Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
  3 *    Copyright (C) 2004 Arcom Control Systems
  4 *    Copyright (C) 2008 Pengutronix
  5 *
  6 *  This program is free software; you can redistribute it and/or modify
  7 *  it under the terms of the GNU General Public License as published by
  8 *  the Free Software Foundation; either version 2 of the License, or
  9 *  (at your option) any later version.
 10 *
 11 *  This program is distributed in the hope that it will be useful,
 12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 *  GNU General Public License for more details.
 15 *
 16 *  You should have received a copy of the GNU General Public License
 17 *  along with this program; if not, write to the Free Software
 18 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19 */
 20
 21#include <linux/kernel.h>
 22#include <linux/module.h>
 23#include <linux/moduleparam.h>
 24#include <linux/delay.h>
 25#include <linux/jiffies.h>
 26#include <linux/init.h>
 27#include <linux/errno.h>
 28#include <linux/i2c.h>
 29#include <linux/i2c-algo-pca.h>
 30
 31#define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
 32				 printk(KERN_DEBUG fmt, ## args); } while (0)
 33#define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
 34				 printk(KERN_DEBUG fmt, ## args); } while (0)
 35#define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
 36				 printk(KERN_DEBUG fmt, ## args); } while (0)
 37
 38static int i2c_debug;
 39
 40#define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
 41#define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
 42
 43#define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
 44#define pca_clock(adap) adap->i2c_clock
 45#define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
 46#define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
 47#define pca_wait(adap) adap->wait_for_completion(adap->data)
 48#define pca_reset(adap) adap->reset_chip(adap->data)
 49
 50static void pca9665_reset(void *pd)
 51{
 52	struct i2c_algo_pca_data *adap = pd;
 53	pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
 54	pca_outw(adap, I2C_PCA_IND, 0xA5);
 55	pca_outw(adap, I2C_PCA_IND, 0x5A);
 
 
 
 
 
 
 56}
 57
 58/*
 59 * Generate a start condition on the i2c bus.
 60 *
 61 * returns after the start condition has occurred
 62 */
 63static int pca_start(struct i2c_algo_pca_data *adap)
 64{
 65	int sta = pca_get_con(adap);
 66	DEB2("=== START\n");
 67	sta |= I2C_PCA_CON_STA;
 68	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
 69	pca_set_con(adap, sta);
 70	return pca_wait(adap);
 71}
 72
 73/*
 74 * Generate a repeated start condition on the i2c bus
 75 *
 76 * return after the repeated start condition has occurred
 77 */
 78static int pca_repeated_start(struct i2c_algo_pca_data *adap)
 79{
 80	int sta = pca_get_con(adap);
 81	DEB2("=== REPEATED START\n");
 82	sta |= I2C_PCA_CON_STA;
 83	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
 84	pca_set_con(adap, sta);
 85	return pca_wait(adap);
 86}
 87
 88/*
 89 * Generate a stop condition on the i2c bus
 90 *
 91 * returns after the stop condition has been generated
 92 *
 93 * STOPs do not generate an interrupt or set the SI flag, since the
 94 * part returns the idle state (0xf8). Hence we don't need to
 95 * pca_wait here.
 96 */
 97static void pca_stop(struct i2c_algo_pca_data *adap)
 98{
 99	int sta = pca_get_con(adap);
100	DEB2("=== STOP\n");
101	sta |= I2C_PCA_CON_STO;
102	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
103	pca_set_con(adap, sta);
104}
105
106/*
107 * Send the slave address and R/W bit
108 *
109 * returns after the address has been sent
110 */
111static int pca_address(struct i2c_algo_pca_data *adap,
112		       struct i2c_msg *msg)
113{
114	int sta = pca_get_con(adap);
115	int addr;
116
117	addr = ((0x7f & msg->addr) << 1);
118	if (msg->flags & I2C_M_RD)
119		addr |= 1;
120	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
121	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
122
123	pca_outw(adap, I2C_PCA_DAT, addr);
124
125	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
126	pca_set_con(adap, sta);
127
128	return pca_wait(adap);
129}
130
131/*
132 * Transmit a byte.
133 *
134 * Returns after the byte has been transmitted
135 */
136static int pca_tx_byte(struct i2c_algo_pca_data *adap,
137		       __u8 b)
138{
139	int sta = pca_get_con(adap);
140	DEB2("=== WRITE %#04x\n", b);
141	pca_outw(adap, I2C_PCA_DAT, b);
142
143	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
144	pca_set_con(adap, sta);
145
146	return pca_wait(adap);
147}
148
149/*
150 * Receive a byte
151 *
152 * returns immediately.
153 */
154static void pca_rx_byte(struct i2c_algo_pca_data *adap,
155			__u8 *b, int ack)
156{
157	*b = pca_inw(adap, I2C_PCA_DAT);
158	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
159}
160
161/*
162 * Setup ACK or NACK for next received byte and wait for it to arrive.
163 *
164 * Returns after next byte has arrived.
165 */
166static int pca_rx_ack(struct i2c_algo_pca_data *adap,
167		      int ack)
168{
169	int sta = pca_get_con(adap);
170
171	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
172
173	if (ack)
174		sta |= I2C_PCA_CON_AA;
175
176	pca_set_con(adap, sta);
177	return pca_wait(adap);
178}
179
180static int pca_xfer(struct i2c_adapter *i2c_adap,
181		    struct i2c_msg *msgs,
182		    int num)
183{
184	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
185	struct i2c_msg *msg = NULL;
186	int curmsg;
187	int numbytes = 0;
188	int state;
189	int ret;
190	int completed = 1;
191	unsigned long timeout = jiffies + i2c_adap->timeout;
192
193	while ((state = pca_status(adap)) != 0xf8) {
194		if (time_before(jiffies, timeout)) {
195			msleep(10);
196		} else {
197			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
198				"%#04x\n", state);
199			return -EAGAIN;
200		}
201	}
202
203	DEB1("{{{ XFER %d messages\n", num);
204
205	if (i2c_debug >= 2) {
206		for (curmsg = 0; curmsg < num; curmsg++) {
207			int addr, i;
208			msg = &msgs[curmsg];
209
210			addr = (0x7f & msg->addr) ;
211
212			if (msg->flags & I2C_M_RD)
213				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
214				       curmsg, msg->len, addr, (addr << 1) | 1);
215			else {
216				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
217				       curmsg, msg->len, addr, addr << 1,
218				       msg->len == 0 ? "" : ", ");
219				for (i = 0; i < msg->len; i++)
220					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
221				printk("]\n");
222			}
223		}
224	}
225
226	curmsg = 0;
227	ret = -EREMOTEIO;
228	while (curmsg < num) {
229		state = pca_status(adap);
230
231		DEB3("STATE is 0x%02x\n", state);
232		msg = &msgs[curmsg];
233
234		switch (state) {
235		case 0xf8: /* On reset or stop the bus is idle */
236			completed = pca_start(adap);
237			break;
238
239		case 0x08: /* A START condition has been transmitted */
240		case 0x10: /* A repeated start condition has been transmitted */
241			completed = pca_address(adap, msg);
242			break;
243
244		case 0x18: /* SLA+W has been transmitted; ACK has been received */
245		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
246			if (numbytes < msg->len) {
247				completed = pca_tx_byte(adap,
248							msg->buf[numbytes]);
249				numbytes++;
250				break;
251			}
252			curmsg++; numbytes = 0;
253			if (curmsg == num)
254				pca_stop(adap);
255			else
256				completed = pca_repeated_start(adap);
257			break;
258
259		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
260			DEB2("NOT ACK received after SLA+W\n");
261			pca_stop(adap);
 
262			goto out;
263
264		case 0x40: /* SLA+R has been transmitted; ACK has been received */
265			completed = pca_rx_ack(adap, msg->len > 1);
266			break;
267
268		case 0x50: /* Data bytes has been received; ACK has been returned */
269			if (numbytes < msg->len) {
270				pca_rx_byte(adap, &msg->buf[numbytes], 1);
271				numbytes++;
272				completed = pca_rx_ack(adap,
273						       numbytes < msg->len - 1);
274				break;
275			}
276			curmsg++; numbytes = 0;
277			if (curmsg == num)
278				pca_stop(adap);
279			else
280				completed = pca_repeated_start(adap);
281			break;
282
283		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
284			DEB2("NOT ACK received after SLA+R\n");
285			pca_stop(adap);
 
286			goto out;
287
288		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
289			DEB2("NOT ACK received after data byte\n");
290			pca_stop(adap);
291			goto out;
292
293		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
294			DEB2("Arbitration lost\n");
295			/*
296			 * The PCA9564 data sheet (2006-09-01) says "A
297			 * START condition will be transmitted when the
298			 * bus becomes free (STOP or SCL and SDA high)"
299			 * when the STA bit is set (p. 11).
300			 *
301			 * In case this won't work, try pca_reset()
302			 * instead.
303			 */
304			pca_start(adap);
305			goto out;
306
307		case 0x58: /* Data byte has been received; NOT ACK has been returned */
308			if (numbytes == msg->len - 1) {
309				pca_rx_byte(adap, &msg->buf[numbytes], 0);
310				curmsg++; numbytes = 0;
311				if (curmsg == num)
312					pca_stop(adap);
313				else
314					completed = pca_repeated_start(adap);
315			} else {
316				DEB2("NOT ACK sent after data byte received. "
317				     "Not final byte. numbytes %d. len %d\n",
318				     numbytes, msg->len);
319				pca_stop(adap);
320				goto out;
321			}
322			break;
323		case 0x70: /* Bus error - SDA stuck low */
324			DEB2("BUS ERROR - SDA Stuck low\n");
325			pca_reset(adap);
326			goto out;
327		case 0x90: /* Bus error - SCL stuck low */
328			DEB2("BUS ERROR - SCL Stuck low\n");
329			pca_reset(adap);
330			goto out;
331		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
332			DEB2("BUS ERROR - Illegal START or STOP\n");
333			pca_reset(adap);
334			goto out;
335		default:
336			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
337			break;
338		}
339
340		if (!completed)
341			goto out;
342	}
343
344	ret = curmsg;
345 out:
346	DEB1("}}} transferred %d/%d messages. "
347	     "status is %#04x. control is %#04x\n",
348	     curmsg, num, pca_status(adap),
349	     pca_get_con(adap));
350	return ret;
351}
352
353static u32 pca_func(struct i2c_adapter *adap)
354{
355	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
356}
357
358static const struct i2c_algorithm pca_algo = {
359	.master_xfer	= pca_xfer,
360	.functionality	= pca_func,
361};
362
363static unsigned int pca_probe_chip(struct i2c_adapter *adap)
364{
365	struct i2c_algo_pca_data *pca_data = adap->algo_data;
366	/* The trick here is to check if there is an indirect register
367	 * available. If there is one, we will read the value we first
368	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
369	 * we wrote on I2C_PCA_ADR
370	 */
371	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
372	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
373	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
374	pca_outw(pca_data, I2C_PCA_IND, 0x00);
375	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
376	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
377		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
378		return I2C_PCA_CHIP_9665;
379	} else {
380		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
381		return I2C_PCA_CHIP_9564;
382	}
 
383}
384
385static int pca_init(struct i2c_adapter *adap)
386{
387	struct i2c_algo_pca_data *pca_data = adap->algo_data;
388
389	adap->algo = &pca_algo;
390
391	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
392		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
393		int clock;
394
395		if (pca_data->i2c_clock > 7) {
396			switch (pca_data->i2c_clock) {
397			case 330000:
398				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
399				break;
400			case 288000:
401				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
402				break;
403			case 217000:
404				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
405				break;
406			case 146000:
407				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
408				break;
409			case 88000:
410				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
411				break;
412			case 59000:
413				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
414				break;
415			case 44000:
416				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
417				break;
418			case 36000:
419				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
420				break;
421			default:
422				printk(KERN_WARNING
423					"%s: Invalid I2C clock speed selected."
424					" Using default 59kHz.\n", adap->name);
425			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
426			}
427		} else {
428			printk(KERN_WARNING "%s: "
429				"Choosing the clock frequency based on "
430				"index is deprecated."
431				" Use the nominal frequency.\n", adap->name);
432		}
433
434		pca_reset(pca_data);
435
436		clock = pca_clock(pca_data);
437		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
438		     adap->name, freqs[clock]);
439
440		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
441	} else {
442		int clock;
443		int mode;
444		int tlow, thi;
445		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
446		int min_tlow, min_thi;
447		/* These values are the maximum raise and fall values allowed
448		 * by the I2C operation mode (Standard, Fast or Fast+)
449		 * They are used (added) below to calculate the clock dividers
450		 * of PCA9665. Note that they are slightly different of the
451		 * real maximum, to allow the change on mode exactly on the
452		 * maximum clock rate for each mode
453		 */
454		int raise_fall_time;
455
456		/* Ignore the reset function from the module,
457		 * we can use the parallel bus reset
458		 */
459		pca_data->reset_chip = pca9665_reset;
460
461		if (pca_data->i2c_clock > 1265800) {
462			printk(KERN_WARNING "%s: I2C clock speed too high."
463				" Using 1265.8kHz.\n", adap->name);
464			pca_data->i2c_clock = 1265800;
465		}
466
467		if (pca_data->i2c_clock < 60300) {
468			printk(KERN_WARNING "%s: I2C clock speed too low."
469				" Using 60.3kHz.\n", adap->name);
470			pca_data->i2c_clock = 60300;
471		}
472
473		/* To avoid integer overflow, use clock/100 for calculations */
474		clock = pca_clock(pca_data) / 100;
475
476		if (pca_data->i2c_clock > 10000) {
477			mode = I2C_PCA_MODE_TURBO;
478			min_tlow = 14;
479			min_thi  = 5;
480			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
481		} else if (pca_data->i2c_clock > 4000) {
482			mode = I2C_PCA_MODE_FASTP;
483			min_tlow = 17;
484			min_thi  = 9;
485			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
486		} else if (pca_data->i2c_clock > 1000) {
487			mode = I2C_PCA_MODE_FAST;
488			min_tlow = 44;
489			min_thi  = 20;
490			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
491		} else {
492			mode = I2C_PCA_MODE_STD;
493			min_tlow = 157;
494			min_thi  = 134;
495			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
496		}
497
498		/* The minimum clock that respects the thi/tlow = 134/157 is
499		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
500		 * calculate the thi factor.
501		 */
502		if (clock < 648) {
503			tlow = 255;
504			thi = 1000000 - clock * raise_fall_time;
505			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
506		} else {
507			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
508			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
509			thi = tlow * min_thi / min_tlow;
510		}
511
512		pca_reset(pca_data);
513
514		printk(KERN_INFO
515		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
516
517		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
518		pca_outw(pca_data, I2C_PCA_IND, mode);
519		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
520		pca_outw(pca_data, I2C_PCA_IND, tlow);
521		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
522		pca_outw(pca_data, I2C_PCA_IND, thi);
523
524		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
525	}
526	udelay(500); /* 500 us for oscilator to stabilise */
527
528	return 0;
529}
530
531/*
532 * registering functions to load algorithms at runtime
533 */
534int i2c_pca_add_bus(struct i2c_adapter *adap)
535{
536	int rval;
537
538	rval = pca_init(adap);
539	if (rval)
540		return rval;
541
542	return i2c_add_adapter(adap);
543}
544EXPORT_SYMBOL(i2c_pca_add_bus);
545
546int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
547{
548	int rval;
549
550	rval = pca_init(adap);
551	if (rval)
552		return rval;
553
554	return i2c_add_numbered_adapter(adap);
555}
556EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
557
558MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
559	"Wolfram Sang <w.sang@pengutronix.de>");
560MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
561MODULE_LICENSE("GPL");
562
563module_param(i2c_debug, int, 0);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
  4 *    Copyright (C) 2004 Arcom Control Systems
  5 *    Copyright (C) 2008 Pengutronix
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/moduleparam.h>
 11#include <linux/delay.h>
 12#include <linux/jiffies.h>
 
 13#include <linux/errno.h>
 14#include <linux/i2c.h>
 15#include <linux/i2c-algo-pca.h>
 16
 17#define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
 18				 printk(KERN_DEBUG fmt, ## args); } while (0)
 19#define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
 20				 printk(KERN_DEBUG fmt, ## args); } while (0)
 21#define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
 22				 printk(KERN_DEBUG fmt, ## args); } while (0)
 23
 24static int i2c_debug;
 25
 26#define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
 27#define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
 28
 29#define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
 30#define pca_clock(adap) adap->i2c_clock
 31#define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
 32#define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
 33#define pca_wait(adap) adap->wait_for_completion(adap->data)
 
 34
 35static void pca_reset(struct i2c_algo_pca_data *adap)
 36{
 37	if (adap->chip == I2C_PCA_CHIP_9665) {
 38		/* Ignore the reset function from the module,
 39		 * we can use the parallel bus reset.
 40		 */
 41		pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
 42		pca_outw(adap, I2C_PCA_IND, 0xA5);
 43		pca_outw(adap, I2C_PCA_IND, 0x5A);
 44	} else {
 45		adap->reset_chip(adap->data);
 46	}
 47}
 48
 49/*
 50 * Generate a start condition on the i2c bus.
 51 *
 52 * returns after the start condition has occurred
 53 */
 54static int pca_start(struct i2c_algo_pca_data *adap)
 55{
 56	int sta = pca_get_con(adap);
 57	DEB2("=== START\n");
 58	sta |= I2C_PCA_CON_STA;
 59	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
 60	pca_set_con(adap, sta);
 61	return pca_wait(adap);
 62}
 63
 64/*
 65 * Generate a repeated start condition on the i2c bus
 66 *
 67 * return after the repeated start condition has occurred
 68 */
 69static int pca_repeated_start(struct i2c_algo_pca_data *adap)
 70{
 71	int sta = pca_get_con(adap);
 72	DEB2("=== REPEATED START\n");
 73	sta |= I2C_PCA_CON_STA;
 74	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
 75	pca_set_con(adap, sta);
 76	return pca_wait(adap);
 77}
 78
 79/*
 80 * Generate a stop condition on the i2c bus
 81 *
 82 * returns after the stop condition has been generated
 83 *
 84 * STOPs do not generate an interrupt or set the SI flag, since the
 85 * part returns the idle state (0xf8). Hence we don't need to
 86 * pca_wait here.
 87 */
 88static void pca_stop(struct i2c_algo_pca_data *adap)
 89{
 90	int sta = pca_get_con(adap);
 91	DEB2("=== STOP\n");
 92	sta |= I2C_PCA_CON_STO;
 93	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
 94	pca_set_con(adap, sta);
 95}
 96
 97/*
 98 * Send the slave address and R/W bit
 99 *
100 * returns after the address has been sent
101 */
102static int pca_address(struct i2c_algo_pca_data *adap,
103		       struct i2c_msg *msg)
104{
105	int sta = pca_get_con(adap);
106	int addr = i2c_8bit_addr_from_msg(msg);
107
 
 
 
108	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
109	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
110
111	pca_outw(adap, I2C_PCA_DAT, addr);
112
113	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
114	pca_set_con(adap, sta);
115
116	return pca_wait(adap);
117}
118
119/*
120 * Transmit a byte.
121 *
122 * Returns after the byte has been transmitted
123 */
124static int pca_tx_byte(struct i2c_algo_pca_data *adap,
125		       __u8 b)
126{
127	int sta = pca_get_con(adap);
128	DEB2("=== WRITE %#04x\n", b);
129	pca_outw(adap, I2C_PCA_DAT, b);
130
131	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
132	pca_set_con(adap, sta);
133
134	return pca_wait(adap);
135}
136
137/*
138 * Receive a byte
139 *
140 * returns immediately.
141 */
142static void pca_rx_byte(struct i2c_algo_pca_data *adap,
143			__u8 *b, int ack)
144{
145	*b = pca_inw(adap, I2C_PCA_DAT);
146	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
147}
148
149/*
150 * Setup ACK or NACK for next received byte and wait for it to arrive.
151 *
152 * Returns after next byte has arrived.
153 */
154static int pca_rx_ack(struct i2c_algo_pca_data *adap,
155		      int ack)
156{
157	int sta = pca_get_con(adap);
158
159	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
160
161	if (ack)
162		sta |= I2C_PCA_CON_AA;
163
164	pca_set_con(adap, sta);
165	return pca_wait(adap);
166}
167
168static int pca_xfer(struct i2c_adapter *i2c_adap,
169		    struct i2c_msg *msgs,
170		    int num)
171{
172	struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
173	struct i2c_msg *msg = NULL;
174	int curmsg;
175	int numbytes = 0;
176	int state;
177	int ret;
178	int completed = 1;
179	unsigned long timeout = jiffies + i2c_adap->timeout;
180
181	while ((state = pca_status(adap)) != 0xf8) {
182		if (time_before(jiffies, timeout)) {
183			msleep(10);
184		} else {
185			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
186				"%#04x\n", state);
187			return -EBUSY;
188		}
189	}
190
191	DEB1("{{{ XFER %d messages\n", num);
192
193	if (i2c_debug >= 2) {
194		for (curmsg = 0; curmsg < num; curmsg++) {
195			int addr, i;
196			msg = &msgs[curmsg];
197
198			addr = (0x7f & msg->addr) ;
199
200			if (msg->flags & I2C_M_RD)
201				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
202				       curmsg, msg->len, addr, (addr << 1) | 1);
203			else {
204				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
205				       curmsg, msg->len, addr, addr << 1,
206				       msg->len == 0 ? "" : ", ");
207				for (i = 0; i < msg->len; i++)
208					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
209				printk("]\n");
210			}
211		}
212	}
213
214	curmsg = 0;
215	ret = -EIO;
216	while (curmsg < num) {
217		state = pca_status(adap);
218
219		DEB3("STATE is 0x%02x\n", state);
220		msg = &msgs[curmsg];
221
222		switch (state) {
223		case 0xf8: /* On reset or stop the bus is idle */
224			completed = pca_start(adap);
225			break;
226
227		case 0x08: /* A START condition has been transmitted */
228		case 0x10: /* A repeated start condition has been transmitted */
229			completed = pca_address(adap, msg);
230			break;
231
232		case 0x18: /* SLA+W has been transmitted; ACK has been received */
233		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
234			if (numbytes < msg->len) {
235				completed = pca_tx_byte(adap,
236							msg->buf[numbytes]);
237				numbytes++;
238				break;
239			}
240			curmsg++; numbytes = 0;
241			if (curmsg == num)
242				pca_stop(adap);
243			else
244				completed = pca_repeated_start(adap);
245			break;
246
247		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
248			DEB2("NOT ACK received after SLA+W\n");
249			pca_stop(adap);
250			ret = -ENXIO;
251			goto out;
252
253		case 0x40: /* SLA+R has been transmitted; ACK has been received */
254			completed = pca_rx_ack(adap, msg->len > 1);
255			break;
256
257		case 0x50: /* Data bytes has been received; ACK has been returned */
258			if (numbytes < msg->len) {
259				pca_rx_byte(adap, &msg->buf[numbytes], 1);
260				numbytes++;
261				completed = pca_rx_ack(adap,
262						       numbytes < msg->len - 1);
263				break;
264			}
265			curmsg++; numbytes = 0;
266			if (curmsg == num)
267				pca_stop(adap);
268			else
269				completed = pca_repeated_start(adap);
270			break;
271
272		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
273			DEB2("NOT ACK received after SLA+R\n");
274			pca_stop(adap);
275			ret = -ENXIO;
276			goto out;
277
278		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
279			DEB2("NOT ACK received after data byte\n");
280			pca_stop(adap);
281			goto out;
282
283		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
284			DEB2("Arbitration lost\n");
285			/*
286			 * The PCA9564 data sheet (2006-09-01) says "A
287			 * START condition will be transmitted when the
288			 * bus becomes free (STOP or SCL and SDA high)"
289			 * when the STA bit is set (p. 11).
290			 *
291			 * In case this won't work, try pca_reset()
292			 * instead.
293			 */
294			pca_start(adap);
295			goto out;
296
297		case 0x58: /* Data byte has been received; NOT ACK has been returned */
298			if (numbytes == msg->len - 1) {
299				pca_rx_byte(adap, &msg->buf[numbytes], 0);
300				curmsg++; numbytes = 0;
301				if (curmsg == num)
302					pca_stop(adap);
303				else
304					completed = pca_repeated_start(adap);
305			} else {
306				DEB2("NOT ACK sent after data byte received. "
307				     "Not final byte. numbytes %d. len %d\n",
308				     numbytes, msg->len);
309				pca_stop(adap);
310				goto out;
311			}
312			break;
313		case 0x70: /* Bus error - SDA stuck low */
314			DEB2("BUS ERROR - SDA Stuck low\n");
315			pca_reset(adap);
316			goto out;
317		case 0x90: /* Bus error - SCL stuck low */
318			DEB2("BUS ERROR - SCL Stuck low\n");
319			pca_reset(adap);
320			goto out;
321		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
322			DEB2("BUS ERROR - Illegal START or STOP\n");
323			pca_reset(adap);
324			goto out;
325		default:
326			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
327			break;
328		}
329
330		if (!completed)
331			goto out;
332	}
333
334	ret = curmsg;
335 out:
336	DEB1("}}} transferred %d/%d messages. "
337	     "status is %#04x. control is %#04x\n",
338	     curmsg, num, pca_status(adap),
339	     pca_get_con(adap));
340	return ret;
341}
342
343static u32 pca_func(struct i2c_adapter *adap)
344{
345	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
346}
347
348static const struct i2c_algorithm pca_algo = {
349	.master_xfer	= pca_xfer,
350	.functionality	= pca_func,
351};
352
353static unsigned int pca_probe_chip(struct i2c_adapter *adap)
354{
355	struct i2c_algo_pca_data *pca_data = adap->algo_data;
356	/* The trick here is to check if there is an indirect register
357	 * available. If there is one, we will read the value we first
358	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
359	 * we wrote on I2C_PCA_ADR
360	 */
361	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
362	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
363	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
364	pca_outw(pca_data, I2C_PCA_IND, 0x00);
365	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
366	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
367		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
368		pca_data->chip = I2C_PCA_CHIP_9665;
369	} else {
370		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
371		pca_data->chip = I2C_PCA_CHIP_9564;
372	}
373	return pca_data->chip;
374}
375
376static int pca_init(struct i2c_adapter *adap)
377{
378	struct i2c_algo_pca_data *pca_data = adap->algo_data;
379
380	adap->algo = &pca_algo;
381
382	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
383		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
384		int clock;
385
386		if (pca_data->i2c_clock > 7) {
387			switch (pca_data->i2c_clock) {
388			case 330000:
389				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
390				break;
391			case 288000:
392				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
393				break;
394			case 217000:
395				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
396				break;
397			case 146000:
398				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
399				break;
400			case 88000:
401				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
402				break;
403			case 59000:
404				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
405				break;
406			case 44000:
407				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
408				break;
409			case 36000:
410				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
411				break;
412			default:
413				printk(KERN_WARNING
414					"%s: Invalid I2C clock speed selected."
415					" Using default 59kHz.\n", adap->name);
416			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
417			}
418		} else {
419			printk(KERN_WARNING "%s: "
420				"Choosing the clock frequency based on "
421				"index is deprecated."
422				" Use the nominal frequency.\n", adap->name);
423		}
424
425		pca_reset(pca_data);
426
427		clock = pca_clock(pca_data);
428		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
429		     adap->name, freqs[clock]);
430
431		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
432	} else {
433		int clock;
434		int mode;
435		int tlow, thi;
436		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
437		int min_tlow, min_thi;
438		/* These values are the maximum raise and fall values allowed
439		 * by the I2C operation mode (Standard, Fast or Fast+)
440		 * They are used (added) below to calculate the clock dividers
441		 * of PCA9665. Note that they are slightly different of the
442		 * real maximum, to allow the change on mode exactly on the
443		 * maximum clock rate for each mode
444		 */
445		int raise_fall_time;
446
 
 
 
 
 
447		if (pca_data->i2c_clock > 1265800) {
448			printk(KERN_WARNING "%s: I2C clock speed too high."
449				" Using 1265.8kHz.\n", adap->name);
450			pca_data->i2c_clock = 1265800;
451		}
452
453		if (pca_data->i2c_clock < 60300) {
454			printk(KERN_WARNING "%s: I2C clock speed too low."
455				" Using 60.3kHz.\n", adap->name);
456			pca_data->i2c_clock = 60300;
457		}
458
459		/* To avoid integer overflow, use clock/100 for calculations */
460		clock = pca_clock(pca_data) / 100;
461
462		if (pca_data->i2c_clock > 1000000) {
463			mode = I2C_PCA_MODE_TURBO;
464			min_tlow = 14;
465			min_thi  = 5;
466			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
467		} else if (pca_data->i2c_clock > 400000) {
468			mode = I2C_PCA_MODE_FASTP;
469			min_tlow = 17;
470			min_thi  = 9;
471			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
472		} else if (pca_data->i2c_clock > 100000) {
473			mode = I2C_PCA_MODE_FAST;
474			min_tlow = 44;
475			min_thi  = 20;
476			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
477		} else {
478			mode = I2C_PCA_MODE_STD;
479			min_tlow = 157;
480			min_thi  = 134;
481			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
482		}
483
484		/* The minimum clock that respects the thi/tlow = 134/157 is
485		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
486		 * calculate the thi factor.
487		 */
488		if (clock < 648) {
489			tlow = 255;
490			thi = 1000000 - clock * raise_fall_time;
491			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
492		} else {
493			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
494			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
495			thi = tlow * min_thi / min_tlow;
496		}
497
498		pca_reset(pca_data);
499
500		printk(KERN_INFO
501		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
502
503		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
504		pca_outw(pca_data, I2C_PCA_IND, mode);
505		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
506		pca_outw(pca_data, I2C_PCA_IND, tlow);
507		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
508		pca_outw(pca_data, I2C_PCA_IND, thi);
509
510		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
511	}
512	udelay(500); /* 500 us for oscillator to stabilise */
513
514	return 0;
515}
516
517/*
518 * registering functions to load algorithms at runtime
519 */
520int i2c_pca_add_bus(struct i2c_adapter *adap)
521{
522	int rval;
523
524	rval = pca_init(adap);
525	if (rval)
526		return rval;
527
528	return i2c_add_adapter(adap);
529}
530EXPORT_SYMBOL(i2c_pca_add_bus);
531
532int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
533{
534	int rval;
535
536	rval = pca_init(adap);
537	if (rval)
538		return rval;
539
540	return i2c_add_numbered_adapter(adap);
541}
542EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
543
544MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
545	"Wolfram Sang <w.sang@pengutronix.de>");
546MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
547MODULE_LICENSE("GPL");
548
549module_param(i2c_debug, int, 0);