int port = skge->port;
1783	u16 cmd, msk;
1784	u32 mode;
1785
1786	cmd = xm_read16(hw, port, XM_MMU_CMD);
1787
1788	/*
1789	 * enabling pause frame reception is required for 1000BT
1790	 * because the XMAC is not reset if the link is going down
1791	 */
1792	if (skge->flow_status == FLOW_STAT_NONE ||
1793	    skge->flow_status == FLOW_STAT_LOC_SEND)
1794		/* Disable Pause Frame Reception */
1795		cmd |= XM_MMU_IGN_PF;
1796	else
1797		/* Enable Pause Frame Reception */
1798		cmd &= ~XM_MMU_IGN_PF;
1799
1800	xm_write16(hw, port, XM_MMU_CMD, cmd);
1801
1802	mode = xm_read32(hw, port, XM_MODE);
1803	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1804	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1805		/*
1806		 * Configure Pause Frame Generation
1807		 * Use internal and external Pause Frame Generation.
1808		 * Sending pause frames is edge triggered.
1809		 * Send a Pause frame with the maximum pause time if
1810		 * internal oder external FIFO full condition occurs.
1811		 * Send a zero pause time frame to re-start transmission.
1812		 */
1813		/* XM_PAUSE_DA = '010000C28001' (default) */
1814		/* XM_MAC_PTIME = 0xffff (maximum) */
1815		/* remember this value is defined in big endian (!) */
1816		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1817
1818		mode |= XM_PAUSE_MODE;
1819		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1820	} else {
1821		/*
1822		 * disable pause frame generation is required for 1000BT
1823		 * because the XMAC is not reset if the link is going down
1824		 */
1825		/* Disable Pause Mode in Mode Register */
1826		mode &= ~XM_PAUSE_MODE;
1827
1828		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1829	}
1830
1831	xm_write32(hw, port, XM_MODE, mode);
1832
1833	/* Turn on detection of Tx underrun */
1834	msk = xm_read16(hw, port, XM_IMSK);
1835	msk &= ~XM_IS_TXF_UR;
1836	xm_write16(hw, port, XM_IMSK, msk);
1837
1838	xm_read16(hw, port, XM_ISRC);
1839
1840	/* get MMU Command Reg. */
1841	cmd = xm_read16(hw, port, XM_MMU_CMD);
1842	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1843		cmd |= XM_MMU_GMII_FD;
1844
1845	/*
1846	 * Workaround BCOM Errata (#10523) for all BCom Phys
1847	 * Enable Power Management after link up
1848	 */
1849	if (hw->phy_type == SK_PHY_BCOM) {
1850		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1851			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1852			     & ~PHY_B_AC_DIS_PM);
1853		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1854	}
1855
1856	/* enable Rx/Tx */
1857	xm_write16(hw, port, XM_MMU_CMD,
1858			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1859	skge_link_up(skge);
1860}
1861
1862
1863static inline void bcom_phy_intr(struct skge_port *skge)
1864{
1865	struct skge_hw *hw = skge->hw;
1866	int port = skge->port;
1867	u16 isrc;
1868
1869	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1870	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1871		     "phy interrupt status 0x%x\n", isrc);
1872
1873	if (isrc & PHY_B_IS_PSE)
1874		pr_err("%s: uncorrectable pair swap error\n",
1875		       hw->dev[port]->name);
1876
1877	/* Workaround BCom Errata:
1878	 *	enable and disable loopback mode if "NO HCD" occurs.
1879	 */
1880	if (isrc & PHY_B_IS_NO_HDCL) {
1881		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1882		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1883				  ctrl | PHY_CT_LOOP);
1884		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1885				  ctrl & ~PHY_CT_LOOP);
1886	}
1887
1888	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1889		bcom_check_link(hw, port);
1890
1891}
1892
1893static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1894{
1895	int i;
1896
1897	gma_write16(hw, port, GM_SMI_DATA, val);
1898	gma_write16(hw, port, GM_SMI_CTRL,
1899			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1900	for (i = 0; i < PHY_RETRIES; i++) {
1901		udelay(1);
1902
1903		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1904			return 0;
1905	}
1906
1907	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1908	return -EIO;
1909}
1910
1911static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1912{
1913	int i;
1914
1915	gma_write16(hw, port, GM_SMI_CTRL,
1916			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1917			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1918
1919	for (i = 0; i < PHY_RETRIES; i++) {
1920		udelay(1);
1921		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1922			goto ready;
1923	}
1924
1925	return -ETIMEDOUT;
1926 ready:
1927	*val = gma_read16(hw, port, GM_SMI_DATA);
1928	return 0;
1929}
1930
1931static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1932{
1933	u16 v = 0;
1934	if (__gm_phy_read(hw, port, reg, &v))
1935		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1936	return v;
1937}
1938
1939/* Marvell Phy Initialization */
1940static void yukon_init(struct skge_hw *hw, int port)
1941{
1942	struct skge_port *skge = netdev_priv(hw->dev[port]);
1943	u16 ctrl, ct1000, adv;
1944
1945	if (skge->autoneg == AUTONEG_ENABLE) {
1946		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1947
1948		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1949			  PHY_M_EC_MAC_S_MSK);
1950		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1951
1952		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953
1954		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1955	}
1956
1957	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1958	if (skge->autoneg == AUTONEG_DISABLE)
1959		ctrl &= ~PHY_CT_ANE;
1960
1961	ctrl |= PHY_CT_RESET;
1962	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1963
1964	ctrl = 0;
1965	ct1000 = 0;
1966	adv = PHY_AN_CSMA;
1967
1968	if (skge->autoneg == AUTONEG_ENABLE) {
1969		if (hw->copper) {
1970			if (skge->advertising & ADVERTISED_1000baseT_Full)
1971				ct1000 |= PHY_M_1000C_AFD;
1972			if (skge->advertising & ADVERTISED_1000baseT_Half)
1973				ct1000 |= PHY_M_1000C_AHD;
1974			if (skge->advertising & ADVERTISED_100baseT_Full)
1975				adv |= PHY_M_AN_100_FD;
1976			if (skge->advertising & ADVERTISED_100baseT_Half)
1977				adv |= PHY_M_AN_100_HD;
1978			if (skge->advertising & ADVERTISED_10baseT_Full)
1979				adv |= PHY_M_AN_10_FD;
1980			if (skge->advertising & ADVERTISED_10baseT_Half)
1981				adv |= PHY_M_AN_10_HD;
1982
1983			/* Set Flow-control capabilities */
1984			adv |= phy_pause_map[skge->flow_control];
1985		} else {
1986			if (skge->advertising & ADVERTISED_1000baseT_Full)
1987				adv |= PHY_M_AN_1000X_AFD;
1988			if (skge->advertising & ADVERTISED_1000baseT_Half)
1989				adv |= PHY_M_AN_1000X_AHD;
1990
1991			adv |= fiber_pause_map[skge->flow_control];
1992		}
1993
1994		/* Restart Auto-negotiation */
1995		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1996	} else {
1997		/* forced speed/duplex settings */
1998		ct1000 = PHY_M_1000C_MSE;
1999
2000		if (skge->duplex == DUPLEX_FULL)
2001			ctrl |= PHY_CT_DUP_MD;
2002
2003		switch (skge->speed) {
2004		case SPEED_1000:
2005			ctrl |= PHY_CT_SP1000;
2006			break;
2007		case SPEED_100:
2008			ctrl |= PHY_CT_SP100;
2009			break;
2010		}
2011
2012		ctrl |= PHY_CT_RESET;
2013	}
2014
2015	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2016
2017	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2018	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2019
2020	/* Enable phy interrupt on autonegotiation complete (or link up) */
2021	if (skge->autoneg == AUTONEG_ENABLE)
2022		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2023	else
2024		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2025}
2026
2027static void yukon_reset(struct skge_hw *hw, int port)
2028{
2029	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2030	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2031	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2032	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2033	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2034
2035	gma_write16(hw, port, GM_RX_CTRL,
2036			 gma_read16(hw, port, GM_RX_CTRL)
2037			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2038}
2039
2040/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2041static int is_yukon_lite_a0(struct skge_hw *hw)
2042{
2043	u32 reg;
2044	int ret;
2045
2046	if (hw->chip_id != CHIP_ID_YUKON)
2047		return 0;
2048
2049	reg = skge_read32(hw, B2_FAR);
2050	skge_write8(hw, B2_FAR + 3, 0xff);
2051	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2052	skge_write32(hw, B2_FAR, reg);
2053	return ret;
2054}
2055
2056static void yukon_mac_init(struct skge_hw *hw, int port)
2057{
2058	struct skge_port *skge = netdev_priv(hw->dev[port]);
2059	int i;
2060	u32 reg;
2061	const u8 *addr = hw->dev[port]->dev_addr;
2062
2063	/* WA code for COMA mode -- set PHY reset */
2064	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2065	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2066		reg = skge_read32(hw, B2_GP_IO);
2067		reg |= GP_DIR_9 | GP_IO_9;
2068		skge_write32(hw, B2_GP_IO, reg);
2069	}
2070
2071	/* hard reset */
2072	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2073	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2074
2075	/* WA code for COMA mode -- clear PHY reset */
2076	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2077	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2078		reg = skge_read32(hw, B2_GP_IO);
2079		reg |= GP_DIR_9;
2080		reg &= ~GP_IO_9;
2081		skge_write32(hw, B2_GP_IO, reg);
2082	}
2083
2084	/* Set hardware config mode */
2085	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2086		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2087	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2088
2089	/* Clear GMC reset */
2090	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2091	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2092	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2093
2094	if (skge->autoneg == AUTONEG_DISABLE) {
2095		reg = GM_GPCR_AU_ALL_DIS;
2096		gma_write16(hw, port, GM_GP_CTRL,
2097				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2098
2099		switch (skge->speed) {
2100		case SPEED_1000:
2101			reg &= ~GM_GPCR_SPEED_100;
2102			reg |= GM_GPCR_SPEED_1000;
2103			break;
2104		case SPEED_100:
2105			reg &= ~GM_GPCR_SPEED_1000;
2106			reg |= GM_GPCR_SPEED_100;
2107			break;
2108		case SPEED_10:
2109			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2110			break;
2111		}
2112
2113		if (skge->duplex == DUPLEX_FULL)
2114			reg |= GM_GPCR_DUP_FULL;
2115	} else
2116		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2117
2118	switch (skge->flow_control) {
2119	case FLOW_MODE_NONE:
2120		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2121		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2122		break;
2123	case FLOW_MODE_LOC_SEND:
2124		/* disable Rx flow-control */
2125		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2126		break;
2127	case FLOW_MODE_SYMMETRIC:
2128	case FLOW_MODE_SYM_OR_REM:
2129		/* enable Tx & Rx flow-control */
2130		break;
2131	}
2132
2133	gma_write16(hw, port, GM_GP_CTRL, reg);
2134	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2135
2136	yukon_init(hw, port);
2137
2138	/* MIB clear */
2139	reg = gma_read16(hw, port, GM_PHY_ADDR);
2140	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2141
2142	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2143		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2144	gma_write16(hw, port, GM_PHY_ADDR, reg);
2145
2146	/* transmit control */
2147	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2148
2149	/* receive control reg: unicast + multicast + no FCS  */
2150	gma_write16(hw, port, GM_RX_CTRL,
2151			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2152
2153	/* transmit flow control */
2154	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2155
2156	/* transmit parameter */
2157	gma_write16(hw, port, GM_TX_PARAM,
2158			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2159			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2160			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2161
2162	/* configure the Serial Mode Register */
2163	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2164		| GM_SMOD_VLAN_ENA
2165		| IPG_DATA_VAL(IPG_DATA_DEF);
2166
2167	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2168		reg |= GM_SMOD_JUMBO_ENA;
2169
2170	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2171
2172	/* physical address: used for pause frames */
2173	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2174	/* virtual address for data */
2175	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2176
2177	/* enable interrupt mask for counter overflows */
2178	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2179	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2180	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2181
2182	/* Initialize Mac Fifo */
2183
2184	/* Configure Rx MAC FIFO */
2185	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2186	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2187
2188	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2189	if (is_yukon_lite_a0(hw))
2190		reg &= ~GMF_RX_F_FL_ON;
2191
2192	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2193	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2194	/*
2195	 * because Pause Packet Truncation in GMAC is not working
2196	 * we have to increase the Flush Threshold to 64 bytes
2197	 * in order to flush pause packets in Rx FIFO on Yukon-1
2198	 */
2199	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2200
2201	/* Configure Tx MAC FIFO */
2202	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2203	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2204}
2205
2206/* Go into power down mode */
2207static void yukon_suspend(struct skge_hw *hw, int port)
2208{
2209	u16 ctrl;
2210
2211	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2212	ctrl |= PHY_M_PC_POL_R_DIS;
2213	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2214
2215	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2216	ctrl |= PHY_CT_RESET;
2217	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218
2219	/* switch IEEE compatible power down mode on */
2220	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2221	ctrl |= PHY_CT_PDOWN;
2222	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2223}
2224
2225static void yukon_stop(struct skge_port *skge)
2226{
2227	struct skge_hw *hw = skge->hw;
2228	int port = skge->port;
2229
2230	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2231	yukon_reset(hw, port);
2232
2233	gma_write16(hw, port, GM_GP_CTRL,
2234			 gma_read16(hw, port, GM_GP_CTRL)
2235			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2236	gma_read16(hw, port, GM_GP_CTRL);
2237
2238	yukon_suspend(hw, port);
2239
2240	/* set GPHY Control reset */
2241	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2242	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2243}
2244
2245static void yukon_get_stats(struct skge_port *skge, u64 *data)
2246{
2247	struct skge_hw *hw = skge->hw;
2248	int port = skge->port;
2249	int i;
2250
2251	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2252		| gma_read32(hw, port, GM_TXO_OK_LO);
2253	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2254		| gma_read32(hw, port, GM_RXO_OK_LO);
2255
2256	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2257		data[i] = gma_read32(hw, port,
2258					  skge_stats[i].gma_offset);
2259}
2260
2261static void yukon_mac_intr(struct skge_hw *hw, int port)
2262{
2263	struct net_device *dev = hw->dev[port];
2264	struct skge_port *skge = netdev_priv(dev);
2265	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2266
2267	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2268		     "mac interrupt status 0x%x\n", status);
2269
2270	if (status & GM_IS_RX_FF_OR) {
2271		++dev->stats.rx_fifo_errors;
2272		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2273	}
2274
2275	if (status & GM_IS_TX_FF_UR) {
2276		++dev->stats.tx_fifo_errors;
2277		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2278	}
2279
2280}
2281
2282static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2283{
2284	switch (aux & PHY_M_PS_SPEED_MSK) {
2285	case PHY_M_PS_SPEED_1000:
2286		return SPEED_1000;
2287	case PHY_M_PS_SPEED_100:
2288		return SPEED_100;
2289	default:
2290		return SPEED_10;
2291	}
2292}
2293
2294static void yukon_link_up(struct skge_port *skge)
2295{
2296	struct skge_hw *hw = skge->hw;
2297	int port = skge->port;
2298	u16 reg;
2299
2300	/* Enable Transmit FIFO Underrun */
2301	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2302
2303	reg = gma_read16(hw, port, GM_GP_CTRL);
2304	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2305		reg |= GM_GPCR_DUP_FULL;
2306
2307	/* enable Rx/Tx */
2308	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2309	gma_write16(hw, port, GM_GP_CTRL, reg);
2310
2311	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2312	skge_link_up(skge);
2313}
2314
2315static void yukon_link_down(struct skge_port *skge)
2316{
2317	struct skge_hw *hw = skge->hw;
2318	int port = skge->port;
2319	u16 ctrl;
2320
2321	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2322	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2323	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2324
2325	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2326		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2327		ctrl |= PHY_M_AN_ASP;
2328		/* restore Asymmetric Pause bit */
2329		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2330	}
2331
2332	skge_link_down(skge);
2333
2334	yukon_init(hw, port);
2335}
2336
2337static void yukon_phy_intr(struct skge_port *skge)
2338{
2339	struct skge_hw *hw = skge->hw;
2340	int port = skge->port;
2341	const char *reason = NULL;
2342	u16 istatus, phystat;
2343
2344	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2345	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2346
2347	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2348		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2349
2350	if (istatus & PHY_M_IS_AN_COMPL) {
2351		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2352		    & PHY_M_AN_RF) {
2353			reason = "remote fault";
2354			goto failed;
2355		}
2356
2357		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2358			reason = "master/slave fault";
2359			goto failed;
2360		}
2361
2362		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2363			reason = "speed/duplex";
2364			goto failed;
2365		}
2366
2367		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2368			? DUPLEX_FULL : DUPLEX_HALF;
2369		skge->speed = yukon_speed(hw, phystat);
2370
2371		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2372		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2373		case PHY_M_PS_PAUSE_MSK:
2374			skge->flow_status = FLOW_STAT_SYMMETRIC;
2375			break;
2376		case PHY_M_PS_RX_P_EN:
2377			skge->flow_status = FLOW_STAT_REM_SEND;
2378			break;
2379		case PHY_M_PS_TX_P_EN:
2380			skge->flow_status = FLOW_STAT_LOC_SEND;
2381			break;
2382		default:
2383			skge->flow_status = FLOW_STAT_NONE;
2384		}
2385
2386		if (skge->flow_status == FLOW_STAT_NONE ||
2387		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2388			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2389		else
2390			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2391		yukon_link_up(skge);
2392		return;
2393	}
2394
2395	if (istatus & PHY_M_IS_LSP_CHANGE)
2396		skge->speed = yukon_speed(hw, phystat);
2397
2398	if (istatus & PHY_M_IS_DUP_CHANGE)
2399		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2400	if (istatus & PHY_M_IS_LST_CHANGE) {
2401		if (phystat & PHY_M_PS_LINK_UP)
2402			yukon_link_up(skge);
2403		else
2404			yukon_link_down(skge);
2405	}
2406	return;
2407 failed:
2408	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2409
2410	/* XXX restart autonegotiation? */
2411}
2412
2413static void skge_phy_reset(struct skge_port *skge)
2414{
2415	struct skge_hw *hw = skge->hw;
2416	int port = skge->port;
2417	struct net_device *dev = hw->dev[port];
2418
2419	netif_stop_queue(skge->netdev);
2420	netif_carrier_off(skge->netdev);
2421
2422	spin_lock_bh(&hw->phy_lock);
2423	if (is_genesis(hw)) {
2424		genesis_reset(hw, port);
2425		genesis_mac_init(hw, port);
2426	} else {
2427		yukon_reset(hw, port);
2428		yukon_init(hw, port);
2429	}
2430	spin_unlock_bh(&hw->phy_lock);
2431
2432	skge_set_multicast(dev);
2433}
2434
2435/* Basic MII support */
2436static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2437{
2438	struct mii_ioctl_data *data = if_mii(ifr);
2439	struct skge_port *skge = netdev_priv(dev);
2440	struct skge_hw *hw = skge->hw;
2441	int err = -EOPNOTSUPP;
2442
2443	if (!netif_running(dev))
2444		return -ENODEV;	/* Phy still in reset */
2445
2446	switch (cmd) {
2447	case SIOCGMIIPHY:
2448		data->phy_id = hw->phy_addr;
2449
2450		/* fallthru */
2451	case SIOCGMIIREG: {
2452		u16 val = 0;
2453		spin_lock_bh(&hw->phy_lock);
2454
2455		if (is_genesis(hw))
2456			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2457		else
2458			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2459		spin_unlock_bh(&hw->phy_lock);
2460		data->val_out = val;
2461		break;
2462	}
2463
2464	case SIOCSMIIREG:
2465		spin_lock_bh(&hw->phy_lock);
2466		if (is_genesis(hw))
2467			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2468				   data->val_in);
2469		else
2470			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2471				   data->val_in);
2472		spin_unlock_bh(&hw->phy_lock);
2473		break;
2474	}
2475	return err;
2476}
2477
2478static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2479{
2480	u32 end;
2481
2482	start /= 8;
2483	len /= 8;
2484	end = start + len - 1;
2485
2486	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2487	skge_write32(hw, RB_ADDR(q, RB_START), start);
2488	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2489	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2490	skge_write32(hw, RB_ADDR(q, RB_END), end);
2491
2492	if (q == Q_R1 || q == Q_R2) {
2493		/* Set thresholds on receive queue's */
2494		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2495			     start + (2*len)/3);
2496		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2497			     start + (len/3));
2498	} else {
2499		/* Enable store & forward on Tx queue's because
2500		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501		 */
2502		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2503	}
2504
2505	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2506}
2507
2508/* Setup Bus Memory Interface */
2509static void skge_qset(struct skge_port *skge, u16 q,
2510		      const struct skge_element *e)
2511{
2512	struct skge_hw *hw = skge->hw;
2513	u32 watermark = 0x600;
2514	u64 base = skge->dma + (e->desc - skge->mem);
2515
2516	/* optimization to reduce window on 32bit/33mhz */
2517	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2518		watermark /= 2;
2519
2520	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2521	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2522	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2523	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2524}
2525
2526static int skge_up(struct net_device *dev)
2527{
2528	struct skge_port *skge = netdev_priv(dev);
2529	struct skge_hw *hw = skge->hw;
2530	int port = skge->port;
2531	u32 chunk, ram_addr;
2532	size_t rx_size, tx_size;
2533	int err;
2534
2535	if (!is_valid_ether_addr(dev->dev_addr))
2536		return -EINVAL;
2537
2538	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2539
2540	if (dev->mtu > RX_BUF_SIZE)
2541		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2542	else
2543		skge->rx_buf_size = RX_BUF_SIZE;
2544
2545
2546	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2547	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2548	skge->mem_size = tx_size + rx_size;
2549	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2550	if (!skge->mem)
2551		return -ENOMEM;
2552
2553	BUG_ON(skge->dma & 7);
2554
2555	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2556		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2557		err = -EINVAL;
2558		goto free_pci_mem;
2559	}
2560
2561	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2562	if (err)
2563		goto free_pci_mem;
2564
2565	err = skge_rx_fill(dev);
2566	if (err)
2567		goto free_rx_ring;
2568
2569	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2570			      skge->dma + rx_size);
2571	if (err)
2572		goto free_rx_ring;
2573
2574	if (hw->ports == 1) {
2575		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2576				  dev->name, hw);
2577		if (err) {
2578			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2579				   hw->pdev->irq, err);
2580			goto free_tx_ring;
2581		}
2582	}
2583
2584	/* Initialize MAC */
2585	netif_carrier_off(dev);
2586	spin_lock_bh(&hw->phy_lock);
2587	if (is_genesis(hw))
2588		genesis_mac_init(hw, port);
2589	else
2590		yukon_mac_init(hw, port);
2591	spin_unlock_bh(&hw->phy_lock);
2592
2593	/* Configure RAMbuffers - equally between ports and tx/rx */
2594	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2595	ram_addr = hw->ram_offset + 2 * chunk * port;
2596
2597	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2598	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2599
2600	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2601	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2602	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2603
2604	/* Start receiver BMU */
2605	wmb();
2606	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2607	skge_led(skge, LED_MODE_ON);
2608
2609	spin_lock_irq(&hw->hw_lock);
2610	hw->intr_mask |= portmask[port];
2611	skge_write32(hw, B0_IMSK, hw->intr_mask);
2612	skge_read32(hw, B0_IMSK);
2613	spin_unlock_irq(&hw->hw_lock);
2614
2615	napi_enable(&skge->napi);
2616
2617	skge_set_multicast(dev);
2618
2619	return 0;
2620
2621 free_tx_ring:
2622	kfree(skge->tx_ring.start);
2623 free_rx_ring:
2624	skge_rx_clean(skge);
2625	kfree(skge->rx_ring.start);
2626 free_pci_mem:
2627	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2628	skge->mem = NULL;
2629
2630	return err;
2631}
2632
2633/* stop receiver */
2634static void skge_rx_stop(struct skge_hw *hw, int port)
2635{
2636	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2637	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2638		     RB_RST_SET|RB_DIS_OP_MD);
2639	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2640}
2641
2642static int skge_down(struct net_device *dev)
2643{
2644	struct skge_port *skge = netdev_priv(dev);
2645	struct skge_hw *hw = skge->hw;
2646	int port = skge->port;
2647
2648	if (!skge->mem)
2649		return 0;
2650
2651	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2652
2653	netif_tx_disable(dev);
2654
2655	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2656		del_timer_sync(&skge->link_timer);
2657
2658	napi_disable(&skge->napi);
2659	netif_carrier_off(dev);
2660
2661	spin_lock_irq(&hw->hw_lock);
2662	hw->intr_mask &= ~portmask[port];
2663	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2664	skge_read32(hw, B0_IMSK);
2665	spin_unlock_irq(&hw->hw_lock);
2666
2667	if (hw->ports == 1)
2668		free_irq(hw->pdev->irq, hw);
2669
2670	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2671	if (is_genesis(hw))
2672		genesis_stop(skge);
2673	else
2674		yukon_stop(skge);
2675
2676	/* Stop transmitter */
2677	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2678	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2679		     RB_RST_SET|RB_DIS_OP_MD);
2680
2681
2682	/* Disable Force Sync bit and Enable Alloc bit */
2683	skge_write8(hw, SK_REG(port, TXA_CTRL),
2684		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2685
2686	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2687	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2688	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2689
2690	/* Reset PCI FIFO */
2691	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2692	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2693
2694	/* Reset the RAM Buffer async Tx queue */
2695	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2696
2697	skge_rx_stop(hw, port);
2698
2699	if (is_genesis(hw)) {
2700		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2701		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2702	} else {
2703		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2704		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2705	}
2706
2707	skge_led(skge, LED_MODE_OFF);
2708
2709	netif_tx_lock_bh(dev);
2710	skge_tx_clean(dev);
2711	netif_tx_unlock_bh(dev);
2712
2713	skge_rx_clean(skge);
2714
2715	kfree(skge->rx_ring.start);
2716	kfree(skge->tx_ring.start);
2717	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2718	skge->mem = NULL;
2719	return 0;
2720}
2721
2722static inline int skge_avail(const struct skge_ring *ring)
2723{
2724	smp_mb();
2725	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2726		+ (ring->to_clean - ring->to_use) - 1;
2727}
2728
2729static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2730				   struct net_device *dev)
2731{
2732	struct skge_port *skge = netdev_priv(dev);
2733	struct skge_hw *hw = skge->hw;
2734	struct skge_element *e;
2735	struct skge_tx_desc *td;
2736	int i;
2737	u32 control, len;
2738	dma_addr_t map;
2739
2740	if (skb_padto(skb, ETH_ZLEN))
2741		return NETDEV_TX_OK;
2742
2743	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2744		return NETDEV_TX_BUSY;
2745
2746	e = skge->tx_ring.to_use;
2747	td = e->desc;
2748	BUG_ON(td->control & BMU_OWN);
2749	e->skb = skb;
2750	len = skb_headlen(skb);
2751	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2752	if (pci_dma_mapping_error(hw->pdev, map))
2753		goto mapping_error;
2754
2755	dma_unmap_addr_set(e, mapaddr, map);
2756	dma_unmap_len_set(e, maplen, len);
2757
2758	td->dma_lo = lower_32_bits(map);
2759	td->dma_hi = upper_32_bits(map);
2760
2761	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762		const int offset = skb_checksum_start_offset(skb);
2763
2764		/* This seems backwards, but it is what the sk98lin
2765		 * does.  Looks like hardware is wrong?
2766		 */
2767		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2768		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2769			control = BMU_TCP_CHECK;
2770		else
2771			control = BMU_UDP_CHECK;
2772
2773		td->csum_offs = 0;
2774		td->csum_start = offset;
2775		td->csum_write = offset + skb->csum_offset;
2776	} else
2777		control = BMU_CHECK;
2778
2779	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2780		control |= BMU_EOF | BMU_IRQ_EOF;
2781	else {
2782		struct skge_tx_desc *tf = td;
2783
2784		control |= BMU_STFWD;
2785		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2786			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2787
2788			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2789					       skb_frag_size(frag), DMA_TO_DEVICE);
2790			if (dma_mapping_error(&hw->pdev->dev, map))
2791				goto mapping_unwind;
2792
2793			e = e->next;
2794			e->skb = skb;
2795			tf = e->desc;
2796			BUG_ON(tf->control & BMU_OWN);
2797
2798			tf->dma_lo = lower_32_bits(map);
2799			tf->dma_hi = upper_32_bits(map);
2800			dma_unmap_addr_set(e, mapaddr, map);
2801			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2802
2803			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2804		}
2805		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2806	}
2807	/* Make sure all the descriptors written */
2808	wmb();
2809	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2810	wmb();
2811
2812	netdev_sent_queue(dev, skb->len);
2813
2814	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2815
2816	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2817		     "tx queued, slot %td, len %d\n",
2818		     e - skge->tx_ring.start, skb->len);
2819
2820	skge->tx_ring.to_use = e->next;
2821	smp_wmb();
2822
2823	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2824		netdev_dbg(dev, "transmit queue full\n");
2825		netif_stop_queue(dev);
2826	}
2827
2828	return NETDEV_TX_OK;
2829
2830mapping_unwind:
2831	e = skge->tx_ring.to_use;
2832	pci_unmap_single(hw->pdev,
2833			 dma_unmap_addr(e, mapaddr),
2834			 dma_unmap_len(e, maplen),
2835			 PCI_DMA_TODEVICE);
2836	while (i-- > 0) {
2837		e = e->next;
2838		pci_unmap_page(hw->pdev,
2839			       dma_unmap_addr(e, mapaddr),
2840			       dma_unmap_len(e, maplen),
2841			       PCI_DMA_TODEVICE);
2842	}
2843
2844mapping_error:
2845	if (net_ratelimit())
2846		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847	dev_kfree_skb_any(skb);
2848	return NETDEV_TX_OK;
2849}
2850
2851
2852/* Free resources associated with this reing element */
2853static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854				 u32 control)
2855{
2856	/* skb header vs. fragment */
2857	if (control & BMU_STF)
2858		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2859				 dma_unmap_len(e, maplen),
2860				 PCI_DMA_TODEVICE);
2861	else
2862		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2863			       dma_unmap_len(e, maplen),
2864			       PCI_DMA_TODEVICE);
2865}
2866
2867/* Free all buffers in transmit ring */
2868static void skge_tx_clean(struct net_device *dev)
2869{
2870	struct skge_port *skge = netdev_priv(dev);
2871	struct skge_element *e;
2872
2873	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2874		struct skge_tx_desc *td = e->desc;
2875
2876		skge_tx_unmap(skge->hw->pdev, e, td->control);
2877
2878		if (td->control & BMU_EOF)
2879			dev_kfree_skb(e->skb);
2880		td->control = 0;
2881	}
2882
2883	netdev_reset_queue(dev);
2884	skge->tx_ring.to_clean = e;
2885}
2886
2887static void skge_tx_timeout(struct net_device *dev)
2888{
2889	struct skge_port *skge = netdev_priv(dev);
2890
2891	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2892
2893	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2894	skge_tx_clean(dev);
2895	netif_wake_queue(dev);
2896}
2897
2898static int skge_change_mtu(struct net_device *dev, int new_mtu)
2899{
2900	int err;
2901
2902	if (!netif_running(dev)) {
2903		dev->mtu = new_mtu;
2904		return 0;
2905	}
2906
2907	skge_down(dev);
2908
2909	dev->mtu = new_mtu;
2910
2911	err = skge_up(dev);
2912	if (err)
2913		dev_close(dev);
2914
2915	return err;
2916}
2917
2918static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2919
2920static void genesis_add_filter(u8 filter[8], const u8 *addr)
2921{
2922	u32 crc, bit;
2923
2924	crc = ether_crc_le(ETH_ALEN, addr);
2925	bit = ~crc & 0x3f;
2926	filter[bit/8] |= 1 << (bit%8);
2927}
2928
2929static void genesis_set_multicast(struct net_device *dev)
2930{
2931	struct skge_port *skge = netdev_priv(dev);
2932	struct skge_hw *hw = skge->hw;
2933	int port = skge->port;
2934	struct netdev_hw_addr *ha;
2935	u32 mode;
2936	u8 filter[8];
2937
2938	mode = xm_read32(hw, port, XM_MODE);
2939	mode |= XM_MD_ENA_HASH;
2940	if (dev->flags & IFF_PROMISC)
2941		mode |= XM_MD_ENA_PROM;
2942	else
2943		mode &= ~XM_MD_ENA_PROM;
2944
2945	if (dev->flags & IFF_ALLMULTI)
2946		memset(filter, 0xff, sizeof(filter));
2947	else {
2948		memset(filter, 0, sizeof(filter));
2949
2950		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2951		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2952			genesis_add_filter(filter, pause_mc_addr);
2953
2954		netdev_for_each_mc_addr(ha, dev)
2955			genesis_add_filter(filter, ha->addr);
2956	}
2957
2958	xm_write32(hw, port, XM_MODE, mode);
2959	xm_outhash(hw, port, XM_HSM, filter);
2960}
2961
2962static void yukon_add_filter(u8 filter[8], const u8 *addr)
2963{
2964	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2965	 filter[bit/8] |= 1 << (bit%8);
2966}
2967
2968static void yukon_set_multicast(struct net_device *dev)
2969{
2970	struct skge_port *skge = netdev_priv(dev);
2971	struct skge_hw *hw = skge->hw;
2972	int port = skge->port;
2973	struct netdev_hw_addr *ha;
2974	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2975			skge->flow_status == FLOW_STAT_SYMMETRIC);
2976	u16 reg;
2977	u8 filter[8];
2978
2979	memset(filter, 0, sizeof(filter));
2980
2981	reg = gma_read16(hw, port, GM_RX_CTRL);
2982	reg |= GM_RXCR_UCF_ENA;
2983
2984	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2985		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2986	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2987		memset(filter, 0xff, sizeof(filter));
2988	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2989		reg &= ~GM_RXCR_MCF_ENA;
2990	else {
2991		reg |= GM_RXCR_MCF_ENA;
2992
2993		if (rx_pause)
2994			yukon_add_filter(filter, pause_mc_addr);
2995
2996		netdev_for_each_mc_addr(ha, dev)
2997			yukon_add_filter(filter, ha->addr);
2998	}
2999
3000
3001	gma_write16(hw, port, GM_MC_ADDR_H1,
3002			 (u16)filter[0] | ((u16)filter[1] << 8));
3003	gma_write16(hw, port, GM_MC_ADDR_H2,
3004			 (u16)filter[2] | ((u16)filter[3] << 8));
3005	gma_write16(hw, port, GM_MC_ADDR_H3,
3006			 (u16)filter[4] | ((u16)filter[5] << 8));
3007	gma_write16(hw, port, GM_MC_ADDR_H4,
3008			 (u16)filter[6] | ((u16)filter[7] << 8));
3009
3010	gma_write16(hw, port, GM_RX_CTRL, reg);
3011}
3012
3013static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3014{
3015	if (is_genesis(hw))
3016		return status >> XMR_FS_LEN_SHIFT;
3017	else
3018		return status >> GMR_FS_LEN_SHIFT;
3019}
3020
3021static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3022{
3023	if (is_genesis(hw))
3024		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3025	else
3026		return (status & GMR_FS_ANY_ERR) ||
3027			(status & GMR_FS_RX_OK) == 0;
3028}
3029
3030static void skge_set_multicast(struct net_device *dev)
3031{
3032	struct skge_port *skge = netdev_priv(dev);
3033
3034	if (is_genesis(skge->hw))
3035		genesis_set_multicast(dev);
3036	else
3037		yukon_set_multicast(dev);
3038
3039}
3040
3041
3042/* Get receive buffer from descriptor.
3043 * Handles copy of small buffers and reallocation failures
3044 */
3045static struct sk_buff *skge_rx_get(struct net_device *dev,
3046				   struct skge_element *e,
3047				   u32 control, u32 status, u16 csum)
3048{
3049	struct skge_port *skge = netdev_priv(dev);
3050	struct sk_buff *skb;
3051	u16 len = control & BMU_BBC;
3052
3053	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3054		     "rx slot %td status 0x%x len %d\n",
3055		     e - skge->rx_ring.start, status, len);
3056
3057	if (len > skge->rx_buf_size)
3058		goto error;
3059
3060	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3061		goto error;
3062
3063	if (bad_phy_status(skge->hw, status))
3064		goto error;
3065
3066	if (phy_length(skge->hw, status) != len)
3067		goto error;
3068
3069	if (len < RX_COPY_THRESHOLD) {
3070		skb = netdev_alloc_skb_ip_align(dev, len);
3071		if (!skb)
3072			goto resubmit;
3073
3074		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3075					    dma_unmap_addr(e, mapaddr),
3076					    dma_unmap_len(e, maplen),
3077					    PCI_DMA_FROMDEVICE);
3078		skb_copy_from_linear_data(e->skb, skb->data, len);
3079		pci_dma_sync_single_for_device(skge->hw->pdev,
3080					       dma_unmap_addr(e, mapaddr),
3081					       dma_unmap_len(e, maplen),
3082					       PCI_DMA_FROMDEVICE);
3083		skge_rx_reuse(e, skge->rx_buf_size);
3084	} else {
3085		struct skge_element ee;
3086		struct sk_buff *nskb;
3087
3088		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3089		if (!nskb)
3090			goto resubmit;
3091
3092		ee = *e;
3093
3094		skb = ee.skb;
3095		prefetch(skb->data);
3096
3097		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3098			dev_kfree_skb(nskb);
3099			goto resubmit;
3100		}
3101
3102		pci_unmap_single(skge->hw->pdev,
3103				 dma_unmap_addr(&ee, mapaddr),
3104				 dma_unmap_len(&ee, maplen),
3105				 PCI_DMA_FROMDEVICE);
3106	}
3107
3108	skb_put(skb, len);
3109
3110	if (dev->features & NETIF_F_RXCSUM) {
3111		skb->csum = le16_to_cpu(csum);
3112		skb->ip_summed = CHECKSUM_COMPLETE;
3113	}
3114
3115	skb->protocol = eth_type_trans(skb, dev);
3116
3117	return skb;
3118error:
3119
3120	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3121		     "rx err, slot %td control 0x%x status 0x%x\n",
3122		     e - skge->rx_ring.start, control, status);
3123
3124	if (is_genesis(skge->hw)) {
3125		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3126			dev->stats.rx_length_errors++;
3127		if (status & XMR_FS_FRA_ERR)
3128			dev->stats.rx_frame_errors++;
3129		if (status & XMR_FS_FCS_ERR)
3130			dev->stats.rx_crc_errors++;
3131	} else {
3132		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3133			dev->stats.rx_length_errors++;
3134		if (status & GMR_FS_FRAGMENT)
3135			dev->stats.rx_frame_errors++;
3136		if (status & GMR_FS_CRC_ERR)
3137			dev->stats.rx_crc_errors++;
3138	}
3139
3140resubmit:
3141	skge_rx_reuse(e, skge->rx_buf_size);
3142	return NULL;
3143}
3144
3145/* Free all buffers in Tx ring which are no longer owned by device */
3146static void skge_tx_done(struct net_device *dev)
3147{
3148	struct skge_port *skge = netdev_priv(dev);
3149	struct skge_ring *ring = &skge->tx_ring;
3150	struct skge_element *e;
3151	unsigned int bytes_compl = 0, pkts_compl = 0;
3152
3153	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3154
3155	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3156		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3157
3158		if (control & BMU_OWN)
3159			break;
3160
3161		skge_tx_unmap(skge->hw->pdev, e, control);
3162
3163		if (control & BMU_EOF) {
3164			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3165				     "tx done slot %td\n",
3166				     e - skge->tx_ring.start);
3167
3168			pkts_compl++;
3169			bytes_compl += e->skb->len;
3170
3171			dev_consume_skb_any(e->skb);
3172		}
3173	}
3174	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3175	skge->tx_ring.to_clean = e;
3176
3177	/* Can run lockless until we need to synchronize to restart queue. */
3178	smp_mb();
3179
3180	if (unlikely(netif_queue_stopped(dev) &&
3181		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182		netif_tx_lock(dev);
3183		if (unlikely(netif_queue_stopped(dev) &&
3184			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3185			netif_wake_queue(dev);
3186
3187		}
3188		netif_tx_unlock(dev);
3189	}
3190}
3191
3192static int skge_poll(struct napi_struct *napi, int budget)
3193{
3194	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3195	struct net_device *dev = skge->netdev;
3196	struct skge_hw *hw = skge->hw;
3197	struct skge_ring *ring = &skge->rx_ring;
3198	struct skge_element *e;
3199	int work_done = 0;
3200
3201	skge_tx_done(dev);
3202
3203	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3204
3205	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3206		struct skge_rx_desc *rd = e->desc;
3207		struct sk_buff *skb;
3208		u32 control;
3209
3210		rmb();
3211		control = rd->control;
3212		if (control & BMU_OWN)
3213			break;
3214
3215		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3216		if (likely(skb)) {
3217			napi_gro_receive(napi, skb);
3218			++work_done;
3219		}
3220	}
3221	ring->to_clean = e;
3222
3223	/* restart receiver */
3224	wmb();
3225	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3226
3227	if (work_done < budget && napi_complete_done(napi, work_done)) {
3228		unsigned long flags;
3229
3230		spin_lock_irqsave(&hw->hw_lock, flags);
3231		hw->intr_mask |= napimask[skge->port];
3232		skge_write32(hw, B0_IMSK, hw->intr_mask);
3233		skge_read32(hw, B0_IMSK);
3234		spin_unlock_irqrestore(&hw->hw_lock, flags);
3235	}
3236
3237	return work_done;
3238}
3239
3240/* Parity errors seem to happen when Genesis is connected to a switch
3241 * with no other ports present. Heartbeat error??
3242 */
3243static void skge_mac_parity(struct skge_hw *hw, int port)
3244{
3245	struct net_device *dev = hw->dev[port];
3246
3247	++dev->stats.tx_heartbeat_errors;
3248
3249	if (is_genesis(hw))
3250		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3251			     MFF_CLR_PERR);
3252	else
3253		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3254		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3255			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3256			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3257}
3258
3259static void skge_mac_intr(struct skge_hw *hw, int port)
3260{
3261	if (is_genesis(hw))
3262		genesis_mac_intr(hw, port);
3263	else
3264		yukon_mac_intr(hw, port);
3265}
3266
3267/* Handle device specific framing and timeout interrupts */
3268static void skge_error_irq(struct skge_hw *hw)
3269{
3270	struct pci_dev *pdev = hw->pdev;
3271	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3272
3273	if (is_genesis(hw)) {
3274		/* clear xmac errors */
3275		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3276			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3277		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3278			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3279	} else {
3280		/* Timestamp (unused) overflow */
3281		if (hwstatus & IS_IRQ_TIST_OV)
3282			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3283	}
3284
3285	if (hwstatus & IS_RAM_RD_PAR) {
3286		dev_err(&pdev->dev, "Ram read data parity error\n");
3287		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3288	}
3289
3290	if (hwstatus & IS_RAM_WR_PAR) {
3291		dev_err(&pdev->dev, "Ram write data parity error\n");
3292		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3293	}
3294
3295	if (hwstatus & IS_M1_PAR_ERR)
3296		skge_mac_parity(hw, 0);
3297
3298	if (hwstatus & IS_M2_PAR_ERR)
3299		skge_mac_parity(hw, 1);
3300
3301	if (hwstatus & IS_R1_PAR_ERR) {
3302		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3303			hw->dev[0]->name);
3304		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3305	}
3306
3307	if (hwstatus & IS_R2_PAR_ERR) {
3308		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309			hw->dev[1]->name);
3310		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3311	}
3312
3313	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3314		u16 pci_status, pci_cmd;
3315
3316		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3317		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3318
3319		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3320			pci_cmd, pci_status);
3321
3322		/* Write the error bits back to clear them. */
3323		pci_status &= PCI_STATUS_ERROR_BITS;
3324		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3325		pci_write_config_word(pdev, PCI_COMMAND,
3326				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3327		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3328		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3329
3330		/* if error still set then just ignore it */
3331		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3332		if (hwstatus & IS_IRQ_STAT) {
3333			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3334			hw->intr_mask &= ~IS_HW_ERR;
3335		}
3336	}
3337}
3338
3339/*
3340 * Interrupt from PHY are handled in tasklet (softirq)
3341 * because accessing phy registers requires spin wait which might
3342 * cause excess interrupt latency.
3343 */
3344static void skge_extirq(unsigned long arg)
3345{
3346	struct skge_hw *hw = (struct skge_hw *) arg;
3347	int port;
3348
3349	for (port = 0; port < hw->ports; port++) {
3350		struct net_device *dev = hw->dev[port];
3351
3352		if (netif_running(dev)) {
3353			struct skge_port *skge = netdev_priv(dev);
3354
3355			spin_lock(&hw->phy_lock);
3356			if (!is_genesis(hw))
3357				yukon_phy_intr(skge);
3358			else if (hw->phy_type == SK_PHY_BCOM)
3359				bcom_phy_intr(skge);
3360			spin_unlock(&hw->phy_lock);
3361		}
3362	}
3363
3364	spin_lock_irq(&hw->hw_lock);
3365	hw->intr_mask |= IS_EXT_REG;
3366	skge_write32(hw, B0_IMSK, hw->intr_mask);
3367	skge_read32(hw, B0_IMSK);
3368	spin_unlock_irq(&hw->hw_lock);
3369}
3370
3371static irqreturn_t skge_intr(int irq, void *dev_id)
3372{
3373	struct skge_hw *hw = dev_id;
3374	u32 status;
3375	int handled = 0;
3376
3377	spin_lock(&hw->hw_lock);
3378	/* Reading this register masks IRQ */
3379	status = skge_read32(hw, B0_SP_ISRC);
3380	if (status == 0 || status == ~0)
3381		goto out;
3382
3383	handled = 1;
3384	status &= hw->intr_mask;
3385	if (status & IS_EXT_REG) {
3386		hw->intr_mask &= ~IS_EXT_REG;
3387		tasklet_schedule(&hw->phy_task);
3388	}
3389
3390	if (status & (IS_XA1_F|IS_R1_F)) {
3391		struct skge_port *skge = netdev_priv(hw->dev[0]);
3392		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3393		napi_schedule(&skge->napi);
3394	}
3395
3396	if (status & IS_PA_TO_TX1)
3397		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3398
3399	if (status & IS_PA_TO_RX1) {
3400		++hw->dev[0]->stats.rx_over_errors;
3401		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3402	}
3403
3404
3405	if (status & IS_MAC1)
3406		skge_mac_intr(hw, 0);
3407
3408	if (hw->dev[1]) {
3409		struct skge_port *skge = netdev_priv(hw->dev[1]);
3410
3411		if (status & (IS_XA2_F|IS_R2_F)) {
3412			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3413			napi_schedule(&skge->napi);
3414		}
3415
3416		if (status & IS_PA_TO_RX2) {
3417			++hw->dev[1]->stats.rx_over_errors;
3418			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3419		}
3420
3421		if (status & IS_PA_TO_TX2)
3422			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3423
3424		if (status & IS_MAC2)
3425			skge_mac_intr(hw, 1);
3426	}
3427
3428	if (status & IS_HW_ERR)
3429		skge_error_irq(hw);
3430out:
3431	skge_write32(hw, B0_IMSK, hw->intr_mask);
3432	skge_read32(hw, B0_IMSK);
3433	spin_unlock(&hw->hw_lock);
3434
3435	return IRQ_RETVAL(handled);
3436}
3437
3438#ifdef CONFIG_NET_POLL_CONTROLLER
3439static void skge_netpoll(struct net_device *dev)
3440{
3441	struct skge_port *skge = netdev_priv(dev);
3442
3443	disable_irq(dev->irq);
3444	skge_intr(dev->irq, skge->hw);
3445	enable_irq(dev->irq);
3446}
3447#endif
3448
3449static int skge_set_mac_address(struct net_device *dev, void *p)
3450{
3451	struct skge_port *skge = netdev_priv(dev);
3452	struct skge_hw *hw = skge->hw;
3453	unsigned port = skge->port;
3454	const struct sockaddr *addr = p;
3455	u16 ctrl;
3456
3457	if (!is_valid_ether_addr(addr->sa_data))
3458		return -EADDRNOTAVAIL;
3459
3460	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3461
3462	if (!netif_running(dev)) {
3463		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3464		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3465	} else {
3466		/* disable Rx */
3467		spin_lock_bh(&hw->phy_lock);
3468		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3469		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3470
3471		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3472		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3473
3474		if (is_genesis(hw))
3475			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3476		else {
3477			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3478			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3479		}
3480
3481		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3482		spin_unlock_bh(&hw->phy_lock);
3483	}
3484
3485	return 0;
3486}
3487
3488static const struct {
3489	u8 id;
3490	const char *name;
3491} skge_chips[] = {
3492	{ CHIP_ID_GENESIS,	"Genesis" },
3493	{ CHIP_ID_YUKON,	 "Yukon" },
3494	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3495	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3496};
3497
3498static const char *skge_board_name(const struct skge_hw *hw)
3499{
3500	int i;
3501	static char buf[16];
3502
3503	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3504		if (skge_chips[i].id == hw->chip_id)
3505			return skge_chips[i].name;
3506
3507	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3508	return buf;
3509}
3510
3511
3512/*
3513 * Setup the board data structure, but don't bring up
3514 * the port(s)
3515 */
3516static int skge_reset(struct skge_hw *hw)
3517{
3518	u32 reg;
3519	u16 ctst, pci_status;
3520	u8 t8, mac_cfg, pmd_type;
3521	int i;
3522
3523	ctst = skge_read16(hw, B0_CTST);
3524
3525	/* do a SW reset */
3526	skge_write8(hw, B0_CTST, CS_RST_SET);
3527	skge_write8(hw, B0_CTST, CS_RST_CLR);
3528
3529	/* clear PCI errors, if any */
3530	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3531	skge_write8(hw, B2_TST_CTRL2, 0);
3532
3533	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3534	pci_write_config_word(hw->pdev, PCI_STATUS,
3535			      pci_status | PCI_STATUS_ERROR_BITS);
3536	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3537	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3538
3539	/* restore CLK_RUN bits (for Yukon-Lite) */
3540	skge_write16(hw, B0_CTST,
3541		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3542
3543	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3544	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3545	pmd_type = skge_read8(hw, B2_PMD_TYP);
3546	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3547
3548	switch (hw->chip_id) {
3549	case CHIP_ID_GENESIS:
3550#ifdef CONFIG_SKGE_GENESIS
3551		switch (hw->phy_type) {
3552		case SK_PHY_XMAC:
3553			hw->phy_addr = PHY_ADDR_XMAC;
3554			break;
3555		case SK_PHY_BCOM:
3556			hw->phy_addr = PHY_ADDR_BCOM;
3557			break;
3558		default:
3559			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3560			       hw->phy_type);
3561			return -EOPNOTSUPP;
3562		}
3563		break;
3564#else
3565		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3566		return -EOPNOTSUPP;
3567#endif
3568
3569	case CHIP_ID_YUKON:
3570	case CHIP_ID_YUKON_LITE:
3571	case CHIP_ID_YUKON_LP:
3572		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3573			hw->copper = 1;
3574
3575		hw->phy_addr = PHY_ADDR_MARV;
3576		break;
3577
3578	default:
3579		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3580		       hw->chip_id);
3581		return -EOPNOTSUPP;
3582	}
3583
3584	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3585	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3586	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3587
3588	/* read the adapters RAM size */
3589	t8 = skge_read8(hw, B2_E_0);
3590	if (is_genesis(hw)) {
3591		if (t8 == 3) {
3592			/* special case: 4 x 64k x 36, offset = 0x80000 */
3593			hw->ram_size = 0x100000;
3594			hw->ram_offset = 0x80000;
3595		} else
3596			hw->ram_size = t8 * 512;
3597	} else if (t8 == 0)
3598		hw->ram_size = 0x20000;
3599	else
3600		hw->ram_size = t8 * 4096;
3601
3602	hw->intr_mask = IS_HW_ERR;
3603
3604	/* Use PHY IRQ for all but fiber based Genesis board */
3605	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3606		hw->intr_mask |= IS_EXT_REG;
3607
3608	if (is_genesis(hw))
3609		genesis_init(hw);
3610	else {
3611		/* switch power to VCC (WA for VAUX problem) */
3612		skge_write8(hw, B0_POWER_CTRL,
3613			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3614
3615		/* avoid boards with stuck Hardware error bits */
3616		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3617		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3618			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3619			hw->intr_mask &= ~IS_HW_ERR;
3620		}
3621
3622		/* Clear PHY COMA */
3623		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3624		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3625		reg &= ~PCI_PHY_COMA;
3626		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3627		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3628
3629
3630		for (i = 0; i < hw->ports; i++) {
3631			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3632			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3633		}
3634	}
3635
3636	/* turn off hardware timer (unused) */
3637	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3638	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3639	skge_write8(hw, B0_LED, LED_STAT_ON);
3640
3641	/* enable the Tx Arbiters */
3642	for (i = 0; i < hw->ports; i++)
3643		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3644
3645	/* Initialize ram interface */
3646	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3647
3648	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3649	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3650	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3651	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3652	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3653	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3654	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3657	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3658	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3659	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3660
3661	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3662
3663	/* Set interrupt moderation for Transmit only
3664	 * Receive interrupts avoided by NAPI
3665	 */
3666	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3667	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3668	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3669
3670	/* Leave irq disabled until first port is brought up. */
3671	skge_write32(hw, B0_IMSK, 0);
3672
3673	for (i = 0; i < hw->ports; i++) {
3674		if (is_genesis(hw))
3675			genesis_reset(hw, i);
3676		else
3677			yukon_reset(hw, i);
3678	}
3679
3680	return 0;
3681}
3682
3683
3684#ifdef CONFIG_SKGE_DEBUG
3685
3686static struct dentry *skge_debug;
3687
3688static int skge_debug_show(struct seq_file *seq, void *v)
3689{
3690	struct net_device *dev = seq->private;
3691	const struct skge_port *skge = netdev_priv(dev);
3692	const struct skge_hw *hw = skge->hw;
3693	const struct skge_element *e;
3694
3695	if (!netif_running(dev))
3696		return -ENETDOWN;
3697
3698	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3699		   skge_read32(hw, B0_IMSK));
3700
3701	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3702	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3703		const struct skge_tx_desc *t = e->desc;
3704		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3705			   t->control, t->dma_hi, t->dma_lo, t->status,
3706			   t->csum_offs, t->csum_write, t->csum_start);
3707	}
3708
3709	seq_puts(seq, "\nRx Ring:\n");
3710	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3711		const struct skge_rx_desc *r = e->desc;
3712
3713		if (r->control & BMU_OWN)
3714			break;
3715
3716		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3717			   r->control, r->dma_hi, r->dma_lo, r->status,
3718			   r->timestamp, r->csum1, r->csum1_start);
3719	}
3720
3721	return 0;
3722}
3723DEFINE_SHOW_ATTRIBUTE(skge_debug);
3724
3725/*
3726 * Use network device events to create/remove/rename
3727 * debugfs file entries
3728 */
3729static int skge_device_event(struct notifier_block *unused,
3730			     unsigned long event, void *ptr)
3731{
3732	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3733	struct skge_port *skge;
3734
3735	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3736		goto done;
3737
3738	skge = netdev_priv(dev);
3739	switch (event) {
3740	case NETDEV_CHANGENAME:
3741		if (skge->debugfs)
3742			skge->debugfs = debugfs_rename(skge_debug,
3743						       skge->debugfs,
3744						       skge_debug, dev->name);
3745		break;
3746
3747	case NETDEV_GOING_DOWN:
3748		debugfs_remove(skge->debugfs);
3749		skge->debugfs = NULL;
3750		break;
3751
3752	case NETDEV_UP:
3753		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3754						    dev, &skge_debug_fops);
3755		break;
3756	}
3757
3758done:
3759	return NOTIFY_DONE;
3760}
3761
3762static struct notifier_block skge_notifier = {
3763	.notifier_call = skge_device_event,
3764};
3765
3766
3767static __init void skge_debug_init(void)
3768{
3769	skge_debug = debugfs_create_dir("skge", NULL);
3770
3771	register_netdevice_notifier(&skge_notifier);
3772}
3773
3774static __exit void skge_debug_cleanup(void)
3775{
3776	if (skge_debug) {
3777		unregister_netdevice_notifier(&skge_notifier);
3778		debugfs_remove(skge_debug);
3779		skge_debug = NULL;
3780	}
3781}
3782
3783#else
3784#define skge_debug_init()
3785#define skge_debug_cleanup()
3786#endif
3787
3788static const struct net_device_ops skge_netdev_ops = {
3789	.ndo_open		= skge_up,
3790	.ndo_stop		= skge_down,
3791	.ndo_start_xmit		= skge_xmit_frame,
3792	.ndo_do_ioctl		= skge_ioctl,
3793	.ndo_get_stats		= skge_get_stats,
3794	.ndo_tx_timeout		= skge_tx_timeout,
3795	.ndo_change_mtu		= skge_change_mtu,
3796	.ndo_validate_addr	= eth_validate_addr,
3797	.ndo_set_rx_mode	= skge_set_multicast,
3798	.ndo_set_mac_address	= skge_set_mac_address,
3799#ifdef CONFIG_NET_POLL_CONTROLLER
3800	.ndo_poll_controller	= skge_netpoll,
3801#endif
3802};
3803
3804
3805/* Initialize network device */
3806static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3807				       int highmem)
3808{
3809	struct skge_port *skge;
3810	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3811
3812	if (!dev)
3813		return NULL;
3814
3815	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3816	dev->netdev_ops = &skge_netdev_ops;
3817	dev->ethtool_ops = &skge_ethtool_ops;
3818	dev->watchdog_timeo = TX_WATCHDOG;
3819	dev->irq = hw->pdev->irq;
3820
3821	/* MTU range: 60 - 9000 */
3822	dev->min_mtu = ETH_ZLEN;
3823	dev->max_mtu = ETH_JUMBO_MTU;
3824
3825	if (highmem)
3826		dev->features |= NETIF_F_HIGHDMA;
3827
3828	skge = netdev_priv(dev);
3829	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3830	skge->netdev = dev;
3831	skge->hw = hw;
3832	skge->msg_enable = netif_msg_init(debug, default_msg);
3833
3834	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3835	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3836
3837	/* Auto speed and flow control */
3838	skge->autoneg = AUTONEG_ENABLE;
3839	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3840	skge->duplex = -1;
3841	skge->speed = -1;
3842	skge->advertising = skge_supported_modes(hw);
3843
3844	if (device_can_wakeup(&hw->pdev->dev)) {
3845		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3846		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3847	}
3848
3849	hw->dev[port] = dev;
3850
3851	skge->port = port;
3852
3853	/* Only used for Genesis XMAC */
3854	if (is_genesis(hw))
3855	    timer_setup(&skge->link_timer, xm_link_timer, 0);
3856	else {
3857		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3858		                   NETIF_F_RXCSUM;
3859		dev->features |= dev->hw_features;
3860	}
3861
3862	/* read the mac address */
3863	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3864
3865	return dev;
3866}
3867
3868static void skge_show_addr(struct net_device *dev)
3869{
3870	const struct skge_port *skge = netdev_priv(dev);
3871
3872	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3873}
3874
3875static int only_32bit_dma;
3876
3877static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3878{
3879	struct net_device *dev, *dev1;
3880	struct skge_hw *hw;
3881	int err, using_dac = 0;
3882
3883	err = pci_enable_device(pdev);
3884	if (err) {
3885		dev_err(&pdev->dev, "cannot enable PCI device\n");
3886		goto err_out;
3887	}
3888
3889	err = pci_request_regions(pdev, DRV_NAME);
3890	if (err) {
3891		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3892		goto err_out_disable_pdev;
3893	}
3894
3895	pci_set_master(pdev);
3896
3897	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3898		using_dac = 1;
3899		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3900	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3901		using_dac = 0;
3902		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3903	}
3904
3905	if (err) {
3906		dev_err(&pdev->dev, "no usable DMA configuration\n");
3907		goto err_out_free_regions;
3908	}
3909
3910#ifdef __BIG_ENDIAN
3911	/* byte swap descriptors in hardware */
3912	{
3913		u32 reg;
3914
3915		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3916		reg |= PCI_REV_DESC;
3917		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3918	}
3919#endif
3920
3921	err = -ENOMEM;
3922	/* space for skge@pci:0000:04:00.0 */
3923	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3924		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3925	if (!hw)
3926		goto err_out_free_regions;
3927
3928	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3929
3930	hw->pdev = pdev;
3931	spin_lock_init(&hw->hw_lock);
3932	spin_lock_init(&hw->phy_lock);
3933	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3934
3935	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3936	if (!hw->regs) {
3937		dev_err(&pdev->dev, "cannot map device registers\n");
3938		goto err_out_free_hw;
3939	}
3940
3941	err = skge_reset(hw);
3942	if (err)
3943		goto err_out_iounmap;
3944
3945	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3946		DRV_VERSION,
3947		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3948		skge_board_name(hw), hw->chip_rev);
3949
3950	dev = skge_devinit(hw, 0, using_dac);
3951	if (!dev) {
3952		err = -ENOMEM;
3953		goto err_out_led_off;
3954	}
3955
3956	/* Some motherboards are broken and has zero in ROM. */
3957	if (!is_valid_ether_addr(dev->dev_addr))
3958		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3959
3960	err = register_netdev(dev);
3961	if (err) {
3962		dev_err(&pdev->dev, "cannot register net device\n");
3963		goto err_out_free_netdev;
3964	}
3965
3966	skge_show_addr(dev);
3967
3968	if (hw->ports > 1) {
3969		dev1 = skge_devinit(hw, 1, using_dac);
3970		if (!dev1) {
3971			err = -ENOMEM;
3972			goto err_out_unregister;
3973		}
3974
3975		err = register_netdev(dev1);
3976		if (err) {
3977			dev_err(&pdev->dev, "cannot register second net device\n");
3978			goto err_out_free_dev1;
3979		}
3980
3981		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3982				  hw->irq_name, hw);
3983		if (err) {
3984			dev_err(&pdev->dev, "cannot assign irq %d\n",
3985				pdev->irq);
3986			goto err_out_unregister_dev1;
3987		}
3988
3989		skge_show_addr(dev1);
3990	}
3991	pci_set_drvdata(pdev, hw);
3992
3993	return 0;
3994
3995err_out_unregister_dev1:
3996	unregister_netdev(dev1);
3997err_out_free_dev1:
3998	free_netdev(dev1);
3999err_out_unregister:
4000	unregister_netdev(dev);
4001err_out_free_netdev:
4002	free_netdev(dev);
4003err_out_led_off:
4004	skge_write16(hw, B0_LED, LED_STAT_OFF);
4005err_out_iounmap:
4006	iounmap(hw->regs);
4007err_out_free_hw:
4008	kfree(hw);
4009err_out_free_regions:
4010	pci_release_regions(pdev);
4011err_out_disable_pdev:
4012	pci_disable_device(pdev);
4013err_out:
4014	return err;
4015}
4016
4017static void skge_remove(struct pci_dev *pdev)
4018{
4019	struct skge_hw *hw  = pci_get_drvdata(pdev);
4020	struct net_device *dev0, *dev1;
4021
4022	if (!hw)
4023		return;
4024
4025	dev1 = hw->dev[1];
4026	if (dev1)
4027		unregister_netdev(dev1);
4028	dev0 = hw->dev[0];
4029	unregister_netdev(dev0);
4030
4031	tasklet_kill(&hw->phy_task);
4032
4033	spin_lock_irq(&hw->hw_lock);
4034	hw->intr_mask = 0;
4035
4036	if (hw->ports > 1) {
4037		skge_write32(hw, B0_IMSK, 0);
4038		skge_read32(hw, B0_IMSK);
4039	}
4040	spin_unlock_irq(&hw->hw_lock);
4041
4042	skge_write16(hw, B0_LED, LED_STAT_OFF);
4043	skge_write8(hw, B0_CTST, CS_RST_SET);
4044
4045	if (hw->ports > 1)
4046		free_irq(pdev->irq, hw);
4047	pci_release_regions(pdev);
4048	pci_disable_device(pdev);
4049	if (dev1)
4050		free_netdev(dev1);
4051	free_netdev(dev0);
4052
4053	iounmap(hw->regs);
4054	kfree(hw);
4055}
4056
4057#ifdef CONFIG_PM_SLEEP
4058static int skge_suspend(struct device *dev)
4059{
4060	struct skge_hw *hw  = dev_get_drvdata(dev);
4061	int i;
4062
4063	if (!hw)
4064		return 0;
4065
4066	for (i = 0; i < hw->ports; i++) {
4067		struct net_device *dev = hw->dev[i];
4068		struct skge_port *skge = netdev_priv(dev);
4069
4070		if (netif_running(dev))
4071			skge_down(dev);
4072
4073		if (skge->wol)
4074			skge_wol_init(skge);
4075	}
4076
4077	skge_write32(hw, B0_IMSK, 0);
4078
4079	return 0;
4080}
4081
4082static int skge_resume(struct device *dev)
4083{
4084	struct skge_hw *hw  = dev_get_drvdata(dev);
4085	int i, err;
4086
4087	if (!hw)
4088		return 0;
4089
4090	err = skge_reset(hw);
4091	if (err)
4092		goto out;
4093
4094	for (i = 0; i < hw->ports; i++) {
4095		struct net_device *dev = hw->dev[i];
4096
4097		if (netif_running(dev)) {
4098			err = skge_up(dev);
4099
4100			if (err) {
4101				netdev_err(dev, "could not up: %d\n", err);
4102				dev_close(dev);
4103				goto out;
4104			}
4105		}
4106	}
4107out:
4108	return err;
4109}
4110
4111static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4112#define SKGE_PM_OPS (&skge_pm_ops)
4113
4114#else
4115
4116#define SKGE_PM_OPS NULL
4117#endif /* CONFIG_PM_SLEEP */
4118
4119static void skge_shutdown(struct pci_dev *pdev)
4120{
4121	struct skge_hw *hw  = pci_get_drvdata(pdev);
4122	int i;
4123
4124	if (!hw)
4125		return;
4126
4127	for (i = 0; i < hw->ports; i++) {
4128		struct net_device *dev = hw->dev[i];
4129		struct skge_port *skge = netdev_priv(dev);
4130
4131		if (skge->wol)
4132			skge_wol_init(skge);
4133	}
4134
4135	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4136	pci_set_power_state(pdev, PCI_D3hot);
4137}
4138
4139static struct pci_driver skge_driver = {
4140	.name =         DRV_NAME,
4141	.id_table =     skge_id_table,
4142	.probe =        skge_probe,
4143	.remove =       skge_remove,
4144	.shutdown =	skge_shutdown,
4145	.driver.pm =	SKGE_PM_OPS,
4146};
4147
4148static const struct dmi_system_id skge_32bit_dma_boards[] = {
4149	{
4150		.ident = "Gigabyte nForce boards",
4151		.matches = {
4152			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4153			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4154		},
4155	},
4156	{
4157		.ident = "ASUS P5NSLI",
4158		.matches = {
4159			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4160			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4161		},
4162	},
4163	{
4164		.ident = "FUJITSU SIEMENS A8NE-FM",
4165		.matches = {
4166			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4167			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4168		},
4169	},
4170	{}
4171};
4172
4173static int __init skge_init_module(void)
4174{
4175	if (dmi_check_system(skge_32bit_dma_boards))
4176		only_32bit_dma = 1;
4177	skge_debug_init();
4178	return pci_register_driver(&skge_driver);
4179}
4180
4181static void __exit skge_cleanup_module(void)
4182{
4183	pci_unregister_driver(&skge_driver);
4184	skge_debug_cleanup();
4185}
4186
4187module_init(skge_init_module);
4188module_exit(skge_cleanup_module);