Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_dcb_lib.h"
   7
   8/**
   9 * ice_setup_rx_ctx - Configure a receive ring context
  10 * @ring: The Rx ring to configure
  11 *
  12 * Configure the Rx descriptor ring in RLAN context.
  13 */
  14static int ice_setup_rx_ctx(struct ice_ring *ring)
  15{
  16	struct ice_vsi *vsi = ring->vsi;
  17	struct ice_hw *hw = &vsi->back->hw;
  18	u32 rxdid = ICE_RXDID_FLEX_NIC;
  19	struct ice_rlan_ctx rlan_ctx;
  20	u32 regval;
  21	u16 pf_q;
  22	int err;
  23
  24	/* what is Rx queue number in global space of 2K Rx queues */
  25	pf_q = vsi->rxq_map[ring->q_index];
  26
  27	/* clear the context structure first */
  28	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29
  30	rlan_ctx.base = ring->dma >> 7;
  31
  32	rlan_ctx.qlen = ring->count;
  33
  34	/* Receive Packet Data Buffer Size.
  35	 * The Packet Data Buffer Size is defined in 128 byte units.
  36	 */
  37	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38
  39	/* use 32 byte descriptors */
  40	rlan_ctx.dsize = 1;
  41
  42	/* Strip the Ethernet CRC bytes before the packet is posted to host
  43	 * memory.
  44	 */
  45	rlan_ctx.crcstrip = 1;
  46
  47	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48	rlan_ctx.l2tsel = 1;
  49
  50	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53
  54	/* This controls whether VLAN is stripped from inner headers
  55	 * The VLAN in the inner L2 header is stripped to the receive
  56	 * descriptor if enabled by this flag.
  57	 */
  58	rlan_ctx.showiv = 0;
  59
  60	/* Max packet size for this queue - must not be set to a larger value
  61	 * than 5 x DBUF
  62	 */
  63	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65
  66	/* Rx queue threshold in units of 64 */
  67	rlan_ctx.lrxqthresh = 1;
  68
  69	 /* Enable Flexible Descriptors in the queue context which
  70	  * allows this driver to select a specific receive descriptor format
  71	  */
  72	if (vsi->type != ICE_VSI_VF) {
  73		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75			QRXFLXP_CNTXT_RXDID_IDX_M;
  76
  77		/* increasing context priority to pick up profile ID;
  78		 * default is 0x01; setting to 0x03 to ensure profile
  79		 * is programming if prev context is of same priority
  80		 */
  81		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82			QRXFLXP_CNTXT_RXDID_PRIO_M;
  83
  84		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85	}
  86
  87	/* Absolute queue number out of 2K needs to be passed */
  88	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89	if (err) {
  90		dev_err(&vsi->back->pdev->dev,
  91			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92			pf_q, err);
  93		return -EIO;
  94	}
  95
  96	if (vsi->type == ICE_VSI_VF)
  97		return 0;
  98
  99	/* init queue specific tail register */
 100	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101	writel(0, ring->tail);
 102	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109 * @ring: The Tx ring to configure
 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111 * @pf_q: queue index in the PF space
 112 *
 113 * Configure the Tx descriptor ring in TLAN context.
 114 */
 115static void
 116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117{
 118	struct ice_vsi *vsi = ring->vsi;
 119	struct ice_hw *hw = &vsi->back->hw;
 120
 121	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122
 123	tlan_ctx->port_num = vsi->port_info->lport;
 124
 125	/* Transmit Queue Length */
 126	tlan_ctx->qlen = ring->count;
 127
 128	ice_set_cgd_num(tlan_ctx, ring);
 129
 130	/* PF number */
 131	tlan_ctx->pf_num = hw->pf_id;
 132
 133	/* queue belongs to a specific VSI type
 134	 * VF / VM index should be programmed per vmvf_type setting:
 135	 * for vmvf_type = VF, it is VF number between 0-256
 136	 * for vmvf_type = VM, it is VM number between 0-767
 137	 * for PF or EMP this field should be set to zero
 138	 */
 139	switch (vsi->type) {
 140	case ICE_VSI_LB:
 141		/* fall through */
 142	case ICE_VSI_PF:
 143		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144		break;
 145	case ICE_VSI_VF:
 146		/* Firmware expects vmvf_num to be absolute VF ID */
 147		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149		break;
 150	default:
 151		return;
 152	}
 153
 154	/* make sure the context is associated with the right VSI */
 155	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156
 157	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158	tlan_ctx->tso_qnum = pf_q;
 159
 160	/* Legacy or Advanced Host Interface:
 161	 * 0: Advanced Host Interface
 162	 * 1: Legacy Host Interface
 163	 */
 164	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165}
 166
 167/**
 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169 * @pf: the PF being configured
 170 * @pf_q: the PF queue
 171 * @ena: enable or disable state of the queue
 172 *
 173 * This routine will wait for the given Rx queue of the PF to reach the
 174 * enabled or disabled state.
 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176 * multiple retries; else will return 0 in case of success.
 177 */
 178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179{
 180	int i;
 181
 182	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184			      QRX_CTRL_QENA_STAT_M))
 185			return 0;
 186
 187		usleep_range(20, 40);
 188	}
 189
 190	return -ETIMEDOUT;
 191}
 192
 193/**
 194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
 195 * @vsi: the VSI being configured
 196 * @ena: start or stop the Rx rings
 197 * @rxq_idx: Rx queue index
 198 */
 199#ifndef CONFIG_PCI_IOV
 200static
 201#endif /* !CONFIG_PCI_IOV */
 202int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 203{
 204	int pf_q = vsi->rxq_map[rxq_idx];
 205	struct ice_pf *pf = vsi->back;
 206	struct ice_hw *hw = &pf->hw;
 207	int ret = 0;
 208	u32 rx_reg;
 209
 210	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 211
 212	/* Skip if the queue is already in the requested state */
 213	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 214		return 0;
 215
 216	/* turn on/off the queue */
 217	if (ena)
 218		rx_reg |= QRX_CTRL_QENA_REQ_M;
 219	else
 220		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 221	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 222
 223	/* wait for the change to finish */
 224	ret = ice_pf_rxq_wait(pf, pf_q, ena);
 225	if (ret)
 226		dev_err(&pf->pdev->dev,
 227			"VSI idx %d Rx ring %d %sable timeout\n",
 228			vsi->idx, pf_q, (ena ? "en" : "dis"));
 229
 230	return ret;
 231}
 232
 233/**
 234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 235 * @vsi: the VSI being configured
 236 * @ena: start or stop the Rx rings
 237 */
 238static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 239{
 240	int i, ret = 0;
 241
 242	for (i = 0; i < vsi->num_rxq; i++) {
 243		ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
 244		if (ret)
 245			break;
 246	}
 247
 248	return ret;
 249}
 250
 251/**
 252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 253 * @vsi: VSI pointer
 254 *
 255 * On error: returns error code (negative)
 256 * On success: returns 0
 257 */
 258static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 259{
 260	struct ice_pf *pf = vsi->back;
 261
 262	/* allocate memory for both Tx and Rx ring pointers */
 263	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 264				     sizeof(*vsi->tx_rings), GFP_KERNEL);
 265	if (!vsi->tx_rings)
 266		return -ENOMEM;
 267
 268	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 269				     sizeof(*vsi->rx_rings), GFP_KERNEL);
 270	if (!vsi->rx_rings)
 271		goto err_rings;
 272
 273	vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 274				    sizeof(*vsi->txq_map), GFP_KERNEL);
 275
 276	if (!vsi->txq_map)
 277		goto err_txq_map;
 278
 279	vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 280				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 281	if (!vsi->rxq_map)
 282		goto err_rxq_map;
 283
 284
 285	/* There is no need to allocate q_vectors for a loopback VSI. */
 286	if (vsi->type == ICE_VSI_LB)
 287		return 0;
 288
 289	/* allocate memory for q_vector pointers */
 290	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 291				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 292	if (!vsi->q_vectors)
 293		goto err_vectors;
 294
 295	return 0;
 296
 297err_vectors:
 298	devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 299err_rxq_map:
 300	devm_kfree(&pf->pdev->dev, vsi->txq_map);
 301err_txq_map:
 302	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 303err_rings:
 304	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 305	return -ENOMEM;
 306}
 307
 308/**
 309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 310 * @vsi: the VSI being configured
 311 */
 312static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 313{
 314	switch (vsi->type) {
 315	case ICE_VSI_PF:
 316		/* fall through */
 317	case ICE_VSI_LB:
 318		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 319		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 320		break;
 321	default:
 322		dev_dbg(&vsi->back->pdev->dev,
 323			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
 324			vsi->type);
 325		break;
 326	}
 327}
 328
 329/**
 330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 331 * @vsi: the VSI being configured
 332 * @vf_id: ID of the VF being configured
 333 *
 334 * Return 0 on success and a negative value on error
 335 */
 336static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 337{
 338	struct ice_pf *pf = vsi->back;
 339	struct ice_vf *vf = NULL;
 340
 341	if (vsi->type == ICE_VSI_VF)
 342		vsi->vf_id = vf_id;
 343
 344	switch (vsi->type) {
 345	case ICE_VSI_PF:
 346		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 347				       num_online_cpus());
 348
 349		pf->num_lan_tx = vsi->alloc_txq;
 350
 351		/* only 1 Rx queue unless RSS is enabled */
 352		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 353			vsi->alloc_rxq = 1;
 354		else
 355			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 356					       num_online_cpus());
 357
 358		pf->num_lan_rx = vsi->alloc_rxq;
 359
 360		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 361		break;
 362	case ICE_VSI_VF:
 363		vf = &pf->vf[vsi->vf_id];
 364		vsi->alloc_txq = vf->num_vf_qs;
 365		vsi->alloc_rxq = vf->num_vf_qs;
 366		/* pf->num_vf_msix includes (VF miscellaneous vector +
 367		 * data queue interrupts). Since vsi->num_q_vectors is number
 368		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 369		 * original vector count
 370		 */
 371		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 372		break;
 373	case ICE_VSI_LB:
 374		vsi->alloc_txq = 1;
 375		vsi->alloc_rxq = 1;
 376		break;
 377	default:
 378		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 379		break;
 380	}
 381
 382	ice_vsi_set_num_desc(vsi);
 383}
 384
 385/**
 386 * ice_get_free_slot - get the next non-NULL location index in array
 387 * @array: array to search
 388 * @size: size of the array
 389 * @curr: last known occupied index to be used as a search hint
 390 *
 391 * void * is being used to keep the functionality generic. This lets us use this
 392 * function on any array of pointers.
 393 */
 394static int ice_get_free_slot(void *array, int size, int curr)
 395{
 396	int **tmp_array = (int **)array;
 397	int next;
 398
 399	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 400		next = curr + 1;
 401	} else {
 402		int i = 0;
 403
 404		while ((i < size) && (tmp_array[i]))
 405			i++;
 406		if (i == size)
 407			next = ICE_NO_VSI;
 408		else
 409			next = i;
 410	}
 411	return next;
 412}
 413
 414/**
 415 * ice_vsi_delete - delete a VSI from the switch
 416 * @vsi: pointer to VSI being removed
 417 */
 418void ice_vsi_delete(struct ice_vsi *vsi)
 419{
 420	struct ice_pf *pf = vsi->back;
 421	struct ice_vsi_ctx *ctxt;
 422	enum ice_status status;
 423
 424	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 425	if (!ctxt)
 426		return;
 427
 428	if (vsi->type == ICE_VSI_VF)
 429		ctxt->vf_num = vsi->vf_id;
 430	ctxt->vsi_num = vsi->vsi_num;
 431
 432	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 433
 434	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 435	if (status)
 436		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 437			vsi->vsi_num);
 438
 439	devm_kfree(&pf->pdev->dev, ctxt);
 440}
 441
 442/**
 443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 444 * @vsi: pointer to VSI being cleared
 445 */
 446static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 447{
 448	struct ice_pf *pf = vsi->back;
 449
 450	/* free the ring and vector containers */
 451	if (vsi->q_vectors) {
 452		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 453		vsi->q_vectors = NULL;
 454	}
 455	if (vsi->tx_rings) {
 456		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 457		vsi->tx_rings = NULL;
 458	}
 459	if (vsi->rx_rings) {
 460		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 461		vsi->rx_rings = NULL;
 462	}
 463	if (vsi->txq_map) {
 464		devm_kfree(&pf->pdev->dev, vsi->txq_map);
 465		vsi->txq_map = NULL;
 466	}
 467	if (vsi->rxq_map) {
 468		devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 469		vsi->rxq_map = NULL;
 470	}
 471}
 472
 473/**
 474 * ice_vsi_clear - clean up and deallocate the provided VSI
 475 * @vsi: pointer to VSI being cleared
 476 *
 477 * This deallocates the VSI's queue resources, removes it from the PF's
 478 * VSI array if necessary, and deallocates the VSI
 479 *
 480 * Returns 0 on success, negative on failure
 481 */
 482int ice_vsi_clear(struct ice_vsi *vsi)
 483{
 484	struct ice_pf *pf = NULL;
 485
 486	if (!vsi)
 487		return 0;
 488
 489	if (!vsi->back)
 490		return -EINVAL;
 491
 492	pf = vsi->back;
 493
 494	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 495		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 496			vsi->idx);
 497		return -EINVAL;
 498	}
 499
 500	mutex_lock(&pf->sw_mutex);
 501	/* updates the PF for this cleared VSI */
 502
 503	pf->vsi[vsi->idx] = NULL;
 504	if (vsi->idx < pf->next_vsi)
 505		pf->next_vsi = vsi->idx;
 506
 507	ice_vsi_free_arrays(vsi);
 508	mutex_unlock(&pf->sw_mutex);
 509	devm_kfree(&pf->pdev->dev, vsi);
 510
 511	return 0;
 512}
 513
 514/**
 515 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 516 * @irq: interrupt number
 517 * @data: pointer to a q_vector
 518 */
 519static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 520{
 521	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 522
 523	if (!q_vector->tx.ring && !q_vector->rx.ring)
 524		return IRQ_HANDLED;
 525
 526	napi_schedule(&q_vector->napi);
 527
 528	return IRQ_HANDLED;
 529}
 530
 531/**
 532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 533 * @pf: board private structure
 534 * @type: type of VSI
 535 * @vf_id: ID of the VF being configured
 536 *
 537 * returns a pointer to a VSI on success, NULL on failure.
 538 */
 539static struct ice_vsi *
 540ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 541{
 542	struct ice_vsi *vsi = NULL;
 543
 544	/* Need to protect the allocation of the VSIs at the PF level */
 545	mutex_lock(&pf->sw_mutex);
 546
 547	/* If we have already allocated our maximum number of VSIs,
 548	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 549	 * is available to be populated
 550	 */
 551	if (pf->next_vsi == ICE_NO_VSI) {
 552		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 553		goto unlock_pf;
 554	}
 555
 556	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 557	if (!vsi)
 558		goto unlock_pf;
 559
 560	vsi->type = type;
 561	vsi->back = pf;
 562	set_bit(__ICE_DOWN, vsi->state);
 563
 564	vsi->idx = pf->next_vsi;
 565
 566	if (type == ICE_VSI_VF)
 567		ice_vsi_set_num_qs(vsi, vf_id);
 568	else
 569		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 570
 571	switch (vsi->type) {
 572	case ICE_VSI_PF:
 573		if (ice_vsi_alloc_arrays(vsi))
 574			goto err_rings;
 575
 576		/* Setup default MSIX irq handler for VSI */
 577		vsi->irq_handler = ice_msix_clean_rings;
 578		break;
 579	case ICE_VSI_VF:
 580		if (ice_vsi_alloc_arrays(vsi))
 581			goto err_rings;
 582		break;
 583	case ICE_VSI_LB:
 584		if (ice_vsi_alloc_arrays(vsi))
 585			goto err_rings;
 586		break;
 587	default:
 588		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 589		goto unlock_pf;
 590	}
 591
 592	/* fill VSI slot in the PF struct */
 593	pf->vsi[pf->next_vsi] = vsi;
 594
 595	/* prepare pf->next_vsi for next use */
 596	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 597					 pf->next_vsi);
 598	goto unlock_pf;
 599
 600err_rings:
 601	devm_kfree(&pf->pdev->dev, vsi);
 602	vsi = NULL;
 603unlock_pf:
 604	mutex_unlock(&pf->sw_mutex);
 605	return vsi;
 606}
 607
 608/**
 609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 611 *
 612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 613 */
 614static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 615{
 616	int offset, i;
 617
 618	mutex_lock(qs_cfg->qs_mutex);
 619	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 620					    0, qs_cfg->q_count, 0);
 621	if (offset >= qs_cfg->pf_map_size) {
 622		mutex_unlock(qs_cfg->qs_mutex);
 623		return -ENOMEM;
 624	}
 625
 626	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 627	for (i = 0; i < qs_cfg->q_count; i++)
 628		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 629	mutex_unlock(qs_cfg->qs_mutex);
 630
 631	return 0;
 632}
 633
 634/**
 635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637 *
 638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 639 */
 640static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 641{
 642	int i, index = 0;
 643
 644	mutex_lock(qs_cfg->qs_mutex);
 645	for (i = 0; i < qs_cfg->q_count; i++) {
 646		index = find_next_zero_bit(qs_cfg->pf_map,
 647					   qs_cfg->pf_map_size, index);
 648		if (index >= qs_cfg->pf_map_size)
 649			goto err_scatter;
 650		set_bit(index, qs_cfg->pf_map);
 651		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 652	}
 653	mutex_unlock(qs_cfg->qs_mutex);
 654
 655	return 0;
 656err_scatter:
 657	for (index = 0; index < i; index++) {
 658		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 659		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 660	}
 661	mutex_unlock(qs_cfg->qs_mutex);
 662
 663	return -ENOMEM;
 664}
 665
 666/**
 667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 669 *
 670 * This function first tries to find contiguous space. If it is not successful,
 671 * it tries with the scatter approach.
 672 *
 673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 674 */
 675static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 676{
 677	int ret = 0;
 678
 679	ret = __ice_vsi_get_qs_contig(qs_cfg);
 680	if (ret) {
 681		/* contig failed, so try with scatter approach */
 682		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 683		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 684					qs_cfg->scatter_count);
 685		ret = __ice_vsi_get_qs_sc(qs_cfg);
 686	}
 687	return ret;
 688}
 689
 690/**
 691 * ice_vsi_get_qs - Assign queues from PF to VSI
 692 * @vsi: the VSI to assign queues to
 693 *
 694 * Returns 0 on success and a negative value on error
 695 */
 696static int ice_vsi_get_qs(struct ice_vsi *vsi)
 697{
 698	struct ice_pf *pf = vsi->back;
 699	struct ice_qs_cfg tx_qs_cfg = {
 700		.qs_mutex = &pf->avail_q_mutex,
 701		.pf_map = pf->avail_txqs,
 702		.pf_map_size = pf->max_pf_txqs,
 703		.q_count = vsi->alloc_txq,
 704		.scatter_count = ICE_MAX_SCATTER_TXQS,
 705		.vsi_map = vsi->txq_map,
 706		.vsi_map_offset = 0,
 707		.mapping_mode = vsi->tx_mapping_mode
 708	};
 709	struct ice_qs_cfg rx_qs_cfg = {
 710		.qs_mutex = &pf->avail_q_mutex,
 711		.pf_map = pf->avail_rxqs,
 712		.pf_map_size = pf->max_pf_rxqs,
 713		.q_count = vsi->alloc_rxq,
 714		.scatter_count = ICE_MAX_SCATTER_RXQS,
 715		.vsi_map = vsi->rxq_map,
 716		.vsi_map_offset = 0,
 717		.mapping_mode = vsi->rx_mapping_mode
 718	};
 719	int ret = 0;
 720
 721	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 722	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 723
 724	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 725	if (!ret)
 726		ret = __ice_vsi_get_qs(&rx_qs_cfg);
 727
 728	return ret;
 729}
 730
 731/**
 732 * ice_vsi_put_qs - Release queues from VSI to PF
 733 * @vsi: the VSI that is going to release queues
 734 */
 735void ice_vsi_put_qs(struct ice_vsi *vsi)
 736{
 737	struct ice_pf *pf = vsi->back;
 738	int i;
 739
 740	mutex_lock(&pf->avail_q_mutex);
 741
 742	for (i = 0; i < vsi->alloc_txq; i++) {
 743		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 744		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 745	}
 746
 747	for (i = 0; i < vsi->alloc_rxq; i++) {
 748		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 749		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 750	}
 751
 752	mutex_unlock(&pf->avail_q_mutex);
 753}
 754
 755/**
 756 * ice_is_safe_mode
 757 * @pf: pointer to the PF struct
 758 *
 759 * returns true if driver is in safe mode, false otherwise
 760 */
 761bool ice_is_safe_mode(struct ice_pf *pf)
 762{
 763	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 764}
 765
 766/**
 767 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 768 * @vsi: the VSI being removed
 769 */
 770static void ice_rss_clean(struct ice_vsi *vsi)
 771{
 772	struct ice_pf *pf;
 773
 774	pf = vsi->back;
 775
 776	if (vsi->rss_hkey_user)
 777		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 778	if (vsi->rss_lut_user)
 779		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 780}
 781
 782/**
 783 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 784 * @vsi: the VSI being configured
 785 */
 786static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 787{
 788	struct ice_hw_common_caps *cap;
 789	struct ice_pf *pf = vsi->back;
 790
 791	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 792		vsi->rss_size = 1;
 793		return;
 794	}
 795
 796	cap = &pf->hw.func_caps.common_cap;
 797	switch (vsi->type) {
 798	case ICE_VSI_PF:
 799		/* PF VSI will inherit RSS instance of PF */
 800		vsi->rss_table_size = cap->rss_table_size;
 801		vsi->rss_size = min_t(int, num_online_cpus(),
 802				      BIT(cap->rss_table_entry_width));
 803		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 804		break;
 805	case ICE_VSI_VF:
 806		/* VF VSI will gets a small RSS table
 807		 * For VSI_LUT, LUT size should be set to 64 bytes
 808		 */
 809		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 810		vsi->rss_size = min_t(int, num_online_cpus(),
 811				      BIT(cap->rss_table_entry_width));
 812		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 813		break;
 814	case ICE_VSI_LB:
 815		break;
 816	default:
 817		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 818			 vsi->type);
 819		break;
 820	}
 821}
 822
 823/**
 824 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 825 * @ctxt: the VSI context being set
 826 *
 827 * This initializes a default VSI context for all sections except the Queues.
 828 */
 829static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 830{
 831	u32 table = 0;
 832
 833	memset(&ctxt->info, 0, sizeof(ctxt->info));
 834	/* VSI's should be allocated from shared pool */
 835	ctxt->alloc_from_pool = true;
 836	/* Src pruning enabled by default */
 837	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 838	/* Traffic from VSI can be sent to LAN */
 839	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 840	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 841	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 842	 * packets untagged/tagged.
 843	 */
 844	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 845				  ICE_AQ_VSI_VLAN_MODE_M) >>
 846				 ICE_AQ_VSI_VLAN_MODE_S);
 847	/* Have 1:1 UP mapping for both ingress/egress tables */
 848	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 849	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 850	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 851	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 852	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 853	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 854	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 855	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 856	ctxt->info.ingress_table = cpu_to_le32(table);
 857	ctxt->info.egress_table = cpu_to_le32(table);
 858	/* Have 1:1 UP mapping for outer to inner UP table */
 859	ctxt->info.outer_up_table = cpu_to_le32(table);
 860	/* No Outer tag support outer_tag_flags remains to zero */
 861}
 862
 863/**
 864 * ice_vsi_setup_q_map - Setup a VSI queue map
 865 * @vsi: the VSI being configured
 866 * @ctxt: VSI context structure
 867 */
 868static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 869{
 870	u16 offset = 0, qmap = 0, tx_count = 0;
 871	u16 qcount_tx = vsi->alloc_txq;
 872	u16 qcount_rx = vsi->alloc_rxq;
 873	u16 tx_numq_tc, rx_numq_tc;
 874	u16 pow = 0, max_rss = 0;
 875	bool ena_tc0 = false;
 876	u8 netdev_tc = 0;
 877	int i;
 878
 879	/* at least TC0 should be enabled by default */
 880	if (vsi->tc_cfg.numtc) {
 881		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 882			ena_tc0 = true;
 883	} else {
 884		ena_tc0 = true;
 885	}
 886
 887	if (ena_tc0) {
 888		vsi->tc_cfg.numtc++;
 889		vsi->tc_cfg.ena_tc |= 1;
 890	}
 891
 892	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 893	if (!rx_numq_tc)
 894		rx_numq_tc = 1;
 895	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 896	if (!tx_numq_tc)
 897		tx_numq_tc = 1;
 898
 899	/* TC mapping is a function of the number of Rx queues assigned to the
 900	 * VSI for each traffic class and the offset of these queues.
 901	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 902	 * queues allocated to TC0. No:of queues is a power-of-2.
 903	 *
 904	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 905	 * queue, this way, traffic for the given TC will be sent to the default
 906	 * queue.
 907	 *
 908	 * Setup number and offset of Rx queues for all TCs for the VSI
 909	 */
 910
 911	qcount_rx = rx_numq_tc;
 912
 913	/* qcount will change if RSS is enabled */
 914	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 915		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 916			if (vsi->type == ICE_VSI_PF)
 917				max_rss = ICE_MAX_LG_RSS_QS;
 918			else
 919				max_rss = ICE_MAX_SMALL_RSS_QS;
 920			qcount_rx = min_t(int, rx_numq_tc, max_rss);
 921			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 922		}
 923	}
 924
 925	/* find the (rounded up) power-of-2 of qcount */
 926	pow = order_base_2(qcount_rx);
 927
 928	ice_for_each_traffic_class(i) {
 929		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 930			/* TC is not enabled */
 931			vsi->tc_cfg.tc_info[i].qoffset = 0;
 932			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 933			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 934			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 935			ctxt->info.tc_mapping[i] = 0;
 936			continue;
 937		}
 938
 939		/* TC is enabled */
 940		vsi->tc_cfg.tc_info[i].qoffset = offset;
 941		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 942		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 943		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 944
 945		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 946			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 947			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 948			 ICE_AQ_VSI_TC_Q_NUM_M);
 949		offset += qcount_rx;
 950		tx_count += tx_numq_tc;
 951		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 952	}
 953
 954	/* if offset is non-zero, means it is calculated correctly based on
 955	 * enabled TCs for a given VSI otherwise qcount_rx will always
 956	 * be correct and non-zero because it is based off - VSI's
 957	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 958	 * at least 1)
 959	 */
 960	if (offset)
 961		vsi->num_rxq = offset;
 962	else
 963		vsi->num_rxq = qcount_rx;
 964
 965	vsi->num_txq = tx_count;
 966
 967	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 968		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 969		/* since there is a chance that num_rxq could have been changed
 970		 * in the above for loop, make num_txq equal to num_rxq.
 971		 */
 972		vsi->num_txq = vsi->num_rxq;
 973	}
 974
 975	/* Rx queue mapping */
 976	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 977	/* q_mapping buffer holds the info for the first queue allocated for
 978	 * this VSI in the PF space and also the number of queues associated
 979	 * with this VSI.
 980	 */
 981	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 982	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 983}
 984
 985/**
 986 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 987 * @ctxt: the VSI context being set
 988 * @vsi: the VSI being configured
 989 */
 990static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 991{
 992	u8 lut_type, hash_type;
 993	struct ice_pf *pf;
 994
 995	pf = vsi->back;
 996
 997	switch (vsi->type) {
 998	case ICE_VSI_PF:
 999		/* PF VSI will inherit RSS instance of PF */
1000		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002		break;
1003	case ICE_VSI_VF:
1004		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1005		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007		break;
1008	case ICE_VSI_LB:
1009		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010		return;
1011	default:
1012		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1013		return;
1014	}
1015
1016	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020}
1021
1022/**
1023 * ice_vsi_init - Create and initialize a VSI
1024 * @vsi: the VSI being configured
1025 *
1026 * This initializes a VSI context depending on the VSI type to be added and
1027 * passes it down to the add_vsi aq command to create a new VSI.
1028 */
1029static int ice_vsi_init(struct ice_vsi *vsi)
1030{
1031	struct ice_pf *pf = vsi->back;
1032	struct ice_hw *hw = &pf->hw;
1033	struct ice_vsi_ctx *ctxt;
1034	int ret = 0;
1035
1036	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
1037	if (!ctxt)
1038		return -ENOMEM;
1039
1040	ctxt->info = vsi->info;
1041	switch (vsi->type) {
1042	case ICE_VSI_LB:
1043		/* fall through */
1044	case ICE_VSI_PF:
1045		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046		break;
1047	case ICE_VSI_VF:
1048		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049		/* VF number here is the absolute VF number (0-255) */
1050		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051		break;
1052	default:
1053		return -ENODEV;
1054	}
1055
1056	ice_set_dflt_vsi_ctx(ctxt);
1057	/* if the switch is in VEB mode, allow VSI loopback */
1058	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060
1061	/* Set LUT type and HASH type if RSS is enabled */
1062	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1063		ice_set_rss_vsi_ctx(ctxt, vsi);
1064
1065	ctxt->info.sw_id = vsi->port_info->sw_id;
1066	ice_vsi_setup_q_map(vsi, ctxt);
1067
1068	/* Enable MAC Antispoof with new VSI being initialized or updated */
1069	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1070		ctxt->info.valid_sections |=
1071			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072		ctxt->info.sec_flags |=
1073			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1074	}
1075
1076	/* Allow control frames out of main VSI */
1077	if (vsi->type == ICE_VSI_PF) {
1078		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079		ctxt->info.valid_sections |=
1080			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081	}
1082
1083	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084	if (ret) {
1085		dev_err(&pf->pdev->dev,
1086			"Add VSI failed, err %d\n", ret);
1087		return -EIO;
1088	}
1089
1090	/* keep context for update VSI operations */
1091	vsi->info = ctxt->info;
1092
1093	/* record VSI number returned */
1094	vsi->vsi_num = ctxt->vsi_num;
1095
1096	devm_kfree(&pf->pdev->dev, ctxt);
1097	return ret;
1098}
1099
1100/**
1101 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102 * @vsi: VSI having the memory freed
1103 * @v_idx: index of the vector to be freed
1104 */
1105static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106{
1107	struct ice_q_vector *q_vector;
1108	struct ice_pf *pf = vsi->back;
1109	struct ice_ring *ring;
1110
1111	if (!vsi->q_vectors[v_idx]) {
1112		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113			v_idx);
1114		return;
1115	}
1116	q_vector = vsi->q_vectors[v_idx];
1117
1118	ice_for_each_ring(ring, q_vector->tx)
1119		ring->q_vector = NULL;
1120	ice_for_each_ring(ring, q_vector->rx)
1121		ring->q_vector = NULL;
1122
1123	/* only VSI with an associated netdev is set up with NAPI */
1124	if (vsi->netdev)
1125		netif_napi_del(&q_vector->napi);
1126
1127	devm_kfree(&pf->pdev->dev, q_vector);
1128	vsi->q_vectors[v_idx] = NULL;
1129}
1130
1131/**
1132 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133 * @vsi: the VSI having memory freed
1134 */
1135void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136{
1137	int v_idx;
1138
1139	ice_for_each_q_vector(vsi, v_idx)
1140		ice_free_q_vector(vsi, v_idx);
1141}
1142
1143/**
1144 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @vsi: the VSI being configured
1146 * @v_idx: index of the vector in the VSI struct
1147 *
1148 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149 */
1150static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151{
1152	struct ice_pf *pf = vsi->back;
1153	struct ice_q_vector *q_vector;
1154
1155	/* allocate q_vector */
1156	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157	if (!q_vector)
1158		return -ENOMEM;
1159
1160	q_vector->vsi = vsi;
1161	q_vector->v_idx = v_idx;
1162	if (vsi->type == ICE_VSI_VF)
1163		goto out;
1164	/* only set affinity_mask if the CPU is online */
1165	if (cpu_online(v_idx))
1166		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167
1168	/* This will not be called in the driver load path because the netdev
1169	 * will not be created yet. All other cases with register the NAPI
1170	 * handler here (i.e. resume, reset/rebuild, etc.)
1171	 */
1172	if (vsi->netdev)
1173		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174			       NAPI_POLL_WEIGHT);
1175
1176out:
1177	/* tie q_vector and VSI together */
1178	vsi->q_vectors[v_idx] = q_vector;
1179
1180	return 0;
1181}
1182
1183/**
1184 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185 * @vsi: the VSI being configured
1186 *
1187 * We allocate one q_vector per queue interrupt. If allocation fails we
1188 * return -ENOMEM.
1189 */
1190static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1191{
1192	struct ice_pf *pf = vsi->back;
1193	int v_idx = 0, num_q_vectors;
1194	int err;
1195
1196	if (vsi->q_vectors[0]) {
1197		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198			vsi->vsi_num);
1199		return -EEXIST;
1200	}
1201
1202	num_q_vectors = vsi->num_q_vectors;
1203
1204	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206		if (err)
1207			goto err_out;
1208	}
1209
1210	return 0;
1211
1212err_out:
1213	while (v_idx--)
1214		ice_free_q_vector(vsi, v_idx);
1215
1216	dev_err(&pf->pdev->dev,
1217		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218		vsi->num_q_vectors, vsi->vsi_num, err);
1219	vsi->num_q_vectors = 0;
1220	return err;
1221}
1222
1223/**
1224 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225 * @vsi: ptr to the VSI
1226 *
1227 * This should only be called after ice_vsi_alloc() which allocates the
1228 * corresponding SW VSI structure and initializes num_queue_pairs for the
1229 * newly allocated VSI.
1230 *
1231 * Returns 0 on success or negative on failure
1232 */
1233static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234{
1235	struct ice_pf *pf = vsi->back;
1236	u16 num_q_vectors;
1237
1238	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1239	if (vsi->type == ICE_VSI_VF)
1240		return 0;
1241
1242	if (vsi->base_vector) {
1243		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244			vsi->vsi_num, vsi->base_vector);
1245		return -EEXIST;
1246	}
1247
1248	num_q_vectors = vsi->num_q_vectors;
1249	/* reserve slots from OS requested IRQs */
1250	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251				       vsi->idx);
1252	if (vsi->base_vector < 0) {
1253		dev_err(&pf->pdev->dev,
1254			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255			num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256		return -ENOENT;
1257	}
1258	pf->num_avail_sw_msix -= num_q_vectors;
1259
1260	return 0;
1261}
1262
1263/**
1264 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265 * @vsi: the VSI having rings deallocated
1266 */
1267static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268{
1269	int i;
1270
1271	if (vsi->tx_rings) {
1272		for (i = 0; i < vsi->alloc_txq; i++) {
1273			if (vsi->tx_rings[i]) {
1274				kfree_rcu(vsi->tx_rings[i], rcu);
1275				vsi->tx_rings[i] = NULL;
1276			}
1277		}
1278	}
1279	if (vsi->rx_rings) {
1280		for (i = 0; i < vsi->alloc_rxq; i++) {
1281			if (vsi->rx_rings[i]) {
1282				kfree_rcu(vsi->rx_rings[i], rcu);
1283				vsi->rx_rings[i] = NULL;
1284			}
1285		}
1286	}
1287}
1288
1289/**
1290 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291 * @vsi: VSI which is having rings allocated
1292 */
1293static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294{
1295	struct ice_pf *pf = vsi->back;
1296	int i;
1297
1298	/* Allocate Tx rings */
1299	for (i = 0; i < vsi->alloc_txq; i++) {
1300		struct ice_ring *ring;
1301
1302		/* allocate with kzalloc(), free with kfree_rcu() */
1303		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304
1305		if (!ring)
1306			goto err_out;
1307
1308		ring->q_index = i;
1309		ring->reg_idx = vsi->txq_map[i];
1310		ring->ring_active = false;
1311		ring->vsi = vsi;
1312		ring->dev = &pf->pdev->dev;
1313		ring->count = vsi->num_tx_desc;
1314		vsi->tx_rings[i] = ring;
1315	}
1316
1317	/* Allocate Rx rings */
1318	for (i = 0; i < vsi->alloc_rxq; i++) {
1319		struct ice_ring *ring;
1320
1321		/* allocate with kzalloc(), free with kfree_rcu() */
1322		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323		if (!ring)
1324			goto err_out;
1325
1326		ring->q_index = i;
1327		ring->reg_idx = vsi->rxq_map[i];
1328		ring->ring_active = false;
1329		ring->vsi = vsi;
1330		ring->netdev = vsi->netdev;
1331		ring->dev = &pf->pdev->dev;
1332		ring->count = vsi->num_rx_desc;
1333		vsi->rx_rings[i] = ring;
1334	}
1335
1336	return 0;
1337
1338err_out:
1339	ice_vsi_clear_rings(vsi);
1340	return -ENOMEM;
1341}
1342
1343/**
1344 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345 * @vsi: the VSI being configured
1346 *
1347 * This function maps descriptor rings to the queue-specific vectors allotted
1348 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349 * and Rx rings to the vector as "efficiently" as possible.
1350 */
1351#ifdef CONFIG_DCB
1352void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353#else
1354static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355#endif /* CONFIG_DCB */
1356{
1357	int q_vectors = vsi->num_q_vectors;
1358	int tx_rings_rem, rx_rings_rem;
1359	int v_id;
1360
1361	/* initially assigning remaining rings count to VSIs num queue value */
1362	tx_rings_rem = vsi->num_txq;
1363	rx_rings_rem = vsi->num_rxq;
1364
1365	for (v_id = 0; v_id < q_vectors; v_id++) {
1366		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368
1369		/* Tx rings mapping to vector */
1370		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371		q_vector->num_ring_tx = tx_rings_per_v;
1372		q_vector->tx.ring = NULL;
1373		q_vector->tx.itr_idx = ICE_TX_ITR;
1374		q_base = vsi->num_txq - tx_rings_rem;
1375
1376		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378
1379			tx_ring->q_vector = q_vector;
1380			tx_ring->next = q_vector->tx.ring;
1381			q_vector->tx.ring = tx_ring;
1382		}
1383		tx_rings_rem -= tx_rings_per_v;
1384
1385		/* Rx rings mapping to vector */
1386		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387		q_vector->num_ring_rx = rx_rings_per_v;
1388		q_vector->rx.ring = NULL;
1389		q_vector->rx.itr_idx = ICE_RX_ITR;
1390		q_base = vsi->num_rxq - rx_rings_rem;
1391
1392		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394
1395			rx_ring->q_vector = q_vector;
1396			rx_ring->next = q_vector->rx.ring;
1397			q_vector->rx.ring = rx_ring;
1398		}
1399		rx_rings_rem -= rx_rings_per_v;
1400	}
1401}
1402
1403/**
1404 * ice_vsi_manage_rss_lut - disable/enable RSS
1405 * @vsi: the VSI being changed
1406 * @ena: boolean value indicating if this is an enable or disable request
1407 *
1408 * In the event of disable request for RSS, this function will zero out RSS
1409 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410 * LUT.
1411 */
1412int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413{
1414	int err = 0;
1415	u8 *lut;
1416
1417	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418			   GFP_KERNEL);
1419	if (!lut)
1420		return -ENOMEM;
1421
1422	if (ena) {
1423		if (vsi->rss_lut_user)
1424			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425		else
1426			ice_fill_rss_lut(lut, vsi->rss_table_size,
1427					 vsi->rss_size);
1428	}
1429
1430	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431	devm_kfree(&vsi->back->pdev->dev, lut);
1432	return err;
1433}
1434
1435/**
1436 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437 * @vsi: VSI to be configured
1438 */
1439static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440{
1441	struct ice_aqc_get_set_rss_keys *key;
1442	struct ice_pf *pf = vsi->back;
1443	enum ice_status status;
1444	int err = 0;
1445	u8 *lut;
1446
1447	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1448
1449	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450	if (!lut)
1451		return -ENOMEM;
1452
1453	if (vsi->rss_lut_user)
1454		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455	else
1456		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457
1458	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459				    vsi->rss_table_size);
1460
1461	if (status) {
1462		dev_err(&pf->pdev->dev,
1463			"set_rss_lut failed, error %d\n", status);
1464		err = -EIO;
1465		goto ice_vsi_cfg_rss_exit;
1466	}
1467
1468	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469	if (!key) {
1470		err = -ENOMEM;
1471		goto ice_vsi_cfg_rss_exit;
1472	}
1473
1474	if (vsi->rss_hkey_user)
1475		memcpy(key,
1476		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478	else
1479		netdev_rss_key_fill((void *)key,
1480				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481
1482	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1483
1484	if (status) {
1485		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486			status);
1487		err = -EIO;
1488	}
1489
1490	devm_kfree(&pf->pdev->dev, key);
1491ice_vsi_cfg_rss_exit:
1492	devm_kfree(&pf->pdev->dev, lut);
1493	return err;
1494}
1495
1496/**
1497 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498 * @vsi: the VSI to be forwarded to
1499 * @add_list: pointer to the list which contains MAC filter entries
1500 * @macaddr: the MAC address to be added.
1501 *
1502 * Adds MAC address filter entry to the temp list
1503 *
1504 * Returns 0 on success or ENOMEM on failure.
1505 */
1506int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507			const u8 *macaddr)
1508{
1509	struct ice_fltr_list_entry *tmp;
1510	struct ice_pf *pf = vsi->back;
1511
1512	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513	if (!tmp)
1514		return -ENOMEM;
1515
1516	tmp->fltr_info.flag = ICE_FLTR_TX;
1517	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520	tmp->fltr_info.vsi_handle = vsi->idx;
1521	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522
1523	INIT_LIST_HEAD(&tmp->list_entry);
1524	list_add(&tmp->list_entry, add_list);
1525
1526	return 0;
1527}
1528
1529/**
1530 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531 * @vsi: the VSI to be updated
1532 */
1533void ice_update_eth_stats(struct ice_vsi *vsi)
1534{
1535	struct ice_eth_stats *prev_es, *cur_es;
1536	struct ice_hw *hw = &vsi->back->hw;
1537	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538
1539	prev_es = &vsi->eth_stats_prev;
1540	cur_es = &vsi->eth_stats;
1541
1542	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1544
1545	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1547
1548	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1550
1551	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553
1554	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555			  &prev_es->rx_discards, &cur_es->rx_discards);
1556
1557	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1559
1560	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1562
1563	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1565
1566	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568
1569	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570			  &prev_es->tx_errors, &cur_es->tx_errors);
1571
1572	vsi->stat_offsets_loaded = true;
1573}
1574
1575/**
1576 * ice_free_fltr_list - free filter lists helper
1577 * @dev: pointer to the device struct
1578 * @h: pointer to the list head to be freed
1579 *
1580 * Helper function to free filter lists previously created using
1581 * ice_add_mac_to_list
1582 */
1583void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584{
1585	struct ice_fltr_list_entry *e, *tmp;
1586
1587	list_for_each_entry_safe(e, tmp, h, list_entry) {
1588		list_del(&e->list_entry);
1589		devm_kfree(dev, e);
1590	}
1591}
1592
1593/**
1594 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595 * @vsi: the VSI being configured
1596 * @vid: VLAN ID to be added
1597 */
1598int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1599{
1600	struct ice_fltr_list_entry *tmp;
1601	struct ice_pf *pf = vsi->back;
1602	LIST_HEAD(tmp_add_list);
1603	enum ice_status status;
1604	int err = 0;
1605
1606	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607	if (!tmp)
1608		return -ENOMEM;
1609
1610	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612	tmp->fltr_info.flag = ICE_FLTR_TX;
1613	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614	tmp->fltr_info.vsi_handle = vsi->idx;
1615	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616
1617	INIT_LIST_HEAD(&tmp->list_entry);
1618	list_add(&tmp->list_entry, &tmp_add_list);
1619
1620	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621	if (status) {
1622		err = -ENODEV;
1623		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624			vid, vsi->vsi_num);
1625	}
1626
1627	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628	return err;
1629}
1630
1631/**
1632 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633 * @vsi: the VSI being configured
1634 * @vid: VLAN ID to be removed
1635 *
1636 * Returns 0 on success and negative on failure
1637 */
1638int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639{
1640	struct ice_fltr_list_entry *list;
1641	struct ice_pf *pf = vsi->back;
1642	LIST_HEAD(tmp_add_list);
1643	enum ice_status status;
1644	int err = 0;
1645
1646	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647	if (!list)
1648		return -ENOMEM;
1649
1650	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651	list->fltr_info.vsi_handle = vsi->idx;
1652	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653	list->fltr_info.l_data.vlan.vlan_id = vid;
1654	list->fltr_info.flag = ICE_FLTR_TX;
1655	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656
1657	INIT_LIST_HEAD(&list->list_entry);
1658	list_add(&list->list_entry, &tmp_add_list);
1659
1660	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661	if (status == ICE_ERR_DOES_NOT_EXIST) {
1662		dev_dbg(&pf->pdev->dev,
1663			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664			vid, vsi->vsi_num, status);
1665	} else if (status) {
1666		dev_err(&pf->pdev->dev,
1667			"Error removing VLAN %d on vsi %i error: %d\n",
1668			vid, vsi->vsi_num, status);
1669		err = -EIO;
1670	}
1671
1672	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673	return err;
1674}
1675
1676/**
1677 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678 * @vsi: the VSI being configured
1679 *
1680 * Return 0 on success and a negative value on error
1681 * Configure the Rx VSI for operation.
1682 */
1683int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684{
1685	u16 i;
1686
1687	if (vsi->type == ICE_VSI_VF)
1688		goto setup_rings;
1689
1690	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691		vsi->max_frame = vsi->netdev->mtu +
1692			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693	else
1694		vsi->max_frame = ICE_RXBUF_2048;
1695
1696	vsi->rx_buf_len = ICE_RXBUF_2048;
1697setup_rings:
1698	/* set up individual rings */
1699	for (i = 0; i < vsi->num_rxq; i++) {
1700		int err;
1701
1702		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703		if (err) {
1704			dev_err(&vsi->back->pdev->dev,
1705				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706				i, err);
1707			return err;
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/**
1715 * ice_vsi_cfg_txq - Configure single Tx queue
1716 * @vsi: the VSI that queue belongs to
1717 * @ring: Tx ring to be configured
1718 * @tc_q_idx: queue index within given TC
1719 * @qg_buf: queue group buffer
1720 * @tc: TC that Tx ring belongs to
1721 */
1722static int
1723ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724		struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725{
1726	struct ice_tlan_ctx tlan_ctx = { 0 };
1727	struct ice_aqc_add_txqs_perq *txq;
1728	struct ice_pf *pf = vsi->back;
1729	u8 buf_len = sizeof(*qg_buf);
1730	enum ice_status status;
1731	u16 pf_q;
1732
1733	pf_q = ring->reg_idx;
1734	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735	/* copy context contents into the qg_buf */
1736	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738		    ice_tlan_ctx_info);
1739
1740	/* init queue specific tail reg. It is referred as
1741	 * transmit comm scheduler queue doorbell.
1742	 */
1743	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744
1745	/* Add unique software queue handle of the Tx queue per
1746	 * TC into the VSI Tx ring
1747	 */
1748	ring->q_handle = tc_q_idx;
1749
1750	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751				 1, qg_buf, buf_len, NULL);
1752	if (status) {
1753		dev_err(&pf->pdev->dev,
1754			"Failed to set LAN Tx queue context, error: %d\n",
1755			status);
1756		return -ENODEV;
1757	}
1758
1759	/* Add Tx Queue TEID into the VSI Tx ring from the
1760	 * response. This will complete configuring and
1761	 * enabling the queue.
1762	 */
1763	txq = &qg_buf->txqs[0];
1764	if (pf_q == le16_to_cpu(txq->txq_id))
1765		ring->txq_teid = le32_to_cpu(txq->q_teid);
1766
1767	return 0;
1768}
1769
1770/**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @offset: offset within vsi->txq_map
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779static int
1780ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781{
1782	struct ice_aqc_add_tx_qgrp *qg_buf;
1783	struct ice_pf *pf = vsi->back;
1784	u16 q_idx = 0, i;
1785	int err = 0;
1786	u8 tc;
1787
1788	qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789	if (!qg_buf)
1790		return -ENOMEM;
1791
1792	qg_buf->num_txqs = 1;
1793
1794	/* set up and configure the Tx queues for each enabled TC */
1795	ice_for_each_traffic_class(tc) {
1796		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797			break;
1798
1799		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800			err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801					      qg_buf, tc);
1802			if (err)
1803				goto err_cfg_txqs;
1804
1805			q_idx++;
1806		}
1807	}
1808err_cfg_txqs:
1809	devm_kfree(&pf->pdev->dev, qg_buf);
1810	return err;
1811}
1812
1813/**
1814 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815 * @vsi: the VSI being configured
1816 *
1817 * Return 0 on success and a negative value on error
1818 * Configure the Tx VSI for operation.
1819 */
1820int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821{
1822	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1823}
1824
1825/**
1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827 * @intrl: interrupt rate limit in usecs
1828 * @gran: interrupt rate limit granularity in usecs
1829 *
1830 * This function converts a decimal interrupt rate limit in usecs to the format
1831 * expected by firmware.
1832 */
1833u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834{
1835	u32 val = intrl / gran;
1836
1837	if (val)
1838		return val | GLINT_RATE_INTRL_ENA_M;
1839	return 0;
1840}
1841
1842/**
1843 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844 * @hw: board specific structure
1845 */
1846static void ice_cfg_itr_gran(struct ice_hw *hw)
1847{
1848	u32 regval = rd32(hw, GLINT_CTL);
1849
1850	/* no need to update global register if ITR gran is already set */
1851	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860		return;
1861
1862	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863		  GLINT_CTL_ITR_GRAN_200_M) |
1864		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865		  GLINT_CTL_ITR_GRAN_100_M) |
1866		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867		  GLINT_CTL_ITR_GRAN_50_M) |
1868		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869		  GLINT_CTL_ITR_GRAN_25_M);
1870	wr32(hw, GLINT_CTL, regval);
1871}
1872
1873/**
1874 * ice_cfg_itr - configure the initial interrupt throttle values
1875 * @hw: pointer to the HW structure
1876 * @q_vector: interrupt vector that's being configured
1877 *
1878 * Configure interrupt throttling values for the ring containers that are
1879 * associated with the interrupt vector passed in.
1880 */
1881static void
1882ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883{
1884	ice_cfg_itr_gran(hw);
1885
1886	if (q_vector->num_ring_rx) {
1887		struct ice_ring_container *rc = &q_vector->rx;
1888
1889		/* if this value is set then don't overwrite with default */
1890		if (!rc->itr_setting)
1891			rc->itr_setting = ICE_DFLT_RX_ITR;
1892
1893		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894		rc->next_update = jiffies + 1;
1895		rc->current_itr = rc->target_itr;
1896		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898	}
1899
1900	if (q_vector->num_ring_tx) {
1901		struct ice_ring_container *rc = &q_vector->tx;
1902
1903		/* if this value is set then don't overwrite with default */
1904		if (!rc->itr_setting)
1905			rc->itr_setting = ICE_DFLT_TX_ITR;
1906
1907		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908		rc->next_update = jiffies + 1;
1909		rc->current_itr = rc->target_itr;
1910		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912	}
1913}
1914
1915/**
1916 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917 * @vsi: the VSI being configured
1918 * @txq: Tx queue being mapped to MSI-X vector
1919 * @msix_idx: MSI-X vector index within the function
1920 * @itr_idx: ITR index of the interrupt cause
1921 *
1922 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923 * within the function space.
1924 */
1925#ifdef CONFIG_PCI_IOV
1926void
1927ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928#else
1929static void
1930ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931#endif /* CONFIG_PCI_IOV */
1932{
1933	struct ice_pf *pf = vsi->back;
1934	struct ice_hw *hw = &pf->hw;
1935	u32 val;
1936
1937	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938
1939	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941
1942	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943}
1944
1945/**
1946 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947 * @vsi: the VSI being configured
1948 * @rxq: Rx queue being mapped to MSI-X vector
1949 * @msix_idx: MSI-X vector index within the function
1950 * @itr_idx: ITR index of the interrupt cause
1951 *
1952 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953 * within the function space.
1954 */
1955#ifdef CONFIG_PCI_IOV
1956void
1957ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958#else
1959static void
1960ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961#endif /* CONFIG_PCI_IOV */
1962{
1963	struct ice_pf *pf = vsi->back;
1964	struct ice_hw *hw = &pf->hw;
1965	u32 val;
1966
1967	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968
1969	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971
1972	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973
1974	ice_flush(hw);
1975}
1976
1977/**
1978 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979 * @vsi: the VSI being configured
1980 *
1981 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982 * for the VF VSI.
1983 */
1984void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985{
1986	struct ice_pf *pf = vsi->back;
1987	struct ice_hw *hw = &pf->hw;
1988	u32 txq = 0, rxq = 0;
1989	int i, q;
1990
1991	for (i = 0; i < vsi->num_q_vectors; i++) {
1992		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993		u16 reg_idx = q_vector->reg_idx;
1994
1995		ice_cfg_itr(hw, q_vector);
1996
1997		wr32(hw, GLINT_RATE(reg_idx),
1998		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999
2000		/* Both Transmit Queue Interrupt Cause Control register
2001		 * and Receive Queue Interrupt Cause control register
2002		 * expects MSIX_INDX field to be the vector index
2003		 * within the function space and not the absolute
2004		 * vector index across PF or across device.
2005		 * For SR-IOV VF VSIs queue vector index always starts
2006		 * with 1 since first vector index(0) is used for OICR
2007		 * in VF space. Since VMDq and other PF VSIs are within
2008		 * the PF function space, use the vector index that is
2009		 * tracked for this PF.
2010		 */
2011		for (q = 0; q < q_vector->num_ring_tx; q++) {
2012			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013					      q_vector->tx.itr_idx);
2014			txq++;
2015		}
2016
2017		for (q = 0; q < q_vector->num_ring_rx; q++) {
2018			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019					      q_vector->rx.itr_idx);
2020			rxq++;
2021		}
2022	}
2023}
2024
2025/**
2026 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027 * @vsi: the VSI being changed
2028 */
2029int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030{
2031	struct device *dev = &vsi->back->pdev->dev;
2032	struct ice_hw *hw = &vsi->back->hw;
2033	struct ice_vsi_ctx *ctxt;
2034	enum ice_status status;
2035	int ret = 0;
2036
2037	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038	if (!ctxt)
2039		return -ENOMEM;
2040
2041	/* Here we are configuring the VSI to let the driver add VLAN tags by
2042	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043	 * insertion happens in the Tx hot path, in ice_tx_map.
2044	 */
2045	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046
2047	/* Preserve existing VLAN strip setting */
2048	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049				  ICE_AQ_VSI_VLAN_EMOD_M);
2050
2051	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052
2053	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054	if (status) {
2055		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056			status, hw->adminq.sq_last_status);
2057		ret = -EIO;
2058		goto out;
2059	}
2060
2061	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062out:
2063	devm_kfree(dev, ctxt);
2064	return ret;
2065}
2066
2067/**
2068 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069 * @vsi: the VSI being changed
2070 * @ena: boolean value indicating if this is a enable or disable request
2071 */
2072int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073{
2074	struct device *dev = &vsi->back->pdev->dev;
2075	struct ice_hw *hw = &vsi->back->hw;
2076	struct ice_vsi_ctx *ctxt;
2077	enum ice_status status;
2078	int ret = 0;
2079
2080	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2081	if (!ctxt)
2082		return -ENOMEM;
2083
2084	/* Here we are configuring what the VSI should do with the VLAN tag in
2085	 * the Rx packet. We can either leave the tag in the packet or put it in
2086	 * the Rx descriptor.
2087	 */
2088	if (ena)
2089		/* Strip VLAN tag from Rx packet and put it in the desc */
2090		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091	else
2092		/* Disable stripping. Leave tag in packet */
2093		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094
2095	/* Allow all packets untagged/tagged */
2096	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097
2098	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099
2100	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101	if (status) {
2102		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103			ena, status, hw->adminq.sq_last_status);
2104		ret = -EIO;
2105		goto out;
2106	}
2107
2108	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109out:
2110	devm_kfree(dev, ctxt);
2111	return ret;
2112}
2113
2114/**
2115 * ice_vsi_start_rx_rings - start VSI's Rx rings
2116 * @vsi: the VSI whose rings are to be started
2117 *
2118 * Returns 0 on success and a negative value on error
2119 */
2120int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121{
2122	return ice_vsi_ctrl_rx_rings(vsi, true);
2123}
2124
2125/**
2126 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127 * @vsi: the VSI
2128 *
2129 * Returns 0 on success and a negative value on error
2130 */
2131int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132{
2133	return ice_vsi_ctrl_rx_rings(vsi, false);
2134}
2135
2136/**
2137 * ice_trigger_sw_intr - trigger a software interrupt
2138 * @hw: pointer to the HW structure
2139 * @q_vector: interrupt vector to trigger the software interrupt for
2140 */
2141void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142{
2143	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145	     GLINT_DYN_CTL_SWINT_TRIG_M |
2146	     GLINT_DYN_CTL_INTENA_M);
2147}
2148
2149/**
2150 * ice_vsi_stop_tx_ring - Disable single Tx ring
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 * @ring: Tx ring to be stopped
2155 * @txq_meta: Meta data of Tx ring to be stopped
2156 */
2157#ifndef CONFIG_PCI_IOV
2158static
2159#endif /* !CONFIG_PCI_IOV */
2160int
2161ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162		     u16 rel_vmvf_num, struct ice_ring *ring,
2163		     struct ice_txq_meta *txq_meta)
2164{
2165	struct ice_pf *pf = vsi->back;
2166	struct ice_q_vector *q_vector;
2167	struct ice_hw *hw = &pf->hw;
2168	enum ice_status status;
2169	u32 val;
2170
2171	/* clear cause_ena bit for disabled queues */
2172	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173	val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175
2176	/* software is expected to wait for 100 ns */
2177	ndelay(100);
2178
2179	/* trigger a software interrupt for the vector
2180	 * associated to the queue to schedule NAPI handler
2181	 */
2182	q_vector = ring->q_vector;
2183	if (q_vector)
2184		ice_trigger_sw_intr(hw, q_vector);
2185
2186	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187				 txq_meta->tc, 1, &txq_meta->q_handle,
2188				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189				 rel_vmvf_num, NULL);
2190
2191	/* if the disable queue command was exercised during an
2192	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193	 * This is not an error as the reset operation disables
2194	 * queues at the hardware level anyway.
2195	 */
2196	if (status == ICE_ERR_RESET_ONGOING) {
2197		dev_dbg(&vsi->back->pdev->dev,
2198			"Reset in progress. LAN Tx queues already disabled\n");
2199	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200		dev_dbg(&vsi->back->pdev->dev,
2201			"LAN Tx queues do not exist, nothing to disable\n");
2202	} else if (status) {
2203		dev_err(&vsi->back->pdev->dev,
2204			"Failed to disable LAN Tx queues, error: %d\n", status);
2205		return -ENODEV;
2206	}
2207
2208	return 0;
2209}
2210
2211/**
2212 * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213 * @vsi: VSI that ring belongs to
2214 * @ring: ring that txq_meta will be based on
2215 * @txq_meta: a helper struct that wraps Tx queue's information
2216 *
2217 * Set up a helper struct that will contain all the necessary fields that
2218 * are needed for stopping Tx queue
2219 */
2220#ifndef CONFIG_PCI_IOV
2221static
2222#endif /* !CONFIG_PCI_IOV */
2223void
2224ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225		  struct ice_txq_meta *txq_meta)
2226{
2227	u8 tc = 0;
2228
2229#ifdef CONFIG_DCB
2230	tc = ring->dcb_tc;
2231#endif /* CONFIG_DCB */
2232	txq_meta->q_id = ring->reg_idx;
2233	txq_meta->q_teid = ring->txq_teid;
2234	txq_meta->q_handle = ring->q_handle;
2235	txq_meta->vsi_idx = vsi->idx;
2236	txq_meta->tc = tc;
2237}
2238
2239/**
2240 * ice_vsi_stop_tx_rings - Disable Tx rings
2241 * @vsi: the VSI being configured
2242 * @rst_src: reset source
2243 * @rel_vmvf_num: Relative ID of VF/VM
2244 * @rings: Tx ring array to be stopped
2245 */
2246static int
2247ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248		      u16 rel_vmvf_num, struct ice_ring **rings)
2249{
2250	u16 i, q_idx = 0;
2251	int status;
2252	u8 tc;
2253
2254	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255		return -EINVAL;
2256
2257	/* set up the Tx queue list to be disabled for each enabled TC */
2258	ice_for_each_traffic_class(tc) {
2259		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260			break;
2261
2262		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263			struct ice_txq_meta txq_meta = { };
2264
2265			if (!rings || !rings[q_idx])
2266				return -EINVAL;
2267
2268			ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269			status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270						      rel_vmvf_num,
2271						      rings[q_idx], &txq_meta);
2272
2273			if (status)
2274				return status;
2275
2276			q_idx++;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283/**
2284 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285 * @vsi: the VSI being configured
2286 * @rst_src: reset source
2287 * @rel_vmvf_num: Relative ID of VF/VM
2288 */
2289int
2290ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291			  u16 rel_vmvf_num)
2292{
2293	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294}
2295
2296/**
2297 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298 * @vsi: VSI to enable or disable VLAN pruning on
2299 * @ena: set to true to enable VLAN pruning and false to disable it
2300 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301 *
2302 * returns 0 if VSI is updated, negative otherwise
2303 */
2304int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305{
2306	struct ice_vsi_ctx *ctxt;
2307	struct device *dev;
2308	struct ice_pf *pf;
2309	int status;
2310
2311	if (!vsi)
2312		return -EINVAL;
2313
2314	pf = vsi->back;
2315	dev = &pf->pdev->dev;
2316	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317	if (!ctxt)
2318		return -ENOMEM;
2319
2320	ctxt->info = vsi->info;
2321
2322	if (ena) {
2323		ctxt->info.sec_flags |=
2324			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327	} else {
2328		ctxt->info.sec_flags &=
2329			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332	}
2333
2334	if (!vlan_promisc)
2335		ctxt->info.valid_sections =
2336			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337				    ICE_AQ_VSI_PROP_SW_VALID);
2338
2339	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340	if (status) {
2341		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343			   pf->hw.adminq.sq_last_status);
2344		goto err_out;
2345	}
2346
2347	vsi->info.sec_flags = ctxt->info.sec_flags;
2348	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349
2350	devm_kfree(dev, ctxt);
2351	return 0;
2352
2353err_out:
2354	devm_kfree(dev, ctxt);
2355	return -EIO;
2356}
2357
2358static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359{
2360	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361
2362	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364}
2365
2366/**
2367 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368 * @vsi: VSI to set the q_vectors register index on
2369 */
2370static int
2371ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372{
2373	u16 i;
2374
2375	if (!vsi || !vsi->q_vectors)
2376		return -EINVAL;
2377
2378	ice_for_each_q_vector(vsi, i) {
2379		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380
2381		if (!q_vector) {
2382			dev_err(&vsi->back->pdev->dev,
2383				"Failed to set reg_idx on q_vector %d VSI %d\n",
2384				i, vsi->vsi_num);
2385			goto clear_reg_idx;
2386		}
2387
2388		if (vsi->type == ICE_VSI_VF) {
2389			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390
2391			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392		} else {
2393			q_vector->reg_idx =
2394				q_vector->v_idx + vsi->base_vector;
2395		}
2396	}
2397
2398	return 0;
2399
2400clear_reg_idx:
2401	ice_for_each_q_vector(vsi, i) {
2402		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403
2404		if (q_vector)
2405			q_vector->reg_idx = 0;
2406	}
2407
2408	return -EINVAL;
2409}
2410
2411/**
2412 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413 * @vsi: the VSI being configured
2414 * @add_rule: boolean value to add or remove ethertype filter rule
2415 */
2416static void
2417ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418{
2419	struct ice_fltr_list_entry *list;
2420	struct ice_pf *pf = vsi->back;
2421	LIST_HEAD(tmp_add_list);
2422	enum ice_status status;
2423
2424	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425	if (!list)
2426		return;
2427
2428	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430	list->fltr_info.flag = ICE_FLTR_TX;
2431	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432	list->fltr_info.vsi_handle = vsi->idx;
2433	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434
2435	INIT_LIST_HEAD(&list->list_entry);
2436	list_add(&list->list_entry, &tmp_add_list);
2437
2438	if (add_rule)
2439		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440	else
2441		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442
2443	if (status)
2444		dev_err(&pf->pdev->dev,
2445			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446			vsi->vsi_num, status);
2447
2448	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449}
2450
2451/**
2452 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453 * @vsi: the VSI being configured
2454 * @tx: bool to determine Tx or Rx rule
2455 * @create: bool to determine create or remove Rule
2456 */
2457void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458{
2459	struct ice_fltr_list_entry *list;
2460	struct ice_pf *pf = vsi->back;
2461	LIST_HEAD(tmp_add_list);
2462	enum ice_status status;
2463
2464	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465	if (!list)
2466		return;
2467
2468	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469	list->fltr_info.vsi_handle = vsi->idx;
2470	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471
2472	if (tx) {
2473		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474		list->fltr_info.flag = ICE_FLTR_TX;
2475		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476	} else {
2477		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478		list->fltr_info.flag = ICE_FLTR_RX;
2479		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480	}
2481
2482	INIT_LIST_HEAD(&list->list_entry);
2483	list_add(&list->list_entry, &tmp_add_list);
2484
2485	if (create)
2486		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487	else
2488		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489
2490	if (status)
2491		dev_err(&pf->pdev->dev,
2492			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2493			create ? "adding" : "removing", tx ? "TX" : "RX",
2494			vsi->vsi_num, status);
2495
2496	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497}
2498
2499/**
2500 * ice_vsi_setup - Set up a VSI by a given type
2501 * @pf: board private structure
2502 * @pi: pointer to the port_info instance
2503 * @type: VSI type
2504 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506 *         fill-in ICE_INVAL_VFID as input.
2507 *
2508 * This allocates the sw VSI structure and its queue resources.
2509 *
2510 * Returns pointer to the successfully allocated and configured VSI sw struct on
2511 * success, NULL on failure.
2512 */
2513struct ice_vsi *
2514ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515	      enum ice_vsi_type type, u16 vf_id)
2516{
2517	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518	struct device *dev = &pf->pdev->dev;
2519	enum ice_status status;
2520	struct ice_vsi *vsi;
2521	int ret, i;
2522
2523	if (type == ICE_VSI_VF)
2524		vsi = ice_vsi_alloc(pf, type, vf_id);
2525	else
2526		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527
2528	if (!vsi) {
2529		dev_err(dev, "could not allocate VSI\n");
2530		return NULL;
2531	}
2532
2533	vsi->port_info = pi;
2534	vsi->vsw = pf->first_sw;
2535	if (vsi->type == ICE_VSI_PF)
2536		vsi->ethtype = ETH_P_PAUSE;
2537
2538	if (vsi->type == ICE_VSI_VF)
2539		vsi->vf_id = vf_id;
2540
2541	if (ice_vsi_get_qs(vsi)) {
2542		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543			vsi->idx);
2544		goto unroll_get_qs;
2545	}
2546
2547	/* set RSS capabilities */
2548	ice_vsi_set_rss_params(vsi);
2549
2550	/* set TC configuration */
2551	ice_vsi_set_tc_cfg(vsi);
2552
2553	/* create the VSI */
2554	ret = ice_vsi_init(vsi);
2555	if (ret)
2556		goto unroll_get_qs;
2557
2558	switch (vsi->type) {
2559	case ICE_VSI_PF:
2560		ret = ice_vsi_alloc_q_vectors(vsi);
2561		if (ret)
2562			goto unroll_vsi_init;
2563
2564		ret = ice_vsi_setup_vector_base(vsi);
2565		if (ret)
2566			goto unroll_alloc_q_vector;
2567
2568		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569		if (ret)
2570			goto unroll_vector_base;
2571
2572		ret = ice_vsi_alloc_rings(vsi);
2573		if (ret)
2574			goto unroll_vector_base;
2575
2576		ice_vsi_map_rings_to_vectors(vsi);
2577
2578		/* Do not exit if configuring RSS had an issue, at least
2579		 * receive traffic on first queue. Hence no need to capture
2580		 * return value
2581		 */
2582		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583			ice_vsi_cfg_rss_lut_key(vsi);
2584		break;
2585	case ICE_VSI_VF:
2586		/* VF driver will take care of creating netdev for this type and
2587		 * map queues to vectors through Virtchnl, PF driver only
2588		 * creates a VSI and corresponding structures for bookkeeping
2589		 * purpose
2590		 */
2591		ret = ice_vsi_alloc_q_vectors(vsi);
2592		if (ret)
2593			goto unroll_vsi_init;
2594
2595		ret = ice_vsi_alloc_rings(vsi);
2596		if (ret)
2597			goto unroll_alloc_q_vector;
2598
2599		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600		if (ret)
2601			goto unroll_vector_base;
2602
2603		/* Do not exit if configuring RSS had an issue, at least
2604		 * receive traffic on first queue. Hence no need to capture
2605		 * return value
2606		 */
2607		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608			ice_vsi_cfg_rss_lut_key(vsi);
2609		break;
2610	case ICE_VSI_LB:
2611		ret = ice_vsi_alloc_rings(vsi);
2612		if (ret)
2613			goto unroll_vsi_init;
2614		break;
2615	default:
2616		/* clean up the resources and exit */
2617		goto unroll_vsi_init;
2618	}
2619
2620	/* configure VSI nodes based on number of queues and TC's */
2621	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622		max_txqs[i] = vsi->alloc_txq;
2623
2624	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625				 max_txqs);
2626	if (status) {
2627		dev_err(&pf->pdev->dev,
2628			"VSI %d failed lan queue config, error %d\n",
2629			vsi->vsi_num, status);
2630		goto unroll_vector_base;
2631	}
2632
2633	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636	 * The rule is added once for PF VSI in order to create appropriate
2637	 * recipe, since VSI/VSI list is ignored with drop action...
2638	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641	 * then Rx LLDP packets need to be redirected up the stack.
2642	 */
2643	if (!ice_is_safe_mode(pf)) {
2644		if (vsi->type == ICE_VSI_PF) {
2645			ice_vsi_add_rem_eth_mac(vsi, true);
2646
2647			/* Tx LLDP packets */
2648			ice_cfg_sw_lldp(vsi, true, true);
2649
2650			/* Rx LLDP packets */
2651			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652				ice_cfg_sw_lldp(vsi, false, true);
2653		}
2654	}
2655
2656	return vsi;
2657
2658unroll_vector_base:
2659	/* reclaim SW interrupts back to the common pool */
2660	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661	pf->num_avail_sw_msix += vsi->num_q_vectors;
2662unroll_alloc_q_vector:
2663	ice_vsi_free_q_vectors(vsi);
2664unroll_vsi_init:
2665	ice_vsi_delete(vsi);
2666unroll_get_qs:
2667	ice_vsi_put_qs(vsi);
2668	ice_vsi_clear(vsi);
2669
2670	return NULL;
2671}
2672
2673/**
2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675 * @vsi: the VSI being cleaned up
2676 */
2677static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678{
2679	struct ice_pf *pf = vsi->back;
2680	struct ice_hw *hw = &pf->hw;
2681	u32 txq = 0;
2682	u32 rxq = 0;
2683	int i, q;
2684
2685	for (i = 0; i < vsi->num_q_vectors; i++) {
2686		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687		u16 reg_idx = q_vector->reg_idx;
2688
2689		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691		for (q = 0; q < q_vector->num_ring_tx; q++) {
2692			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2693			txq++;
2694		}
2695
2696		for (q = 0; q < q_vector->num_ring_rx; q++) {
2697			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698			rxq++;
2699		}
2700	}
2701
2702	ice_flush(hw);
2703}
2704
2705/**
2706 * ice_vsi_free_irq - Free the IRQ association with the OS
2707 * @vsi: the VSI being configured
2708 */
2709void ice_vsi_free_irq(struct ice_vsi *vsi)
2710{
2711	struct ice_pf *pf = vsi->back;
2712	int base = vsi->base_vector;
2713	int i;
2714
2715	if (!vsi->q_vectors || !vsi->irqs_ready)
2716		return;
2717
2718	ice_vsi_release_msix(vsi);
2719	if (vsi->type == ICE_VSI_VF)
2720		return;
2721
2722	vsi->irqs_ready = false;
2723	ice_for_each_q_vector(vsi, i) {
2724		u16 vector = i + base;
2725		int irq_num;
2726
2727		irq_num = pf->msix_entries[vector].vector;
2728
2729		/* free only the irqs that were actually requested */
2730		if (!vsi->q_vectors[i] ||
2731		    !(vsi->q_vectors[i]->num_ring_tx ||
2732		      vsi->q_vectors[i]->num_ring_rx))
2733			continue;
2734
2735		/* clear the affinity notifier in the IRQ descriptor */
2736		irq_set_affinity_notifier(irq_num, NULL);
2737
2738		/* clear the affinity_mask in the IRQ descriptor */
2739		irq_set_affinity_hint(irq_num, NULL);
2740		synchronize_irq(irq_num);
2741		devm_free_irq(&pf->pdev->dev, irq_num,
2742			      vsi->q_vectors[i]);
2743	}
2744}
2745
2746/**
2747 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748 * @vsi: the VSI having resources freed
2749 */
2750void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751{
2752	int i;
2753
2754	if (!vsi->tx_rings)
2755		return;
2756
2757	ice_for_each_txq(vsi, i)
2758		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759			ice_free_tx_ring(vsi->tx_rings[i]);
2760}
2761
2762/**
2763 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764 * @vsi: the VSI having resources freed
2765 */
2766void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767{
2768	int i;
2769
2770	if (!vsi->rx_rings)
2771		return;
2772
2773	ice_for_each_rxq(vsi, i)
2774		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775			ice_free_rx_ring(vsi->rx_rings[i]);
2776}
2777
2778/**
2779 * ice_vsi_close - Shut down a VSI
2780 * @vsi: the VSI being shut down
2781 */
2782void ice_vsi_close(struct ice_vsi *vsi)
2783{
2784	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785		ice_down(vsi);
2786
2787	ice_vsi_free_irq(vsi);
2788	ice_vsi_free_tx_rings(vsi);
2789	ice_vsi_free_rx_rings(vsi);
2790}
2791
2792/**
2793 * ice_free_res - free a block of resources
2794 * @res: pointer to the resource
2795 * @index: starting index previously returned by ice_get_res
2796 * @id: identifier to track owner
2797 *
2798 * Returns number of resources freed
2799 */
2800int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801{
2802	int count = 0;
2803	int i;
2804
2805	if (!res || index >= res->end)
2806		return -EINVAL;
2807
2808	id |= ICE_RES_VALID_BIT;
2809	for (i = index; i < res->end && res->list[i] == id; i++) {
2810		res->list[i] = 0;
2811		count++;
2812	}
2813
2814	return count;
2815}
2816
2817/**
2818 * ice_search_res - Search the tracker for a block of resources
2819 * @res: pointer to the resource
2820 * @needed: size of the block needed
2821 * @id: identifier to track owner
2822 *
2823 * Returns the base item index of the block, or -ENOMEM for error
2824 */
2825static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826{
2827	int start = 0, end = 0;
2828
2829	if (needed > res->end)
2830		return -ENOMEM;
2831
2832	id |= ICE_RES_VALID_BIT;
2833
2834	do {
2835		/* skip already allocated entries */
2836		if (res->list[end++] & ICE_RES_VALID_BIT) {
2837			start = end;
2838			if ((start + needed) > res->end)
2839				break;
2840		}
2841
2842		if (end == (start + needed)) {
2843			int i = start;
2844
2845			/* there was enough, so assign it to the requestor */
2846			while (i != end)
2847				res->list[i++] = id;
2848
2849			return start;
2850		}
2851	} while (end < res->end);
2852
2853	return -ENOMEM;
2854}
2855
2856/**
2857 * ice_get_res - get a block of resources
2858 * @pf: board private structure
2859 * @res: pointer to the resource
2860 * @needed: size of the block needed
2861 * @id: identifier to track owner
2862 *
2863 * Returns the base item index of the block, or negative for error
2864 */
2865int
2866ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867{
2868	if (!res || !pf)
2869		return -EINVAL;
2870
2871	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872		dev_err(&pf->pdev->dev,
2873			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2874			needed, res->num_entries, id);
2875		return -EINVAL;
2876	}
2877
2878	return ice_search_res(res, needed, id);
2879}
2880
2881/**
2882 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883 * @vsi: the VSI being un-configured
2884 */
2885void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886{
2887	int base = vsi->base_vector;
2888	struct ice_pf *pf = vsi->back;
2889	struct ice_hw *hw = &pf->hw;
2890	u32 val;
2891	int i;
2892
2893	/* disable interrupt causation from each queue */
2894	if (vsi->tx_rings) {
2895		ice_for_each_txq(vsi, i) {
2896			if (vsi->tx_rings[i]) {
2897				u16 reg;
2898
2899				reg = vsi->tx_rings[i]->reg_idx;
2900				val = rd32(hw, QINT_TQCTL(reg));
2901				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902				wr32(hw, QINT_TQCTL(reg), val);
2903			}
2904		}
2905	}
2906
2907	if (vsi->rx_rings) {
2908		ice_for_each_rxq(vsi, i) {
2909			if (vsi->rx_rings[i]) {
2910				u16 reg;
2911
2912				reg = vsi->rx_rings[i]->reg_idx;
2913				val = rd32(hw, QINT_RQCTL(reg));
2914				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915				wr32(hw, QINT_RQCTL(reg), val);
2916			}
2917		}
2918	}
2919
2920	/* disable each interrupt */
2921	ice_for_each_q_vector(vsi, i) {
2922		if (!vsi->q_vectors[i])
2923			continue;
2924		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925	}
2926
2927	ice_flush(hw);
2928
2929	/* don't call synchronize_irq() for VF's from the host */
2930	if (vsi->type == ICE_VSI_VF)
2931		return;
2932
2933	ice_for_each_q_vector(vsi, i)
2934		synchronize_irq(pf->msix_entries[i + base].vector);
2935}
2936
2937/**
2938 * ice_napi_del - Remove NAPI handler for the VSI
2939 * @vsi: VSI for which NAPI handler is to be removed
2940 */
2941void ice_napi_del(struct ice_vsi *vsi)
2942{
2943	int v_idx;
2944
2945	if (!vsi->netdev)
2946		return;
2947
2948	ice_for_each_q_vector(vsi, v_idx)
2949		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950}
2951
2952/**
2953 * ice_vsi_release - Delete a VSI and free its resources
2954 * @vsi: the VSI being removed
2955 *
2956 * Returns 0 on success or < 0 on error
2957 */
2958int ice_vsi_release(struct ice_vsi *vsi)
2959{
2960	struct ice_pf *pf;
2961
2962	if (!vsi->back)
2963		return -ENODEV;
2964	pf = vsi->back;
2965
2966	/* do not unregister while driver is in the reset recovery pending
2967	 * state. Since reset/rebuild happens through PF service task workqueue,
2968	 * it's not a good idea to unregister netdev that is associated to the
2969	 * PF that is running the work queue items currently. This is done to
2970	 * avoid check_flush_dependency() warning on this wq
2971	 */
2972	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973		unregister_netdev(vsi->netdev);
2974
2975	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976		ice_rss_clean(vsi);
2977
2978	/* Disable VSI and free resources */
2979	if (vsi->type != ICE_VSI_LB)
2980		ice_vsi_dis_irq(vsi);
2981	ice_vsi_close(vsi);
2982
2983	/* SR-IOV determines needed MSIX resources all at once instead of per
2984	 * VSI since when VFs are spawned we know how many VFs there are and how
2985	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986	 * cleared in the same manner.
2987	 */
2988	if (vsi->type != ICE_VSI_VF) {
2989		/* reclaim SW interrupts back to the common pool */
2990		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991		pf->num_avail_sw_msix += vsi->num_q_vectors;
2992	}
2993
2994	if (!ice_is_safe_mode(pf)) {
2995		if (vsi->type == ICE_VSI_PF) {
2996			ice_vsi_add_rem_eth_mac(vsi, false);
2997			ice_cfg_sw_lldp(vsi, true, false);
2998			/* The Rx rule will only exist to remove if the LLDP FW
2999			 * engine is currently stopped
3000			 */
3001			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002				ice_cfg_sw_lldp(vsi, false, false);
3003		}
3004	}
3005
3006	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008	ice_vsi_delete(vsi);
3009	ice_vsi_free_q_vectors(vsi);
3010
3011	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013		free_netdev(vsi->netdev);
3014		vsi->netdev = NULL;
3015	}
3016
3017	ice_vsi_clear_rings(vsi);
3018
3019	ice_vsi_put_qs(vsi);
3020
3021	/* retain SW VSI data structure since it is needed to unregister and
3022	 * free VSI netdev when PF is not in reset recovery pending state,\
3023	 * for ex: during rmmod.
3024	 */
3025	if (!ice_is_reset_in_progress(pf->state))
3026		ice_vsi_clear(vsi);
3027
3028	return 0;
3029}
3030
3031/**
3032 * ice_vsi_rebuild - Rebuild VSI after reset
3033 * @vsi: VSI to be rebuild
3034 *
3035 * Returns 0 on success and negative value on failure
3036 */
3037int ice_vsi_rebuild(struct ice_vsi *vsi)
3038{
3039	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3040	struct ice_vf *vf = NULL;
3041	enum ice_status status;
3042	struct ice_pf *pf;
3043	int ret, i;
3044
3045	if (!vsi)
3046		return -EINVAL;
3047
3048	pf = vsi->back;
3049	if (vsi->type == ICE_VSI_VF)
3050		vf = &pf->vf[vsi->vf_id];
3051
3052	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053	ice_vsi_free_q_vectors(vsi);
3054
3055	/* SR-IOV determines needed MSIX resources all at once instead of per
3056	 * VSI since when VFs are spawned we know how many VFs there are and how
3057	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058	 * cleared in the same manner.
3059	 */
3060	if (vsi->type != ICE_VSI_VF) {
3061		/* reclaim SW interrupts back to the common pool */
3062		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063		pf->num_avail_sw_msix += vsi->num_q_vectors;
3064		vsi->base_vector = 0;
3065	}
3066
3067	ice_vsi_put_qs(vsi);
3068	ice_vsi_clear_rings(vsi);
3069	ice_vsi_free_arrays(vsi);
3070	ice_dev_onetime_setup(&pf->hw);
3071	if (vsi->type == ICE_VSI_VF)
3072		ice_vsi_set_num_qs(vsi, vf->vf_id);
3073	else
3074		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075
3076	ret = ice_vsi_alloc_arrays(vsi);
3077	if (ret < 0)
3078		goto err_vsi;
3079
3080	ice_vsi_get_qs(vsi);
3081	ice_vsi_set_tc_cfg(vsi);
3082
3083	/* Initialize VSI struct elements and create VSI in FW */
3084	ret = ice_vsi_init(vsi);
3085	if (ret < 0)
3086		goto err_vsi;
3087
3088
3089	switch (vsi->type) {
3090	case ICE_VSI_PF:
3091		ret = ice_vsi_alloc_q_vectors(vsi);
3092		if (ret)
3093			goto err_rings;
3094
3095		ret = ice_vsi_setup_vector_base(vsi);
3096		if (ret)
3097			goto err_vectors;
3098
3099		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100		if (ret)
3101			goto err_vectors;
3102
3103		ret = ice_vsi_alloc_rings(vsi);
3104		if (ret)
3105			goto err_vectors;
3106
3107		ice_vsi_map_rings_to_vectors(vsi);
3108		/* Do not exit if configuring RSS had an issue, at least
3109		 * receive traffic on first queue. Hence no need to capture
3110		 * return value
3111		 */
3112		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113			ice_vsi_cfg_rss_lut_key(vsi);
3114		break;
3115	case ICE_VSI_VF:
3116		ret = ice_vsi_alloc_q_vectors(vsi);
3117		if (ret)
3118			goto err_rings;
3119
3120		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121		if (ret)
3122			goto err_vectors;
3123
3124		ret = ice_vsi_alloc_rings(vsi);
3125		if (ret)
3126			goto err_vectors;
3127
3128		break;
3129	default:
3130		break;
3131	}
3132
3133	/* configure VSI nodes based on number of queues and TC's */
3134	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135		max_txqs[i] = vsi->alloc_txq;
3136
3137	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138				 max_txqs);
3139	if (status) {
3140		dev_err(&pf->pdev->dev,
3141			"VSI %d failed lan queue config, error %d\n",
3142			vsi->vsi_num, status);
3143		goto err_vectors;
3144	}
3145	return 0;
3146
3147err_vectors:
3148	ice_vsi_free_q_vectors(vsi);
3149err_rings:
3150	if (vsi->netdev) {
3151		vsi->current_netdev_flags = 0;
3152		unregister_netdev(vsi->netdev);
3153		free_netdev(vsi->netdev);
3154		vsi->netdev = NULL;
3155	}
3156err_vsi:
3157	ice_vsi_clear(vsi);
3158	set_bit(__ICE_RESET_FAILED, pf->state);
3159	return ret;
3160}
3161
3162/**
3163 * ice_is_reset_in_progress - check for a reset in progress
3164 * @state: PF state field
3165 */
3166bool ice_is_reset_in_progress(unsigned long *state)
3167{
3168	return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169	       test_bit(__ICE_PFR_REQ, state) ||
3170	       test_bit(__ICE_CORER_REQ, state) ||
3171	       test_bit(__ICE_GLOBR_REQ, state);
3172}
3173
3174#ifdef CONFIG_DCB
3175/**
3176 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177 * @vsi: VSI being configured
3178 * @ctx: the context buffer returned from AQ VSI update command
3179 */
3180static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181{
3182	vsi->info.mapping_flags = ctx->info.mapping_flags;
3183	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184	       sizeof(vsi->info.q_mapping));
3185	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186	       sizeof(vsi->info.tc_mapping));
3187}
3188
3189/**
3190 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191 * @vsi: VSI to be configured
3192 * @ena_tc: TC bitmap
3193 *
3194 * VSI queues expected to be quiesced before calling this function
3195 */
3196int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197{
3198	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3199	struct ice_vsi_ctx *ctx;
3200	struct ice_pf *pf = vsi->back;
3201	enum ice_status status;
3202	int i, ret = 0;
3203	u8 num_tc = 0;
3204
3205	ice_for_each_traffic_class(i) {
3206		/* build bitmap of enabled TCs */
3207		if (ena_tc & BIT(i))
3208			num_tc++;
3209		/* populate max_txqs per TC */
3210		max_txqs[i] = vsi->alloc_txq;
3211	}
3212
3213	vsi->tc_cfg.ena_tc = ena_tc;
3214	vsi->tc_cfg.numtc = num_tc;
3215
3216	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217	if (!ctx)
3218		return -ENOMEM;
3219
3220	ctx->vf_num = 0;
3221	ctx->info = vsi->info;
3222
3223	ice_vsi_setup_q_map(vsi, ctx);
3224
3225	/* must to indicate which section of VSI context are being modified */
3226	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228	if (status) {
3229		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230		ret = -EIO;
3231		goto out;
3232	}
3233
3234	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235				 max_txqs);
3236
3237	if (status) {
3238		dev_err(&pf->pdev->dev,
3239			"VSI %d failed TC config, error %d\n",
3240			vsi->vsi_num, status);
3241		ret = -EIO;
3242		goto out;
3243	}
3244	ice_vsi_update_q_map(vsi, ctx);
3245	vsi->info.valid_sections = 0;
3246
3247	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248out:
3249	devm_kfree(&pf->pdev->dev, ctx);
3250	return ret;
3251}
3252#endif /* CONFIG_DCB */
3253
3254/**
3255 * ice_nvm_version_str - format the NVM version strings
3256 * @hw: ptr to the hardware info
3257 */
3258char *ice_nvm_version_str(struct ice_hw *hw)
3259{
3260	u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261	static char buf[ICE_NVM_VER_LEN];
3262	u16 oem_build;
3263
3264	ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265			    &ver_lo);
3266
3267	snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268		 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269
3270	return buf;
3271}
3272
3273/**
3274 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275 * @vsi: the VSI being configured MAC filter
3276 * @macaddr: the MAC address to be added.
3277 * @set: Add or delete a MAC filter
3278 *
3279 * Adds or removes MAC address filter entry for VF VSI
3280 */
3281enum ice_status
3282ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283{
3284	LIST_HEAD(tmp_add_list);
3285	enum ice_status status;
3286
3287	 /* Update MAC filter list to be added or removed for a VSI */
3288	if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289		status = ICE_ERR_NO_MEMORY;
3290		goto cfg_mac_fltr_exit;
3291	}
3292
3293	if (set)
3294		status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295	else
3296		status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
3297
3298cfg_mac_fltr_exit:
3299	ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300	return status;
3301}