Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
 
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59
  16 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  17 *
  18 * The full GNU General Public License is included in this distribution in the
  19 * file called COPYING.
  20 */
  21
  22/*
  23 * This code implements the DMA subsystem. It provides a HW-neutral interface
  24 * for other kernel code to use asynchronous memory copy capabilities,
  25 * if present, and allows different HW DMA drivers to register as providing
  26 * this capability.
  27 *
  28 * Due to the fact we are accelerating what is already a relatively fast
  29 * operation, the code goes to great lengths to avoid additional overhead,
  30 * such as locking.
  31 *
  32 * LOCKING:
  33 *
  34 * The subsystem keeps a global list of dma_device structs it is protected by a
  35 * mutex, dma_list_mutex.
  36 *
  37 * A subsystem can get access to a channel by calling dmaengine_get() followed
  38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  39 * dma_request_channel().  Once a channel is allocated a reference is taken
  40 * against its corresponding driver to disable removal.
  41 *
  42 * Each device has a channels list, which runs unlocked but is never modified
  43 * once the device is registered, it's just setup by the driver.
  44 *
  45 * See Documentation/dmaengine.txt for more details
  46 */
  47
 
 
 
  48#include <linux/dma-mapping.h>
  49#include <linux/init.h>
  50#include <linux/module.h>
  51#include <linux/mm.h>
  52#include <linux/device.h>
  53#include <linux/dmaengine.h>
  54#include <linux/hardirq.h>
  55#include <linux/spinlock.h>
  56#include <linux/percpu.h>
  57#include <linux/rcupdate.h>
  58#include <linux/mutex.h>
  59#include <linux/jiffies.h>
  60#include <linux/rculist.h>
  61#include <linux/idr.h>
  62#include <linux/slab.h>
 
 
 
 
 
  63
  64static DEFINE_MUTEX(dma_list_mutex);
  65static DEFINE_IDR(dma_idr);
  66static LIST_HEAD(dma_device_list);
  67static long dmaengine_ref_count;
  68
  69/* --- sysfs implementation --- */
  70
  71/**
  72 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  73 * @dev - device node
  74 *
  75 * Must be called under dma_list_mutex
  76 */
  77static struct dma_chan *dev_to_dma_chan(struct device *dev)
  78{
  79	struct dma_chan_dev *chan_dev;
  80
  81	chan_dev = container_of(dev, typeof(*chan_dev), device);
  82	return chan_dev->chan;
  83}
  84
  85static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
 
  86{
  87	struct dma_chan *chan;
  88	unsigned long count = 0;
  89	int i;
  90	int err;
  91
  92	mutex_lock(&dma_list_mutex);
  93	chan = dev_to_dma_chan(dev);
  94	if (chan) {
  95		for_each_possible_cpu(i)
  96			count += per_cpu_ptr(chan->local, i)->memcpy_count;
  97		err = sprintf(buf, "%lu\n", count);
  98	} else
  99		err = -ENODEV;
 100	mutex_unlock(&dma_list_mutex);
 101
 102	return err;
 103}
 
 104
 105static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
 106				      char *buf)
 107{
 108	struct dma_chan *chan;
 109	unsigned long count = 0;
 110	int i;
 111	int err;
 112
 113	mutex_lock(&dma_list_mutex);
 114	chan = dev_to_dma_chan(dev);
 115	if (chan) {
 116		for_each_possible_cpu(i)
 117			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 118		err = sprintf(buf, "%lu\n", count);
 119	} else
 120		err = -ENODEV;
 121	mutex_unlock(&dma_list_mutex);
 122
 123	return err;
 124}
 
 125
 126static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
 
 127{
 128	struct dma_chan *chan;
 129	int err;
 130
 131	mutex_lock(&dma_list_mutex);
 132	chan = dev_to_dma_chan(dev);
 133	if (chan)
 134		err = sprintf(buf, "%d\n", chan->client_count);
 135	else
 136		err = -ENODEV;
 137	mutex_unlock(&dma_list_mutex);
 138
 139	return err;
 140}
 
 141
 142static struct device_attribute dma_attrs[] = {
 143	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
 144	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
 145	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
 146	__ATTR_NULL
 147};
 
 148
 149static void chan_dev_release(struct device *dev)
 150{
 151	struct dma_chan_dev *chan_dev;
 152
 153	chan_dev = container_of(dev, typeof(*chan_dev), device);
 154	if (atomic_dec_and_test(chan_dev->idr_ref)) {
 155		mutex_lock(&dma_list_mutex);
 156		idr_remove(&dma_idr, chan_dev->dev_id);
 157		mutex_unlock(&dma_list_mutex);
 158		kfree(chan_dev->idr_ref);
 159	}
 160	kfree(chan_dev);
 161}
 162
 163static struct class dma_devclass = {
 164	.name		= "dma",
 165	.dev_attrs	= dma_attrs,
 166	.dev_release	= chan_dev_release,
 167};
 168
 169/* --- client and device registration --- */
 170
 171#define dma_device_satisfies_mask(device, mask) \
 172	__dma_device_satisfies_mask((device), &(mask))
 173static int
 174__dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
 
 175{
 176	dma_cap_mask_t has;
 177
 178	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 179		DMA_TX_TYPE_END);
 180	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 181}
 182
 183static struct module *dma_chan_to_owner(struct dma_chan *chan)
 184{
 185	return chan->device->dev->driver->owner;
 186}
 187
 188/**
 189 * balance_ref_count - catch up the channel reference count
 190 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 191 *
 192 * balance_ref_count must be called under dma_list_mutex
 193 */
 194static void balance_ref_count(struct dma_chan *chan)
 195{
 196	struct module *owner = dma_chan_to_owner(chan);
 197
 198	while (chan->client_count < dmaengine_ref_count) {
 199		__module_get(owner);
 200		chan->client_count++;
 201	}
 202}
 203
 204/**
 205 * dma_chan_get - try to grab a dma channel's parent driver module
 206 * @chan - channel to grab
 207 *
 208 * Must be called under dma_list_mutex
 209 */
 210static int dma_chan_get(struct dma_chan *chan)
 211{
 212	int err = -ENODEV;
 213	struct module *owner = dma_chan_to_owner(chan);
 
 214
 
 215	if (chan->client_count) {
 216		__module_get(owner);
 217		err = 0;
 218	} else if (try_module_get(owner))
 219		err = 0;
 220
 221	if (err == 0)
 222		chan->client_count++;
 223
 224	/* allocate upon first client reference */
 225	if (chan->client_count == 1 && err == 0) {
 226		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
 227
 228		if (desc_cnt < 0) {
 229			err = desc_cnt;
 230			chan->client_count = 0;
 231			module_put(owner);
 232		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 233			balance_ref_count(chan);
 234	}
 235
 236	return err;
 
 
 
 
 
 
 
 
 
 237}
 238
 239/**
 240 * dma_chan_put - drop a reference to a dma channel's parent driver module
 241 * @chan - channel to release
 242 *
 243 * Must be called under dma_list_mutex
 244 */
 245static void dma_chan_put(struct dma_chan *chan)
 246{
 
 247	if (!chan->client_count)
 248		return; /* this channel failed alloc_chan_resources */
 
 249	chan->client_count--;
 250	module_put(dma_chan_to_owner(chan));
 251	if (chan->client_count == 0)
 
 
 
 
 252		chan->device->device_free_chan_resources(chan);
 
 
 
 
 
 
 
 
 253}
 254
 255enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 256{
 257	enum dma_status status;
 258	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 259
 260	dma_async_issue_pending(chan);
 261	do {
 262		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 263		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 264			printk(KERN_ERR "dma_sync_wait_timeout!\n");
 265			return DMA_ERROR;
 266		}
 267	} while (status == DMA_IN_PROGRESS);
 
 
 
 268
 269	return status;
 270}
 271EXPORT_SYMBOL(dma_sync_wait);
 272
 273/**
 274 * dma_cap_mask_all - enable iteration over all operation types
 275 */
 276static dma_cap_mask_t dma_cap_mask_all;
 277
 278/**
 279 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 280 * @chan - associated channel for this entry
 281 */
 282struct dma_chan_tbl_ent {
 283	struct dma_chan *chan;
 284};
 285
 286/**
 287 * channel_table - percpu lookup table for memory-to-memory offload providers
 288 */
 289static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 290
 291static int __init dma_channel_table_init(void)
 292{
 293	enum dma_transaction_type cap;
 294	int err = 0;
 295
 296	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 297
 298	/* 'interrupt', 'private', and 'slave' are channel capabilities,
 299	 * but are not associated with an operation so they do not need
 300	 * an entry in the channel_table
 301	 */
 302	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 303	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 304	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 305
 306	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 307		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 308		if (!channel_table[cap]) {
 309			err = -ENOMEM;
 310			break;
 311		}
 312	}
 313
 314	if (err) {
 315		pr_err("dmaengine: initialization failure\n");
 316		for_each_dma_cap_mask(cap, dma_cap_mask_all)
 317			if (channel_table[cap])
 318				free_percpu(channel_table[cap]);
 319	}
 320
 321	return err;
 322}
 323arch_initcall(dma_channel_table_init);
 324
 325/**
 326 * dma_find_channel - find a channel to carry out the operation
 327 * @tx_type: transaction type
 328 */
 329struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 330{
 331	return this_cpu_read(channel_table[tx_type]->chan);
 332}
 333EXPORT_SYMBOL(dma_find_channel);
 334
 335/**
 336 * dma_issue_pending_all - flush all pending operations across all channels
 337 */
 338void dma_issue_pending_all(void)
 339{
 340	struct dma_device *device;
 341	struct dma_chan *chan;
 342
 343	rcu_read_lock();
 344	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 345		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 346			continue;
 347		list_for_each_entry(chan, &device->channels, device_node)
 348			if (chan->client_count)
 349				device->device_issue_pending(chan);
 350	}
 351	rcu_read_unlock();
 352}
 353EXPORT_SYMBOL(dma_issue_pending_all);
 354
 355/**
 356 * nth_chan - returns the nth channel of the given capability
 
 
 
 
 
 
 
 
 
 
 357 * @cap: capability to match
 358 * @n: nth channel desired
 359 *
 360 * Defaults to returning the channel with the desired capability and the
 361 * lowest reference count when 'n' cannot be satisfied.  Must be called
 362 * under dma_list_mutex.
 
 363 */
 364static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
 365{
 366	struct dma_device *device;
 367	struct dma_chan *chan;
 368	struct dma_chan *ret = NULL;
 369	struct dma_chan *min = NULL;
 
 370
 371	list_for_each_entry(device, &dma_device_list, global_node) {
 372		if (!dma_has_cap(cap, device->cap_mask) ||
 373		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 374			continue;
 375		list_for_each_entry(chan, &device->channels, device_node) {
 376			if (!chan->client_count)
 377				continue;
 378			if (!min)
 379				min = chan;
 380			else if (chan->table_count < min->table_count)
 381				min = chan;
 382
 383			if (n-- == 0) {
 384				ret = chan;
 385				break; /* done */
 386			}
 387		}
 388		if (ret)
 389			break; /* done */
 390	}
 391
 392	if (!ret)
 393		ret = min;
 394
 395	if (ret)
 396		ret->table_count++;
 397
 398	return ret;
 399}
 400
 401/**
 402 * dma_channel_rebalance - redistribute the available channels
 403 *
 404 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 405 * operation type) in the SMP case,  and operation isolation (avoid
 406 * multi-tasking channels) in the non-SMP case.  Must be called under
 407 * dma_list_mutex.
 408 */
 409static void dma_channel_rebalance(void)
 410{
 411	struct dma_chan *chan;
 412	struct dma_device *device;
 413	int cpu;
 414	int cap;
 415	int n;
 416
 417	/* undo the last distribution */
 418	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 419		for_each_possible_cpu(cpu)
 420			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 421
 422	list_for_each_entry(device, &dma_device_list, global_node) {
 423		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 424			continue;
 425		list_for_each_entry(chan, &device->channels, device_node)
 426			chan->table_count = 0;
 427	}
 428
 429	/* don't populate the channel_table if no clients are available */
 430	if (!dmaengine_ref_count)
 431		return;
 432
 433	/* redistribute available channels */
 434	n = 0;
 435	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 436		for_each_online_cpu(cpu) {
 437			if (num_possible_cpus() > 1)
 438				chan = nth_chan(cap, n++);
 439			else
 440				chan = nth_chan(cap, -1);
 441
 442			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 443		}
 444}
 445
 446static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447					  dma_filter_fn fn, void *fn_param)
 448{
 449	struct dma_chan *chan;
 450
 451	if (!__dma_device_satisfies_mask(dev, mask)) {
 452		pr_debug("%s: wrong capabilities\n", __func__);
 453		return NULL;
 454	}
 455	/* devices with multiple channels need special handling as we need to
 456	 * ensure that all channels are either private or public.
 457	 */
 458	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 459		list_for_each_entry(chan, &dev->channels, device_node) {
 460			/* some channels are already publicly allocated */
 461			if (chan->client_count)
 462				return NULL;
 463		}
 464
 465	list_for_each_entry(chan, &dev->channels, device_node) {
 466		if (chan->client_count) {
 467			pr_debug("%s: %s busy\n",
 468				 __func__, dma_chan_name(chan));
 469			continue;
 470		}
 471		if (fn && !fn(chan, fn_param)) {
 472			pr_debug("%s: %s filter said false\n",
 473				 __func__, dma_chan_name(chan));
 474			continue;
 475		}
 476		return chan;
 477	}
 478
 479	return NULL;
 480}
 481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482/**
 483 * dma_request_channel - try to allocate an exclusive channel
 484 * @mask: capabilities that the channel must satisfy
 485 * @fn: optional callback to disposition available channels
 486 * @fn_param: opaque parameter to pass to dma_filter_fn
 
 
 
 487 */
 488struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
 
 
 489{
 490	struct dma_device *device, *_d;
 491	struct dma_chan *chan = NULL;
 492	int err;
 493
 494	/* Find a channel */
 495	mutex_lock(&dma_list_mutex);
 496	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 497		chan = private_candidate(mask, device, fn, fn_param);
 498		if (chan) {
 499			/* Found a suitable channel, try to grab, prep, and
 500			 * return it.  We first set DMA_PRIVATE to disable
 501			 * balance_ref_count as this channel will not be
 502			 * published in the general-purpose allocator
 503			 */
 504			dma_cap_set(DMA_PRIVATE, device->cap_mask);
 505			device->privatecnt++;
 506			err = dma_chan_get(chan);
 507
 508			if (err == -ENODEV) {
 509				pr_debug("%s: %s module removed\n", __func__,
 510					 dma_chan_name(chan));
 511				list_del_rcu(&device->global_node);
 512			} else if (err)
 513				pr_debug("dmaengine: failed to get %s: (%d)\n",
 514					 dma_chan_name(chan), err);
 515			else
 516				break;
 517			if (--device->privatecnt == 0)
 518				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 519			chan = NULL;
 520		}
 521	}
 522	mutex_unlock(&dma_list_mutex);
 523
 524	pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
 
 
 525		 chan ? dma_chan_name(chan) : NULL);
 526
 527	return chan;
 528}
 529EXPORT_SYMBOL_GPL(__dma_request_channel);
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531void dma_release_channel(struct dma_chan *chan)
 532{
 533	mutex_lock(&dma_list_mutex);
 534	WARN_ONCE(chan->client_count != 1,
 535		  "chan reference count %d != 1\n", chan->client_count);
 536	dma_chan_put(chan);
 537	/* drop PRIVATE cap enabled by __dma_request_channel() */
 538	if (--chan->device->privatecnt == 0)
 539		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 540	mutex_unlock(&dma_list_mutex);
 541}
 542EXPORT_SYMBOL_GPL(dma_release_channel);
 543
 544/**
 545 * dmaengine_get - register interest in dma_channels
 546 */
 547void dmaengine_get(void)
 548{
 549	struct dma_device *device, *_d;
 550	struct dma_chan *chan;
 551	int err;
 552
 553	mutex_lock(&dma_list_mutex);
 554	dmaengine_ref_count++;
 555
 556	/* try to grab channels */
 557	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 558		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 559			continue;
 560		list_for_each_entry(chan, &device->channels, device_node) {
 561			err = dma_chan_get(chan);
 562			if (err == -ENODEV) {
 563				/* module removed before we could use it */
 564				list_del_rcu(&device->global_node);
 565				break;
 566			} else if (err)
 567				pr_err("dmaengine: failed to get %s: (%d)\n",
 568				       dma_chan_name(chan), err);
 
 569		}
 570	}
 571
 572	/* if this is the first reference and there were channels
 573	 * waiting we need to rebalance to get those channels
 574	 * incorporated into the channel table
 575	 */
 576	if (dmaengine_ref_count == 1)
 577		dma_channel_rebalance();
 578	mutex_unlock(&dma_list_mutex);
 579}
 580EXPORT_SYMBOL(dmaengine_get);
 581
 582/**
 583 * dmaengine_put - let dma drivers be removed when ref_count == 0
 584 */
 585void dmaengine_put(void)
 586{
 587	struct dma_device *device;
 588	struct dma_chan *chan;
 589
 590	mutex_lock(&dma_list_mutex);
 591	dmaengine_ref_count--;
 592	BUG_ON(dmaengine_ref_count < 0);
 593	/* drop channel references */
 594	list_for_each_entry(device, &dma_device_list, global_node) {
 595		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 596			continue;
 597		list_for_each_entry(chan, &device->channels, device_node)
 598			dma_chan_put(chan);
 599	}
 600	mutex_unlock(&dma_list_mutex);
 601}
 602EXPORT_SYMBOL(dmaengine_put);
 603
 604static bool device_has_all_tx_types(struct dma_device *device)
 605{
 606	/* A device that satisfies this test has channels that will never cause
 607	 * an async_tx channel switch event as all possible operation types can
 608	 * be handled.
 609	 */
 610	#ifdef CONFIG_ASYNC_TX_DMA
 611	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 612		return false;
 613	#endif
 614
 615	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
 616	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 617		return false;
 618	#endif
 619
 620	#if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
 621	if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
 622		return false;
 623	#endif
 624
 625	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
 626	if (!dma_has_cap(DMA_XOR, device->cap_mask))
 627		return false;
 628
 629	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 630	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 631		return false;
 632	#endif
 633	#endif
 634
 635	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
 636	if (!dma_has_cap(DMA_PQ, device->cap_mask))
 637		return false;
 638
 639	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 640	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 641		return false;
 642	#endif
 643	#endif
 644
 645	return true;
 646}
 647
 648static int get_dma_id(struct dma_device *device)
 649{
 650	int rc;
 651
 652 idr_retry:
 653	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
 654		return -ENOMEM;
 655	mutex_lock(&dma_list_mutex);
 656	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
 657	mutex_unlock(&dma_list_mutex);
 658	if (rc == -EAGAIN)
 659		goto idr_retry;
 660	else if (rc != 0)
 661		return rc;
 662
 663	return 0;
 664}
 665
 666/**
 667 * dma_async_device_register - registers DMA devices found
 668 * @device: &dma_device
 669 */
 670int dma_async_device_register(struct dma_device *device)
 671{
 672	int chancnt = 0, rc;
 673	struct dma_chan* chan;
 674	atomic_t *idr_ref;
 675
 676	if (!device)
 677		return -ENODEV;
 678
 679	/* validate device routines */
 680	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
 681		!device->device_prep_dma_memcpy);
 682	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
 683		!device->device_prep_dma_xor);
 684	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
 685		!device->device_prep_dma_xor_val);
 686	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
 687		!device->device_prep_dma_pq);
 688	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
 689		!device->device_prep_dma_pq_val);
 690	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
 691		!device->device_prep_dma_memset);
 692	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
 693		!device->device_prep_dma_interrupt);
 694	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
 695		!device->device_prep_dma_sg);
 696	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
 697		!device->device_prep_slave_sg);
 698	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
 699		!device->device_prep_dma_cyclic);
 700	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
 701		!device->device_control);
 702
 703	BUG_ON(!device->device_alloc_chan_resources);
 704	BUG_ON(!device->device_free_chan_resources);
 705	BUG_ON(!device->device_tx_status);
 706	BUG_ON(!device->device_issue_pending);
 707	BUG_ON(!device->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	/* note: this only matters in the
 710	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
 711	 */
 712	if (device_has_all_tx_types(device))
 713		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
 714
 715	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
 716	if (!idr_ref)
 717		return -ENOMEM;
 718	rc = get_dma_id(device);
 719	if (rc != 0) {
 720		kfree(idr_ref);
 721		return rc;
 722	}
 723
 724	atomic_set(idr_ref, 0);
 725
 726	/* represent channels in sysfs. Probably want devs too */
 727	list_for_each_entry(chan, &device->channels, device_node) {
 728		rc = -ENOMEM;
 729		chan->local = alloc_percpu(typeof(*chan->local));
 730		if (chan->local == NULL)
 731			goto err_out;
 732		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
 733		if (chan->dev == NULL) {
 734			free_percpu(chan->local);
 735			chan->local = NULL;
 736			goto err_out;
 737		}
 738
 739		chan->chan_id = chancnt++;
 740		chan->dev->device.class = &dma_devclass;
 741		chan->dev->device.parent = device->dev;
 742		chan->dev->chan = chan;
 743		chan->dev->idr_ref = idr_ref;
 744		chan->dev->dev_id = device->dev_id;
 745		atomic_inc(idr_ref);
 746		dev_set_name(&chan->dev->device, "dma%dchan%d",
 747			     device->dev_id, chan->chan_id);
 748
 749		rc = device_register(&chan->dev->device);
 750		if (rc) {
 751			free_percpu(chan->local);
 752			chan->local = NULL;
 753			kfree(chan->dev);
 754			atomic_dec(idr_ref);
 755			goto err_out;
 756		}
 757		chan->client_count = 0;
 758	}
 
 
 
 
 
 
 
 759	device->chancnt = chancnt;
 760
 761	mutex_lock(&dma_list_mutex);
 762	/* take references on public channels */
 763	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
 764		list_for_each_entry(chan, &device->channels, device_node) {
 765			/* if clients are already waiting for channels we need
 766			 * to take references on their behalf
 767			 */
 768			if (dma_chan_get(chan) == -ENODEV) {
 769				/* note we can only get here for the first
 770				 * channel as the remaining channels are
 771				 * guaranteed to get a reference
 772				 */
 773				rc = -ENODEV;
 774				mutex_unlock(&dma_list_mutex);
 775				goto err_out;
 776			}
 777		}
 778	list_add_tail_rcu(&device->global_node, &dma_device_list);
 779	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 780		device->privatecnt++;	/* Always private */
 781	dma_channel_rebalance();
 782	mutex_unlock(&dma_list_mutex);
 783
 784	return 0;
 785
 786err_out:
 787	/* if we never registered a channel just release the idr */
 788	if (atomic_read(idr_ref) == 0) {
 789		mutex_lock(&dma_list_mutex);
 790		idr_remove(&dma_idr, device->dev_id);
 791		mutex_unlock(&dma_list_mutex);
 792		kfree(idr_ref);
 793		return rc;
 794	}
 795
 796	list_for_each_entry(chan, &device->channels, device_node) {
 797		if (chan->local == NULL)
 798			continue;
 799		mutex_lock(&dma_list_mutex);
 800		chan->dev->chan = NULL;
 801		mutex_unlock(&dma_list_mutex);
 802		device_unregister(&chan->dev->device);
 803		free_percpu(chan->local);
 804	}
 805	return rc;
 806}
 807EXPORT_SYMBOL(dma_async_device_register);
 808
 809/**
 810 * dma_async_device_unregister - unregister a DMA device
 811 * @device: &dma_device
 812 *
 813 * This routine is called by dma driver exit routines, dmaengine holds module
 814 * references to prevent it being called while channels are in use.
 815 */
 816void dma_async_device_unregister(struct dma_device *device)
 817{
 818	struct dma_chan *chan;
 819
 820	mutex_lock(&dma_list_mutex);
 821	list_del_rcu(&device->global_node);
 822	dma_channel_rebalance();
 823	mutex_unlock(&dma_list_mutex);
 824
 825	list_for_each_entry(chan, &device->channels, device_node) {
 826		WARN_ONCE(chan->client_count,
 827			  "%s called while %d clients hold a reference\n",
 828			  __func__, chan->client_count);
 829		mutex_lock(&dma_list_mutex);
 830		chan->dev->chan = NULL;
 831		mutex_unlock(&dma_list_mutex);
 832		device_unregister(&chan->dev->device);
 833		free_percpu(chan->local);
 834	}
 835}
 836EXPORT_SYMBOL(dma_async_device_unregister);
 837
 
 
 
 
 
 
 
 
 838/**
 839 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
 840 * @chan: DMA channel to offload copy to
 841 * @dest: destination address (virtual)
 842 * @src: source address (virtual)
 843 * @len: length
 844 *
 845 * Both @dest and @src must be mappable to a bus address according to the
 846 * DMA mapping API rules for streaming mappings.
 847 * Both @dest and @src must stay memory resident (kernel memory or locked
 848 * user space pages).
 849 */
 850dma_cookie_t
 851dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
 852			void *src, size_t len)
 853{
 854	struct dma_device *dev = chan->device;
 855	struct dma_async_tx_descriptor *tx;
 856	dma_addr_t dma_dest, dma_src;
 857	dma_cookie_t cookie;
 858	unsigned long flags;
 859
 860	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
 861	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
 862	flags = DMA_CTRL_ACK |
 863		DMA_COMPL_SRC_UNMAP_SINGLE |
 864		DMA_COMPL_DEST_UNMAP_SINGLE;
 865	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 866
 867	if (!tx) {
 868		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
 869		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 870		return -ENOMEM;
 
 
 
 
 
 
 
 871	}
 872
 873	tx->callback = NULL;
 874	cookie = tx->tx_submit(tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	preempt_disable();
 877	__this_cpu_add(chan->local->bytes_transferred, len);
 878	__this_cpu_inc(chan->local->memcpy_count);
 879	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 880
 881	return cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882}
 883EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
 884
 885/**
 886 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
 887 * @chan: DMA channel to offload copy to
 888 * @page: destination page
 889 * @offset: offset in page to copy to
 890 * @kdata: source address (virtual)
 891 * @len: length
 892 *
 893 * Both @page/@offset and @kdata must be mappable to a bus address according
 894 * to the DMA mapping API rules for streaming mappings.
 895 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
 896 * locked user space pages)
 897 */
 898dma_cookie_t
 899dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
 900			unsigned int offset, void *kdata, size_t len)
 901{
 902	struct dma_device *dev = chan->device;
 903	struct dma_async_tx_descriptor *tx;
 904	dma_addr_t dma_dest, dma_src;
 905	dma_cookie_t cookie;
 906	unsigned long flags;
 907
 908	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
 909	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
 910	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
 911	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 912
 913	if (!tx) {
 914		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
 915		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 916		return -ENOMEM;
 917	}
 
 918
 919	tx->callback = NULL;
 920	cookie = tx->tx_submit(tx);
 
 921
 922	preempt_disable();
 923	__this_cpu_add(chan->local->bytes_transferred, len);
 924	__this_cpu_inc(chan->local->memcpy_count);
 925	preempt_enable();
 926
 927	return cookie;
 928}
 929EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
 930
 931/**
 932 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
 933 * @chan: DMA channel to offload copy to
 934 * @dest_pg: destination page
 935 * @dest_off: offset in page to copy to
 936 * @src_pg: source page
 937 * @src_off: offset in page to copy from
 938 * @len: length
 939 *
 940 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
 941 * address according to the DMA mapping API rules for streaming mappings.
 942 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
 943 * (kernel memory or locked user space pages).
 944 */
 945dma_cookie_t
 946dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
 947	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
 948	size_t len)
 949{
 950	struct dma_device *dev = chan->device;
 951	struct dma_async_tx_descriptor *tx;
 952	dma_addr_t dma_dest, dma_src;
 953	dma_cookie_t cookie;
 954	unsigned long flags;
 955
 956	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
 957	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
 958				DMA_FROM_DEVICE);
 959	flags = DMA_CTRL_ACK;
 960	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 961
 962	if (!tx) {
 963		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
 964		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 965		return -ENOMEM;
 966	}
 967
 968	tx->callback = NULL;
 969	cookie = tx->tx_submit(tx);
 970
 971	preempt_disable();
 972	__this_cpu_add(chan->local->bytes_transferred, len);
 973	__this_cpu_inc(chan->local->memcpy_count);
 974	preempt_enable();
 
 
 
 
 975
 976	return cookie;
 
 
 
 
 
 
 
 
 
 977}
 978EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
 979
 980void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
 981	struct dma_chan *chan)
 982{
 983	tx->chan = chan;
 984	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 985	spin_lock_init(&tx->lock);
 986	#endif
 987}
 988EXPORT_SYMBOL(dma_async_tx_descriptor_init);
 989
 990/* dma_wait_for_async_tx - spin wait for a transaction to complete
 991 * @tx: in-flight transaction to wait on
 992 */
 993enum dma_status
 994dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
 995{
 996	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 997
 998	if (!tx)
 999		return DMA_SUCCESS;
1000
1001	while (tx->cookie == -EBUSY) {
1002		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1003			pr_err("%s timeout waiting for descriptor submission\n",
 
1004				__func__);
1005			return DMA_ERROR;
1006		}
1007		cpu_relax();
1008	}
1009	return dma_sync_wait(tx->chan, tx->cookie);
1010}
1011EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1012
1013/* dma_run_dependencies - helper routine for dma drivers to process
1014 *	(start) dependent operations on their target channel
1015 * @tx: transaction with dependencies
1016 */
1017void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1018{
1019	struct dma_async_tx_descriptor *dep = txd_next(tx);
1020	struct dma_async_tx_descriptor *dep_next;
1021	struct dma_chan *chan;
1022
1023	if (!dep)
1024		return;
1025
1026	/* we'll submit tx->next now, so clear the link */
1027	txd_clear_next(tx);
1028	chan = dep->chan;
1029
1030	/* keep submitting up until a channel switch is detected
1031	 * in that case we will be called again as a result of
1032	 * processing the interrupt from async_tx_channel_switch
1033	 */
1034	for (; dep; dep = dep_next) {
1035		txd_lock(dep);
1036		txd_clear_parent(dep);
1037		dep_next = txd_next(dep);
1038		if (dep_next && dep_next->chan == chan)
1039			txd_clear_next(dep); /* ->next will be submitted */
1040		else
1041			dep_next = NULL; /* submit current dep and terminate */
1042		txd_unlock(dep);
1043
1044		dep->tx_submit(dep);
1045	}
1046
1047	chan->device->device_issue_pending(chan);
1048}
1049EXPORT_SYMBOL_GPL(dma_run_dependencies);
1050
1051static int __init dma_bus_init(void)
1052{
 
 
 
 
1053	return class_register(&dma_devclass);
1054}
1055arch_initcall(dma_bus_init);
1056
1057
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6/*
   7 * This code implements the DMA subsystem. It provides a HW-neutral interface
   8 * for other kernel code to use asynchronous memory copy capabilities,
   9 * if present, and allows different HW DMA drivers to register as providing
  10 * this capability.
  11 *
  12 * Due to the fact we are accelerating what is already a relatively fast
  13 * operation, the code goes to great lengths to avoid additional overhead,
  14 * such as locking.
  15 *
  16 * LOCKING:
  17 *
  18 * The subsystem keeps a global list of dma_device structs it is protected by a
  19 * mutex, dma_list_mutex.
  20 *
  21 * A subsystem can get access to a channel by calling dmaengine_get() followed
  22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  23 * dma_request_channel().  Once a channel is allocated a reference is taken
  24 * against its corresponding driver to disable removal.
  25 *
  26 * Each device has a channels list, which runs unlocked but is never modified
  27 * once the device is registered, it's just setup by the driver.
  28 *
  29 * See Documentation/driver-api/dmaengine for more details
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/platform_device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/init.h>
  37#include <linux/module.h>
  38#include <linux/mm.h>
  39#include <linux/device.h>
  40#include <linux/dmaengine.h>
  41#include <linux/hardirq.h>
  42#include <linux/spinlock.h>
  43#include <linux/percpu.h>
  44#include <linux/rcupdate.h>
  45#include <linux/mutex.h>
  46#include <linux/jiffies.h>
  47#include <linux/rculist.h>
  48#include <linux/idr.h>
  49#include <linux/slab.h>
  50#include <linux/acpi.h>
  51#include <linux/acpi_dma.h>
  52#include <linux/of_dma.h>
  53#include <linux/mempool.h>
  54#include <linux/numa.h>
  55
  56static DEFINE_MUTEX(dma_list_mutex);
  57static DEFINE_IDA(dma_ida);
  58static LIST_HEAD(dma_device_list);
  59static long dmaengine_ref_count;
  60
  61/* --- sysfs implementation --- */
  62
  63/**
  64 * dev_to_dma_chan - convert a device pointer to its sysfs container object
  65 * @dev - device node
  66 *
  67 * Must be called under dma_list_mutex
  68 */
  69static struct dma_chan *dev_to_dma_chan(struct device *dev)
  70{
  71	struct dma_chan_dev *chan_dev;
  72
  73	chan_dev = container_of(dev, typeof(*chan_dev), device);
  74	return chan_dev->chan;
  75}
  76
  77static ssize_t memcpy_count_show(struct device *dev,
  78				 struct device_attribute *attr, char *buf)
  79{
  80	struct dma_chan *chan;
  81	unsigned long count = 0;
  82	int i;
  83	int err;
  84
  85	mutex_lock(&dma_list_mutex);
  86	chan = dev_to_dma_chan(dev);
  87	if (chan) {
  88		for_each_possible_cpu(i)
  89			count += per_cpu_ptr(chan->local, i)->memcpy_count;
  90		err = sprintf(buf, "%lu\n", count);
  91	} else
  92		err = -ENODEV;
  93	mutex_unlock(&dma_list_mutex);
  94
  95	return err;
  96}
  97static DEVICE_ATTR_RO(memcpy_count);
  98
  99static ssize_t bytes_transferred_show(struct device *dev,
 100				      struct device_attribute *attr, char *buf)
 101{
 102	struct dma_chan *chan;
 103	unsigned long count = 0;
 104	int i;
 105	int err;
 106
 107	mutex_lock(&dma_list_mutex);
 108	chan = dev_to_dma_chan(dev);
 109	if (chan) {
 110		for_each_possible_cpu(i)
 111			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 112		err = sprintf(buf, "%lu\n", count);
 113	} else
 114		err = -ENODEV;
 115	mutex_unlock(&dma_list_mutex);
 116
 117	return err;
 118}
 119static DEVICE_ATTR_RO(bytes_transferred);
 120
 121static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
 122			   char *buf)
 123{
 124	struct dma_chan *chan;
 125	int err;
 126
 127	mutex_lock(&dma_list_mutex);
 128	chan = dev_to_dma_chan(dev);
 129	if (chan)
 130		err = sprintf(buf, "%d\n", chan->client_count);
 131	else
 132		err = -ENODEV;
 133	mutex_unlock(&dma_list_mutex);
 134
 135	return err;
 136}
 137static DEVICE_ATTR_RO(in_use);
 138
 139static struct attribute *dma_dev_attrs[] = {
 140	&dev_attr_memcpy_count.attr,
 141	&dev_attr_bytes_transferred.attr,
 142	&dev_attr_in_use.attr,
 143	NULL,
 144};
 145ATTRIBUTE_GROUPS(dma_dev);
 146
 147static void chan_dev_release(struct device *dev)
 148{
 149	struct dma_chan_dev *chan_dev;
 150
 151	chan_dev = container_of(dev, typeof(*chan_dev), device);
 152	if (atomic_dec_and_test(chan_dev->idr_ref)) {
 153		ida_free(&dma_ida, chan_dev->dev_id);
 
 
 154		kfree(chan_dev->idr_ref);
 155	}
 156	kfree(chan_dev);
 157}
 158
 159static struct class dma_devclass = {
 160	.name		= "dma",
 161	.dev_groups	= dma_dev_groups,
 162	.dev_release	= chan_dev_release,
 163};
 164
 165/* --- client and device registration --- */
 166
 167#define dma_device_satisfies_mask(device, mask) \
 168	__dma_device_satisfies_mask((device), &(mask))
 169static int
 170__dma_device_satisfies_mask(struct dma_device *device,
 171			    const dma_cap_mask_t *want)
 172{
 173	dma_cap_mask_t has;
 174
 175	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 176		DMA_TX_TYPE_END);
 177	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 178}
 179
 180static struct module *dma_chan_to_owner(struct dma_chan *chan)
 181{
 182	return chan->device->dev->driver->owner;
 183}
 184
 185/**
 186 * balance_ref_count - catch up the channel reference count
 187 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 188 *
 189 * balance_ref_count must be called under dma_list_mutex
 190 */
 191static void balance_ref_count(struct dma_chan *chan)
 192{
 193	struct module *owner = dma_chan_to_owner(chan);
 194
 195	while (chan->client_count < dmaengine_ref_count) {
 196		__module_get(owner);
 197		chan->client_count++;
 198	}
 199}
 200
 201/**
 202 * dma_chan_get - try to grab a dma channel's parent driver module
 203 * @chan - channel to grab
 204 *
 205 * Must be called under dma_list_mutex
 206 */
 207static int dma_chan_get(struct dma_chan *chan)
 208{
 
 209	struct module *owner = dma_chan_to_owner(chan);
 210	int ret;
 211
 212	/* The channel is already in use, update client count */
 213	if (chan->client_count) {
 214		__module_get(owner);
 215		goto out;
 216	}
 
 217
 218	if (!try_module_get(owner))
 219		return -ENODEV;
 220
 221	/* allocate upon first client reference */
 222	if (chan->device->device_alloc_chan_resources) {
 223		ret = chan->device->device_alloc_chan_resources(chan);
 224		if (ret < 0)
 225			goto err_out;
 
 
 
 
 
 226	}
 227
 228	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 229		balance_ref_count(chan);
 230
 231out:
 232	chan->client_count++;
 233	return 0;
 234
 235err_out:
 236	module_put(owner);
 237	return ret;
 238}
 239
 240/**
 241 * dma_chan_put - drop a reference to a dma channel's parent driver module
 242 * @chan - channel to release
 243 *
 244 * Must be called under dma_list_mutex
 245 */
 246static void dma_chan_put(struct dma_chan *chan)
 247{
 248	/* This channel is not in use, bail out */
 249	if (!chan->client_count)
 250		return;
 251
 252	chan->client_count--;
 253	module_put(dma_chan_to_owner(chan));
 254
 255	/* This channel is not in use anymore, free it */
 256	if (!chan->client_count && chan->device->device_free_chan_resources) {
 257		/* Make sure all operations have completed */
 258		dmaengine_synchronize(chan);
 259		chan->device->device_free_chan_resources(chan);
 260	}
 261
 262	/* If the channel is used via a DMA request router, free the mapping */
 263	if (chan->router && chan->router->route_free) {
 264		chan->router->route_free(chan->router->dev, chan->route_data);
 265		chan->router = NULL;
 266		chan->route_data = NULL;
 267	}
 268}
 269
 270enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 271{
 272	enum dma_status status;
 273	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 274
 275	dma_async_issue_pending(chan);
 276	do {
 277		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 278		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 279			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
 280			return DMA_ERROR;
 281		}
 282		if (status != DMA_IN_PROGRESS)
 283			break;
 284		cpu_relax();
 285	} while (1);
 286
 287	return status;
 288}
 289EXPORT_SYMBOL(dma_sync_wait);
 290
 291/**
 292 * dma_cap_mask_all - enable iteration over all operation types
 293 */
 294static dma_cap_mask_t dma_cap_mask_all;
 295
 296/**
 297 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 298 * @chan - associated channel for this entry
 299 */
 300struct dma_chan_tbl_ent {
 301	struct dma_chan *chan;
 302};
 303
 304/**
 305 * channel_table - percpu lookup table for memory-to-memory offload providers
 306 */
 307static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 308
 309static int __init dma_channel_table_init(void)
 310{
 311	enum dma_transaction_type cap;
 312	int err = 0;
 313
 314	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 315
 316	/* 'interrupt', 'private', and 'slave' are channel capabilities,
 317	 * but are not associated with an operation so they do not need
 318	 * an entry in the channel_table
 319	 */
 320	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 321	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 322	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 323
 324	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 325		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 326		if (!channel_table[cap]) {
 327			err = -ENOMEM;
 328			break;
 329		}
 330	}
 331
 332	if (err) {
 333		pr_err("initialization failure\n");
 334		for_each_dma_cap_mask(cap, dma_cap_mask_all)
 335			free_percpu(channel_table[cap]);
 
 336	}
 337
 338	return err;
 339}
 340arch_initcall(dma_channel_table_init);
 341
 342/**
 343 * dma_find_channel - find a channel to carry out the operation
 344 * @tx_type: transaction type
 345 */
 346struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 347{
 348	return this_cpu_read(channel_table[tx_type]->chan);
 349}
 350EXPORT_SYMBOL(dma_find_channel);
 351
 352/**
 353 * dma_issue_pending_all - flush all pending operations across all channels
 354 */
 355void dma_issue_pending_all(void)
 356{
 357	struct dma_device *device;
 358	struct dma_chan *chan;
 359
 360	rcu_read_lock();
 361	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 362		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 363			continue;
 364		list_for_each_entry(chan, &device->channels, device_node)
 365			if (chan->client_count)
 366				device->device_issue_pending(chan);
 367	}
 368	rcu_read_unlock();
 369}
 370EXPORT_SYMBOL(dma_issue_pending_all);
 371
 372/**
 373 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
 374 */
 375static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
 376{
 377	int node = dev_to_node(chan->device->dev);
 378	return node == NUMA_NO_NODE ||
 379		cpumask_test_cpu(cpu, cpumask_of_node(node));
 380}
 381
 382/**
 383 * min_chan - returns the channel with min count and in the same numa-node as the cpu
 384 * @cap: capability to match
 385 * @cpu: cpu index which the channel should be close to
 386 *
 387 * If some channels are close to the given cpu, the one with the lowest
 388 * reference count is returned. Otherwise, cpu is ignored and only the
 389 * reference count is taken into account.
 390 * Must be called under dma_list_mutex.
 391 */
 392static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
 393{
 394	struct dma_device *device;
 395	struct dma_chan *chan;
 
 396	struct dma_chan *min = NULL;
 397	struct dma_chan *localmin = NULL;
 398
 399	list_for_each_entry(device, &dma_device_list, global_node) {
 400		if (!dma_has_cap(cap, device->cap_mask) ||
 401		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 402			continue;
 403		list_for_each_entry(chan, &device->channels, device_node) {
 404			if (!chan->client_count)
 405				continue;
 406			if (!min || chan->table_count < min->table_count)
 
 
 407				min = chan;
 408
 409			if (dma_chan_is_local(chan, cpu))
 410				if (!localmin ||
 411				    chan->table_count < localmin->table_count)
 412					localmin = chan;
 413		}
 
 
 414	}
 415
 416	chan = localmin ? localmin : min;
 
 417
 418	if (chan)
 419		chan->table_count++;
 420
 421	return chan;
 422}
 423
 424/**
 425 * dma_channel_rebalance - redistribute the available channels
 426 *
 427 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 428 * operation type) in the SMP case,  and operation isolation (avoid
 429 * multi-tasking channels) in the non-SMP case.  Must be called under
 430 * dma_list_mutex.
 431 */
 432static void dma_channel_rebalance(void)
 433{
 434	struct dma_chan *chan;
 435	struct dma_device *device;
 436	int cpu;
 437	int cap;
 
 438
 439	/* undo the last distribution */
 440	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 441		for_each_possible_cpu(cpu)
 442			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 443
 444	list_for_each_entry(device, &dma_device_list, global_node) {
 445		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 446			continue;
 447		list_for_each_entry(chan, &device->channels, device_node)
 448			chan->table_count = 0;
 449	}
 450
 451	/* don't populate the channel_table if no clients are available */
 452	if (!dmaengine_ref_count)
 453		return;
 454
 455	/* redistribute available channels */
 
 456	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 457		for_each_online_cpu(cpu) {
 458			chan = min_chan(cap, cpu);
 
 
 
 
 459			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 460		}
 461}
 462
 463int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
 464{
 465	struct dma_device *device;
 466
 467	if (!chan || !caps)
 468		return -EINVAL;
 469
 470	device = chan->device;
 471
 472	/* check if the channel supports slave transactions */
 473	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
 474	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
 475		return -ENXIO;
 476
 477	/*
 478	 * Check whether it reports it uses the generic slave
 479	 * capabilities, if not, that means it doesn't support any
 480	 * kind of slave capabilities reporting.
 481	 */
 482	if (!device->directions)
 483		return -ENXIO;
 484
 485	caps->src_addr_widths = device->src_addr_widths;
 486	caps->dst_addr_widths = device->dst_addr_widths;
 487	caps->directions = device->directions;
 488	caps->max_burst = device->max_burst;
 489	caps->residue_granularity = device->residue_granularity;
 490	caps->descriptor_reuse = device->descriptor_reuse;
 491	caps->cmd_pause = !!device->device_pause;
 492	caps->cmd_resume = !!device->device_resume;
 493	caps->cmd_terminate = !!device->device_terminate_all;
 494
 495	return 0;
 496}
 497EXPORT_SYMBOL_GPL(dma_get_slave_caps);
 498
 499static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
 500					  struct dma_device *dev,
 501					  dma_filter_fn fn, void *fn_param)
 502{
 503	struct dma_chan *chan;
 504
 505	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
 506		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
 507		return NULL;
 508	}
 509	/* devices with multiple channels need special handling as we need to
 510	 * ensure that all channels are either private or public.
 511	 */
 512	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 513		list_for_each_entry(chan, &dev->channels, device_node) {
 514			/* some channels are already publicly allocated */
 515			if (chan->client_count)
 516				return NULL;
 517		}
 518
 519	list_for_each_entry(chan, &dev->channels, device_node) {
 520		if (chan->client_count) {
 521			dev_dbg(dev->dev, "%s: %s busy\n",
 522				 __func__, dma_chan_name(chan));
 523			continue;
 524		}
 525		if (fn && !fn(chan, fn_param)) {
 526			dev_dbg(dev->dev, "%s: %s filter said false\n",
 527				 __func__, dma_chan_name(chan));
 528			continue;
 529		}
 530		return chan;
 531	}
 532
 533	return NULL;
 534}
 535
 536static struct dma_chan *find_candidate(struct dma_device *device,
 537				       const dma_cap_mask_t *mask,
 538				       dma_filter_fn fn, void *fn_param)
 539{
 540	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
 541	int err;
 542
 543	if (chan) {
 544		/* Found a suitable channel, try to grab, prep, and return it.
 545		 * We first set DMA_PRIVATE to disable balance_ref_count as this
 546		 * channel will not be published in the general-purpose
 547		 * allocator
 548		 */
 549		dma_cap_set(DMA_PRIVATE, device->cap_mask);
 550		device->privatecnt++;
 551		err = dma_chan_get(chan);
 552
 553		if (err) {
 554			if (err == -ENODEV) {
 555				dev_dbg(device->dev, "%s: %s module removed\n",
 556					__func__, dma_chan_name(chan));
 557				list_del_rcu(&device->global_node);
 558			} else
 559				dev_dbg(device->dev,
 560					"%s: failed to get %s: (%d)\n",
 561					 __func__, dma_chan_name(chan), err);
 562
 563			if (--device->privatecnt == 0)
 564				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 565
 566			chan = ERR_PTR(err);
 567		}
 568	}
 569
 570	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 571}
 572
 573/**
 574 * dma_get_slave_channel - try to get specific channel exclusively
 575 * @chan: target channel
 576 */
 577struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
 578{
 579	int err = -EBUSY;
 580
 581	/* lock against __dma_request_channel */
 582	mutex_lock(&dma_list_mutex);
 583
 584	if (chan->client_count == 0) {
 585		struct dma_device *device = chan->device;
 586
 587		dma_cap_set(DMA_PRIVATE, device->cap_mask);
 588		device->privatecnt++;
 589		err = dma_chan_get(chan);
 590		if (err) {
 591			dev_dbg(chan->device->dev,
 592				"%s: failed to get %s: (%d)\n",
 593				__func__, dma_chan_name(chan), err);
 594			chan = NULL;
 595			if (--device->privatecnt == 0)
 596				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 597		}
 598	} else
 599		chan = NULL;
 600
 601	mutex_unlock(&dma_list_mutex);
 602
 603
 604	return chan;
 605}
 606EXPORT_SYMBOL_GPL(dma_get_slave_channel);
 607
 608struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
 609{
 610	dma_cap_mask_t mask;
 611	struct dma_chan *chan;
 612
 613	dma_cap_zero(mask);
 614	dma_cap_set(DMA_SLAVE, mask);
 615
 616	/* lock against __dma_request_channel */
 617	mutex_lock(&dma_list_mutex);
 618
 619	chan = find_candidate(device, &mask, NULL, NULL);
 620
 621	mutex_unlock(&dma_list_mutex);
 622
 623	return IS_ERR(chan) ? NULL : chan;
 624}
 625EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
 626
 627/**
 628 * __dma_request_channel - try to allocate an exclusive channel
 629 * @mask: capabilities that the channel must satisfy
 630 * @fn: optional callback to disposition available channels
 631 * @fn_param: opaque parameter to pass to dma_filter_fn
 632 * @np: device node to look for DMA channels
 633 *
 634 * Returns pointer to appropriate DMA channel on success or NULL.
 635 */
 636struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
 637				       dma_filter_fn fn, void *fn_param,
 638				       struct device_node *np)
 639{
 640	struct dma_device *device, *_d;
 641	struct dma_chan *chan = NULL;
 
 642
 643	/* Find a channel */
 644	mutex_lock(&dma_list_mutex);
 645	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 646		/* Finds a DMA controller with matching device node */
 647		if (np && device->dev->of_node && np != device->dev->of_node)
 648			continue;
 
 
 
 
 
 
 
 649
 650		chan = find_candidate(device, mask, fn, fn_param);
 651		if (!IS_ERR(chan))
 652			break;
 653
 654		chan = NULL;
 
 
 
 
 
 
 
 
 655	}
 656	mutex_unlock(&dma_list_mutex);
 657
 658	pr_debug("%s: %s (%s)\n",
 659		 __func__,
 660		 chan ? "success" : "fail",
 661		 chan ? dma_chan_name(chan) : NULL);
 662
 663	return chan;
 664}
 665EXPORT_SYMBOL_GPL(__dma_request_channel);
 666
 667static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
 668						    const char *name,
 669						    struct device *dev)
 670{
 671	int i;
 672
 673	if (!device->filter.mapcnt)
 674		return NULL;
 675
 676	for (i = 0; i < device->filter.mapcnt; i++) {
 677		const struct dma_slave_map *map = &device->filter.map[i];
 678
 679		if (!strcmp(map->devname, dev_name(dev)) &&
 680		    !strcmp(map->slave, name))
 681			return map;
 682	}
 683
 684	return NULL;
 685}
 686
 687/**
 688 * dma_request_chan - try to allocate an exclusive slave channel
 689 * @dev:	pointer to client device structure
 690 * @name:	slave channel name
 691 *
 692 * Returns pointer to appropriate DMA channel on success or an error pointer.
 693 */
 694struct dma_chan *dma_request_chan(struct device *dev, const char *name)
 695{
 696	struct dma_device *d, *_d;
 697	struct dma_chan *chan = NULL;
 698
 699	/* If device-tree is present get slave info from here */
 700	if (dev->of_node)
 701		chan = of_dma_request_slave_channel(dev->of_node, name);
 702
 703	/* If device was enumerated by ACPI get slave info from here */
 704	if (has_acpi_companion(dev) && !chan)
 705		chan = acpi_dma_request_slave_chan_by_name(dev, name);
 706
 707	if (chan) {
 708		/* Valid channel found or requester needs to be deferred */
 709		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
 710			return chan;
 711	}
 712
 713	/* Try to find the channel via the DMA filter map(s) */
 714	mutex_lock(&dma_list_mutex);
 715	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
 716		dma_cap_mask_t mask;
 717		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
 718
 719		if (!map)
 720			continue;
 721
 722		dma_cap_zero(mask);
 723		dma_cap_set(DMA_SLAVE, mask);
 724
 725		chan = find_candidate(d, &mask, d->filter.fn, map->param);
 726		if (!IS_ERR(chan))
 727			break;
 728	}
 729	mutex_unlock(&dma_list_mutex);
 730
 731	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 732}
 733EXPORT_SYMBOL_GPL(dma_request_chan);
 734
 735/**
 736 * dma_request_slave_channel - try to allocate an exclusive slave channel
 737 * @dev:	pointer to client device structure
 738 * @name:	slave channel name
 739 *
 740 * Returns pointer to appropriate DMA channel on success or NULL.
 741 */
 742struct dma_chan *dma_request_slave_channel(struct device *dev,
 743					   const char *name)
 744{
 745	struct dma_chan *ch = dma_request_chan(dev, name);
 746	if (IS_ERR(ch))
 747		return NULL;
 748
 749	return ch;
 750}
 751EXPORT_SYMBOL_GPL(dma_request_slave_channel);
 752
 753/**
 754 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
 755 * @mask: capabilities that the channel must satisfy
 756 *
 757 * Returns pointer to appropriate DMA channel on success or an error pointer.
 758 */
 759struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
 760{
 761	struct dma_chan *chan;
 762
 763	if (!mask)
 764		return ERR_PTR(-ENODEV);
 765
 766	chan = __dma_request_channel(mask, NULL, NULL, NULL);
 767	if (!chan) {
 768		mutex_lock(&dma_list_mutex);
 769		if (list_empty(&dma_device_list))
 770			chan = ERR_PTR(-EPROBE_DEFER);
 771		else
 772			chan = ERR_PTR(-ENODEV);
 773		mutex_unlock(&dma_list_mutex);
 774	}
 775
 776	return chan;
 777}
 778EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
 779
 780void dma_release_channel(struct dma_chan *chan)
 781{
 782	mutex_lock(&dma_list_mutex);
 783	WARN_ONCE(chan->client_count != 1,
 784		  "chan reference count %d != 1\n", chan->client_count);
 785	dma_chan_put(chan);
 786	/* drop PRIVATE cap enabled by __dma_request_channel() */
 787	if (--chan->device->privatecnt == 0)
 788		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 789	mutex_unlock(&dma_list_mutex);
 790}
 791EXPORT_SYMBOL_GPL(dma_release_channel);
 792
 793/**
 794 * dmaengine_get - register interest in dma_channels
 795 */
 796void dmaengine_get(void)
 797{
 798	struct dma_device *device, *_d;
 799	struct dma_chan *chan;
 800	int err;
 801
 802	mutex_lock(&dma_list_mutex);
 803	dmaengine_ref_count++;
 804
 805	/* try to grab channels */
 806	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 807		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 808			continue;
 809		list_for_each_entry(chan, &device->channels, device_node) {
 810			err = dma_chan_get(chan);
 811			if (err == -ENODEV) {
 812				/* module removed before we could use it */
 813				list_del_rcu(&device->global_node);
 814				break;
 815			} else if (err)
 816				dev_dbg(chan->device->dev,
 817					"%s: failed to get %s: (%d)\n",
 818					__func__, dma_chan_name(chan), err);
 819		}
 820	}
 821
 822	/* if this is the first reference and there were channels
 823	 * waiting we need to rebalance to get those channels
 824	 * incorporated into the channel table
 825	 */
 826	if (dmaengine_ref_count == 1)
 827		dma_channel_rebalance();
 828	mutex_unlock(&dma_list_mutex);
 829}
 830EXPORT_SYMBOL(dmaengine_get);
 831
 832/**
 833 * dmaengine_put - let dma drivers be removed when ref_count == 0
 834 */
 835void dmaengine_put(void)
 836{
 837	struct dma_device *device;
 838	struct dma_chan *chan;
 839
 840	mutex_lock(&dma_list_mutex);
 841	dmaengine_ref_count--;
 842	BUG_ON(dmaengine_ref_count < 0);
 843	/* drop channel references */
 844	list_for_each_entry(device, &dma_device_list, global_node) {
 845		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 846			continue;
 847		list_for_each_entry(chan, &device->channels, device_node)
 848			dma_chan_put(chan);
 849	}
 850	mutex_unlock(&dma_list_mutex);
 851}
 852EXPORT_SYMBOL(dmaengine_put);
 853
 854static bool device_has_all_tx_types(struct dma_device *device)
 855{
 856	/* A device that satisfies this test has channels that will never cause
 857	 * an async_tx channel switch event as all possible operation types can
 858	 * be handled.
 859	 */
 860	#ifdef CONFIG_ASYNC_TX_DMA
 861	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 862		return false;
 863	#endif
 864
 865	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
 866	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 867		return false;
 868	#endif
 869
 870	#if IS_ENABLED(CONFIG_ASYNC_XOR)
 
 
 
 
 
 871	if (!dma_has_cap(DMA_XOR, device->cap_mask))
 872		return false;
 873
 874	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 875	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 876		return false;
 877	#endif
 878	#endif
 879
 880	#if IS_ENABLED(CONFIG_ASYNC_PQ)
 881	if (!dma_has_cap(DMA_PQ, device->cap_mask))
 882		return false;
 883
 884	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 885	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 886		return false;
 887	#endif
 888	#endif
 889
 890	return true;
 891}
 892
 893static int get_dma_id(struct dma_device *device)
 894{
 895	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
 896
 897	if (rc < 0)
 
 
 
 
 
 
 
 
 898		return rc;
 899	device->dev_id = rc;
 900	return 0;
 901}
 902
 903/**
 904 * dma_async_device_register - registers DMA devices found
 905 * @device: &dma_device
 906 */
 907int dma_async_device_register(struct dma_device *device)
 908{
 909	int chancnt = 0, rc;
 910	struct dma_chan* chan;
 911	atomic_t *idr_ref;
 912
 913	if (!device)
 914		return -ENODEV;
 915
 916	/* validate device routines */
 917	if (!device->dev) {
 918		pr_err("DMAdevice must have dev\n");
 919		return -EIO;
 920	}
 921
 922	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
 923		dev_err(device->dev,
 924			"Device claims capability %s, but op is not defined\n",
 925			"DMA_MEMCPY");
 926		return -EIO;
 927	}
 928
 929	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
 930		dev_err(device->dev,
 931			"Device claims capability %s, but op is not defined\n",
 932			"DMA_XOR");
 933		return -EIO;
 934	}
 935
 936	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
 937		dev_err(device->dev,
 938			"Device claims capability %s, but op is not defined\n",
 939			"DMA_XOR_VAL");
 940		return -EIO;
 941	}
 942
 943	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
 944		dev_err(device->dev,
 945			"Device claims capability %s, but op is not defined\n",
 946			"DMA_PQ");
 947		return -EIO;
 948	}
 949
 950	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
 951		dev_err(device->dev,
 952			"Device claims capability %s, but op is not defined\n",
 953			"DMA_PQ_VAL");
 954		return -EIO;
 955	}
 956
 957	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
 958		dev_err(device->dev,
 959			"Device claims capability %s, but op is not defined\n",
 960			"DMA_MEMSET");
 961		return -EIO;
 962	}
 963
 964	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
 965		dev_err(device->dev,
 966			"Device claims capability %s, but op is not defined\n",
 967			"DMA_INTERRUPT");
 968		return -EIO;
 969	}
 970
 971	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
 972		dev_err(device->dev,
 973			"Device claims capability %s, but op is not defined\n",
 974			"DMA_CYCLIC");
 975		return -EIO;
 976	}
 977
 978	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
 979		dev_err(device->dev,
 980			"Device claims capability %s, but op is not defined\n",
 981			"DMA_INTERLEAVE");
 982		return -EIO;
 983	}
 984
 985
 986	if (!device->device_tx_status) {
 987		dev_err(device->dev, "Device tx_status is not defined\n");
 988		return -EIO;
 989	}
 990
 991
 992	if (!device->device_issue_pending) {
 993		dev_err(device->dev, "Device issue_pending is not defined\n");
 994		return -EIO;
 995	}
 996
 997	/* note: this only matters in the
 998	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
 999	 */
1000	if (device_has_all_tx_types(device))
1001		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1002
1003	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1004	if (!idr_ref)
1005		return -ENOMEM;
1006	rc = get_dma_id(device);
1007	if (rc != 0) {
1008		kfree(idr_ref);
1009		return rc;
1010	}
1011
1012	atomic_set(idr_ref, 0);
1013
1014	/* represent channels in sysfs. Probably want devs too */
1015	list_for_each_entry(chan, &device->channels, device_node) {
1016		rc = -ENOMEM;
1017		chan->local = alloc_percpu(typeof(*chan->local));
1018		if (chan->local == NULL)
1019			goto err_out;
1020		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1021		if (chan->dev == NULL) {
1022			free_percpu(chan->local);
1023			chan->local = NULL;
1024			goto err_out;
1025		}
1026
1027		chan->chan_id = chancnt++;
1028		chan->dev->device.class = &dma_devclass;
1029		chan->dev->device.parent = device->dev;
1030		chan->dev->chan = chan;
1031		chan->dev->idr_ref = idr_ref;
1032		chan->dev->dev_id = device->dev_id;
1033		atomic_inc(idr_ref);
1034		dev_set_name(&chan->dev->device, "dma%dchan%d",
1035			     device->dev_id, chan->chan_id);
1036
1037		rc = device_register(&chan->dev->device);
1038		if (rc) {
1039			free_percpu(chan->local);
1040			chan->local = NULL;
1041			kfree(chan->dev);
1042			atomic_dec(idr_ref);
1043			goto err_out;
1044		}
1045		chan->client_count = 0;
1046	}
1047
1048	if (!chancnt) {
1049		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1050		rc = -ENODEV;
1051		goto err_out;
1052	}
1053
1054	device->chancnt = chancnt;
1055
1056	mutex_lock(&dma_list_mutex);
1057	/* take references on public channels */
1058	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1059		list_for_each_entry(chan, &device->channels, device_node) {
1060			/* if clients are already waiting for channels we need
1061			 * to take references on their behalf
1062			 */
1063			if (dma_chan_get(chan) == -ENODEV) {
1064				/* note we can only get here for the first
1065				 * channel as the remaining channels are
1066				 * guaranteed to get a reference
1067				 */
1068				rc = -ENODEV;
1069				mutex_unlock(&dma_list_mutex);
1070				goto err_out;
1071			}
1072		}
1073	list_add_tail_rcu(&device->global_node, &dma_device_list);
1074	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1075		device->privatecnt++;	/* Always private */
1076	dma_channel_rebalance();
1077	mutex_unlock(&dma_list_mutex);
1078
1079	return 0;
1080
1081err_out:
1082	/* if we never registered a channel just release the idr */
1083	if (atomic_read(idr_ref) == 0) {
1084		ida_free(&dma_ida, device->dev_id);
 
 
1085		kfree(idr_ref);
1086		return rc;
1087	}
1088
1089	list_for_each_entry(chan, &device->channels, device_node) {
1090		if (chan->local == NULL)
1091			continue;
1092		mutex_lock(&dma_list_mutex);
1093		chan->dev->chan = NULL;
1094		mutex_unlock(&dma_list_mutex);
1095		device_unregister(&chan->dev->device);
1096		free_percpu(chan->local);
1097	}
1098	return rc;
1099}
1100EXPORT_SYMBOL(dma_async_device_register);
1101
1102/**
1103 * dma_async_device_unregister - unregister a DMA device
1104 * @device: &dma_device
1105 *
1106 * This routine is called by dma driver exit routines, dmaengine holds module
1107 * references to prevent it being called while channels are in use.
1108 */
1109void dma_async_device_unregister(struct dma_device *device)
1110{
1111	struct dma_chan *chan;
1112
1113	mutex_lock(&dma_list_mutex);
1114	list_del_rcu(&device->global_node);
1115	dma_channel_rebalance();
1116	mutex_unlock(&dma_list_mutex);
1117
1118	list_for_each_entry(chan, &device->channels, device_node) {
1119		WARN_ONCE(chan->client_count,
1120			  "%s called while %d clients hold a reference\n",
1121			  __func__, chan->client_count);
1122		mutex_lock(&dma_list_mutex);
1123		chan->dev->chan = NULL;
1124		mutex_unlock(&dma_list_mutex);
1125		device_unregister(&chan->dev->device);
1126		free_percpu(chan->local);
1127	}
1128}
1129EXPORT_SYMBOL(dma_async_device_unregister);
1130
1131static void dmam_device_release(struct device *dev, void *res)
1132{
1133	struct dma_device *device;
1134
1135	device = *(struct dma_device **)res;
1136	dma_async_device_unregister(device);
1137}
1138
1139/**
1140 * dmaenginem_async_device_register - registers DMA devices found
1141 * @device: &dma_device
 
 
 
1142 *
1143 * The operation is managed and will be undone on driver detach.
1144 */
1145int dmaenginem_async_device_register(struct dma_device *device)
1146{
1147	void *p;
1148	int ret;
1149
1150	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1151	if (!p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152		return -ENOMEM;
1153
1154	ret = dma_async_device_register(device);
1155	if (!ret) {
1156		*(struct dma_device **)p = device;
1157		devres_add(device->dev, p);
1158	} else {
1159		devres_free(p);
1160	}
1161
1162	return ret;
1163}
1164EXPORT_SYMBOL(dmaenginem_async_device_register);
1165
1166struct dmaengine_unmap_pool {
1167	struct kmem_cache *cache;
1168	const char *name;
1169	mempool_t *pool;
1170	size_t size;
1171};
1172
1173#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1174static struct dmaengine_unmap_pool unmap_pool[] = {
1175	__UNMAP_POOL(2),
1176	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1177	__UNMAP_POOL(16),
1178	__UNMAP_POOL(128),
1179	__UNMAP_POOL(256),
1180	#endif
1181};
1182
1183static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1184{
1185	int order = get_count_order(nr);
1186
1187	switch (order) {
1188	case 0 ... 1:
1189		return &unmap_pool[0];
1190#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1191	case 2 ... 4:
1192		return &unmap_pool[1];
1193	case 5 ... 7:
1194		return &unmap_pool[2];
1195	case 8:
1196		return &unmap_pool[3];
1197#endif
1198	default:
1199		BUG();
1200		return NULL;
1201	}
1202}
1203
1204static void dmaengine_unmap(struct kref *kref)
1205{
1206	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1207	struct device *dev = unmap->dev;
1208	int cnt, i;
1209
1210	cnt = unmap->to_cnt;
1211	for (i = 0; i < cnt; i++)
1212		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1213			       DMA_TO_DEVICE);
1214	cnt += unmap->from_cnt;
1215	for (; i < cnt; i++)
1216		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1217			       DMA_FROM_DEVICE);
1218	cnt += unmap->bidi_cnt;
1219	for (; i < cnt; i++) {
1220		if (unmap->addr[i] == 0)
1221			continue;
1222		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1223			       DMA_BIDIRECTIONAL);
1224	}
1225	cnt = unmap->map_cnt;
1226	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1227}
 
1228
1229void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1230{
1231	if (unmap)
1232		kref_put(&unmap->kref, dmaengine_unmap);
1233}
1234EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1235
1236static void dmaengine_destroy_unmap_pool(void)
1237{
1238	int i;
1239
1240	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1241		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1242
1243		mempool_destroy(p->pool);
1244		p->pool = NULL;
1245		kmem_cache_destroy(p->cache);
1246		p->cache = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247	}
1248}
1249
1250static int __init dmaengine_init_unmap_pool(void)
1251{
1252	int i;
1253
1254	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1255		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1256		size_t size;
1257
1258		size = sizeof(struct dmaengine_unmap_data) +
1259		       sizeof(dma_addr_t) * p->size;
1260
1261		p->cache = kmem_cache_create(p->name, size, 0,
1262					     SLAB_HWCACHE_ALIGN, NULL);
1263		if (!p->cache)
1264			break;
1265		p->pool = mempool_create_slab_pool(1, p->cache);
1266		if (!p->pool)
1267			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268	}
1269
1270	if (i == ARRAY_SIZE(unmap_pool))
1271		return 0;
1272
1273	dmaengine_destroy_unmap_pool();
1274	return -ENOMEM;
1275}
1276
1277struct dmaengine_unmap_data *
1278dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1279{
1280	struct dmaengine_unmap_data *unmap;
1281
1282	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1283	if (!unmap)
1284		return NULL;
1285
1286	memset(unmap, 0, sizeof(*unmap));
1287	kref_init(&unmap->kref);
1288	unmap->dev = dev;
1289	unmap->map_cnt = nr;
1290
1291	return unmap;
1292}
1293EXPORT_SYMBOL(dmaengine_get_unmap_data);
1294
1295void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1296	struct dma_chan *chan)
1297{
1298	tx->chan = chan;
1299	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1300	spin_lock_init(&tx->lock);
1301	#endif
1302}
1303EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1304
1305/* dma_wait_for_async_tx - spin wait for a transaction to complete
1306 * @tx: in-flight transaction to wait on
1307 */
1308enum dma_status
1309dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1310{
1311	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1312
1313	if (!tx)
1314		return DMA_COMPLETE;
1315
1316	while (tx->cookie == -EBUSY) {
1317		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1318			dev_err(tx->chan->device->dev,
1319				"%s timeout waiting for descriptor submission\n",
1320				__func__);
1321			return DMA_ERROR;
1322		}
1323		cpu_relax();
1324	}
1325	return dma_sync_wait(tx->chan, tx->cookie);
1326}
1327EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1328
1329/* dma_run_dependencies - helper routine for dma drivers to process
1330 *	(start) dependent operations on their target channel
1331 * @tx: transaction with dependencies
1332 */
1333void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1334{
1335	struct dma_async_tx_descriptor *dep = txd_next(tx);
1336	struct dma_async_tx_descriptor *dep_next;
1337	struct dma_chan *chan;
1338
1339	if (!dep)
1340		return;
1341
1342	/* we'll submit tx->next now, so clear the link */
1343	txd_clear_next(tx);
1344	chan = dep->chan;
1345
1346	/* keep submitting up until a channel switch is detected
1347	 * in that case we will be called again as a result of
1348	 * processing the interrupt from async_tx_channel_switch
1349	 */
1350	for (; dep; dep = dep_next) {
1351		txd_lock(dep);
1352		txd_clear_parent(dep);
1353		dep_next = txd_next(dep);
1354		if (dep_next && dep_next->chan == chan)
1355			txd_clear_next(dep); /* ->next will be submitted */
1356		else
1357			dep_next = NULL; /* submit current dep and terminate */
1358		txd_unlock(dep);
1359
1360		dep->tx_submit(dep);
1361	}
1362
1363	chan->device->device_issue_pending(chan);
1364}
1365EXPORT_SYMBOL_GPL(dma_run_dependencies);
1366
1367static int __init dma_bus_init(void)
1368{
1369	int err = dmaengine_init_unmap_pool();
1370
1371	if (err)
1372		return err;
1373	return class_register(&dma_devclass);
1374}
1375arch_initcall(dma_bus_init);
1376
1377